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Abstract

We present various techniques for improving the time andespé&
ficiency of symbolic model checking for system requiremeipiesc-

cused on controlling the BDD size for typical circuits. Hawe
transferring this technology to new domains may requirera#-
tive techniques and heuristics to combat the BDD-blowubigro.
In this paper, we present modifications to the algorithmslémp

ified as synchronous finite state machines. We used these techmented in a symbolic model checker (SMV [24]), modifications

niques in our analysis of the system requirements spedificaf
TCAS Il, a complex aircraft collision avoidance system. Ve
gether reduce the time and space complexities by orders griima
tude, making feasible some analysis that was previougigdtdable.
The TCAS Il requirements were written in RSML, a dialect aftst
charts.

Keywords Formal verification, symbolic model checking, reach-
ability analysis, binary decision diagrams, partitionehsition re-
lation, statecharts, RSML, TCAS II, system requiremenecgp
cation, abstraction.

1 Introduction

Formal verification based on state exploration can be ceresitian
extreme form of simulationeverypossible behavior of the system
is checked for correctness. Symbolic model checking [6)agibi-
nary decision diagrams (BDDs) [4] is an efficient state-esggion
technique for finite state systems; it has been successfuen
fying (and falsifying) many industry-scale hardware syste Its
application to non-trivial software or process-contrateyns is far
less mature, but is increasingly promising [1, 13, 25, 286}. éxam-
ple, we obtained encouraging results from applying synshnbdel
checking to a portion of a preliminary version of the systequire-
ments specification of TCAS Il, a complex software avionigs-s
tem for collision avoidance [1]. The full requirements, qoigsing
about four hundred pages, were written in the Requiremeiate S
Machine Language (RSML) [23], a hierarchical state-maelham-
guage based on statecharts [15].

By representing state sets and relations implicitly as BBRDsym-
bolic model checking, the sheer number of reachable states i
longer the obstacle to analysis. Instead, the limitatidhéssize of
the BDDs, which depend on the structure of the system andilyze
Considerable effort on formal verification of hardware hasrbfo-
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to the model, as well as a simple abstraction technique, poave
the time and space efficiency of the TCAS Il analysis. Expernim
tal results show that the techniques together reduce the dima
space complexities by orders of magnitude; these impromtsnme
have made feasible some analysis that was previously fabiac

The specific techniques we discuss in the paper are:

e Short-circuitingto reduce thaaumber of BDDgyenerated by
stopping the iterations before a fixed point is reached.

e Managing forward and backward traversats reduce thsize
of the BDDgenerated at each iteration. Notably, we improve
backward traversals by making certain invariants (in parti
lar, that some events are mutually exclusive) explicit ia th
search.

e More sophisticate@onjunctive partitioningof the transition
relation and applyinglisjunctive partitioningin an unusual
way, to reduce the size of thietermediateBDDs at each it-
eration. Further improvements were made by combining the
two techniques to obtaiDNF partitioning

e Abstractionto decrease theumber of BDD variablesGiven
a property to check, we perform a simple dependency analysis
to generate a reduced model that is guaranteed to give the sam
results as with the full model.

Techniques like short-circuiting and abstraction are eptwally
straightforward and applicable to many systems. Most dineh-
niques were designed to exploit the simple synchronizataiterns
of TCAS Il (for example, most events are mutually exclusaed
most state machines are not enabled simultaneously), artbwe
lieve they can also help analyze other statecharts mackuiites
simple synchronization patterns.

We provide experimental results showing how each of thede te
nigues affected the performance of the TCAS Il analysis. dfhe
fects of combinations of the improvements are shown in amdit
to the individual effects. We focus on reachability probéerhe-
cause most properties of TCAS Il we were interested in fad in
this class. However, in principle, all of the techniquesudtidene-
fit general temporal-logic model checking as well. We codelthe
paper with discussion of some related techniques.



Figure 1: A statecharts example

2 Background

In this section, we give a brief overview of statecharts aSiVR.
We then turn our attention to symbolic model checking. Fynate
review how we applied symbolic model checking to the TCAS I
requirements.

2.1 RSML and Statecharts

The TCAS Il requirements were written in RSML, a languagesdas
on statecharts. Like other variants of statecharts, RSMengls
ordinary state-machine diagrams with state hierarchied;is, ev-
ery state can contain orthogonal or mutually exclusivedcsiites.
However, this feature does not concern us in this paper (tte s
hierarchy in the portion of TCAS Il that we analyzed is shallo
and does not incur special difficulties in model checkingstéad,
we can think of the system consisting of a number of paraiétes
machines, communicating and executing syachronousvay.

Figure 1 above gives a simple example with two parallel stee
chinesA andB. If Ais in local state 0, we say that the system is in
stateAr>0. State machines are synchronized ugagnts Arrows
without sources indicate the initial local states. Otheows repre-
sent local transitions, which are labeled with the farc}/v where

u is atrigger event,c is theguarding conditionandv is anaction
event. The guarding condition is simply a predicate on |staies

of other state machines andiaputsto the system; for example, a
guarding condition may say that the system i8i¥0 and an input
altitudeis at least 1 000 meters. (In RSML, the guarding condition
is specified separately from the diagram in a tabular fornedal
AND/OR table, but we use the more concise statecharts ootati
instead.) The guarding condition and the action are optiofiae
general idea is that, if eventoccurs and the guarding condition
either is absent or evaluates to true, then the transitienasled.

