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This research addresses the problem of building software that can be responsive even

in environments with widely variable or unknown resource availability. Application

programmers' e�orts to ensure responsiveness are rendered increasingly di�cult by a

number of trends in modern computing environments that increase service variability,

including:

1. wide scale sharing of resources, such as distributed �le systems,

2. wireless networking for mobile computers, and

3. sporadic inclusion of multimedia in documents.

The con
uence of these trends calls for broadly applicable programming support

to create applications that ensure good responsiveness in the face of widely variable

service times at little or no increase in programming e�ort relative to the existing

technology (which cannot provide this level of responsiveness). The work described

here provides the design of such support, and furnishes a proof of concept that it



is e�ective where (a) portions of the application can be decomposed into concurrent

tasks, and (b) the application can produce and present its results incrementally, i.e.,

can trade the quality of the response against the delay required to provide it, such as

with multi-resolution techniques.

The key to this approach is the runtime construction of a global dependence graph

that relates tasks to each other through their input and output dependencies. This

graph is constructed by an application-independent system with minimal programmer

e�ort, and is used at runtime to provide useful services, including:

1. adjusting resource allocation along the branches of the graph to improve

response time for those tasks on which the user is currently focussed,

2. pruning branches of the graph that no longer represent useful work, thus freeing

resources for the computations of interest,

3. managing multiple results of improving quality and their storage behind the

abstraction of program variables, and

4. synchronizing the execution of threads on new input quality versions according

to programmer-speci�ed semantics.

The combined e�ect is that it is easier to write applications that provide good

responsiveness across a wide and unpredictable range of service variability.
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Chapter 1

INTRODUCTION

Application programs are beginning to run up against a new impediment to

providing users with satisfactory performance: several trends in modern computing

environments are resulting in greatly variable service delivery. Since today's highly

interactive applications depend on timely response from the underlying resources,

if resource response time varies dynamically, responsiveness to the user su�ers.

Although traditional programming methods often deal adequately with high mean

service time, they fall short in coping with high variance, choosing either to ignore

the potential periods of high resource availability or to su�er through periods

of low availability with inadequate responsiveness [34]. While there are several

techniques for providing users with responsive behavior in the presence of service

delays, programming applications using these techniques involves signi�cant extra

e�ort beyond implementing the base application. The goal of this research is to

develop broadly applicable support to aid programmers in constructing and executing

interactive applications that exhibit good responsiveness even in environments where

available system resources are highly variable or unknown at the time of writing.

To help clarify the high-level purpose of this research, consider a similar service:

automatic garbage collection. Although programmers can certainly implement their

own memory management by hand using known techniques, it is valuable to have

automatic facilities that provide this service. By providing reusable, application-

independent support for memory management, we can lighten the burdens of many
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programmers in writing and maintaining this tedious, error-prone aspect of their

codes, meanwhile instilling greater con�dence that their applications will not exhibit

memory leaks or dangling pointers.

In a like manner, this dissertation develops the design of reusable, application-

independent programmer support that yields similar bene�ts in the domain of

insulating the user from the widely variable delays inherent in modern computing

environments. The notion of a resource-variable environment, and what can be done

to provide responsiveness to the user in such an environment, will be introduced

through an example.

1.1 An Example of Responsiveness Despite Lagging Resources

Demand for features that help ensure responsiveness will grow in the near future as

applications are used in increasingly variable environments. A common example of

such an environment is the World Wide Web, where the response time of a request

can be hard to predict and highly variable; even the rate at which data is returned

can vary widely during the transfer.

To illustrate what is meant here by good responsiveness despite slow resources, we

demonstrate one of the striking di�erences between two World Wide Web browsers,

Netscape and Mosaic. Figure 1.1 shows a snapshot of each browser in the process of

downloading the same Web page. In Netscape we see almost all the content of the

page, but in Mosaic we see nothing at all.

1

What is the di�erence? Surely Netscape

cannot make the Internet run faster. Netscape employs certain features to make

the user interface more responsive. Among other things, it displays the Web page

incrementally as it arrives, showing inlined images in coarse resolution initially and

1

At monitor resolution, one can easily see that the Netscape image quality is rough and \blocky."

The lack of detail is less noticeable in this reduced reproduction.
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Figure 1.1: User Responsiveness: Netscape vs. Mosaic during Web page download.

improving them when higher resolution data becomes available.

2

In the �gure, less

than half of the image data has been received. On the other hand, Mosaic displays

none of the image or accompanying text until all downloading has completed. The

di�erence in responsiveness between these two browsers is particularly apparent to

users when there are many inlined images, but with only a few initially visible at the

top of the Web page.

