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Abstract

We are developing a static type system for object-oriented languages that strives to guarantee statically and
completely the absence of certain large classes of run-time errors, to enable polymorphic abstractions to be
written and typechecked once separately from any current or future instantiations, and to avoid forcing code
to be written unnaturally due to static type system limitations. The type system supports bounded parametric
polymorphism, where the bounds on type variables can be expressed using a mixture of recursive subtype
and signature constraints; this kind of bounding supports F-bounded polymorphism, Theta-stylewhere
clauses, and covariant and contravariant type parameters as special cases. The type system coexists with
many advanced language features, including multi-methods, independent inheritance and subtyping,
mutable and immutable state, first-class lexically-scoped functions, and mixed statically and dynamically
typed code. We have implemented this type system in the Cecil language, and we have used it to
successfully typecheck a 100,000-line Cecil program, the Vortex optimizing compiler.

1 Introduction

Static typechecking offers several advantages to programmers, including early and possibly complete
detection of some kinds of programming errors, support for other static reasoning about programs by both
people and machines, and potentially easier or more effective implementation. However, if the type system
is too simple or restrictive, static typechecking can require unnecessary duplication of code, force code to
be written in unnatural styles, disallow some useful programming constructions, force explicit type “casts”
to be inserted to work around limitations in the static typechecker (with attendant run-time cost if checked),
and/or lead to static type systems with incomplete checking or other type loopholes.

We are developing a static type system for object-oriented languages whose goal is guarantee statically the
absence of certain classes of run-time errors while reducing as much as possible the problems of strict static
typechecking listed above. Our type system has the following salient characteristics:

• The type system supportsbounded parametric polymorphism in addition to the normal subtype
polymorphism of object-oriented languages. Polymorphic abstractions are written and typechecked
once, not repeatedly for each instantiation or for each subclass.

• The bounds on the allowed polymorphism of type variables can be expressed using a mixture of
recursive subtype and signature constraints, supporting both F-bounded polymorphism
[Canning et al. 89] and Theta-stylewhere clauses [Day et al. 95, Liskov et al. 94] as special cases.
Constraints over subtyping declarations enable expression of conditional subtyping as well as co- or
contravariant subtyping between different instances of the same parameterized type.
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• The type system supports many advanced language features, including multi-methods, independent
inheritance and subtyping, mutable and immutable state, first-class lexically-scoped functions, classless
object models, and mixed statically and dynamically typed code.

We have implemented this type system in the Cecil language [Chambers 92, Chambers 93a], and we have
used its features to successfully typecheck a 100,000-line Cecil program, the Vortex optimizing compiler
system [Dean et al. 96] (which includes the Cecil typechecker itself as a component).

The next section of this paper presents our host language and the type system informally, illustrating the
capabilities of our type system on several examples, and comparing it to other type systems. Section 3
specifies the type system more formally. Section 4 reports on our experience in using the type system in
typechecking Vortex. Section 5 compares our work to other type systems.

2 Informal Description of the Type System

In this section we informally describe our polymorphic type system. We begin with a brief description of
the host language that forms the context for our work, then proceed to describe aspects of the polymorphic
type system, in increasing levels of sophistication. Section 3 specifies our type system more formally.

We define a simplified version of Cecil, called Mini-Cecil, for use in presenting our type system and giving
examples. Mini-Cecil focuses our attention on the essential constructs relevant to the expressiveness of our
type system, omitting features of Cecil that are orthogonal to this focus.*  Figure 1 specifies the abstract
syntax of Mini-Cecil. The polymorphic component of the language is confined to theContext part of
declarations and to the type parameters [T] associated with all named entities other than variables. The
following subsection provides background by describing the monomorphic core of Mini-Cecil ignoring
these polymorphic features; a version of this monomorphic language and the issues involved in
typechecking it have been discussed previously [Chambers & Leavens 94, Chambers & Leavens 95]. Later
subsections reintroduce the polymorphic features.

2.1 Monomorphic Host Language

A Mini-Cecil program is a collection of (mutually recursive, unordered) declarations followed by an
expression to evaluate. Classes and types are independent notions in Mini-Cecil, and different aspects of a
class or type are defined through separate declarations. Theclassc declaration introduces a new class named
c (which may either beabstract and potentially incomplete, orconcrete and instantiable bynew
expressions), thec1 inherits c2 declaration states thatc1 is a subclass ofc2 (multiple inheritance is possible),
and themethod andfield declarations add methods and mutable instance variables, respectively, to classes.
Similarly, thetype t declaration introduces a new type namedt, theT1 subtypesT2 declaration states that
T1 is a subtype ofT2 (multiple subtyping is possible), and thesig m(T1,...,Tn):Tr declaration adds an
operation namedm to the interfaces of theT1,...,Tn argument types, returningTr. The c conforms T
declaration connects the class hierarchy to the type hierarchy, stating that direct instances of classc (but not
necessarily instances of its subclasses) support the operations of typeT (and allT’s supertypes). Thevar v:T
declaration declares a new mutable variable namedv holding values of typeT.

Mini-Cecil is based on multiple dispatching; multi-methods generalize undispatched procedures, singly-
dispatched methods, and functions overloaded on different argument types, and multi-methods can resolve

* Omitted features include a classless object model, predicate objects [Chambers 93b], initialized variable and field declarations,
initialization of fields as part of object creation, immutable variables and fields, invocation of function objects via messages,
nested declarations other than variables, modules and encapsulation, analogues of Smalltalk’ssuper and non-local return
constructs [Goldberg & Robson 83], mixed dynamically and statically typed code, and various syntactic conveniences such as
infix and dot notation and simultaneous declaration of parallel inheritance and subtyping hierarchies.
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classic challenges such as the “binary methods” problem [Bruce et al. 95a]. Multi-methods are associated
with classes by having their formal parameters specialized for particular classes; a formal parameter
declarationv@c:T introduces a formal parameter namedv of typeT that is specialized on the classc. (The
effect of an unspecialized formal may be achieved by specializing on theAny class from which all other
classes inherit.) A method applies to a message if all the actual parameters to the send are instances of
classes that descend from the corresponding specializer classes. One method overrides another if its tuple
of specializer classes descends from the other’s tuple, comparing tuples pointwise (CLOS compares tuples
lexicographically; the choice is uninteresting for our type system work). Static typechecking must ensure
that every message at run-time will locate a single most-specific applicable method.

Field declarations introduce new mutable instance variables, accessed solely through automatically-
generated get and set accessor methods. A field declarationfield m(v@c:T):Tr declares a field namedm for
all instances of the specializer classc or any of its subclasses. The field declaration automatically declares
a get accessor methodmethod m(v@c:T):Tr that returns the contents of them field of its argument object,
and a set accessor methodmethodm(v@c:T, contents@Any:Tr):Void that takes an object and a new value
and updates them field of the object to hold the new value.

Mini-Cecil has standard expressions for variable reference, assignment, and statement sequencing. Thenew
c expression creates an instance of the classc. Them(E1,...,En) expression sends them message to itsn
argument objects. Theλ(v1:T1,...,vn:Tn):Tr{ B} expression creates a lexically-nested first-class function

Variable v
Class c
Type Name t
Type Variable α
Message m

Program P ::= CD VD E
Constrained Decl CD ::= CX D
Context CX ::= forall α whereC:
Constraint C ::= SubD | SigD

Declaration D ::= ClassD | InhD | MethD | FieldD | TypeD | SubD | SigD | ConfD
Class Decl ClassD ::= role classc[T]
Inherits Decl InhD ::= c1[T1] inherits c2[T2]
Method Decl MethD ::= methodm[Tp](v@c:T):Tr { B }
Field Decl FieldD ::= field m[](v@c:T):Tr
Type Decl TypeD ::= type t[T]
Subtype Decl SubD ::= T1 subtypesT2
Signature Decl SigD ::= sig m [Tp](Ta):Tr
Conforms Decl ConfD ::= c[T] conformsT2

Class Role role ::= abstract | concrete
Type T ::= t[T] | λ(T):Tr | α | glb(T) | lub(T)

Block B ::= VD E
Var Decl VD ::= var v:T
Expression E ::= v | v := E | newc[T] | m [Tp](Ea) | λ(v:T):Tr { B } | apply(Eλ E) | E1 ; E2

We use overbar notation, as inT, to indicate a sequence of zero or more elements. In program examples, we separate these
elements by commas or semicolons. We also omit empty constructs where desired, including empty type parameter lists “[]”,
contexts with no type variables, and empty sets of constraints.

Figure 1: Syntax of Mini-Cecil.
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object, takingn arguments namedv1,...,vn of typeT1,...,Tn, whose body is the blockB returning a value of
type Tr. The apply(Eλ,E1,...,En) expression invokes its first argument (a function object created by aλ
expression), passing the remaining arguments. Theλ(T1,...,Tn):Tr form names the type of a function object
taking arguments of typesT1,...,Tn and returning a value of typeTr. The standard contravariant subtyping
rules hold for function types: one function typeλ(T1,...,Tn):Tr is implicitly a subtype of another function
typeλ(T1',...,Tn'):Tr' if eachTi is a supertype ofTi' andTr is a subtype ofTr'. (First-class functions are used
in Mini-Cecil to express control structures within the language.)