Initially someexternal eventalong with some (possibly numeric)
inputs from the environment arrive, marking the beginnihgstep
The events may enable some transitions as described abovax-A
imal set of enabled transitions, collectively callednécrostep is

taken—the system leaves the source local states, enters the targe

local states, and generates the action events (if any). v&lhts
are broadcast to the entire system, so these generated event
enable more transitions. The events disappear after onestep,
unless they are regenerated by other transitions. Thesstigfshed

In Figure 1, assume thatis the only external evena, is a Boolean
input, and the system is currentlyAn-0 andBr-0. Whenw arrives,

if the inputa is false, then the eventis generated. The step is
finished since no new transitions are enabled. If insee&ltrue
whenw arrives, the transitions fror-0 to A>1 and fromB>0 to
B> 1 aresimultaneouslyaken and eventis generated, completing
one microstep. Then a second microstep starts; notice ¢tatise
of the synchrony hypothesis, the inpumust be true as before and
the external events cannot occur. So only the transition frdsme 1

to B2 is enabled and taken, generating eveand finishing the
step.

Subtle but important semantic differences exist amongawmisi of
statecharts. The semantics of STATEMATE [16], another majo
variant of statecharts, are close to those of RSML. STATERAT
does not enforce the synchrony hypothesis in the semarhtids,
provides it as an option in the simulator. RSML and STATEMATE
also have a richer set of synchronization primitives andvigeo
some sort of variable assignments; however, these feaueasot
important for this paper.

2.2 Symbolic Model Checking

We now switch gears to discuss model checking for ordinartefin
state transition systems (without state hierarchies, yinetsony
hypothesis, etc.). The goal of model checking is to detegmin
whether a given state transition system satisfies a progay as
atemporal logic formula, and if not, to try to give a counien@ple

(a sequence of states that falsifies the formula). Examplespties
include that a (bad) state is never reached, and that a (gbaid)
is always reached infinitely often. In “explicit” model chxéag,
the answer is determined in a graph-theoretic manner bgrsav
ing and labeling the vertices in the state graph [10]. Thehotkts
impractical for many large systems because of the statesixpl
problem. Much more efficient for large state spaces is syimbol
model checking, in which the model checker visetsof states
instead of individual states.

For illustration, we focus on the reachability problem, siraplest
and the most common kind of temporal property checked in-prac
tice. LetQ be the finite set of system statd&sC Q x Q the state
transition relation] C Q the set of initial states, an C Q a set

of error states. The reachability problem asks whether yhem
always stays away from the error staigsand if not, demands a
counterexample, that is, a sequence of stgges}, ..., On with

Qo €1,0n € Eand(qi,gi+1) € Rfor0<i<n.

We definePre: 29 — 29 to compute thgre-image(or theweakest
pre-conditior) of a set of states under the transition relatfon

Pre(S)={geQ|3d €S (a,q) e R}.

Intuitively, it is the set of states that may reach some statein
one transition. Then we can characterize the decision @nolaif
reachability in a set-theoretic manner usfixgd points Determine
whetherl N Pre*(E) is empty, wherePre*(E) is the set of states
that may eventually reach an error state. More specifidaitythe
smallest state st that satisfies

Y =EUPre(Y).

Its existence is guaranteed by the finitenes€Qaind the mono-
tonicity of Pre. Figure 2 on the following page shows an iterative

when no transitions are enabled. The semantics of RSML assum algorithm for computing this fixed point. The sétis the states

thesynchrony hypothesi®uring a step, the values of the inputs do
not change and no new external events may arrive; in othedsyor
the system is assumed to be infinitely faster than the envieor.

that may reach an error state in at mbstansitions. Many other
temporal properties can be similarly defined and comput@tyus
(possibly multiple or nested) fixed points [6].



Start withYp = E and iteratively comput¥_. 1 = Pre(Y;) UY; until reaching
a fixed point.

fixed point

Backward Traversal

Figure 2: An algorithm for computing Pre*(E)

If the intersection ofre*(E) and the initial statekis empty, then

the setE is not reachable and we are done. Otherwise, we would

like to find a counterexample. We first defiRest 22 — 29 to
computepost-images

PostS) ={q €Q[3ge S (q.d) eR}.

In other wordsPos(S) is the set of states reachable fr&m one
transition. Figure 3 shows a counterexample search afgoriThe

1. LetQp be any nonempty subset Bfe*(E) NI. lteratively compute
Qi+1 = Post{Q) UQ; until reachingE.

Qo C Pref(E)Nl 0 On 1

Forward Traversal

2. Start with somem, € QmNE and iteratively pick some

gi—1 € Pre(gi) NQj_1 to obtain a counterexampt®, g1, ... , gm.

o 1 Om
J LQ =
QO Ql Qm 1 Qm

Figure 3: An algorithm for counterexample search

setQp can be any nonempty subset of the intersection, but it is 2 and 3 (and similar algorithms for many temporal logics sash

convenient to choos® to be an arbitrary singleton set. The &gt
is the states that are reachable frQgin at mosti transitions. We
obtain a counterexample by tracing backward frgmNE. (We

will improve this algorithm later.)

The crucial factor for efficiency is the representation fiate sets.
Notice that the state spa€gcan be represented by a finite set of
variablesX, such that each state @corresponds to a valuation for
the variables and no two states correspond to the same igaluat
For finite state systems, we can assume without loss of dédgera
that each variable is Boolean. A set of stefés thensymbolically
represented as a Boolean functi®(X) such that a state is in the set
if and only if it makes the function true. The transition teda of
states can be similarly represented as a Boolean funB(xnXx’)
whereX’ is a copy ofX and represents the next state. Intersec-
tion, union and complementation on sets or relations resedc
becomes conjunction, disjunction and negation on Booleac-f
tions. Now the problem of representation of state sets isaedito
that of Boolean functions.

