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Abstract

We present various techniques for improving the time and space ef-
ficiency of symbolic model checking for system requirementsspec-
ified as synchronous finite state machines. We used these tech-
niques in our analysis of the system requirements specification of
TCAS II, a complex aircraft collision avoidance system. They to-
gether reduce the time and space complexities by orders of magni-
tude, making feasible some analysis that was previously intractable.
The TCAS II requirements were written in RSML, a dialect of state-
charts.

Keywords Formal verification, symbolic model checking, reach-
ability analysis, binary decision diagrams, partitioned transition re-
lation, statecharts, RSML, TCAS II, system requirements specifi-
cation, abstraction.

1 Introduction

Formal verification based on state exploration can be considered an
extreme form of simulation:everypossible behavior of the system
is checked for correctness. Symbolic model checking [6] using bi-
nary decision diagrams (BDDs) [4] is an efficient state-exploration
technique for finite state systems; it has been successful onveri-
fying (and falsifying) many industry-scale hardware systems. Its
application to non-trivial software or process-control systems is far
less mature, but is increasingly promising [1,13,25,27]. For exam-
ple, we obtained encouraging results from applying symbolic model
checking to a portion of a preliminary version of the system require-
ments specification of TCAS II, a complex software avionics sys-
tem for collision avoidance [1]. The full requirements, comprising
about four hundred pages, were written in the Requirements State
Machine Language (RSML) [23], a hierarchical state-machine lan-
guage based on statecharts [15].

By representing state sets and relations implicitly as BDDsfor sym-
bolic model checking, the sheer number of reachable states is no
longer the obstacle to analysis. Instead, the limitation isthe size of
the BDDs, which depend on the structure of the system analyzed.
Considerable effort on formal verification of hardware has been fo-
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cused on controlling the BDD size for typical circuits. However,
transferring this technology to new domains may require alterna-
tive techniques and heuristics to combat the BDD-blowup problem.
In this paper, we present modifications to the algorithms imple-
mented in a symbolic model checker (SMV [24]), modifications
to the model, as well as a simple abstraction technique, to improve
the time and space efficiency of the TCAS II analysis. Experimen-
tal results show that the techniques together reduce the time and
space complexities by orders of magnitude; these improvements
have made feasible some analysis that was previously intractable.

The specific techniques we discuss in the paper are:

• Short-circuitingto reduce thenumber of BDDsgenerated by
stopping the iterations before a fixed point is reached.

• Managing forward and backward traversals, to reduce thesize
of the BDDgenerated at each iteration. Notably, we improve
backward traversals by making certain invariants (in particu-
lar, that some events are mutually exclusive) explicit in the
search.

• More sophisticatedconjunctive partitioningof the transition
relation and applyingdisjunctive partitioningin an unusual
way, to reduce the size of theintermediateBDDs at each it-
eration. Further improvements were made by combining the
two techniques to obtainDNF partitioning.

• Abstractionto decrease thenumber of BDD variables. Given
a property to check, we perform a simple dependency analysis
to generate a reduced model that is guaranteed to give the same
results as with the full model.

Techniques like short-circuiting and abstraction are conceptually
straightforward and applicable to many systems. Most othertech-
niques were designed to exploit the simple synchronizationpatterns
of TCAS II (for example, most events are mutually exclusive,and
most state machines are not enabled simultaneously), and webe-
lieve they can also help analyze other statecharts machineswith
simple synchronization patterns.

We provide experimental results showing how each of these tech-
niques affected the performance of the TCAS II analysis. Theef-
fects of combinations of the improvements are shown in addition
to the individual effects. We focus on reachability problems, be-
cause most properties of TCAS II we were interested in fall into
this class. However, in principle, all of the techniques should bene-
fit general temporal-logic model checking as well. We conclude the
paper with discussion of some related techniques.
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Figure 1: A statecharts example

2 Background

In this section, we give a brief overview of statecharts and RSML.
We then turn our attention to symbolic model checking. Finally, we
review how we applied symbolic model checking to the TCAS II
requirements.

2.1 RSML and Statecharts

The TCAS II requirements were written in RSML, a language based
on statecharts. Like other variants of statecharts, RSML extends
ordinary state-machine diagrams with state hierarchies; that is, ev-
ery state can contain orthogonal or mutually exclusive child states.
However, this feature does not concern us in this paper (the state
hierarchy in the portion of TCAS II that we analyzed is shallow
and does not incur special difficulties in model checking). Instead,
we can think of the system consisting of a number of parallel state
machines, communicating and executing in asynchronousway.

Figure 1 above gives a simple example with two parallel statema-
chinesA andB. If A is in local state 0, we say that the system is in
stateA⊲0. State machines are synchronized usingevents. Arrows
without sources indicate the initial local states. Other arrows repre-
sent local transitions, which are labeled with the formu[c]/v where
u is a trigger event,c is theguarding conditionandv is anaction
event. The guarding condition is simply a predicate on localstates
of other state machines and/orinputsto the system; for example, a
guarding condition may say that the system is inB⊲0 and an input
altitude is at least 1 000 meters. (In RSML, the guarding condition
is specified separately from the diagram in a tabular form called
AND/OR table, but we use the more concise statecharts notation
instead.) The guarding condition and the action are optional. The
general idea is that, if eventu occurs and the guarding conditionc
either is absent or evaluates to true, then the transition isenabled.