The following example illustrates these declarations and expressions using a simplePoint/ColorPoint
hierarchy. (Note that the “binary method” problem with theequal_point method on colored points is
resolved through multiple dispatching.)

-- Interfaces:

type Point;

sig x(Point):Num;
sig set_x(Point, Num):Void;

sig y(Point):Num;
sig set_y(Point, Num):Void;

sig area(Point):Num;

sig equal_point(Point, Point):Bool;

sig new_point(Num, Num):Point;

type ColorPoint;
ColorPoint subtypes Point;

sig color(ColorPoint):Color;
sig set_color(ColorPoint, Color):Void;

sig new_color_point(Num, Num, Color):ColorPoint;

-- Implementations:

concrete class PointClass;
PointClass inherits Any;
PointClass conforms Point;

field x(p@PointClass:Point):Num; -- introducesx andset_x methods
field y(p@PointClass:Point):Num; -- introducesy andset_y methods

method area(p@PointClass:Point):Num { multiply(x(p), y(p)) }

method equal_point(p1@PointClass:Point, p2@PointClass:Point):Bool {
and(equal_num(x(p1), x(p2)), λ(){ equal_num(y(p1), y(p2)) }) }

method new_point(x0@Any:Num, y0@Any:Num):Point {
var result:Point;
result := new PointClass;
set_x(result, x0);
set_y(result, y0);
result }

concrete class ColorPointClass;
ColorPointClass inherits PointClass;
ColorPointClass conforms ColorPoint;

field color(p@ColorPointClass:ColorPoint):Color; -- introducescolor andset_color methods

method equal_point(p1@ColorPointClass:ColorPoint,
p2@ColorPointClass:ColorPoint):Bool {

and(and(equal_num(x(p1), x(p2)), λ(){ equal_num(y(p1), y(p2)) }),
λ(){ equal_color(color(p1), color(p2)) }) }

method new_color_point(x0@Any:Num, y0@Any:Num, c0@Any:Color):ColorPoint {
var result:ColorPoint;
result := new ColorPointClass;
set_x(result, x0);
set_y(result, y0);
set_color(result, c0);
result }



5

Note that this syntax is verbose in several ways: declaring separate but parallel inheritance and subtyping,
using prefix message notation to read and write fields and for “infix” operators, explicit first-class functions
for control structures (such as the short-circuitingand method used above), and requiringAny as the
specializer class for many formals. The full Cecil language has syntactic sugars that make these common
patterns concise, without changing the underlying semantics. In this paper, we will stick to the unsugared
syntax of Mini-Cecil.

Given the type partial order derived from programmer-specifiedtype andsubtypes declarations, the system
automatically completes the lattice to provide least-upper- and greatest-lower-bounds for all pairs of types.
The lub(T1,...,Tn) and glb(T1,...,Tn) forms name the least-upper-bound and greatest-lower-bound,
respectively, of a list of types. Unless one type is a subtype of the other, the least-upper-bound and the
greatest-lower-bound of two types are different from any common ancestor or descendant of the types. For
example,lub(Int,Float) is a strict subtype of any supertype thatInt andFloat have in common, like
Num.

Typechecking of this monomorphic core of Mini-Cecil divides into two components: client-side
typechecking and implementation-side typechecking. Client-side typechecking uses the interfaces declared
throughtype, subtypes, conforms, andsignature declarations to verify that expressions are type-correct.
These checks include that the type of the right-hand-side of an assignment is a subtype of the type of the
left-hand-side, and that the type of the body of a method or function object is a subtype of the declared return
type. The type of anewc expression is theglb of all the types to whichc conforms. A message expression
m(E1,...,En), whose arguments have typesT1,...,Tn, is type-correct iff there exists a coveringsig
m(T1',...,Tn'):Tr' declaration where each of theTi is a subtype of the correspondingTi'. The type of the result
of such a message is theglb of theTr' of all covering signatures. The type of aλ(v1:T1,...,vn:Tn):Tr{ B}
expression isλ(T1,...,Tn):Tr. An apply(Eλ,E1,...,En) expression, whose arguments have typesTλ,T1,...,Tn, is
type-correct iff there exists a covering function typeλ(T1',...,Tn'):Tr' that is a supertype ofTλ and where each
Ti is a subtype of the correspondingTi'. The type of the result of such an application is theglb of theTr' of
all covering function types.

Implementation-side typechecking verifies that the implementations given byclass, inherits, method, and
field declarations support the interface declared throughtype, subtypes, andsignature declarations, as
linked through theconforms declarations. In effect, these checks enumerate, for each signature
sig m(T1,...,Tn):Tr, all n-tuples ofconcrete argument classesc1,...,cn that conform to the corresponding
signature types. For each of these tuples, typechecking verifies that a single most-specific applicable method
methodm(v1'@c1':T1',...,vn'@cn':Tn'):Tr' (which may be a field accessor method) would be looked up, and
that moreover eachci argument class conforms to the corresponding declared formal typeTi', and that the
method’s result typeTr' is a subtype of the signature’s result typeTr. (An efficient algorithm to achieve the
effect of this enumeration-based specification has been described previously [Chambers & Leavens 94,
Chambers & Leavens 95]). If these tests succeed, then the type interface is known to be completely and
unambiguously implemented. If client-side typechecking also succeeds, overall type-safety of the program
is assured.

2.2 Polymorphic Declarations

To support parametric polymorphism, any global declaration (other than variables) may be polymorphic
over some set of types by prefixing the declaration with aforall α1,...,αn context. Theαi are type variables
over which the declaration is polymorphic, and they may be used as regular types within the prefixed
declaration. (A non-polymorphic declaration has an empty list of type variables.)
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To use a polymorphic declaration, it must first be instantiated by providing actual types for each type
variable. Instantiating types for type variables may be provided explicitly by clients of the declaration or
inferred implicitly by the system. A polymorphic declaration specifies the set of explicitly-passed type
parameters by providing a list of type variables in brackets after the name of the declared entity. For
instance, in the polymorphic class declarationforall α1,...,αn: classc[αi,...,αj], theαi,...,αj type parameters
are provided explicitly by clients. Uses of the declared name provide a list of actual types to use for those
type variables, for instancenewc[Ti,...,Tj].

The following declarations use these mechanisms to define a parameterized read-only array class and type.
(The full Cecil language includes syntactic sugar to make theforall  clauses implicit in most circumstances.)
In our examples we useT andS to name type variables.

forall T: type Array[T]
forall T: Array[T] subtypes Collection[T]
forall T: sig fetch(Array[T], Int):T

forall T: concrete class ArrayClass[T]
forall T: ArrayClass[T] inherits CollectionClass[T]
forall T: ArrayClass[T] conforms Array[T]
forall T: method fetch(a@ArrayClass[T]:Array[T], index@Any:Int):T  { ... }

var my_array:Array[Num] := new ArrayClass[Num];
var result:Num := fetch(my_array, 5);

TheArray type and theArrayClass class are both explicitly parameterized. All references to these
names must provide instantiating types, such as type annotations likeArray[Num] and instance creation
expressions likenewArrayClass[Num]. The instantiationsArray[T] andArrayClass[T] in the
other declarations use the type variableT as the instantiating type;T is bound by theforall  prefix and is
considered a regular type (of unknown properties) in the scope of theforall .

In contrast, thesig andmethod declarations forfetch are implicitly parameterized. References tofetch
do not pass any explicit type parameters. Instead, the system infers the appropriate type parameter from the
types of the actual parameters. For example, in thefetch(my_array, 5) expression, because
my_array is of type Array[Num], the type parameterT in the fetch signature is inferred
automatically to beNum, since that is the most precise instantiating type that makes the expression
typecheck. Automatic inference of instantiating type parameters is a key feature of our type system and an
important contributor to its convenience in practice.

Thesubtypes, inherits, andconforms declarations reference previously declared parameterized types and/
or classes, and state that a particular relationship holds between particular instances of the types and/or
classes for a certain pattern of instantiating types. Clients do not directly reference these anonymous
declarations; instead the system automatically instantiates them as needed to support its run-time method
lookup and typechecking operations.

Our type system’s polymorphism model supports dependent types, where the type of one argument or result
depends on or is computed from aspects of the type(s) of other arguments. Thefetch method above is an
example of this, where the type of the result offetch is dependent on the array element type. Other
examples occur with control structures, with the types of the argument function objects inducing other
types. As a simple example, the following declarations illustrate how the polymorphicif expression is
programmed in Mini-Cecil, following the model ofifTrue:ifFalse: in Smalltalk [Goldberg &
Robson 83].
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type Bool;
forall T: sig if(Bool, λ():T, λ():T):T

concrete class True;
True conforms Bool;
forall T: method if(t@True:Bool, if_true@Any:λ():T, if_false@Any:λ():T):T {
apply(if_true) }

concrete class False;
False conforms Bool;
forall T: method if(f@False:Bool, if_true@Any:λ():T, if_false@Any:λ():T):T {
apply(if_false) }

In this example, the result of theif message is inferred from the result types of the two function arguments.
If the two function objects have different result types, the system automatically will search for the single
most-specific type to bind toT that will make the call type-correct; such a type will always exist because
the least-upper-bound of all pairs of unrelated types has been introduced automatically. For example, the
type bound toT (and the result of the message) in the following expression is inferred to beInt|Float.
... if(..., λ(){ 3 }, λ(){ 4.5 }) ...