Empirically, the most efficient representation for Booléamctions

is BDDs [4]. They are canonical, with efficient implementatifor
Boolean operations. For example, the time and space coitipsex
of computing the conjunction or disjunction of two BDDs areshr

in the size of the result, which is at most the product of tazesof
the operands. Negation and equivalence checking can beidone
constant time. BDDs are often succinct, but this reliesaziiy on

a chosen lineavariable orderof the variables irX.

We can now represent a state Setnd the transition relatioR as
BDDs and compute the pre-image and post-imageax follows:

Pre(S) = 3X'.R(X,X) AS(X),

Pos(S) = IX.R(X, X") AS(X).
The notationrdX refers to existentially quantifying out all the vari-
ables inX. In addition to Boolean operations and equivalence

checking, operations like existential quantification aratiable
substitution can also be performed, so the algorithms iureg

CTL [10]) can be implemented using BDDs. Thanks to the suc-
cinctness of BDDs and the efficiency of their algorithms, s@ys-
tems with over 18?0 states can be analyzed [6].

2.3 Symbolic Model Checking for TCAS 1l

We analyzed the TCAS Il requirements using a symbolic model
checker SMV (Version 2.4.4). SMV uses algorithms similar to
those in Figures 2 and 3. A notable difference is that in Egyr
instead of computingi 1 = Pre(Y;) UY, it uses the equivalent re-
currenceYi;1 = Pre(Y; —Yi_1) UY;, with the advantage thai—Y;_1
usually requires a much smaller BDD thandoes, resulting in
faster pre-image computation. (In fact, it is sufficient tonpute
the pre-image of ang withY; —Y;_1 C Z CY; [11].) Similar com-
ments apply to the computation of ea@hin Figure 3.

Because SMV does not support hierarchical states and oBMILR
features directly, we had to translate the requirements ant or-
dinary finite-state transition system in the SMV languagehe T
requirements consist of two main parts, Own-Aircraft antiedt
Aircraft, which occupy about 30% and 70% of the document re-
spectively. In our initial study, we translated Own-Airitrguite
faithfully to the SMV language, and abstracted Other-Adftas a
mostly nondeterministic state machine. The details of thesia-
tion, including how the transitions, the state hierarchg tre syn-
chrony hypothesis were handled, as well as the propertedgzed,
were given in a previous paper [1]. Certain details aboustistem
model are relevant to this paper:

e An RSML microstep corresponds to a transition in the SMV
program, and thus a step corresponds to a sequence of transi-
tions.

e \We encode each RSML event as a Boolean variable, which is
true if and only if the event has just occurred.

e We assume each numeric input to be discrete and bounded,
and encode eadbit as a Boolean variable.

e To maintain the synchrony hypothesis, we prevent the inputs
from changing and the external events from arriving when any



of the variables that encode events is true.

e We analyze one instance of TCAS Il only, so the asynchrony
among multiple instances of the system is not an issue.

A major source of complexity of the analysis was the traosgi
guarding conditions, some of which occupy many pages ofrigesc
tion. They contain predicates of local states and of thetinpti-
ables, and often involve complicated arithmetic. While ynatiner
researchers conservatively encode each arithmetic pitedés an
independent Boolean variable [12,17,27], we encode egch bit
as a Boolean variable, resulting in more accurate analy#ie ax-
pense of more Boolean variables. In addition, a guardinglition
can refer to any part of the system, so the interdependebeies
tween the BDD variables are high. These all imply relativatge
BDDs for guarding conditions.

On the plus side, the control flow of Own-Aircraft is simpleda
concurrency among the state machines in Own-Aircraft iSnmah
As we will see, some of the techniques presented later attemp
exploit these simple synchronization patterns.

3 Short-Circuiting

It is easy to see that in Figure 2, we do not need to compute @ fixe

point when the error states are reachable—we can stop once th

intersection of som&; and| is not empty, because all we need is
an element in the intersection. ThiBort-circuitingtechnique may
substantially reduce the time and space used when a shatiecou
example exists.

More generally, short-circuiting can be applied to the outest
fixed point (and occasionally the inner ones) in temporgldo
model checking.

4 Forward vs. Backward Traversals

Fixed-point computation or counterexample search can be db
ther forward or backward. In this section we elaborate oir frex-
formance difference in our analysis. In short, backwardetrsals
generate smaller BDDs and are a big win for our system. They ca
be further improved by incorporating certain invariantptone the
searches.

4.1 Improved Counterexample Search

During the analysis of TCAS I, we found that when a property
was disproved in a few minutes, finding a counterexample migh
take hours. A coauthor of a previous paper subsequentlylisimp
fied the counterexample search algorithm, resulting in taultisl
speedup [1]. This is the only technique described here tlaat w
used in that study.

The forward traversal in the first part of Figure 3 is the lestéck.
For our system, the sequence of post-images requires |&fsB
However, we can eliminate this step if we remember eYeppm-
puted in Figure 2 (our actual implementation stores thesdiffice
Y; —Yi_1 instead ofY;). Our modification, illustrated in Figure 4,
is by no means innovative and should be considered natural.
disadvantage of the algorithm is the use of additional mgntor
store the state sets, which is wasted in case the error statemt

lindeed, if we search forward to find the reachable state 84 Gn
optionally use a similar counterexample search algoritbubjt is not used
with the default backward traversal.