Initially someexternal eventsalong with some (possibly numeric)
inputs from the environment arrive, marking the beginning of a step.
The events may enable some transitions as described above. Amax-
imal set of enabled transitions, collectively called amicrostep, is
taken—the system leaves the source local states, enters the target
local states, and generates the action events (if any). All events
are broadcast to the entire system, so these generated events may
enable more transitions. The events disappear after one microstep,
unless they are regenerated by other transitions. The step is finished
when no transitions are enabled. The semantics of RSML assume
thesynchrony hypothesis: During a step, the values of the inputs do
not change and no new external events may arrive; in other words,
the system is assumed to be infinitely faster than the environment.

In Figure 1, assume thatw is the only external event,a is a Boolean
input, and the system is currently inA⊲0 andB⊲0. Whenw arrives,
if the input a is false, then the eventy is generated. The step is
finished since no new transitions are enabled. If insteada is true
whenw arrives, the transitions fromA⊲0 to A⊲1 and fromB⊲0 to
B⊲1 aresimultaneouslytaken and eventx is generated, completing
one microstep. Then a second microstep starts; notice that because
of the synchrony hypothesis, the inputa must be true as before and
the external eventw cannot occur. So only the transition fromB⊲1
to B⊲2 is enabled and taken, generating eventz and finishing the
step.

Subtle but important semantic differences exist among variants of
statecharts. The semantics of STATEMATE [16], another major
variant of statecharts, are close to those of RSML. STATEMATE
does not enforce the synchrony hypothesis in the semantics,but
provides it as an option in the simulator. RSML and STATEMATE
also have a richer set of synchronization primitives and provide
some sort of variable assignments; however, these featuresare not
important for this paper.

2.2 Symbolic Model Checking

We now switch gears to discuss model checking for ordinary finite-
state transition systems (without state hierarchies, the synchrony
hypothesis, etc.). The goal of model checking is to determine
whether a given state transition system satisfies a propertygiven as
a temporal logic formula, and if not, to try to give a counterexample
(a sequence of states that falsifies the formula). Example properties
include that a (bad) state is never reached, and that a (good)state
is always reached infinitely often. In “explicit” model checking,
the answer is determined in a graph-theoretic manner by travers-
ing and labeling the vertices in the state graph [10]. The method is
impractical for many large systems because of the state explosion
problem. Much more efficient for large state spaces is symbolic
model checking, in which the model checker visitssetsof states
instead of individual states.

For illustration, we focus on the reachability problem, thesimplest
and the most common kind of temporal property checked in prac-
tice. LetQ be the finite set of system states,R⊆ Q×Q the state
transition relation,I ⊆ Q the set of initial states, andE ⊆ Q a set
of error states. The reachability problem asks whether the system
always stays away from the error statesE, and if not, demands a
counterexample, that is, a sequence of statesq0, q1, . . . , qn with
q0 ∈ I, qn ∈ E and(qi ,qi+1) ∈ R for 0≤ i < n.

We definePre: 2Q 7→ 2Q to compute thepre-image(or theweakest
pre-condition) of a set of states under the transition relationR:

Pre(S) = {q∈ Q | ∃q′ ∈ S. (q,q′) ∈ R}.
Intuitively, it is the set of states that may reach some statein S in
one transition. Then we can characterize the decision problem of
reachability in a set-theoretic manner usingfixed points: Determine
whetherI ∩Pre∗(E) is empty, wherePre∗(E) is the set of states
that may eventually reach an error state. More specifically,it is the
smallest state setY that satisfies

Y = E∪Pre(Y).

Its existence is guaranteed by the finiteness ofQ and the mono-
tonicity of Pre. Figure 2 on the following page shows an iterative
algorithm for computing this fixed point. The setYi is the states
that may reach an error state in at mosti transitions. Many other
temporal properties can be similarly defined and computed using
(possibly multiple or nested) fixed points [6].

2



Start withY0 = E and iteratively computeYi+1 = Pre(Yi)∪Yi until reaching
a fixed point.

Y0 = E
Y1

· · ·
Yn−1

Yn = Yn+1

= Pre∗(E)

Backward Traversal

fixed point

Figure 2: An algorithm for computing Pre∗(E)

If the intersection ofPre∗(E) and the initial statesI is empty, then
the setE is not reachable and we are done. Otherwise, we would
like to find a counterexample. We first definePost: 2Q 7→ 2Q to
computepost-images:

Post(S) = {q′ ∈ Q | ∃q∈ S. (q,q′) ∈ R}.

In other words,Post(S) is the set of states reachable fromS in one
transition. Figure 3 shows a counterexample search algorithm. The
set Q0 can be any nonempty subset of the intersection, but it is
convenient to chooseQ0 to be an arbitrary singleton set. The setQi
is the states that are reachable fromQ0 in at mosti transitions. We
obtain a counterexample by tracing backward fromQm∩E. (We
will improve this algorithm later.)

The crucial factor for efficiency is the representation for state sets.
Notice that the state spaceQ can be represented by a finite set of
variablesX, such that each state inQ corresponds to a valuation for
the variables and no two states correspond to the same valuation.
For finite state systems, we can assume without loss of generality
that each variable is Boolean. A set of statesS is thensymbolically
represented as a Boolean functionS(X) such that a state is in the set
if and only if it makes the function true. The transition relation of
states can be similarly represented as a Boolean functionR(X,X′)
whereX′ is a copy ofX and represents the next state. Intersec-
tion, union and complementation on sets or relations respectively
becomes conjunction, disjunction and negation on Boolean func-
tions. Now the problem of representation of state sets is reduced to
that of Boolean functions.

Empirically, the most efficient representation for Booleanfunctions
is BDDs [4]. They are canonical, with efficient implementation for
Boolean operations. For example, the time and space complexities
of computing the conjunction or disjunction of two BDDs are linear
in the size of the result, which is at most the product of the sizes of
the operands. Negation and equivalence checking can be donein
constant time. BDDs are often succinct, but this relies critically on
a chosen linearvariable orderof the variables inX.