2.3 Bounded Polymorphism

It is often necessary to restrict the polymorphism of a declaration to types that have some property, such as
that values of the type be printable or comparable. This bounded polymorphism is supported in our type
system by placing one or more constraints on the type variables, in thewhere clause of theforall  prefix. A
constraint may either be that one type expression can be shown to be a subtype of another, or that a particular
signature can be known to hold. Constraints on the type parameters of amethod declaration are exploited
directly during typechecking of the body of method. Constraints on the type parameters ofclass andtype
declarations restrict allowed instantiating types, which indirectly enables methods and signatures associated
with the parameterized classes and types to exploit these constraints. Constraints oninherits, subtypes, and
conforms declarations restrict when these relationships are known, and must be verified, to hold.

The following declarations use subtype-bounded polymorphism to define a method to print out collections,
for those collections whose elements support theprint operation. Theprint operation on collections is
typechecked once, ensuring that it will be type-safe for all instantiating types that are subtypes of
Printable.
type Printable;
sig print(Printable):Void;

String subtypes Printable; -- and other previously declared types, too
forall T where T subtypes Printable:
Collection[T] subtypes Printable; -- collections of printable things are themselves printable

forall T where T subtypes Printable:
method print(a@CollectionClass[T]:Collection[T]):Void {
print("[");
do(a, λ(e:T){ print(e) }); -- do invokes its function argument on each element of the collectiona
print("]") }

Alternatively, signature-bounded polymorphism may be used to declare such aprint operation on
collections, without introducing an explicitPrintable type, as illustrated by the following declaration.
forall T where sig print(T):Void:
method print(a@CollectionClass[T]:Collection[T]):Void {
print("[");
do(a, λ(e:T){ print(e) }); -- do invokes its function argument on each element of the collectiona
print("]") }

The signature-based style is more compact in this example and it avoids the need for declaring explicitly
which types are subtypes ofPrintable. In effect, a signature constraint supports a kind of automatically
inferred structural subtype constraint. The subtype-based style builds on an explicit named subtyping
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model. Subtype constraints from explicitly named types can work better where several signatures are
associated with one type, where the concept embodied by the bound merits an explicit name, or where
accidental structural matches should be avoided. Our polymorphism mechanism does not force
programmers to choose one approach over the other; both kinds of bounds are supported equally.

2.4 Recursive Constraints

A type variable may appear in multiple constraints and in different parts of the same constraint. In addition,
because the polymorphic declarations being introduced are visible throughout the enclosing scope, they
may be referenced in the constraints themselves. These features enable our system to express F-bounded
polymorphism and Theta-stylewhere clauses easily. (Additionally, our system can express mixes of the
two styles.) The following declarations use this idiom to declare the types and default implementations of
things that are comparable and totally-ordered. (To avoid repeating the sameforall  clauses for a series of
declarations, we introduce a syntactic sugar of the formforall α whereC: { D1; ...; Dn }, which is the
same asforall α whereC: D1; ...; forall α whereC: Dn. If any of theDi has aforall  or where clause of
its own, its clause is merged with the enclosingforall  as part of desugaring. Full Cecil includes other
syntactic sugars that minimize the verbosity offorall  clauses.)

forall T where T subtypes Comparable[T]: {
type Comparable[T]
sig equal(T, T):Bool
sig not_equal(T, T):Bool

abstract class ComparableClass[T]
ComparableClass[T] conforms Comparable[T]
method not_equal(x1@ComparableClass[T]:T, x2@ComparableClass[T]:T):Bool {
not(equal(x1, x2)) }

}

forall T where T subtypes Ordered[T]: {
type Ordered[T]
Ordered[T] subtypes Comparable[T]
-- interfaces forequal andnot_equal are “inherited” byOrdered
sig less_than(T, T):Bool
sig less_or_equal(T, T):Bool
sig greater_or_equal(T, T):Bool
sig greater_than(T, T):Bool
sig min(T, T):T
sig max(T, T):T
forall S: sig compare_and_do(T, T, λ():S, λ():S, λ():S):S

abstract class OrderedClass[T]
OrderedClass[T] inherits ComparableClass[T]
OrderedClass[T] conforms Ordered[T]
method less_or_equal(x1@OrderedClass[T]:T, x2@OrderedClass[T]:T):Bool {
or(equal(x1, x2), λ(){ less_than(x1, x2) }) }

-- default methods forgreater_or_equal andgreater_than are similar
method min(x1@OrderedClass[T]:T, x2@OrderedClass[T]:T):T {
if(less_or_equal(x1, x2), λ(){ x1 }, λ(){ x2 }) }

-- default method formax is similar
forall S:
method compare_and_do(x1@OrderedClass[T]:T, x2@OrderedClass[T]:T,

if_less:λ():S, if_equal:λ():S, if_greater:λ():S):S {
if(less_than(x1, x2), if_less, λ(){ if(equal(x1, x2), if_equal, if_greater) }) }

}

In this example, theComparable and Ordered types define a number of operations available on
implementations conforming to the type. None of these operations requires explicit type parameters, and so
clients can simply invoke the operations directly. TheComparableClass andOrderedClass classes
provide default implementations of most of these operations, from which classes that wish to be comparable
or ordered may inherit. (Using signature constraints to require several operations on client ordered values
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would be more verbose than using a single subtype constraint from theOrdered type.) Themin, max,
andcompare_and_do methods have their type parameters and result type inferred by the system from
the types of their arguments.

By bounding the type parameterT in terms of itself (an example of F-bounded polymorphism), this code
ensures that the two values being tested come from the same “domain,” providing one solution to the
“binary methods” problem (multi-methods are an alternative solution which resolves the problem with a
different final semantics). For example, in the following declarations, the bound will ensure that numbers
can be compared to numbers, and collections of numbers can be compared to other collections of numbers,
but will disallow comparing numbers to collections of numbers, unlike covariant typing as in Eiffel [Meyer
92] or virtual types as in Beta [Madsen & Møller-Pederse 89, Madsen et al. 93] and Thorup’s proposal for
Java [Thorup 97]. Additionally, different representations of numbers (such as integers and floats) can be
intermixed in the collection and compared to each other; subtyping is still available after instantiating the
polymorphic declarations, unlike LOOM [Bruce et al. 97] and Haskell [Wadler & Blott 89].

type Num
Num subtypes Ordered[Num] -- classes conforming toNum can be compared to each other

abstract class NumClass
NumClass conforms Num
NumClass inherits OrderedClass[Num] -- inherit default implementations of operations

sig convert_to_float(Num):Num

method equal(x1@NumClass:Num, x2@NumClass:Num):Bool {
equal(convert_to_float(x1), convert_to_float(x2)) }

-- less_than method is similar

concrete class IntClass
IntClass inherits NumClass
IntClass conforms Num

method equal(x1@IntClass:Num, x2@IntClass:Num):Bool { ... }
-- less_than method is similar

concrete class FloatClass
FloatClass inherits NumClass
FloatClass conforms Num

method equal(x1@FloatClass:Num, x2@FloatClass:Num):Bool { ... }
-- less_than method is similar

forall T: {
type Collection[T]
where T subtypes Ordered[T]:
Collection[T] subtypes Ordered[Collection[T]]  -- lexicographic ordering

sig length(Collection[T]):Int
sig do(Collection[T], λ(T):Void):Void
forall S: sig pairwise_do(Collection[T], Collection[S], λ(T,S):Void):Void

}

forall T: {
abstract class CollectionClass[T]
CollectionClass[T] conforms Collection[T]

where T subtypes Ordered[T]: {
CollectionClass[T] inherits OrderedClass[Collection[T]]

method equal(c1@CollectionClass[T]:Collection[T],
c2@CollectionClass[T]:Collection[T]):Bool {

and(equal(length(c1), length(c2)),
λ(){ pairwise_do(c1, c2, λ(e1:T, e2:T){

if(not_equal(e1, e2), λ(){ return False }, λ(){ VoidValue })
});
True }) }

-- less_than method is similar
}

}
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2.5 Constraint Solving

The heart of our polymorphic type system is a constraint solver. All type checks are expressed in terms of
a system of subtype, conforms, and signature constraints over types which may contain unbound type
variables, along with conditions for each unbound type variable as to whether the most specific, most
general, or any legal instantiating type is to be computed. The system of constraints is handed off to a
constraint solver to be solved, in the context ofassumed subtype, conforms, and signature constraints.
Assumed constraints include the global subtype, conforms, and signature declarations and the subtype and
signature constraints from the enclosingwhere clause, if any. The solver attempts to compute types for the
unbound type variables (if any) and show that the system of constraints is satisfied. If the constraints cannot
be solved, or unique most-specific or most-general instantiations for the appropriate unbound type variables
cannot be computed, then a static type error is reported.