Start with someyp € YoN 1 and iteratively pick someg; € Pos{qi—1) N Yn_i

to obtain a counterexampt®, q, - - . , On.
Yo 81 o
| g/
Y, N em Yo
n Yn-1 Y1

Figure 4: A simplified algorithm for counterexample search

reachable. Nevertheless, the dramatic speedup made lpo&sib
outweighs the modest additional memory requirements.

An important question remains: Why is the backward traveémsa
Figure 2 much more efficient than the forward traversal inFéd3?
The inefficiency of forward traversals is also withessed MVS
inability to compute the set of reachable states of the syskend-
ing the reachable state set by searching forward from th&lini

tates is a common technique in hardware verification; thease

e used to help analyze other temporal properties and sinthe
the circuit.

A backward traversal often takes fewer iterations to reatikeal
point than a forward traversal, because the set of err@statusu-
ally more general than the set of initial states. Howeverptioblem
here is not the number of iterations, but rather, the sizk@BDDs
generated. In general, we observe that in backward trdsetba
BDDs usually have between hundreds to at most tens of thdasan
of BDD nodes, while in forward traversals, they can be two oren
orders of magnitude larger. Nevertheless, the verificatfomany
hardware systems tends to benefit, rather than suffer, foowafd
traversals. For example, Iwashita et al. report signifisgeedup in
CTL model checking for their hardware benchmarks when fodwa
instead of backward traversals are used [20].

Partly inspired by Hu and Dill [19], we believe that the ineiéincy
is mainly due to the complex invariants of TCAS Il, which araim
tained by forward but not backward traversals. As an exanepie-
sider the state machine in Figure 5. If evgig only generated i,
then an invariant of the system is that, whenever eyéiats just oc-
curred, the machine is iA>0 if and only if conditiona is true. If
the BDD for a is large, so will the BDD for the invariant. There
are likely to be many such implicit invariants in the systeand
their conjunction may have a large BDD representation elviey
are small. In addition, invariants may globally relate eliéint state
machines, also likely to result in large BDDs. Forward traeés
maintain all such invariants, so intuitively the BDDs fonf@rd

Figure 5: A state machine with local invariants



traversals tend to blow up in size. In low-level hardwareifiea-
tion, the BDDs often remain small, because each invariarstially
localized and involves only a small number of state vargblehis
is not the case in TCAS Il however.

For backward traversals, the situation is quite differeRtr ex-
ample, there are no counterparts of the invariant mentiahede
when backward traversals are used, because the truth valae o
does not determine the state of the system before the negrost
Certainly, some different (backward) invariants are naimgd in
backward traversals, but they tend to depend on the staies fr
which the search starts, and their BDDs tend to be smallevdor
system.

4.2 Improved Backward Traversals Using

Invariants

Interestingly, the main disadvantage of backward tralgisaalso
that (forward) invariants are not maintained. Some invasiapar-
ticularly those with small BDDs, can help simplify the BDD& o
state sets, and can speed up backward traversals if thepcme i
porated into the search. In the context of statecharts, rspgstgms
have simple synchronization patterns, which are lost irkvacd
traversals. A particular invariant that we find useful totifgchis
problem is themutual exclusion of certain eveni#/e illustrate this
idea with an example.

Consider the system in Figure 6. Assumings the only external

Fortunately, we can greatly simplify the search by obsentimat

all the events are mutually exclusive. This invariant caimberpo-

rated into the traversals by either intersecting it withghe-images
or using it as a care-set to simplify them [11].

To find out such a set of mutually exclusive events, we may per-
form a conservative static analysis on the causality of trents.
Alternatively, the designer may know which events are nlijtua
exclusive, because the synchronization patterns showlel ibeen
designed under careful consideration. To confirm the maxzl-
sion, we may verify, using model checking or other statidysis.
techniques, that the states with

Vuves(UAV)
U#£V

are not reachable, wheEeis the set of state variables encoding the
events under consideration. In the case of TCAS Il, a largega
our model behaves similarly to the machine in Figure 6, apdét

of mutually exclusive events was evident.

5 Partitioned Transition Relation

Apart from the BDD size for state sets, another bottleneckadel
checking is the BDD size for the transition relation, whiende
reduced byconjunctiveor disjunctive partitioning6]. The former
can be used naturally for TCAS II, and we have modified SMV to
partition the transition relation more effectively. Weakpply dis-

event, there is no concurrency in the system—at most one localjunctive partitioning, which is normally used only for agymonous

transition can be enabled at any time. Forward traversalsaiio
explore concurrent executions of the state machines.

However, in backward traversals, the analysis may be fdoledn-
sider many concurrent executions, which are not reach&bilg-
pose we want to check whether the system can ge-ih andCr> 1
simultaneously. Traversing backward, we find that in thesipre
ous microstep, the system may be(Br>0,Cr>1), (B>1,Cr0), or

systems. Combining the two techniques, we obENF partition-

ing. As we will see, the issues in this section are not only the BDD
size for the transition relation, but also the size of ititermediate
BDDs generated for each image computation.

5.1 Background

(B>0,C0). The last case, however, is not possible, because eventsln this subsection, we review the idea of conjunctive anpliditive
v andw cannot occur at the same time. (Notice that this is true only Partitioning, described in Burch et al. [6]. The transitiefationR

if we assume the synchrony hypothesis.) Tracing more iterst
we can see that the search considers not only concurrenitees
but also many unreachable interleavings of executions.BDies
thus may blow up if the guarding conditions are complex.