We can now represent a state setS and the transition relationR as
BDDs and compute the pre-image and post-image ofSas follows:

Pre(S) = ∃X′.R(X,X′)∧S(X′),

Post(S) = ∃X.R(X,X′)∧S(X).

The notation∃X refers to existentially quantifying out all the vari-
ables inX. In addition to Boolean operations and equivalence
checking, operations like existential quantification and variable
substitution can also be performed, so the algorithms in Figures

1. LetQ0 be any nonempty subset ofPre∗(E)∩ I. Iteratively compute
Qi+1 = Post(Qi)∪Qi until reachingE.

Q0 ⊆ Pre∗(E)∩ I
Q1

· · ·
Qm−1

Qm

E

Forward Traversal

2. Start with someqm ∈ Qm∩E and iteratively pick some
qi−1 ∈ Pre(qi)∩Qi−1 to obtain a counterexampleq0, q1, . . . , qm.

Q0 Q1
· · ·

Qm−1
Qm

E

q0 q1 qm

Figure 3: An algorithm for counterexample search

2 and 3 (and similar algorithms for many temporal logics suchas
CTL [10]) can be implemented using BDDs. Thanks to the suc-
cinctness of BDDs and the efficiency of their algorithms, some sys-
tems with over 10120 states can be analyzed [6].

2.3 Symbolic Model Checking for TCAS II

We analyzed the TCAS II requirements using a symbolic model
checker SMV (Version 2.4.4). SMV uses algorithms similar to
those in Figures 2 and 3. A notable difference is that in Figure 2,
instead of computingYi+1 = Pre(Yi)∪Yi , it uses the equivalent re-
currenceYi+1 = Pre(Yi −Yi−1)∪Yi , with the advantage thatYi −Yi−1
usually requires a much smaller BDD thanYi does, resulting in
faster pre-image computation. (In fact, it is sufficient to compute
the pre-image of anyZ with Yi −Yi−1 ⊆ Z ⊆Yi [11].) Similar com-
ments apply to the computation of eachQi in Figure 3.

Because SMV does not support hierarchical states and other RSML
features directly, we had to translate the requirements into an or-
dinary finite-state transition system in the SMV language. The
requirements consist of two main parts, Own-Aircraft and Other-
Aircraft, which occupy about 30% and 70% of the document re-
spectively. In our initial study, we translated Own-Aircraft quite
faithfully to the SMV language, and abstracted Other-Aircraft as a
mostly nondeterministic state machine. The details of the transla-
tion, including how the transitions, the state hierarchy and the syn-
chrony hypothesis were handled, as well as the properties analyzed,
were given in a previous paper [1]. Certain details about thesystem
model are relevant to this paper:

• An RSML microstep corresponds to a transition in the SMV
program, and thus a step corresponds to a sequence of transi-
tions.

• We encode each RSML event as a Boolean variable, which is
true if and only if the event has just occurred.

• We assume each numeric input to be discrete and bounded,
and encode eachbit as a Boolean variable.

• To maintain the synchrony hypothesis, we prevent the inputs
from changing and the external events from arriving when any
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of the variables that encode events is true.
• We analyze one instance of TCAS II only, so the asynchrony

among multiple instances of the system is not an issue.

A major source of complexity of the analysis was the transitions'
guarding conditions, some of which occupy many pages of descrip-
tion. They contain predicates of local states and of the input vari-
ables, and often involve complicated arithmetic. While many other
researchers conservatively encode each arithmetic predicate as an
independent Boolean variable [12,17,27], we encode each input bit
as a Boolean variable, resulting in more accurate analysis at the ex-
pense of more Boolean variables. In addition, a guarding condition
can refer to any part of the system, so the interdependenciesbe-
tween the BDD variables are high. These all imply relativelylarge
BDDs for guarding conditions.

On the plus side, the control flow of Own-Aircraft is simple, and
concurrency among the state machines in Own-Aircraft is minimal.
As we will see, some of the techniques presented later attempt to
exploit these simple synchronization patterns.

3 Short-Circuiting

It is easy to see that in Figure 2, we do not need to compute a fixed
point when the error states are reachable—we can stop once the
intersection of someYi and I is not empty, because all we need is
an element in the intersection. Thisshort-circuitingtechnique may
substantially reduce the time and space used when a short counter-
example exists.

More generally, short-circuiting can be applied to the outermost
fixed point (and occasionally the inner ones) in temporal-logic
model checking.

4 Forward vs. Backward Traversals

Fixed-point computation or counterexample search can be done ei-
ther forward or backward. In this section we elaborate on their per-
formance difference in our analysis. In short, backward traversals
generate smaller BDDs and are a big win for our system. They can
be further improved by incorporating certain invariants toprune the
searches.

4.1 Improved Counterexample Search

During the analysis of TCAS II, we found that when a property
was disproved in a few minutes, finding a counterexample might
take hours. A coauthor of a previous paper subsequently simpli-
fied the counterexample search algorithm, resulting in substantial
speedup [1]. This is the only technique described here that was
used in that study.

The forward traversal in the first part of Figure 3 is the bottleneck.
For our system, the sequence of post-images requires large BDDs.
However, we can eliminate this step if we remember everyYi com-
puted in Figure 2 (our actual implementation stores the difference
Yi −Yi−1 instead ofYi). Our modification, illustrated in Figure 4,
is by no means innovative and should be considered natural.1 A
disadvantage of the algorithm is the use of additional memory to
store the state sets, which is wasted in case the error statesare not

1Indeed, if we search forward to find the reachable state set, SMV can
optionally use a similar counterexample search algorithm,but it is not used
with the default backward traversal.