The tests made as part of typechecking that involve the constraint solver are the following:

• whether one typeT1 is a subtype of anotherT2 (directly expressible as the subtype constraint
T1 subtypesT2 with no unbound type variables),

• whether one classc[T] conforms to a typeT2 (expressed as a conforms constraintc[T] conformsT2 with
no unbound type variables),

• whether a messagem[T1,...,Tm] with argument typesT1',...,Tn' is understood and what the most-specific
result typeαr of the message is (expressed as the signature constraintsig m[T1,...,Tm](T1',...,Tn'):αr
whereαr is a fresh unbound type variable that should be minimized), and

• whether an application of a function of typeTλ to arguments of typeT1,...,Tn is type-safe and what the
most-specific result typeαr of the application is (expressed as the subtype constraint
Tλ subtypesλ(T1,...,Tn):αr whereαr is a fresh unbound type variable that should be minimized).

To solve a system of constraints (initially a single constraint introduced as described above), the solver
attempts to find or construct anassumablesubtypes, sig, or conforms constraint that matches one of the
constraints to be solved, and then removes the constraint from the set. If all constraints are removed, the
system is satisfied and the typecheck passes. If the constraint solver is unable to construct an assumable
constraint for one of the constraints, then the original constraint cannot be solved and the typecheck fails.
Assumable constraints are found or located in several ways:

• An assumable constraint can be found directly in the context of assumed constraints from global
monomorphic declarations or fromsubtypes or sig constraints in the enclosingwhere clause.

• An assumable constraint may be derived by instantiating a polymorphic declaration of the same kind.
If the polymorphic declaration itself has constraints on its legal instantiation through awhere clause of
its own, then instantiated versions of these constraints are added to the system of constraints to be
satisfied. Some of the declaration’s type variables may be instantiated with fresh unbound type variables
introduced internally by the typechecker; such variables are to be bound at later steps.

• Standard properties of signatures, subtyping, and conformance can be used to construct new assumable
constraints from ones assumable through other techniques. For example, transitivity of subtyping and
contravariant subtyping between function types allow building a subtype constraint from several others.
Contravariance allows a new signature to be inferred from an existing one by making any of the
argument types more specific and/or the result type more general. Two signatures that differ only in their
result types can be used to infer a third whose result type is theglb of the result types of the first two.
Other properties are specified formally in Section 3.2.
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If matching a constraint with an unbound type variable against an assumable constraint (which has no
unbound type variables), the type variable is bound to the corresponding type in the assumable constraint,
replacing all other occurrences of the type variable in other constraints to be solved with the bound-to type.
For the unbound type variable standing for the computed result of a message or application, the constraint
solver is obligated to compute the unique most-specific binding, restricting the possible assumable
constraints to those that meet this requirement; other internal type variables introduced during instantiation
of polymorphic declarations may be instantiated to any legal type.

Figure 2 illustrates this process for typechecking the messagemax(3,4.5). The typechecker infers that
the message is type-correct and returns a value of typelub(Int,Float) (the type bound to theResult
type variable).

sig max(Int, Float):Result (Result minimal)

⇑

Int subtypes X, Float subtypes X, X subtypes Result, X subtypes Ordered[X] (Result minimal)

⇑ bindX andResult tolub(Int,Float)

Int subtypes lub(Int,Float), Float subtypes lub(Int,Float),
lub(Int,Float) subtypes lub(Int,Float),

lub(Int,Float) subtypes Ordered[lub(Int,Float)]

⇑ the first two constraints are satisfied by subtyping oflub; third by reflexivity of subtyping

lub(Int,Float) subtypes Ordered[lub(Int,Float)]

⇑

lub(Int,Float) subtypes Num, Num subtypes Ordered[Num]

⇑
Int subtypes Num, Float subtypes Num, Num subtypes Ordered[Num]

⇑ satisfied by declarations<3>

∅

Figure 2: Example of Constraint Solving.
We use “≤” instead of “subtypes.” The following declarations are referred to by numbers:

<1>: forall T where T subtypes Ordered[T]: sig max(T, T):T

<2>: forall S,T where S subtypes T: Ordered[T] subtypes Ordered[S]

<3>: Int subtypes Num; Float subtypes Num; Num subtypes Ordered[Num]

Int X≤ Float X≤ X Result≤

X Ordered[X]≤

sig max(X,X):X
--------------------------------------- (instantiate <1>; X fresh)

sig max(Int, Float):Result
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(contravariance
of signature)

lub(Int,Float) Num≤ Num Ordered[Num]≤

lub(Int,Float) Num≤

Ordered[Num] Ordered[lub(Int,Float)]≤
------------------------------------------------------------------------------------------------- (instantiate <2>)

lub(Int,Float) Ordered[lub(Int,Float)]≤
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(transitivity of
subtyping)

Int Num≤ Float Num≤
lub(Int,Float) Num≤

--------------------------------------------------------------- (subtyping
of lub)
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The formal rules in Section 3 give a non-deterministic specification of our type system; here we described
the deterministic algorithm we have implemented in our typechecker. The algorithm solves constraints by
performing a search through an and-or proof tree. Or’s arise when several possible choices exist for
constructing an assumable constraint for a particular constraint to be solved; these choices stem from the
many subtype and signature constraints that are declared or that can be constructed. A proof of any of the
choices is sufficient as a proof of the constraint to be solved. And’s arise from instantiations of polymorphic
declarations that havewhere clauses listing multiple constraints. All of the constraints of the polymorphic
declaration must be proved for the instantiation to be proved.

Conceptually, the and-or tree being searched is infinite. To avoid searching infinitely during typechecking,
our implementation pursues only most-direct, most-general paths, using the constraint to be satisfied to
construct an assumed constraint that causes a minimal set of new constraints to be introduced. However,
this strategy is not always sufficient to guarantee termination of constraint solving. For example, the
following declaration and expression causes unbounded constraint solving:

forall T, S where List[List[T]] subtypes List[List[S]]: List[T] subtypes List[S]

var x:List[Num] := ... -- r.h.s. of typeList[Int]

To force constraint solving to be bounded, our implementation counts the number of steps that are taken in
the search through the and-or tree, and reports as unsatisfied any constraints that take more than a fixed
number of steps. This is one source of incompleteness of our deterministic algorithm with respect to the
formal rules. Other sources include complicated uses oflub andglb types and in some cases recursive
constraints like {A[T] subtypes T, T subtypes B[T]}. Incompleteness may cause the typechecker to
report type errors in some cases which are legal according to the formal rules, reducing flexibility of the type
system available to the programmer (however this doesn’t happen for the Cecil code we have). This can be
handled by improving the implementation algorithm without changing the formal type system.

Our future work includes formalizing the notion of most-direct, most-general searches and developing static
well-foundedness restrictions on the bounds of polymorphic declarations to disallow declarations like the
List declaration above, culminating with a proof of termination for our type system. Another direction is
making the deterministic typechecking algorithm more complete.

2.6 Comparison with Other Type Systems

Since our system supports F-bounded polymorphism though subtype constraints, all of the standard “test”
examples used in the literature to show the expressiveness of F-bounded polymorphism are supported in our
system; these examples include theComparable andOrdered types and binary methods presented
earlier. (Multiple dispatching allows a different solution to the binary method problem, which offers a
different semantics than the solution enabled by F-bounded polymorphism; our type system supports both
solutions, allowing the programmers to choose the desired effect for different practical examples.) The
following example, adapted from Thorup [Thorup 97], shows how mutually recursive subtype bounds can
express the requirement that several interrelated types in a framework must be refined as a family to
preserve type-safety.*

* Recall that Mini-Cecil uses an unsugared syntax that separates types and classes, for clarity of semantics. The full Cecil language
supports syntactic sugars for defining both types and classes with a single set of declarations, requiring roughly half the text of the
unsugared version.
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-- The abstract framework over two types:

forall S,O where S subtypes Subject[S,O], O subtypes Observer[S,O]: {
type Subject[S,O]
sig observers(S):MutableList[O]
sig notify_observers(S)

abstract class SubjectClass[S,O]
SubjectClass[S,O] conforms Subject[S,O]
field observers(s@SubjectClass[S,O]:S):MutableList[O]
method notify_observers(s@SubjectClass[S,O]:S):Void {
do(observers(s), λ(e:O){ notify(o, s) }) }

type Observer[S,O]
sig notify(O, S):Void

}

-- An instantiation of the framework for a drawing subject and a drawing view observer, which is itself further extensible:

forall D,V where D subtypes Drawing[D,V], V subtypes View[D,V]: {
type Drawing[D,V]
Drawing[D,V] subtypes Subject[D,V]
sig bitmap(D):BitMap
sig set_pixel(D, Position, Color):Void

concrete class DrawingClass[D,V]
DrawingClass[D,V] conforms Drawing[D,V]
DrawingClass[D,V] inherits SubjectClass[D,V]
field bitmap(d@DrawingClass[D,V]:D):BitMap
method set_pixel(d@DrawingClass[D,V]:D, p@Any:Position, c@Any:Color):Void {
-- hereobservers(d) is known to contain (subtypes of)View which therefore have anupdate_pixel operation
do(observers(d), λ(v:V){ update_pixel(v, p, c) }) }

type View[D,V]
View[D,V] subtypes Observer[D,V]
sig update_pixel(V, Position, Color):Void

concrete class ViewClass[D,V]
ViewClass[D,V] conforms View[D,V]
method notify(v@ViewClass[D,V]:V, d@Any:D):Void {
-- hered is known to be a (subtype of)Drawing, and therefore has a bitmap
plot(screen, bitmap(d)) }

method set_pixel(d@ViewClass[D,V]:V, p@Any:Position, c@Any:Color):Void {
plot_pixel(screen, p, c) }

}

Systems based on covariant method typing such as Eiffel [Meyer 92] or covariant type refinement such as
Beta [Madsen & Møller-Pederse 89] and Thorup’s proposed extension to Java allow this program, but also
allow many other programs that are not type-safe; these languages either insert run-time typechecking or
are unsafe. On the other hand, clients of our program must instantiate the various parameterized types and
classes to use them, while the equivalent but unparameterized versions in Eiffel or Thorup’s extension to
Java may be manipulated directly. We plan to extend our language with syntactic and semantic support to
define default instantiations of type parameters that clients can omit, which will make use of our framework
as concise as in Eiffel or extended Java while preserving static type safety. Languages based on matching,
such as the TOOPLE, TOIL, PolyTOIL, and LOOM series of languages [Bruce et al. 97], support a subset
of F-bounded polymorphism that only allows the receiver argument to be constrained by itself, and as a
result they cannot express these sorts of constraints over multiple types.