/ N\
A ual /v
=) >y

u@]/v
B vib]/w
=0 {1y
vID)/w
c wid]/x
—(0) >y
we)/x
g J

Figure 6: A system with a linear structure

is sometimes given as a disjunctibav D,V --- Vv Dj, and the BDD

for R can be huge even though each disjunct has a small BDD. So
instead of computing a monolithic BDD fd®, we can keep the
disjuncts separate. The image computations can be easilifietb

by distributing the existential quantification over thejdirtion.

For pre-image computation, we thus have

Pre(S) = IX".R(X,X') AS(X')
= 3X". (D1(X,X') VDa(X,X') V--- VD (X, X)) AS(X')
= d1(X) Vda(X) V- v dj(X)

where for 1<i < j,
ai(X) = 3IX".Dj (X, X') AS(X').

So we can compute the pre-image without ever building the BDD
for R. Post-image computation is symmetric.

If, however,Ris given as a conjunctioB; ACy A --- ACy, we can
still keep the conjuncts separate as above, but image cagmsg
become more complicated. The problem is that existentihtifi-
cation does not distribute over conjunctions, so it apptaswe
have to compute the BDD fd® anyway before we can quantify out
the variables. A trick to avoid this isarly quantification Define
X1, X5, ..., X to be disjoint subsets of’ such that their union iX’
and for 1< i <k, the conjuncC; does not depend on any variable



in Xp for any p < i. Consider again the pre-image computation. We For TCAS Il and many other statecharts, however, we can again

compute

c1(X,X) = 3X.CL(X, X') AS(X')
Co(X,X') = IX5.Co(X, X') A cy (X, X')

Pre(S) = (X) = 3. Ce(X. X') A G 1(X,X).

The intuition is to quantify out variables as early as pdssiand

hope that each intermediate for 1 <i < k remains small. The
effectiveness of the procedure depends critically on tleécehand

ordering of the conjunct§y, Cy, ..., Ck.

5.2 Determining a Conjunctive Partition

We could not construct the monolithic BDD for the transiti@
lation R for our model of TCAS Il in hours of CPU time, bR
is naturally specified as a conjunction, so we can use cotijenc
partitioning. Although SMV supports this feature, it detémes
the partition in a simplistic way: An SMV program consistsaof
list of parallel assignments, whose conjunction forms thedition
relation. SMV constructs the BDDs for all assignments, anudd-
mentally builds their conjunction in the (reverse) ordentlappear
in the program. In this process, whenever the BDD size excaed
user-specified threshold, it creates a new conjunct in thiipa.
So the partition is solely determined by the syntax, and nwisic
or semantic information is used.

To better determine the partition, we changed SMV to allow th
user to specify the partition manually. We also implemerited
SMV a variant of the heuristics by Geist and Beer [14] and bg-Ra
jan et al. [26] to automatically determine the partition.eTdentral
idea behind the heuristics is to greedily select conjuntués &l-
low early quantification of more variables while introdugifewer
variables that cannot be quantified out. Our implementaifahe
heuristics worked quite well. The partitions generated parad
favorably with, and sometimes outperformed, the manuditjuans
that we tried.

5.3 Disjunctive Partitioning for Statecharts

Disjunctive partitioning is superior to conjunctive p#dning in the
sense that ordering the disjuncts is less critical, andehel inter-
mediate BDD is a function o (instead ofX UX’) and thus tends
to be smaller. (Another advantage that we have not expldsttte
possibility of parallelizing the image computation by cwuosting
the intermediate BDDs concurrently.)

Unfortunately, when the transition relatiéhis a conjunction, in
general there are no simple methods for converting itsmall set

of smalldisjuncts. If we define a covery (X, X’), ax(X,X"), ...,
aj(X,X’) such that their disjunction is a tautology, then we can
indeed disjunctively partitioR by distributingR over the cover:

R=(apVvaaV---Vaj)AR
=D1\/D2\/~-~\/Dj

where for 1<i < |,

Di=aiAR=0; ACLACOA--- AC.

But for most choices of covers, eabhis still large.

exploit the mutual exclusion of certain events, sayup, ..
Define

<y Uj—1.

0i = Ui A A1<p<j ~Up
pr

forl<i<j,and

Oj =—Up AU A AUj—g
Ojy1 =701 A0 A - AQj.

In other words,a; corresponds to the states in which onlyhas
just occurredaj, none of the events have, angl, 1, at least two
of the events have. They clearly form a cover. We made tworebse
vations. First, we can drop; 1, which is a contradiction because
of the mutual exclusion assumption. Second, most of thellphara
assignments in our SMV program are guarded by conditiont®n t
events; for example, an assignment that models a staté&imans-
quires the occurrence of the trigger event. If the eventagusfor
some 1< i < |, then the BDD for the assignment is applicable only
to the disjunctD;, and all the other disjuncts of the transition rela-
tion are unaffected. So each disjunct may remain small.ddatiat

to apply this technique, we have to find a set of provably milytua
exclusive events, which can be done as described in Secflon 4

5.4 DNF Partitioning and Serialization

A disadvantage of partitioning based on events is that the sizes of
the disjuncts are often skewed. In particular, if a singlene\may
trigger a number of complex transitions, its correspondiisgunct
could be large. Figure 7 shows an example in which an eveig-
gers two state machines. If all the guarding conditions anepgex,
the BDD for the disjunct correspondingxanay be large.

One solution to this problem is to apply conjunctive paotithg
to large disjuncts, resulting in what we c&8NF partitioning It
uses both BDD size (as in conjunctive partitioning) andcitmal
information (as in disjunctive partitioning) to partititime transition
relation, and may perform better than relying on either @lon

Alternatively, we may serialize the complicated microstep cas-
cading microsteps to reduce the BDD size. Figure 8 on the next
page illustrates this idea. We have “inserted” a new eueifterx.