Start with someq0 ∈Yn∩ I and iteratively pick someqi ∈ Post(qi−1)∩Yn−i

to obtain a counterexampleq0, q1, . . . , qn.

Y0Y1
· · ·

Yn−1
Yn

I

q0 q1 qn

Figure 4: A simplified algorithm for counterexample search

reachable. Nevertheless, the dramatic speedup made possible far
outweighs the modest additional memory requirements.

An important question remains: Why is the backward traversal in
Figure 2 much more efficient than the forward traversal in Figure 3?
The inefficiency of forward traversals is also witnessed by SMV's
inability to compute the set of reachable states of the system. Find-
ing the reachable state set by searching forward from the initial
states is a common technique in hardware verification; the set can
be used to help analyze other temporal properties and synthesize
the circuit.

A backward traversal often takes fewer iterations to reach afixed
point than a forward traversal, because the set of error states is usu-
ally more general than the set of initial states. However, the problem
here is not the number of iterations, but rather, the size of the BDDs
generated. In general, we observe that in backward traversals, the
BDDs usually have between hundreds to at most tens of thousands
of BDD nodes, while in forward traversals, they can be two or more
orders of magnitude larger. Nevertheless, the verificationof many
hardware systems tends to benefit, rather than suffer, from forward
traversals. For example, Iwashita et al. report significantspeedup in
CTL model checking for their hardware benchmarks when forward
instead of backward traversals are used [20].

Partly inspired by Hu and Dill [19], we believe that the inefficiency
is mainly due to the complex invariants of TCAS II, which are main-
tained by forward but not backward traversals. As an example, con-
sider the state machine in Figure 5. If eventy is only generated inA,
then an invariant of the system is that, whenever eventy has just oc-
curred, the machine is inA⊲0 if and only if conditiona is true. If
the BDD for a is large, so will the BDD for the invariant. There
are likely to be many such implicit invariants in the system,and
their conjunction may have a large BDD representation even if they
are small. In addition, invariants may globally relate different state
machines, also likely to result in large BDDs. Forward traversals
maintain all such invariants, so intuitively the BDDs for forward

0 1

A

x[a]/y
x[b]/y x[b]/y

x[a]/y

Figure 5: A state machine with local invariants
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traversals tend to blow up in size. In low-level hardware verifica-
tion, the BDDs often remain small, because each invariant isusually
localized and involves only a small number of state variables. This
is not the case in TCAS II however.

For backward traversals, the situation is quite different.For ex-
ample, there are no counterparts of the invariant mentionedabove
when backward traversals are used, because the truth value of a
does not determine the state of the system before the microstep.
Certainly, some different (backward) invariants are maintained in
backward traversals, but they tend to depend on the states from
which the search starts, and their BDDs tend to be smaller forour
system.

4.2 Improved Backward Traversals Using
Invariants

Interestingly, the main disadvantage of backward traversals is also
that (forward) invariants are not maintained. Some invariants, par-
ticularly those with small BDDs, can help simplify the BDDs of
state sets, and can speed up backward traversals if they are incor-
porated into the search. In the context of statecharts, manysystems
have simple synchronization patterns, which are lost in backward
traversals. A particular invariant that we find useful to rectify this
problem is themutual exclusion of certain events. We illustrate this
idea with an example.

Consider the system in Figure 6. Assumingu is the only external
event, there is no concurrency in the system—at most one local
transition can be enabled at any time. Forward traversals donot
explore concurrent executions of the state machines.

However, in backward traversals, the analysis may be fooledto con-
sider many concurrent executions, which are not reachable.Sup-
pose we want to check whether the system can be inB⊲1 andC⊲1
simultaneously. Traversing backward, we find that in the previ-
ous microstep, the system may be in(B⊲0,C⊲1), (B⊲1,C⊲0), or
(B⊲0,C⊲0). The last case, however, is not possible, because events
v andw cannot occur at the same time. (Notice that this is true only
if we assume the synchrony hypothesis.) Tracing more iterations,
we can see that the search considers not only concurrent executions
but also many unreachable interleavings of executions. TheBDDs
thus may blow up if the guarding conditions are complex.

0 1

0 1

0 1

A

B

C

u[a]/v

u[a′]/v

v[b]/w

v[b′]/w

w[c]/x

w[c′]/x

Figure 6: A system with a linear structure

Fortunately, we can greatly simplify the search by observing that
all the events are mutually exclusive. This invariant can beincorpo-
rated into the traversals by either intersecting it with thepre-images
or using it as a care-set to simplify them [11].

To find out such a set of mutually exclusive events, we may per-
form a conservative static analysis on the causality of the events.
Alternatively, the designer may know which events are mutually
exclusive, because the synchronization patterns should have been
designed under careful consideration. To confirm the mutualexclu-
sion, we may verify, using model checking or other static analysis
techniques, that the states with

W

u,v∈Σ
u6=v

(u∧v)

are not reachable, whereΣ is the set of state variables encoding the
events under consideration. In the case of TCAS II, a large part of
our model behaves similarly to the machine in Figure 6, and the set
of mutually exclusive events was evident.

5 Partitioned Transition Relation

Apart from the BDD size for state sets, another bottleneck ofmodel
checking is the BDD size for the transition relation, which can be
reduced byconjunctiveor disjunctive partitioning[6]. The former
can be used naturally for TCAS II, and we have modified SMV to
partition the transition relation more effectively. We also apply dis-
junctive partitioning, which is normally used only for asynchronous
systems. Combining the two techniques, we obtainDNF partition-
ing. As we will see, the issues in this section are not only the BDD
size for the transition relation, but also the size of theintermediate
BDDs generated for each image computation.