1.2 Synopsis

Incremental processing and display of information is only one of a variety of techniques

that can improve responsiveness when resources lag. Further techniques are surveyed

in Chapter 3. The programming e�ort required to implement such \responsiveness-

enhancing" features is dramatically reduced by a new framework introduced in

Chapter 4, the principal innovative contribution of this research. In brief, it

2

This feature requires that the image be delivered in a progressive-resolution format, such as

\interlaced GIF" or \progressive JPEG." Such encoding is currently performed statically, before

the Web server delivers the image.
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consists of three fundamental programming abstractions that facilitate the expression

of asynchronous, application-level units of work, including their synchronization

and resource requirements. The use of these abstractions produces at runtime a

dependence graph among the concurrent tasks that describes their data 
ow and

synchronization structure, as well as the resource con
icts among them. Using the

global view manifested by the dependence graph, an application-independent library

can provide a number of services to enhance the responsiveness of the application,

such as dynamic, intelligent resource allocation among the tasks, and an analogy to

garbage collection that automatically eliminates branches of the dependence graph

that become obsolete due to overriding user actions.

Chapter 5 then describes a prototype speci�cation and implementation of this

framework. To be concrete, the prototype speci�cation provides the application

programmer with a set of abstractions via minimal annotations to procedure headings

and several C++ template classes [89]. The construction and maintenance of the

runtime dependence graph is done behind these abstractions. The implementation

consists of a runtime library and a preprocessor for the annotations that generates

procedure stubs to maintain the dependence graph, implement the synchronization

semantics chosen by the application programmer, and manage the multi-threading.

The runtime library uses the dependence graph to provide responsiveness-enhancing

services to the application.

The ideas behind the framework are general; the particular choice of annotations,

target language and kernel threads system is not crucial. However, object-orientation

does simplify the use of certain framework abstractions.

Chapter 6 validates and evaluates this new framework partly via the construction

and measurement of multiple applications using it. Finally, Chapter 7 describes

related work and avenues for further exploration.

The conclusion of this chapter enumerates the contributions of this research, while

Chapter 2 illuminates the growing importance of this area, expounding on the great
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variability of modern environments. Whereas the initial motivation for this research

was provided by the inherent variability in a speci�c environment, mobile computing,

as discussed in the next chapter, broad variability in service times is experienced

in other, more commonplace environments, making this research widely applicable,

consequential, and useful for today's applications and environments.

1.3 Contributions

This research makes the following contributions:

� It identi�es a trend in modern computing environments toward widely variable

and dynamically changing service delivery, and catalogs the fundamental

sources of this trend.

� It characterizes via experiment the variability in service delivery on today's

World Wide Web, and is the �rst published study to measure its short term

volatility in service delivery.

� It recognizes the e�ect of this variability as a growing problem for application

programmers and an upcoming research area: that of designing support for

producing applications that are consistently responsive to the user despite

widely variable or unknown resource availability.

� It proposes an innovative framework to ful�ll this need for a broad class of

applications.

� It demonstrates the viability of this framework through the construction of a

working prototype and measurements of multiple test applications built using

the prototype.
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� It perceives the opportunity for optimization presented by the capacity of users

to get ahead of resources when resources lag, and suggests the use of a dynamic

dependence graph of on-going tasks as a means for global optimization for user

responsiveness.

� Finally, it contributes a new form of priority-arbitrated lock that helps avoid

priority inversion in common situations that arise in incremental processing.



Chapter 2

SERVICE VARIABILITY

Responsiveness to the user appears to have a profound in
uence on the usability

of an application [75, 25]. The importance of a fast response can even exceed that

of a complete response. For example, when ri�ing through an online document, a

snappy display can be more important than accurately portraying every detail.

Good responsiveness is characterized by low mean response time as well as low

variance. Low variance makes the interface more predictable and helps users calibrate

their expectations. The importance of this is highlighted by an early study that

showed that users prefer lower variance even when they must endure a longer mean

response time [65].

Unfortunately, the trend in modern computing environments is toward greater

variance in service delivery, the topic of this chapter. The �rst section describes the

wide range of variation, whereas the second section characterizes the dynamic nature

of this instability.

2.1 Wide Range of Service Variability

In this section we enumerate four fundamental sources of variability in modern en-

vironments, focusing on their range of variation: network bandwidth, computational

performance, user congestion, and data magnitude. These stem from corresponding

trends in modern computing: mobile and wide-area networking, hardware platform

diversity, shared resources, and multimedia.
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2.1.1 Mobile Computing =) Variable Network Bandwidth

Advances in wireless networking technology have engendered a new paradigm of

computing, called mobile computing, in which users carrying portable devices have

access to a shared infrastructure independently of their physical location and

movement [33, 76]. This provides 
exible communication between people and

continuous access to networked services. The importance of good responsiveness

is paramount to mobile computing, where people carry the devices for the express

purpose of having \anywhere anytime" access to remotely available information and to

other people (through use as telephones, pagers, and electronic-mail devices). Indeed,

user studies conducted by Solomon of Hewlett Packard Research Laboratories con�rm

that users demand instantaneous response from their mobile devices [88].