Note that the resulting machine has more microsteps in a Sep
although this method is effective in reducing the BDD sitzeften
increases the number of iterations to reach a fixed pointo,Alse
transformation may not preserve the behavior of the systehtlee
property analyzed. A sufficient condition is that the guagdton-
ditions in the machind do not refer to machiné's local states,

Figure 7: Event x triggers two state machines.
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Figure 8: The serialized machine

x is mutually exclusive with all other events, and we are check
ing a reachability property that does not explicitly mentany of
the sétate machines, transitions or events involved in #resforma-
tion.

6 Abstraction

In this section, we give a simple algorithm to remove parthef t
system from the model that is guaranteed not to interferk thig
property being checked. For example, a system may have agtumb
of outputs (which may be local states or events). If we are ana
lyzing only one of them, the logic that produces other owgpnay

be abstracted away, provided these outputs are not fed bablk t
system. The abstraction obtainedeisactwith respect to the prop-
erty, in the sense that the particular property holds in tisgracted
model if and only if it holds in the original model.

6.1 Dependency Analysis

We determine the abstraction by a simple dependency asalgsi
the statecharts description. Initially, only the localtesa events,
transitions, or inputs that are explicitly mentioned in fireperty
are considered relevant to the analysis. Then the followihes
are applied recursively:

e If an event is relevant, then so are all the transitions theat m
generate the event.

e Ifatransitionisrelevant, then so are its trigger evestsdurce
local state, and everything that appears in its guardinglieon
tion.

e If a local state is relevant, then so are all the transitiartsod
or into it, and so is its parent state in the state hierarchy.

(Note that the relevance of an input does not make any otligy en
relevant.) These rules are repeated until a fixed point ishezh
Essentially, this is a search in the dependency graph, antintie
complexity is linear in the size of the graph. It should belenit that
everything not determined relevant by these rules can bewedn
without affecting the result of the analysis.

2The same criterion can be applied to arbitrary CTL formutasyided
we do not use the the next-time operator X, which can counttimeber
of microsteps. In other words, under the assumptions, tresformation
preserves equivalence under stuttering bisimulation [3].

6.2 False Dependency

Similar dependency analyses could also be performed by Imode
checkers (such as VIS [28]) on the Boolean model of the diatéex
machine. However, a straightforward implementation wadtibe
effective. The reason is that in the model, an input wouldeapp

to depend on every event because of the way we encoded the syn-

chrony hypothesis (Section 2.3). On the other hand, cagrgint
dependency analysis on the high-level statecharts déserigoes
not fall prey to such false dependencies.

Other forms of false dependencies are possible, howevepde
we are given the system in Figure 8 from the previous seckoom

the syntax, the eventappears to depend on both conditianand

a, but in fact it does not, because regardless of the truthesalu
anda’, eventu will be generated as a result of event

To detect such false dependencies, one can check whethdisthe
junction of the guarding conditions of the transitions oliadocal
state with the same trigger and action events is a tautoligg.can
sometimes be checked efficiently using BDDs [17]. Howevss, t
syntax of RSML and STATEMATE allows easy detection of most
false dependencies of this kind. Notice that the self-ldogsig-
ure 8 are solely for synchronization—they make sureufstgener-
ated regardless whether there has been a local state chHanige-
prove the visual presentation, RSML and STATEMATE allow one
to specify the generation of such events separately fronstéte
diagram usinddentity transitionsandstatic reactiongespectively.
(Actually, their semantics are slightly different fromfsklops, but
the distinctions are not important here.)

Some false dependencies are harder to detect automati¢aily
example, the guarding conditions involved may not form adiau
ogy, but in allreachablestates, one of the guarding conditions holds
whenever the trigger event occurs. As another examplegur€i9,
the eventy does not depends on any of the guarding conditions, be-
cause it is always generated one or two microstepswftein prac-
tice, the synchronization of the system should be evidetitdale-
signer, who may specify the suspected false dependendies po-

ral logic formulas, which can be verified using model chegkit
the results indeed show no real dependencies, this infamean

be used in the dependency analysis to obtain a smaller etestra
model of the system. In our TCAS Il analysis, the synchraiora

of Own-Aircraft is simple enough that false dependencies lma
easily detected. However, this method may be used for anglyz
the rest of TCAS Il or other systems.

Y Xy -
x[—c]/y
x[wl]/y(@]/_x
X(c]/y
- /

Figure 9: False dependency: Eveny does not depends on any
guarding condition.

SHowever, if the next-time operator X is used, themay be considered
conservatively to be dependent aandb.