5.1 Background

In this subsection, we review the idea of conjunctive and disjunctive
partitioning, described in Burch et al. [6]. The transitionrelationR
is sometimes given as a disjunctionD1∨D2∨·· ·∨D j , and the BDD
for R can be huge even though each disjunct has a small BDD. So
instead of computing a monolithic BDD forR, we can keep the
disjuncts separate. The image computations can be easily modified
by distributing the existential quantification over the disjunction.
For pre-image computation, we thus have

Pre(S) = ∃X′.R(X,X′)∧S(X′)

= ∃X′.(D1(X,X′)∨D2(X,X′)∨·· ·∨D j(X,X′))∧S(X′)
= d1(X)∨d2(X)∨·· ·∨d j (X)

where for 1≤ i ≤ j ,

di(X) = ∃X′.Di(X,X′)∧S(X′).

So we can compute the pre-image without ever building the BDD
for R. Post-image computation is symmetric.

If, however,R is given as a conjunctionC1∧C2∧ ·· ·∧Ck, we can
still keep the conjuncts separate as above, but image computations
become more complicated. The problem is that existential quantifi-
cation does not distribute over conjunctions, so it appearsthat we
have to compute the BDD forRanyway before we can quantify out
the variables. A trick to avoid this isearly quantification. Define
X′

1, X′
2, . . . , X′

k to be disjoint subsets ofX′ such that their union isX′

and for 1≤ i ≤ k, the conjunctCi does not depend on any variable
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in Xp for any p< i. Consider again the pre-image computation. We
compute

c1(X,X′) = ∃X′
1.C1(X,X′)∧S(X′)

c2(X,X′) = ∃X′
2.C2(X,X′)∧c1(X,X′)

...

Pre(S) = ck(X) = ∃X′
n.Ck(X,X′)∧ck−1(X,X′).

The intuition is to quantify out variables as early as possible, and
hope that each intermediateci for 1 ≤ i < k remains small. The
effectiveness of the procedure depends critically on the choice and
ordering of the conjunctsC1, C2, . . . , Ck.

5.2 Determining a Conjunctive Partition

We could not construct the monolithic BDD for the transitionre-
lation R for our model of TCAS II in hours of CPU time, butR
is naturally specified as a conjunction, so we can use conjunctive
partitioning. Although SMV supports this feature, it determines
the partition in a simplistic way: An SMV program consists ofa
list of parallel assignments, whose conjunction forms the transition
relation. SMV constructs the BDDs for all assignments, and incre-
mentally builds their conjunction in the (reverse) order they appear
in the program. In this process, whenever the BDD size exceeds a
user-specified threshold, it creates a new conjunct in the partition.
So the partition is solely determined by the syntax, and no heuristic
or semantic information is used.

To better determine the partition, we changed SMV to allow the
user to specify the partition manually. We also implementedin
SMV a variant of the heuristics by Geist and Beer [14] and by Ran-
jan et al. [26] to automatically determine the partition. The central
idea behind the heuristics is to greedily select conjuncts that al-
low early quantification of more variables while introducing fewer
variables that cannot be quantified out. Our implementationof the
heuristics worked quite well. The partitions generated compared
favorably with, and sometimes outperformed, the manual partitions
that we tried.

5.3 Disjunctive Partitioning for Statecharts

Disjunctive partitioning is superior to conjunctive partitioning in the
sense that ordering the disjuncts is less critical, and thateach inter-
mediate BDD is a function ofX (instead ofX∪X′) and thus tends
to be smaller. (Another advantage that we have not exploitedis the
possibility of parallelizing the image computation by constructing
the intermediate BDDs concurrently.)

Unfortunately, when the transition relationR is a conjunction, in
general there are no simple methods for converting it to asmallset
of smalldisjuncts. If we define a coverα1(X,X′), α2(X,X′), . . . ,
α j (X,X′) such that their disjunction is a tautology, then we can
indeed disjunctively partitionRby distributingRover the cover:

R= (α1∨α2∨·· ·∨α j )∧R

= D1∨D2∨·· ·∨D j

where for 1≤ i ≤ j ,

Di = αi ∧R= αi ∧C1∧C2∧·· ·∧Ck.

But for most choices of covers, eachDi is still large.

For TCAS II and many other statecharts, however, we can again
exploit the mutual exclusion of certain events, sayu1, u2, . . . , u j−1.
Define

αi = ui ∧
V

1≤p< j
p6=i

¬up

for 1≤ i < j , and

α j = ¬u1∧¬u2∧·· ·∧¬u j−1

α j+1 = ¬α1∧¬α2∧·· ·∧¬α j .

In other words,αi corresponds to the states in which onlyui has
just occurred,α j , none of the events have, andα j+1, at least two
of the events have. They clearly form a cover. We made two obser-
vations. First, we can dropα j+1, which is a contradiction because
of the mutual exclusion assumption. Second, most of the parallel
assignments in our SMV program are guarded by conditions on the
events; for example, an assignment that models a state transition re-
quires the occurrence of the trigger event. If the event is, say ui for
some 1≤ i < j , then the BDD for the assignment is applicable only
to the disjunctDi , and all the other disjuncts of the transition rela-
tion are unaffected. So each disjunct may remain small. Notice that
to apply this technique, we have to find a set of provably mutually
exclusive events, which can be done as described in Section 4.2.

5.4 DNF Partitioning and Serialization

A disadvantage of partitioningRbased on events is that the sizes of
the disjuncts are often skewed. In particular, if a single event may
trigger a number of complex transitions, its correspondingdisjunct
could be large. Figure 7 shows an example in which an eventx trig-
gers two state machines. If all the guarding conditions are complex,
the BDD for the disjunct corresponding tox may be large.