Our type system can express parameterized types where one instance of the parameterized type is a subtype
of another instance, either in a covariant or contravariant manner. For example, the following declarations
state that the read-only interface of an array is parameterized covariantly (since the type parameter only
occurs in covariant positions in the signatures comprising the interface to a read-only array), while the read-
write interface to an array is parameterized invariantly (since the type parameter appears in both covariant
and contravariant positions in signatures in the full read-write interface).
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forall T: {
type Array[T]
Array[T] subtypes Collection[T]
forall S where S subtypes T: Array[S] subtypes Array[T]
sig fetch(Array[T], Int):T

}

forall T: {
type MutableArray[T]
MutableArray[T] subtypes Array[T]
sig store(MutableArray[T], Int, T):Void

}

var a1:MutableArray[Float] := ...;
store(a1, 0, 3.5);

var a2:Array[Num] := a1;
var n:Num := fetch(a2, 0); -- n := 3.5

The following declarations extend the earlierComparable andOrdered examples to reflect the fact that
their type parameters are contravariant.
forall S, T where S subtypes T: Comparable[T] subtypes Comparable[S]

forall S, T where S subtypes T: Ordered[T] subtypes Ordered[S]

Few other languages can express this (for example, Pizza [Odersky & Wadler 97] and Theta [Day et al. 95,
Liskov et al. 94] cannot). Strongtalk [Bracha & Griswold 93] and ML≤ [Bourdoncle & Merz 97] introduce
specialized constructs to declare this relation; we do not. Array types in Java [Gosling et al. 96] and virtual
types as in Thorup’s proposal in effect treat all type parameters as covariant, which is a source of static
unsoundness that necessitates run-time checking. In addition, we can limit the extent of contra- or
covariance of a type parameter by adding additional constraints on the parameter introduced in the subtypes
declaration, for example to limit contravariance of a function argument to types that are subtypes ofNum.

Since our system supports Theta-stylewhere clauses through signature constraints, all of the standard
examples in support ofwhere clauses are handled by our system. In addition to handling many of the
examples used for F-bounded polymorphism (sometimes more concisely, sometimes less so), signature
constraints can be used as part of dependent typing, enabling argument and result types to depend on the
presence of other constraints. For example, signature constraints can be used to automatically infer
appropriate interfaces to thecopy operation on collections from whatever interfaces are already available
for an underlyingcopy_empty operation (which produces an empty collection of the same representation
as its argument, and is implemented for certain collection types but not others).
forall T, In, Out where In subtypes Collection[T],

sig copy_empty(In):Out,
sig add_last(Out, T):Void: {

sig copy(In):Out;

method copy(c@CollectionClass[T]:In):Out {
var res:Out := copy_empty(c);
do(c, λ(elem:T){ add_last(res, elem) });
res }

}

... forall T: sig copy_empty(Array[T]):MutableArray[T] ...

... forall T: sig add_last(MutableArray[T], T):Void ...

... forall T: sig copy_empty(List[T]):MutableList[T] ...

... forall T: sig add_last(MutableList[T], T):Void ...

... forall T: sig copy_empty(Table[T]):MutableTable[T] ...

In this example, mutable and immutableArrays andLists can use thiscopy method, and clients will
know that a value of the corresponding (mutable) type is returned. However, becauseTables do not
supportadd_last, they cannot reuse thiscopy function; presumablyTables provide their owncopy
function. Callers ofcopy do not provide theT, In, orOut type parameters; the system infers them from
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the type of the argument tocopy and from the availablecopy_empty andadd_last signatures. Theta,
by contrast, disallows methods with type parameters other than those inherited by the enclosing
parameterized class declaration, and also requires all type parameters to be passed explicitly by clients.

3 Formal Description of the Type System

Typechecking a Mini-Cecil program proceeds in the following stages:

• the top-level type environment is created based on the program’s top-level, mutually recursive
declarations,

• client-side typechecking is performed, and

• implementation-side typechecking is performed.

Several of these steps in turn depend on checking whether instantiations are legal and checking systems of
constraints for legality. Each of these five components is discussed in the following subsections.

This section serves as a non-deterministic specification of the behavior of the typechecker, not as a
deterministic, executable algorithm for typechecking. We have implemented a deterministic algorithm; it is
incomplete but is capable of handling all the Cecil code we have. Formalizing and improving this algorithm
is future work.

Throughout the rules and explanation we use the overbar notation as follows. IfA = A1, ...,An,
B = B1, ...,Bn, C is a single element, and⊗ is a binary operator, thenA ⊗ B = A1 ⊗ B1, ...,An ⊗ Bn and
C ⊗ B = C ⊗ B1, ...,C ⊗ Bn .

3.1 Constructing the Top-Level Type Environment

All typechecking is performed in the context of a typechecking environment,∆, which is a collection of
declarations in scope.

Environment ∆ ::= CD VD

For a given programP = CD VD E, its top-level environment∆P formed from the global mutually-recursive
declarations as follows:

∆P = CD VD ∪ ∆accessors(P) ∪ ∆predefined

∆accessors(P) contains, for each field declarationforall α where C: field m[](v@c:T):Tr in P, two accessor
method declarationsforall α where C: method m[](v@c:T):Tr andforall α where C: methodset_m[](v@c:T,

vnew@Any:Tr):Void (the bodies of these accessor pseudo-methods are ignored during typechecking).
∆predefined contains the initial declarations needed by some parts of the semantics, includingtype Void and
abstract classAny. We consider ann-argument function typeλ(T1,...,Tn):Tr to denote a predefined type with
n+1 parameters,lambda/n[T1,...,Tn,Tr], declared in ∆predefined; an analogous concrete class
lambdaClass/n[T1,...,Tn,Tr] that conforms tolambda/n[T1,...,Tn,Tr] is also declared in∆predefined. To
encode the implicit contravariance of function types,∆predefined includes declarations like the following for
all values ofn:

forall α1,...,αn,αr,β1,...,βn,βr where β1 subtypes α1,..., βn subtypes αn, αr subtypes βr:
lambda/n[α1,...,αn,αr] subtypes lambda/n[β1,...,βn,βr]

In Mini-Cecil, we disallow user-defined types or classes from subtyping from or conforming to,
respectively, alambda type; this ensures that anything of alambda type is known statically to support
the correspondingapply expression.*  With this interpretation and restriction, function types and objects
need no special treatment in the typechecking rules.
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For typechecking each constrained declarationCD = forall α whereC: D, a local environment∆CD is created
as follows:

∆CD = ∆P ∪ C ∆vars(CD)

Here constraintsC are considered to be constrained declarations with empty contexts.∆vars(CD) is empty
for all declarations except methods, when it contains a declarationvar v:T for each formalv@c:T; for
uniformity with variables we consider formals to be mutable in Mini-Cecil. The operation∆1 ∆2
computes the union of∆1 and∆2, except that variable declarations in∆2 shadow declarations of variables
with the same names in∆1.

The typechecker verifies that∆P contains a unique class or type declaration for every class or named type
mentioned in the program, and that type variables are only used within constrained declarations that define
them in their contexts. It is also verified that all syntactic occurrences of named types in the program are
legal instantiations of the corresponding type declarations; such occurrences in the top-level variable
declarations and expression are verified under∆P while occurrences in a constrained declarationCD are
verified under∆CD.

3.2 Checking Constraints

Our typechecking rules depend on testing whether the following kinds of constraints hold, i.e., are provable:

subtype constraint T1 subtypesT2 holds ≡ T1 ≤subT2
signature constraint sigm[Tp](Ta):Tr holds
conforms constraint c[T] conformsT2 holds ≡ c[T] ≤confT2

A constraint holds either if it is a legal instantiation of a declaration present in the environment, or if it is
derived automatically from other constraints which hold. Figure 3 formalizes these rules. The rules for
deriving subtype and signature constraints are mostly conventional; the rules involvinglub andglb types
illustrate how such types can be used. The rules for conformance constraints are similar to the subsumption
and complementary rules for expressions.