Building
BDDs for R P1 P2 P3 P4 P5 P6
Full Model (227 variables)
No. of fixpoint iterations 24 29 29 38 26 26
Counterexample length 15 15 11 24 17 11
Optimizations time nodes time nodes time nodes| time nodes| time nodes time nodes| time nodes
SC MX CP DP () (K| (5 K (5 K] 5 K| ) K (5 K| (5 (K
1 - - - — 20 93 79 400 182 713| 257 1060| 342 1090 0 0
2 - = = 20 93 62 400 143 713 61 669| 136 751 [ )
3 - — N 33 176 40 273 97 345| 147 488 | 193 412 0 0
4 — v —- - 20 94 11 110 20 123 76 369 38 152 47 249 | 490 1903
5 — Vv v - 25 166 9 170 18 190 51 267 31 215 39 245| 316 1139
6 — 4 — 34 464 18 464 33 464 | 798 968 34 463 74 480 0
7 — Vv Vv Vv 40 128 7 128 14 139 57 217 24 150 29 160 | 320 1022
8 v Vv Vv Vv 41 128 6 128 8 128 13 153 12 143 18 141 23 243
Mistranslated Model® (227 variables)
Optimizations time nodes time nodes time nodes| time nodes| time nodes time nodes| time nodes
SC MX CP DP (g K| (5 K (5 K] 5 K| ) K (5 K| (5 (K
9 — 4 - — 20 93| 285 697 317 1016 95 314 | 518 1129 615 2245| 442 1591
0 — Vv VAR 26 174 | 323 1043 791 1546 91 424 | 497 1471 0 871 2186
1 — Vv — Vv 36 462 | 972 843 1117 964| 358 895| 1340 952 & 1954 1007
12 — 4 4 4 42 126 | 126 327 154 515 49 185| 215 398 213 678| 198 547
Serialized Model (231 variables)
No. of fixpoint iterations 36 41 45 54 38 38
Counterexample length 23 23 19 36 25 19
Optimizations time nodes time nodes time nodes| time nodes| time nodes time nodes| time nodes
SC MX CP DP (g K| (5 K (5 K] 5 K| ) K (5 K| (5 (K
13 — 4 - — 27 103 12 111 39 190 | 127 311 46 144 89 325| 867 2307
14 — — 31 167 12 167 38 234| 127 323 44 199 94 363 | 959 1932
15 — Vv — Vv 27 139 12 139 40 161 | 136 251 32 160 76 177 | 897 1040
16 — 4 4 4 48 136 11 136 34 162 | 129 221 39 156 74 196 | 762 982
Abstracted Models"
No. of variables 142 142 150 142 150 171
Optimizations time nodes time nodes time nodes| time nodes| time nodes time nodes| time nodes
SC MX CP DP (5 K| (5 K (5 ®] 59 K| 5 K (5 K| (5 (K
7 - - - = vary 5 65 17 93 72 362 26 115 & 0
18 4 4 4 vary 2 33 4 39 6 73 6 40 13 95 18 158

SC: short-circuiting MX: mutual exclusion of events

"No. of fixpoint iterations and counterexample lengths aeatital to those of the full model.

CP: moyed conjunctive partitioning

Table 1: Resources used in the analysis

7 Experimental Results

The table above summarizes the results of applying the igebs
mentioned to our models of TCAS Il. It shows the resourcesgti
in seconds and number of BDD nodes used in thousands) fat-buil
ing the BDDs for the transition relatioR as well as the resources
for evaluating six properties. Note that the latter exchuthe time
spent on building the transition relation and the resoufaefind-
ing the counterexamples. The counterexample search tamkt ab
one to two seconds per state in the counterexample and wasaev
bottleneck thanks to the algorithm in Figure 4. That aldgwnitwvas
used in all the checks, because without it, none of the coexden-

DP: disjunctive partiting

17
18

ples could be found in less than one hour. The table also sti@vs
numbers of iterations needed to reach fixed points and thgtHen
of the shortest counterexamples. We performed the expetinoa

a Sun SPARCstation 10 with 128MB of main memory. Most suc-
cessful checks used less than 30MB of main memory.

Several models were examined. Our starting point, calleduth
mode] is close to the one used in our previous paper [1]. i@
translated modetontains a real translation bug, and is included to
give an example of analyzing a highly flawed design. 3éwmalized
modelwas obtained from the full model with one of the microsteps
serialized. Finally, applying the dependency analysisenti®n 6



resulted in theabstracted modelsFor each model, we performed the SMV program. We made this bug early in the previous study,
model checking using some combinations of the followingi-opt  although we soon discovered it by inspection. The mistake wa

mizations: short-circuiting (SC), mutual exclusion of etse(MX), omitting some self-loops similar to those in Figure 8. BDDs f
improved conjunctive partitioning using heuristics (Ci3junctive faulty systems are often larger than those for the correetezions,
partitioning (DP), and DNF partitioning (CP and DP). because bugs tend to make the system behavior less “regular”
Properties P1 through P4 refer to the properties Increzsednt Interestingly, the particular partition generated by the heuristic
Inhibition, Function Consistency, Transition Consisterand Out- performed poorly for this model (Row 10). DNF partitioniran

put Agreement explained in the previous paper [1]. PropEgy the other hand, continued to give significant time and spadec-
refers to an assertion in Britt [2, p. 49] that Own-Aircrafftosild tions (Row 12). The miserable results of disjunctive piarting
never be in two local states Corrective-Climlges and Corrective- (Row 11) were again due to the disproportionally large BDEhim
Descend Yes simultaneously (comments in our version of the partition.

TCAS Il requirements, however, explicitly say that the twcadl
states are not mutually exclusive). Property P6 is someadiat
trived: It is simply the conjunction of P3 and P4. Since skag
simultaneously from two unrelated sets of states tendsaw bip

the BDDs, checking this property provides an easy way toescal
up the BDD size. It also mimics checking properties invodvin
large part of the system. All six properties are reachabiind are
violated by the model. For each model, the best time and space
requirements for each property are shown in bold face. Aryent
with o indicates timeout after one hour.

Serialized Model We serialized a microstep in the full model to
break the large disjunct into four BDDs of sizes about a heddr
times smaller. Disjunctive partitioning now used less sp@ows

6 vs. 15). However, since the number of microsteps in a step in
creased, all checks suffered from the larger number oftitera
needed to reach fixed points. They all ended up performingtabo
the same, with disjunctive and DNF partitioning having thghs
edge, particularly in the space requirements for the mdfewli
searches.