One solution to this problem is to apply conjunctive partitioning
to large disjuncts, resulting in what we callDNF partitioning. It
uses both BDD size (as in conjunctive partitioning) and structural
information (as in disjunctive partitioning) to partitionthe transition
relation, and may perform better than relying on either alone.

Alternatively, we may serialize the complicated microstepinto cas-
cading microsteps to reduce the BDD size. Figure 8 on the next
page illustrates this idea. We have “inserted” a new eventu afterx.
Note that the resulting machine has more microsteps in a step. So
although this method is effective in reducing the BDD size, it often
increases the number of iterations to reach a fixed point. Also, the
transformation may not preserve the behavior of the system and the
property analyzed. A sufficient condition is that the guarding con-
ditions in the machineB do not refer to machineA's local states,

0 1

0 1

A

B

x[a]/

x[a′]/

x[b]/

x[b′]/

Figure 7: Event x triggers two state machines.
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0 1

0 1

A

B

x[¬a]/u

x[a]/u

x[a′]/u

x[¬a′]/u

u[b]/

u[b′]/

Figure 8: The serialized machine

x is mutually exclusive with all other events, and we are check-
ing a reachability property that does not explicitly mention any of
the state machines, transitions or events involved in the transforma-
tion.2

6 Abstraction

In this section, we give a simple algorithm to remove part of the
system from the model that is guaranteed not to interfere with the
property being checked. For example, a system may have a number
of outputs (which may be local states or events). If we are ana-
lyzing only one of them, the logic that produces other outputs may
be abstracted away, provided these outputs are not fed back to the
system. The abstraction obtained isexactwith respect to the prop-
erty, in the sense that the particular property holds in the abstracted
model if and only if it holds in the original model.

6.1 Dependency Analysis

We determine the abstraction by a simple dependency analysis on
the statecharts description. Initially, only the local states, events,
transitions, or inputs that are explicitly mentioned in theproperty
are considered relevant to the analysis. Then the followingrules
are applied recursively:

• If an event is relevant, then so are all the transitions that may
generate the event.

• If a transition is relevant, then so are its trigger event, its source
local state, and everything that appears in its guarding condi-
tion.

• If a local state is relevant, then so are all the transitions out of
or into it, and so is its parent state in the state hierarchy.

(Note that the relevance of an input does not make any other entity
relevant.) These rules are repeated until a fixed point is reached.
Essentially, this is a search in the dependency graph, and the time
complexity is linear in the size of the graph. It should be evident that
everything not determined relevant by these rules can be removed
without affecting the result of the analysis.

2The same criterion can be applied to arbitrary CTL formulas,provided
we do not use the the next-time operator X, which can count thenumber
of microsteps. In other words, under the assumptions, the transformation
preserves equivalence under stuttering bisimulation [3].

6.2 False Dependency

Similar dependency analyses could also be performed by model
checkers (such as VIS [28]) on the Boolean model of the statecharts
machine. However, a straightforward implementation wouldnot be
effective. The reason is that in the model, an input would appear
to depend on every event because of the way we encoded the syn-
chrony hypothesis (Section 2.3). On the other hand, carrying out
dependency analysis on the high-level statecharts description does
not fall prey to such false dependencies.

Other forms of false dependencies are possible, however. Suppose
we are given the system in Figure 8 from the previous section.From
the syntax, the eventu appears to depend on both conditionsa and
a′, but in fact it does not, because regardless of the truth valuesa
anda′, eventu will be generated as a result of eventx.

To detect such false dependencies, one can check whether thedis-
junction of the guarding conditions of the transitions out of a local
state with the same trigger and action events is a tautology.This can
sometimes be checked efficiently using BDDs [17]. However, the
syntax of RSML and STATEMATE allows easy detection of most
false dependencies of this kind. Notice that the self-loopsin Fig-
ure 8 are solely for synchronization—they make sure thatu is gener-
ated regardless whether there has been a local state change.To im-
prove the visual presentation, RSML and STATEMATE allow one
to specify the generation of such events separately from thestate
diagram usingidentity transitionsandstatic reactionsrespectively.
(Actually, their semantics are slightly different from self-loops, but
the distinctions are not important here.)

Some false dependencies are harder to detect automatically. For
example, the guarding conditions involved may not form a tautol-
ogy, but in allreachablestates, one of the guarding conditions holds
whenever the trigger event occurs. As another example, in Figure 9,
the eventy does not depends on any of the guarding conditions, be-
cause it is always generated one or two microsteps afterw.3 In prac-
tice, the synchronization of the system should be evident tothe de-
signer, who may specify the suspected false dependencies intempo-
ral logic formulas, which can be verified using model checking. If
the results indeed show no real dependencies, this information can
be used in the dependency analysis to obtain a smaller abstracted
model of the system. In our TCAS II analysis, the synchronization
of Own-Aircraft is simple enough that false dependencies can be
easily detected. However, this method may be used for analyzing
the rest of TCAS II or other systems.

0 1

0 1

w[¬b]/x

w[b]/y

w[a]/y

w[¬a]/x

x[¬d]/y

x[d]/y

x[c]/y

x[¬c]/y

Figure 9: False dependency: Eventy does not depends on any
guarding condition.