3.3 Checking Instantiations

A constrained declarationCD can be instantiated to a declarationD by substituting types for any type
variables in its context. Such instantiation is legal, written as∆ |− CD ➤ D, if the constraints in the context
of CD (if any) hold upon the substitution. Figure 4 gives the formal rule. (The notationD [α := T] replaces
all references toαi in D with Ti.) When checking whether a constraint holds, the instantiation being checked
may be assumed, to support inductively defined constraints.

* Full Cecil treats function classes and types the same as other user-defined classes and types, without this restriction.

∪

∪

∆′ = ∆ ∪ D [α := T]
∆′ |− C1 [α := T] holds  ... ∆′ |− Cn [α := T] holds

——————————————————————————————
∆ |− forall α where C1, ...,Cn : D ➤ D [α := T]

Figure 4: Typechecking Instantiations
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3.4 Client-Side Typechecking

Client-side typechecking is performed on the program’s top-level expression under∆P and on the body of
each method declarationCD under∆CD, using the rules in Figure 5. The rules are mostly conventional,
except that subtyping (≤sub), conformance (≤conf), and message typechecking rules rely on constraint
testing, and class instantiation verifies that it is a legal instantiation. We also include the standard
subsumption rule and the complementary rule that if several types can be inferred for an expression, theglb
of them can also be inferred.

3.5 Implementation-Side Typechecking

Implementation-side typechecking ensures that all signatures are completely and consistently implemented.
The criterion given in Figure6 enumerates all legal instantiations of all signatures and tuples of conforming
instantiations of concrete classes. For each combination it checks that a similar send at run-time will be
successful and that there exists an instantiation of the target method which will be legal with respect to the
arguments and the result type the typechecker may infer for this send. The method lookup process is
abstracted in theMethodLookup helper function, derived from the underlying dynamic semantics and not
formalized here. For field accessors, it is checked that the get- and set-accessor signatures provide a
consistent view of the type of the fields’ contents. (Note that this specification is not directly executable, as
it enumerates an infinite number of possible instantiations. It is, however, a compact specification of the
behavior of a bounded deterministic algorithm.)

CD ∈∆
∆ |− CD ➤ D

—————————
∆ |− D holds

∆ |− T ≤subVoid

∆ |− T ≤subT

∆ |− T1 ≤subT2 ∆ |− T2 ≤subT3
————————————————

∆ |− T1 ≤subT3

∆ |− T1 ≤sub lub(T1, T)

∆ |− glb(T1, T) ≤subT1

∆ |− T ≤subT1
——————————

∆ |− lub(T) ≤subT1

∆ |− T1 ≤subT
——————————

∆ |− T1 ≤subglb(T)

∆ |− sig m[Tp](T):Tr holds
∆ |− T′ ≤subT ∆ |− Tr ≤subTr′

————————————————
∆ |− sig m[Tp](T′):Tr′ holds

∆ |− sig m[Tp](T1 ...T′i ...Tn):Tr holds
∆ |− sig m[Tp](T1 ...T′′i ...Tn):Tr holds

—————————————————————
∆ |− sig m[Tp](T1 ... lub(T′i, T′′i) ...Tn):Tr holds

∆ |− c[T] ≤confT1 ∆ |− T1 ≤subT2
————————————————

∆ |− c[T] ≤confT2

∆ |− c[Tp] ≤confT
————————————

∆ |− c[Tp] ≤confglb(T)

Figure 3: Typechecking Constraints
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4 Experience with the Type System

We have implemented our type system in the Cecil language. We gained practical experience using the type
system by applying it to the Vortex optimizing compiler system, a 100,000-line Cecil program. Vortex was
originally developed with only dynamic typechecking; static type declarations were optional and
unchecked, although developers were informally encouraged to write code that would potentially typecheck
statically. In our experiment, we first ensured that all variables and interfaces had declared types, and then
ran our typechecker. Of course, several thousand static type errors were reported in the first run, and we
spent roughly a person-month of half-time effort in adjusting the type declarations to make the program
statically typecheck. (In normal development, this time would have been spent incrementally as the program
was developed, rather than all at once at the end of development.) A couple of static type errors remain, and
around 350 explicit type casts were inserted; dynamic typechecking is used in these cases. Client-side
typechecking is reasonably fast, taking about 7.5 minutes to typecheck all of Vortex from scratch on an
UltraSPARC-1/170 workstation; implementation-side typechecking is missing several important but known
optimizations [Chambers & Leavens 94, Chambers & Leavens 95] and so is slow.

For the most part, code (other than type declarations) did not need rewriting to meet the constraints of the
static typechecker. F-bounded polymorphism was crucial to achieving this. In addition to describing “binary
method” classes likeComparable, PartiallyOrdered, Ordered, andHashable, F-bounded
polymorphism was frequently used to properly type frameworks of interrelated classes. Such frameworks
include a general directed graph framework and a refining partial order framework, the control flow graph

B = VD E
∆′ = ∆ VD

∆′ |− E : T
—————————

∆ |− B : T

var v : T ∈ ∆
—————————

∆ |− v : T

var v : T ∈ ∆
∆ |− E : T

—————————
∆ |− v := E : Void

∆ |− c names aconcrete class
∆ |− c[Tp] is a legal instantiation

∆ |− c[Tp] ≤conf T
—————————

∆ |− newc[Tp] : T

∆ |− E : T
∆ |− sigm[Tp](T):Tr holds

———————————————
∆ |− m [Tp](E) : Tr

∪
∆′ = ∆ var v1:T1  ... var vn:Tn

∆′ |− B : Tr
—————————————————————

∆ |− λ(v1:T1, ...,vn:Tn):Tr { B }  : λ(T1,...,Tn):Tr

∆ |− Eλ : λ(T):Tr ∆ |− E : T
—————————————

∆ |− apply(Eλ E) : Tr

∆ |− E1 : T1 ∆ |− E2 : T2
—————————————

∆ |− E1 ; E2 : T2

∆ |− E : T1
∆ |− T1 ≤sub T2

——————————
∆ |− E : T2

∆ |− E : T
——————————

∆ |− E : glb(T)

∪ ∪ ∪

Figure 5: Typechecking Expressions
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node representation (with different possible instantiations of node representation), the program call graph
representation (with mutually recursive classes for procedure nodes, call sites, and call edges), and
intraprocedural and interprocedural analysis frameworks (with mutually recursive classes for analysis
domains, transformation selections, and traversal state) [Chambers et al. 96]. Type parameters were used to
parameterize over the types of mutable fields of classes, where the type of the field could become more
specific in a subclass. 26 parameterized types used constrained subtype declarations to state that different
instances of the parameterized type were subtypes if their instantiating parameter types were (i.e., had
covariant type parameters), and 6 parameterized types were declared to have contravariant type parameters.
Conditional subtyping and inheritance, applying only to certain instantiating types, as in theOrdered
Collection example from section 2.4, occurred 25 times each. Automatic inference of parameter types
was mandatory for practical use of the type system. 250 least-upper-bound type expressions and 85 greatest-
lower-bound type expressions occur in the source code; more arise as part of constraint solving.

Surprisingly to us, signature bounds were less frequently used than F-bounds: in all, only 14 polymorphic
declarations used signature bounds. The relative rarity could be due to signature bounds being a more recent
addition to the Cecil type system than F-bounds and hence less familiar to the Vortex developers. It could
also be because most F-bounding types have corresponding classes containing default implementation of
many of the operations in the type. Syntactic sugar in Cecil makes using such F-bounded types easy, while
similar syntactic support for naming and then referring to sets of signature constraints does not exist. Finally,
since we were able and willing to reorganize existing type and class hierarchies, we did not benefit from one
of the advantages of implicit structural subtyping using signature constraints over explicit by-name
subtyping. The few cases of using signature constraints would be tedious to rewrite in terms of explicit types
and subtyping, however.

∀ signature declarations SigDpoly∈∆P
∀ tuples of concrete class declarationsClassDpoly∈∆P  s.t. length(ClassDpoly) = number of args(SigDpoly)
∀ instantiations SigD, ClassD  s.t. ∆P |− SigDpoly ➤ SigD, ∆P |− ClassDpoly ➤ ClassD

let SigD = sig m[Tp](T1, ...,Tn):Tr, ClassDi = concrete classci[Tci], i = 1...n in
∆P |− ci[Tci] ≤confTi, i = 1...n ⇒ send-properly-implemented(m[Tp], (c1[Tc1], ...,cn[Tcn]))

send-properly-implemented(m[Tp], (c1[Tc1], ...,cn[Tcn])) =
if MethodLookup(m[Tp], (c1, ...,cn)) fails then report error, otherwise
let MethDpoly = MethodLookup(m[Tp], (c1, ...,cn)) in
let Tresult be the most specific type s.t.∃ Tconf-1, ...,Tconf-n s.t.