We emphasize that the purpose of the data is to investigaigeth-
eral effects of the techniques on the models. They are nqtidkr
ing a clear winner among the techniques, since the BDD dlgos
are very sensitive to the various parameters chosen.

The data suggest that if the disjuncts are small to start wigfunc-
tive partitioning is a viable option, but serializing theamdstep in
order to use disjunctive partitioning is not advantageousir case.
In general, we find the effects of serializing microsteps igsidon-
verse, combining microsteps, difficult to predict. Theyresgnt
Full Model Row 1 shows that the fixed-point computations for a tradeoff between the complexity of image computationstaed
two of the properties could not be completed for the full Mpde number of search iterations.

when we used only the conjunctive partitioning as impleraéin
SMV. (Actually, we implemented a simple improvement thaswa
used in all results including this base analysis. As expldin Sec-
tion 2.2, an image computation step involves a conjunctimhan
existential quantification. The two operations can be edrout
simultaneously to avoid building the usually large conjiort ex-
plicitly [6]. SMV performs this optimization except whenmjanc-
tive partitioning is used. We simply changed SMV to elimantitis
limitation.)

Abstracted Models The last part of the table shows the perfor-
mance of analyzing the abstracted models. The number of vari
ables abstracted away by the dependency analysis was ajgjee |
Recall that in our full model, we omitted most of the detaits i
Other-Aircraft. Many of the outputs of Own-Aircraft that veein-
puts to Other-Aircraft thus became irrelevant, unless waiexy
mentioned them in the property. This explains the relagilaige
reduction obtained.

Short-circuiting was most effective on Properties P3 and P4
(Row 2). The savings resulting from the heuristic for cowjive
partitioning were also significant (Row 3). Incorporatiing tmu-
tual exclusion of certain events into backward traversatsegally

gave an order of magnitude time and space reduction (Row¥). I 8 Discussion and Related Work
addition, we could now easily disprove Properties P5 and IR6.

particular, the statement in Britt [2] mentioned above isvably We first summarize some differences between symbolic model
false in our version of the requirements. checking for hardware circuits and for TCAS II. A major foafs
Disjunctive partitioning, which must be combined with thetoel hardware verification is on concurrent systems with comptex

exclusion of events, appeared to be inefficient (Row 6) witen-c ~ trol paths and often subtle concurrency bugs, but their patas
pared with applying the mutual exclusion alone (Row 4). Téw r are relatively simple. Forward traversals usually perfanoch bet-

Using all of the techniques discussed in this paper led todbelts
in the last row of the table.

son is that one of the disjuncts of the transition relatios veage, ~ ter, because the BDDs tend to be small in the reachable geate.s
with over 1 BDD nodes, at least an order of magnitude larger than In contrast, the major complexity of the TCAS Il requirentzelies
other disjuncts; this is reflected in the table by the largainer of not in the concurrency among components, but in the intiicei-
BDD nodes needed to construct the transition relation. Wiuea- ence of data values on the control paths. The BDD for theitians
tively partitioned large disjuncts, leading to the morecidiit DNF relation tends to be huge and forward traversal_s inefficiBatck-
partitioning (Row 7). It performed marginally better thasnunc- ward traversals usually perform better by focusing on tluperty
tive partitioning with mutual exclusion of events (Row 5t tthe analyzed, and can be further improved by exploiting the krayn-
space requirements were consistently lower. When shantiting chronization patterns.

was also used, all of the fixed points could be computed irthess

Our method of pruning backward traversals using invarigssem-
half a minute (Row 8). u pruning w v using invari

ilar in spirit to the work on hardware verification by Cabotliag,
who propose doing aapproximateforward traversal to compute a
Mistranslated Model To further illustrate the differences among superset of the reachable states, which is then used to paake
the various partitioning techniques, we looked at a versibthe ward traversals [8]. (An invariant is precisely a superdethe
model that contains a translation error from the RSML maen reachable states.) Their method is more automatic, whderth



variants we suggest rely on the designer's knowledge onytiie s
chronization of the system. They also independently preatis-
junctive partitioning for synchronous circuits [7]. Thegquire the
designer to come up with a partition manually, and we aggihoix
mutually exclusive events.

In work also independent of ours, Heimdahl and Whalen [18] us
a dependency analysis technique similar to the one desc8be-
tion 6.1, but their motivation is to facilitate manual revief the
TCAS Il requirements, rather than automatic verificatios.ndted
before, we gained relatively large reduction because ©Alreraft
was not fully modeled, and we suspect that in a complete syste
the reduction obtained by this exact analysis could bedidnitHow-
ever, more reduction can be obtained if we forsake exactriems
example localization reductio{22] is one such technique, which
aggressively generates an abstracted model that may iy she
property while the full model does. If the model checker fiimds
the abstracted model a counterexample that does not exibein
full model, it will automatically refine the abstraction aitdrate
the process until either a correct counterexample is founthe
property is verified.

It would be interesting to see how well the techniques in pliger
scale with the system complexity. The natural way is to tiplyap

ing them to the rest of TCAS II. Unfortunately, that part cins
arithmetic operations, such as multiplication, that pbdyaannot

be represented by small BDDs [5]. In a recent paper, we stigges
coupling a decision procedure for nonlinear arithmeticst@ints
with BDD-based model checking to attack the problem [9]. &lor
research is needed to see whether this technique scalegesies-
tems.
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