3However, if the next-time operator X is used, theny may be considered
conservatively to be dependent ona andb.
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Building
P1 P2 P3 P4 P5 P6BDDs for R

Full Model (227 variables)

No. of fixpoint iterations 24 29 29 38 26 26
Counterexample length 15 15 11 24 17 11

Optimizations time nodes time nodes time nodes time nodes time nodes time nodes time nodes
SC MX CP DP (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K)

1 — — — — 20 93 79 400 182 713 257 1060 342 1090 ∞ ∞ 1
2

√
— — — 20 93 62 400 143 713 61 669 136 751 ∞ ∞ 2

3 — —
√

— 33 176 40 273 97 345 147 488 193 412 ∞ ∞ 3

4 —
√

— — 20 94 11 110 20 123 76 369 38 152 47 249 490 1903 4
5 —

√ √
— 25 166 9 170 18 190 51 267 31 215 39 245 316 1139 5

6 —
√

—
√

34 464 18 464 33 464 798 968 34 463 74 480 ∞ 6
7 —

√ √ √
40 128 7 128 14 139 57 217 24 150 29 160 320 1022 7

8
√ √ √ √

41 128 6 128 8 128 13 153 12 143 18 141 23 243 8

Mistranslated Model† (227 variables)

Optimizations time nodes time nodes time nodes time nodes time nodes time nodes time nodes
SC MX CP DP (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K)

9 —
√

— — 20 93 285 697 317 1016 95 314 518 1129 615 2245 442 1591 9
10 —

√ √
— 26 174 323 1043 791 1546 91 424 497 1471 ∞ 871 2186 10

11 —
√

—
√

36 462 972 843 1117 964 358 895 1340 952 ∞ 1954 1007 11
12 —

√ √ √
42 126 126 327 154 515 49 185 215 398 213 678 198 547 12

Serialized Model(231 variables)

No. of fixpoint iterations 36 41 45 54 38 38
Counterexample length 23 23 19 36 25 19

Optimizations time nodes time nodes time nodes time nodes time nodes time nodes time nodes
SC MX CP DP (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K)

13 —
√

— — 27 103 12 111 39 190 127 311 46 144 89 325 867 2307 13
14 —

√ √
— 31 167 12 167 38 234 127 323 44 199 94 363 959 1932 14

15 —
√

—
√

27 139 12 139 40 161 136 251 32 160 76 177 897 1040 15
16 —

√ √ √
48 136 11 136 34 162 129 221 39 156 74 196 762 982 16

Abstracted Models†

No. of variables 142 142 150 142 150 171

Optimizations time nodes time nodes time nodes time nodes time nodes time nodes time nodes
SC MX CP DP (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K) (s) (K)

17 — — — — vary 5 65 17 93 72 362 26 115 ∞ ∞ 17
18

√ √ √ √
vary 2 33 4 39 6 73 6 40 13 95 18 158 18

SC: short-circuiting MX: mutual exclusion of events CP: improved conjunctive partitioning DP: disjunctive partitioning

†No. of fixpoint iterations and counterexample lengths are identical to those of the full model.

Table 1: Resources used in the analysis

7 Experimental Results

The table above summarizes the results of applying the techniques
mentioned to our models of TCAS II. It shows the resources (time
in seconds and number of BDD nodes used in thousands) for build-
ing the BDDs for the transition relationR as well as the resources
for evaluating six properties. Note that the latter excludes the time
spent on building the transition relation and the resourcesfor find-
ing the counterexamples. The counterexample search took about
one to two seconds per state in the counterexample and was never a
bottleneck thanks to the algorithm in Figure 4. That algorithm was
used in all the checks, because without it, none of the counterexam-

ples could be found in less than one hour. The table also showsthe
numbers of iterations needed to reach fixed points and the lengths
of the shortest counterexamples. We performed the experiments on
a Sun SPARCstation 10 with 128MB of main memory. Most suc-
cessful checks used less than 30MB of main memory.

Several models were examined. Our starting point, called the full
model, is close to the one used in our previous paper [1]. Themis-
translated modelcontains a real translation bug, and is included to
give an example of analyzing a highly flawed design. Theserialized
modelwas obtained from the full model with one of the microsteps
serialized. Finally, applying the dependency analysis in Section 6
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resulted in theabstracted models. For each model, we performed
model checking using some combinations of the following opti-
mizations: short-circuiting (SC), mutual exclusion of events (MX),
improved conjunctive partitioning using heuristics (CP),disjunctive
partitioning (DP), and DNF partitioning (CP and DP).

Properties P1 through P4 refer to the properties Increase-Descent
Inhibition, Function Consistency, Transition Consistency, and Out-
put Agreement explained in the previous paper [1]. PropertyP5
refers to an assertion in Britt [2, p. 49] that Own-Aircraft should
never be in two local states Corrective-Climb⊲ Yes and Corrective-
Descend⊲ Yes simultaneously (comments in our version of the
TCAS II requirements, however, explicitly say that the two local
states are not mutually exclusive). Property P6 is somewhatcon-
trived: It is simply the conjunction of P3 and P4. Since searching
simultaneously from two unrelated sets of states tends to blow up
the BDDs, checking this property provides an easy way to scale
up the BDD size. It also mimics checking properties involving a
large part of the system. All six properties are reachability, and are
violated by the model. For each model, the best time and space
requirements for each property are shown in bold face. An entry
with ∞ indicates timeout after one hour.

We emphasize that the purpose of the data is to investigate the gen-
eral effects of the techniques on the models. They are not forpick-
ing a clear winner among the techniques, since the BDD algorithms
are very sensitive to the various parameters chosen.

Full Model Row 1 shows that the fixed-point computations for
two of the properties could not be completed for the full model,
when we used only the conjunctive partitioning as implemented in
SMV. (Actually, we implemented a simple improvement that was
used in all results including this base analysis. As explained in Sec-
tion 2.2, an image computation step involves a conjunction and an
existential quantification. The two operations can be carried out
simultaneously to avoid building the usually large conjunction ex-
plicitly [6]. SMV performs this optimization except when conjunc-
tive partitioning is used. We simply changed SMV to eliminate this
limitation.)