∆P |− ci[Tci] ≤confTconf-i, i = 1...n and ∆P |− sig m[Tp](Tconf-1, ...,Tconf-n):Tresultholds  in
exists-satisfactory-method-instantiation(MethDpoly, Tp, (c1[Tc1], ...,cn[Tcn]), Tresult)  and

(MethD is a get accessor method⇒
set-accessor-signatures-consistent(m[Tp], (c1[Tc1], ...,cn[Tcn]), Tresult))

exists-satisfactory-method-instantiation(MethDpoly, Tp, (c1[Tc1], ...,cn[Tcn]), Tresult) =
∃ instantiation MethD = methodm[Tinst-p](v@c:Tinst-a):Tinst-r { B }  s.t. ∆P |− MethDpoly➤ MethD  and

Tp = Tinst-p  and ∆P |− ci[Tci] ≤confTinst-ai  and ∆P |− Tinst-r ≤subTresult

set-accessor-signatures-consistent(m[], (c[Tc]), Tresult) =
∀ Tconf, Tnewval, Tr .  (∆P |− c[Tc] ≤confTconf  and ∆P |− sigset_m[](Tconf, Tnewval):Tr holds)

⇒ ∆P |− Tnewval≤subTresult

Figure 6: Typechecking Implementations
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A continuing weakness of the static typechecker was its inability to cope with the normal dynamically typed
idioms for run-time type testing. For example, many class hierarchies defined predicate methodsis_X for
each externally meaningful notionX. Client code would test the outcome of theis_X tests and branch to
code that invoked operations defined only onX’s.

sig is_X(AnyType):Bool
method is_X(s@Any:AnyType):Bool { False }
method is_X(s@SomeRep:X):Bool { True }

sig X_msg(X):Void

if(is_X(something), λ(){ ... X_msg(something) ... })

However, the static typechecker does not know thatX-specific messages can be sent to the object, since the
typechecker retains the original unnarrowed type for the tested value. A number of coding and/or language
changes could be made to cope with this scenario, including introducing atypecase-like construct into
the language or inserting casts by hand. In many situations, we modified the class hierarchies to define an
if_X control structure that takes an argument function with one parameter of typeX. All the classes that
should be treated as theX abstraction provide an implementation ofif_X that invokes its function
argument, passing the receiver as an argument (which is known statically in these methods to be of typeX);
a default implementation ofif_X does nothing (or invokes a second not-X argument function). Clients send
theif_X message, passing a function with theX-specific operations as an argument.

sig if_X(AnyType, λ(X):Void):Void
method if_X(s@Any:AnyType, to_do:λ(X):Void):Void {}
method if_X(s@SomeRep:X, to_do:λ(X):Void):Void { apply(to_do, s) }

sig X_msg(X):Void

if_X(something, λ(x:X){ ... X_msg(x) ... })

This idiom is somewhat more cumbersome than the original code, but it requires no new language
constructs and is statically type-safe. It also enables programming of interfaces with abstract properties that
bear no relation to the underlying implementation hierarchy or even the type hierarchy; language-based
constructs such astypecase that test the class of an object may expose too much of the internal
implementation of an abstraction.

Because the program being typechecked had already been heavily tested, the typechecker only identified a
few bugs in the program. It did point out some suspect code that could break after some otherwise legal and
desirable future program evolution, and it helped us to reason about the interfaces to our more complicated
subsystems. For a new interprocedural analysis framework implemented after the typechecker was stable
and available to other Vortex developers, the typechecker did discover many errors statically that would
otherwise have been encountered at run-time, and it did assist in carefully reasoning about the interfaces,
all prior to defining any instantiations of the framework or running the code.

Some improvements to the type system would be helpful in making it more convenient to use and in
encouraging highly polymorphic (and hence highly reusable) declarations. One key improvement would be
to provide some automatic syntactic support for producing heavily-parameterized F-bounded classes, and
for providing default instantiating types and specifying only differences from the defaults. Another
improvement would be better syntactic support for abstracting and naming parameterizations and
constraints, so that commonly occurring parameterization and constraint patterns do not need to be repeated.
The type system might also benefit from more power, for example in supporting fully polymorphic values
(variables and expressions whose types are polymorphic) in addition to its current, more-restrictive let-
bound polymorphism. In a different direction, it may be reasonable to simplify the language by reunifying
inheritance and subtyping; multimethods, F-bounded polymorphism, and signature constraints already
handle most of the examples given as reasons for separating the two notions.
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5 Related Work

We categorize related work on polymorphic type systems for object-oriented languages into several groups:
languages based on F-bounded polymorphism and explicit subtyping, languages based onSelfType or
matching, languages based on signature constraints and implicit structural subtyping, languages based on
instantiation-time checking, and languages based on covariant redefinition. Our type system includes the
core expressiveness of both F-bounded polymorphism (and its restrictionsSelfType and matching) and
signature constraints, provided uniformly over a wide range of declarations. Except where noted below,
other languages based on these ideas support strict subsets of the expressiveness of our type system,
although sometimes with more compact syntax. Also, the other languages do not support multi-methods,
complete separation of inheritance from subtyping, and least-upper-bound and greatest-lower-bound type
expressions, except where noted below.

5.1 Languages Based on F-Bounded Polymorphism

Pizza is an extension to Java based on F-bounded polymorphism [Odersky & Wadler 97]. Like our system,
Pizza supports classes with mutually recursive bounds, crucial for supporting interrelated families of classes
such as theSubject/Observer example from section 2.6. Also like our system, Pizza automatically
infers instantiating type parameters of polymorphic methods and constructors, although the instantiating
parameters must match the actual argument types exactly, which is more restrictive than our system which
can infer appropriate supertypes of the argument types as in theif operation from section 2.2 andmin and
max operations from section 2.4. Pizza lacks signature constraints and the resulting implicit structural
subtyping. Pizza does not support any subtyping between different instances of a parameterized type, such
as the desirable and legal subtyping between different read-only interfaces to collection types as in section
2.6. Pizza also inherits several restrictions from its Java base, including that it does not allow contravariant
method overriding. Pizza extends Java with first-class, lexically nested functions and with algebraic data
types and pattern-matching. The authors justify introducing algebraic data types by claiming that classes
allow new representations to be added easily but not new operations, while algebraic data types support the
reverse. Multi-methods as in Cecil enable both new representations and new operations to be added easily,
avoiding the need for new language constructs.

Bruce, Odersky, and Wadler [Bruce et al. 98] recently proposed to extend Pizza with special support for
declaring families of mutually recursive classes. They argue that pure F-bounded polymorphism is too
cumbersome for programmers to use in practice. We have not found pure F-bounded polymorphism to be
untenable, however; theSubject/Observer example from section 2.6 illustrates our approach (albeit in
an unsugared and hence verbose syntax). Our experience may be better than theirs because our multi-
method framework encourages us to treat each argument and parameter symmetrically and uniformly, while
their model is complicated by the asymmetry between the implicit receiver and the explicit arguments.
Nevertheless, we too have been working on syntactic sugars that would make the more sophisticated uses
of F-bounded polymorphism simpler.

Agesen, Freund, and Mitchell propose a similar extension to Java [Agesen et al. 97]. It differs from Pizza
and from our system in being able to parameterize a class over its superclass. However, this feature cannot
be typechecked once when the abstraction is declared, but instead must be rechecked at each instantiation.

Haskell’s type classes can be viewed as a kind of F-bounded polymorphism [Wadler & Blott 89]. Haskell
automatically infers the most-general parameterization and constraints on functions that take polymorphic
arguments, as well as automatically inferring instantiations on calls to such functions; our system requires
polymorphic methods to explicitly declare type variables and constraints over these variables. (In some
cases, Haskell cannot unambiguously infer instantiations.) However, Haskell is not truly object-oriented, in
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that after instantiation, no subtype polymorphism remains; values of different classes but a common
supertype cannot be mixed together at run-time, preventing for instance lists of mixed integers and floats.

ML≤ is a powerful polymorphic object-oriented language supporting multi-methods [Bourdoncle & Merz
97]. Their language support subtyping directly, but treats inheritance as a separate syntactic sugar (which
must follow the subtyping relation). Similarly to our system, they constrain type variables using sets of
potentially recursive subtype constraints, they support inference of type parameters to methods, and they
support least-upper-bound type expressions (although not greatest-lower-bound type expressions). They
also support parameterization over type constructors, while in our system type constructors must be
instantiated before use. They support explicit declarations of co- and contravariant type parameters of type
constructors, while we use polymorphic subtype declarations to achieve more general effects. They only
allow subtyping between types in the same type constructor “class,” however, which for instance restricts
subtyping to be between types with the same number of type parameters with the same variance properties,
and they do not support other forms of constrained subtyping, conformance, or inheritance. Our type system
supports multiple polymorphic signature declarations for the same message, while they allow only a single
signature declaration per message. Their language is purely functional and side-effect-free.

5.2 Languages Based onSelfType or Matching

Some languages provide only restricted forms of F-bounded polymorphism. In TOOPLE [Bruce et al. 93]
and Strongtalk [Bracha & Griswold 93], a special typeSelfType is introduced, which can be used as the
type of method arguments, results, or variables; roughly speaking, a classC with references toSelfType
can be modeled with the F-bounded declaration
forall SelfType where SelfType subtypes C[SelfType]: class C[SelfType]

SelfType supports binary methods likeequal and methods likecopy that return values of exactly the
same type as their receiver, but it does not support other kinds of F-bounded parameterization. Other
languages provide a related notion called matching, which allows a kind of F-bounded polymorphism where
a single type variable is bounded by a function of itself (but of no other type variables); languages including
matching include PolyTOIL [Bruce et al. 95b] and LOOM [Bruce et al. 97]. The key advantage of
SelfType and matching is convenient syntactic support for a common idiom, but it is less powerful than
F-bounded polymorphism. For example, neitherSelfType nor matching are powerful enough to support
families of mutually dependent classes such as theSubject/Observer family. One of our main
directions of current work is the development of syntactic support for making such mutually recursive
families of classes easy to express, without restricting the underlying power of the polymorphic type system.
Additionally, the LOOM language drops subtyping altogether in favor of matching, which costs it the ability
to support run-time mixing of values of different classes but common supertypes, such as performing binary
operations on the elements of a list of mixed integers and floats.SelfType and matching also are weaker
than F-bounded polymorphism in that they force subclasses to continually track the more specific type; they
cannot stop narrowing at some subclass and switch to normal subtyping below that point. For example, with
F-bounded polymorphism, the parameterizedOrdered type can have its type parameter “narrowed” and
then fixed (say atOrdered[Num]), allowing subtypes of the fixed type (such asInt andFloat) to be
freely mixed. This open/closed distinction for recursive references to a type was noted previously by Eifrig
et al. [Eifrig et al. 94].

5.3 Languages Based on Signature Constraints and Implicit Structural Subtyping

Some languages use collections of signatures to constrain polymorphism, where any type which supports
the required signatures can instantiate the parameterized declaration. These systems can be viewed as
treating the signature constraints as defining “protocol” types and then inferring a structural subtyping



23

relation over user-defined and protocol types. This inference is in contrast to the systems described earlier
which require that the protocol types be declared explicitly, and that legal instantiations of the protocols be
declared as explicit subtypes. Implicit structural subtyping can be more convenient, easier to understand,
more adaptable to program evolution, and better suited to combining separately written code without
change, while explicit by-name subtyping avoids inferring subtypings that ignore behavioral specifications,
and may interact better with inheriting default implementations of protocol types. Neither is clearly better
than the other; our polymorphic type system supports both easily. In addition, our underlying host language
allows new supertypes to be added to previously declared types and classes, avoiding one limitation of
explicit subtyping when adding new explicit protocol types and adapting previously written classes to
conform to them.

Strongtalk is a type system for Smalltalk where programmers define protocol types explicitly, use protocols
to declare the types of arguments, results, and variables, and let the system infer subtype and conformance
relations between protocols and classes; like our system, subtyping and inheritance are separated. Precise
details of the type system are not provided, but it appears that Strongtalk supports explicit parameterization
(but without constrained polymorphism) for protocols and classes, a kind of parametric typing with
dependent types and type inference for methods, least-upper-bound type expressions, and a form of
SelfType. To avoid accidental subtyping, a class may be branded with one or more protocols. Like Cecil,
type declarations and typechecking is optional in Strongtalk.

Interestingly, a later version of Strongtalk appears to have dropped inferred structural subtyping and brands
in favor of explicit by-name subtyping [Bracha 96]. This later version also introduces the ability to declare
that different instantiations of a parameterized type are subtype-related either co- or contravariantly with
respect to its parameter types. Both Strongtalk systems are subsets of our type system.

The Theta language [Day et al. 95, Liskov et al. 94] and the similar proposed extension to Java [Myers et
al. 97] support signature constraints calledwhere clauses. Unlike our type system, only explicit type
variables are supported, and clients must provide instantiations of all type variables when using a
parameterized abstraction. No subtype relation holds between different instantiations of the same
parameterized type, preventing idioms such as the covariantly related read-only collection interfaces.

Recursively constrained types are the heart of a very sophisticated type system [Eifrig et al. 95]. In this
system, type variables and sets of constraints over them are automatically inferred by the system. Subtyping
is inferred structurally, viewing objects as records and using standard record subtyping rules. Technically,
the constraints on type variables are (mutually recursive) subtype constraints, but anonymous types may be
introduced as part of the subtype constraints, providing a kind of signature constraint. Instead of
instantiating polymorphic entities and inferring ground types for expressions, their system simply checks
whether the inferred constraints over the whole program are satisfiable, without ever solving the constraints.
For example, when computing the type of the result of a message, their system may return a partially
constrained type variable, while our system must infer a unique, most-specific ground type. As a result, their
system can typecheck programs our system cannot. On the other hand, because our system computes named
types for all subexpressions, it can give simpler type error messages for incorrect programs; recursively
constrained types can provide only the constraint system that was unsatisfiable as the error message, and
this constraint system may be as large as the program source code itself. Their system limits syntactically
wherelub andglb subtype constraints can appear to ensure that such constraints can always be solved, while
our system places no syntactic limits but may report a type error due to incompleteness of the particular
deterministic algorithm used by the typechecker.
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5.4 Languages Based on Instantiation-Time Checking

Some languages, including C++ [Stroustrup 91] and Modula-3 [SRC], dispense with specifying constraints
on type variables entirely, relying instead on checking each instantiation separately. These languages are
very flexible in what sort of parameterized declarations and clients can be written, as the only constraints
that need be met are that the individual instantiations made in some program typecheck, and they are simple
for programmers to use. (C++ also allows constant values as parameters in addition to types.) However,
dropping explicit constraints on instantiating type variables loses the ability to check a parameterized
declaration for type correctness once and for all separately from its (potentially unknown) clients, loses the
specification benefit to programmers about how parameterized declarations should be used, and forces the
source code of parameterized entities to be made available to clients in order for them to typecheck
instantiations.

5.5 Languages Based on Covariant Redefinition

Some languages support bounded polymorphic classes through covariant redefinition of types or operations:
a polymorphic class is defined as a regular class that has an “anchor” type member initialized to the upper
bound of the type parameter, and instances are made by defining subclasses that redefine some anchor types
to selected subtypes. Instances may themselves be further subclassed and their anchor types narrowed.
Eiffel supports covariant overriding of methods and instance variables, and uses thelike construct to refer
to anchors [Meyer 92]; Eiffel also supports unbounded parameterized classes as well. Beta supports virtual
patterns as anchor classes [Madsen & Møller-Pederse 89, Madsen et al. 93], and Thorup adapted this idea
in his proposed virtual types extension to Java [Gosling et al. 96]. While all of these mechanisms seem
natural to programmers in many cases and are syntactically concise, they suffer from a loss of static type
safety. In contrast, our type system can directly support all of the standard examples used to justify such
mechanisms (including binary methods, singly- and doubly-linked lists, and theSubject/Observer
example), for instance using one or more mutually recursive F-bounded type parameters, without sacrificing
static type safety. We are working on syntactic support for the general pattern of mutually recursive F-
bounded type parameters, in hopes of achieving the same syntactic conciseness and programmer
comprehensibility as well.

6 Conclusion

We have developed a polymorphic type system that uses systems of mutually recursive subtype and
signature constraints to limit allowed type parameters. This constrained polymorphism is supported
uniformly for all non-variable declarations in the system. This powerful, orthogonal treatment of
polymorphism enables our type system to subsume F-bounded polymorphism,SelfType, matching, and
Theta-stylewhere clauses, and to directly express subtype relations over different instances of a
polymorphic type. To use a polymorphic declaration, its type parameters need to be instantiated with ground
argument types; in many cases the system can infer these type parameters automatically, and the system
reports when it cannot. After instantiating a polymorphic declaration, run-time subtype polymorphism is
still available, unlike Haskell and LOOM. A polymorphic declaration is typechecked only once, given the
constraints on its type parameters, separately from any instantiations. Our type system supports other
advanced features such as multi-methods, separate inheritance and subtyping, and first-class function
objects.

We implemented this type system as part of the Cecil language, and used it to statically typecheck a 100,00-
line Cecil program, the Vortex optimizing compiler system. Vortex was originally developed under a
dynamically typed regime, and we wished the type system to be expressive enough to avoid forcing major
rewriting of Vortex in order to statically typecheck. Our experience with this type system (unlike earlier,
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less-expressive type systems implemented for Cecil) has been very good: code has needed little or no
rewriting to adapt to the requirements of the type system. We encountered many situations in Vortex which
required the advanced features of the type system to statically check successfully, such as families of
mutually recursive classes and hierarchies of covariantly-parameterized read-only interfaces to collections;
these experiences with real code rather than toy examples provide empirical justification for the added
complexity of our approach.

Our type system is not a completed work, but rather an ongoing project. First, additional syntactic and
semantic support for defining classes with many implicit type parameters for the different points of
extensibility could improve the convenience, surface simplicity, and reusability of code statically typed
using our system. Second, we are developing a deterministic description of the typechecking algorithm,
adapted from the non-deterministic specification presented here. Third, we are investigating restrictions on
constraints to ensure that they are inductively well-founded. Given these two components, we hope to prove
termination of our algorithm, without recourse to an artificial limit on the number of steps allowed during
constraint solving. Fourth, we are working on a proof of soundness of our type system. Our positive
empirical experience using the type system strongly suggests that this point in the type system design space
is worth pursuing.
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