Short-circuiting was most effective on Properties P3 and P4
(Row 2). The savings resulting from the heuristic for conjunctive
partitioning were also significant (Row 3). Incorporating the mu-
tual exclusion of certain events into backward traversals generally
gave an order of magnitude time and space reduction (Row 4). In
addition, we could now easily disprove Properties P5 and P6.In
particular, the statement in Britt [2] mentioned above is provably
false in our version of the requirements.

Disjunctive partitioning, which must be combined with the mutual
exclusion of events, appeared to be inefficient (Row 6) when com-
pared with applying the mutual exclusion alone (Row 4). The rea-
son is that one of the disjuncts of the transition relation was large,
with over 105 BDD nodes, at least an order of magnitude larger than
other disjuncts; this is reflected in the table by the large number of
BDD nodes needed to construct the transition relation. We conjunc-
tively partitioned large disjuncts, leading to the more efficient DNF
partitioning (Row 7). It performed marginally better than conjunc-
tive partitioning with mutual exclusion of events (Row 5), but the
space requirements were consistently lower. When short-circuiting
was also used, all of the fixed points could be computed in lessthan
half a minute (Row 8).

Mistranslated Model To further illustrate the differences among
the various partitioning techniques, we looked at a versionof the
model that contains a translation error from the RSML machine to

the SMV program. We made this bug early in the previous study,
although we soon discovered it by inspection. The mistake was
omitting some self-loops similar to those in Figure 8. BDDs for
faulty systems are often larger than those for the correctedversions,
because bugs tend to make the system behavior less “regular”.

Interestingly, the particular partition generated by the the heuristic
performed poorly for this model (Row 10). DNF partitioning,on
the other hand, continued to give significant time and space reduc-
tions (Row 12). The miserable results of disjunctive partitioning
(Row 11) were again due to the disproportionally large BDD inthe
partition.

Serialized Model We serialized a microstep in the full model to
break the large disjunct into four BDDs of sizes about a hundred
times smaller. Disjunctive partitioning now used less space (Rows
6 vs. 15). However, since the number of microsteps in a step in-
creased, all checks suffered from the larger number of iterations
needed to reach fixed points. They all ended up performing about
the same, with disjunctive and DNF partitioning having the slight
edge, particularly in the space requirements for the more difficult
searches.

The data suggest that if the disjuncts are small to start with, disjunc-
tive partitioning is a viable option, but serializing the microstep in
order to use disjunctive partitioning is not advantageous in our case.
In general, we find the effects of serializing microsteps andits con-
verse, combining microsteps, difficult to predict. They represent
a tradeoff between the complexity of image computations andthe
number of search iterations.

Abstracted Models The last part of the table shows the perfor-
mance of analyzing the abstracted models. The number of vari-
ables abstracted away by the dependency analysis was quite large.
Recall that in our full model, we omitted most of the details in
Other-Aircraft. Many of the outputs of Own-Aircraft that were in-
puts to Other-Aircraft thus became irrelevant, unless we explicitly
mentioned them in the property. This explains the relatively large
reduction obtained.

Using all of the techniques discussed in this paper led to theresults
in the last row of the table.

8 Discussion and Related Work

We first summarize some differences between symbolic model
checking for hardware circuits and for TCAS II. A major focusof
hardware verification is on concurrent systems with complexcon-
trol paths and often subtle concurrency bugs, but their datapaths
are relatively simple. Forward traversals usually performmuch bet-
ter, because the BDDs tend to be small in the reachable state space.
In contrast, the major complexity of the TCAS II requirements lies
not in the concurrency among components, but in the intricate influ-
ence of data values on the control paths. The BDD for the transition
relation tends to be huge and forward traversals inefficient. Back-
ward traversals usually perform better by focusing on the property
analyzed, and can be further improved by exploiting the simple syn-
chronization patterns.

Our method of pruning backward traversals using invariantsis sim-
ilar in spirit to the work on hardware verification by Cabodi et al.,
who propose doing anapproximateforward traversal to compute a
superset of the reachable states, which is then used to pruneback-
ward traversals [8]. (An invariant is precisely a superset of the
reachable states.) Their method is more automatic, while the in-
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variants we suggest rely on the designer's knowledge on the syn-
chronization of the system. They also independently propose dis-
junctive partitioning for synchronous circuits [7]. They require the
designer to come up with a partition manually, and we again exploit
mutually exclusive events.

In work also independent of ours, Heimdahl and Whalen [18] use
a dependency analysis technique similar to the one described Sec-
tion 6.1, but their motivation is to facilitate manual review of the
TCAS II requirements, rather than automatic verification. As noted
before, we gained relatively large reduction because Other-Aircraft
was not fully modeled, and we suspect that in a complete system,
the reduction obtained by this exact analysis could be limited. How-
ever, more reduction can be obtained if we forsake exactness. For
example,localization reduction[22] is one such technique, which
aggressively generates an abstracted model that may not satisfy the
property while the full model does. If the model checker findsin
the abstracted model a counterexample that does not exist inthe
full model, it will automatically refine the abstraction anditerate
the process until either a correct counterexample is found or the
property is verified.

It would be interesting to see how well the techniques in thispaper
scale with the system complexity. The natural way is to try apply-
ing them to the rest of TCAS II. Unfortunately, that part contains
arithmetic operations, such as multiplication, that provably cannot
be represented by small BDDs [5]. In a recent paper, we suggest
coupling a decision procedure for nonlinear arithmetic constraints
with BDD-based model checking to attack the problem [9]. More
research is needed to see whether this technique scales to large sys-
tems.
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