The thorn here is that network quality on a mobile computer is less stable and

subject to a wider range of variation in performance than traditional networked

computers, which are statically connected to a single network. As a mobile computer

leaves the broadcast range of one wireless connection point, or cell, it switches to

another cell to maintain its network connections. The applications using these

connections may experience extreme changes in available bandwidth for several

reasons:

1. Wireless bandwidth is shared among a dynamically changeable user population.

For example, an application might experience a drop in available bandwidth of

30:1 in a classroom as students arrive.

2. Di�erent cells may use transceivers of di�ering quality, for example, the wireless

equipment installed in a meeting room may have greater capacity than that

in a hallway. Although such di�erences in equipment may be intended to

compensate for localized usage patterns, rarely can the hardware deployment

precisely match the di�erence in workload, especially since workload often
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varies by time of day. Thus, applications experience a shift in communication

performance when crossing cells of di�erent capabilities.

3. Di�erent cells may vary in size by orders of magnitude in order to establish

wireless coverage over a large area and simultaneously provide high performance

in key locations. For example, a single cell might cover a meeting room, a 
oor

of a building, a campus (cellular telephony networks), or several states (satellite

coverage). A useful metric for a wireless network cell is its bandwidth per area

(or volume) covered, because available bandwidth per user decreases as cell size

increases [101, 73]. This happens both because larger cells can serve more users

and because engineering constraints make high speeds over large distances more

expensive. To illustrate this, observe the very rough correlation between cost

and indoor/outdoor range in Figure 2.1 where we plot a number of wireless

products on the market today (that provide 1{3 Mbit/s bandwidth and operate

at 2.4 GHz; this restricts the sample to approximately equivalent technologies).

Cell size also a�ects the variance in user population, larger cells enjoying the
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Figure 2.1: Cost vs. Range of 1{3 Mbit/s, 2.4 GHz Wireless Products.
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statistical properties of larger numbers of users.

4. Applications may experience extreme network variation if the mobile device is

also capable of plugging into a wired network at times for a faster or cheaper

connection, such as while a user is at his or her desk. Table 2.1 shows the

raw bandwidths of a number of mobile (wireless) and non-mobile network

technologies. Observe the bandwidth gap between mobile and non-mobile

interfaces. There is a discrepancy of two orders of magnitude between high

end wired vs. high end mobile wireless technologies. As a vivid illustration of

this gap, an application would experience a four order of magnitude drop when

unplugging from a wired 155 Mbit/s ATM interface and switching to a wireless

19,200 bit/s cellular digital packet data (CDPD) modem [37]. (Note also that

establishing the cellular connection may involve a signi�cant setup delay.

1

)

Although wireless technology will certainly advance, there will continue to be a

bandwidth discrepancy compared with wired networking because of the inherent

di�erences in engineering complexity [33, 76, 77].

5. Unlike wired networks, wireless networks are subject to sporadic electro-

magnetic interference (e.g., microwave ovens radiate in the public 2.4 GHz

band) and signal blockage as users move about in the physical environment.

Applications may experience such intermittent disconnections as extremely

high variance in network latency when, say, a user drives through a tunnel,

momentarily obscuring the signal from the cell transceiver.

2

In summary, applications on mobile computers must be prepared for widely varying

1

CDPD call setup time is a few seconds, versus 20{30 seconds typical with analog cellular modems.

2

The mobile computing paradigm also admits the possibility of disconnected operation for extended

periods, say, in areas with no wireless coverage or for savings in connection cost and power

consumption in the mobile device. This thesis does not directly address disconnection.
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Table 2.1: Mobile (Wireless) and Non-Mobile Network Technologies Sorted by Raw

Bandwidth. (Much of this information is drawn from the \Wireless LAN/MAN

Modem Product Directory" at http://hydra.carleton.ca/info/wlan.html. Other

sources include [14, 37, 40, 55].)

Bandwidth Coverage, or Indoor/

(bits/second) Outdoor Range (m) Technology

2400 world Motorola Iridium satellite service

4800 city RAM Mobile Data

9600-14.4 K city modem over analog cellular telephone

9600-19.2 K building AT&T De�nity Wireless Business System

9600-28.8 K 400 m Metricom Ricochet

19.2 K city Cellular Digital Packet Data (CDPD)

19.2 K city ARDIS Air

115 K, 1-4 M 1 m IRDA (infrared data standard)

215-860 K 300 m / 10 km Aironet ARLAN 690-900

230 K 45 m / 9 km Telesystems ARLAN 450

312 K n/a Bell Labs SWAN Project

500 K - 1 M 250 m IBM Wireless LAN

1 M 6 m IBM Infrared Wireless LAN

1 M 6 m Photonics Infrared

1 M 45 m / 200 m Xircom Netwave

1.6 M 150 m / 300 m Proxim RangeLAN2

1-2 M 150 m / 5 km Aironet ARLAN 690-2400

2 M 240 m NCR WaveLAN

5.7 M 80 m / 2.9 km Windata FreePort/AirPort II (not mobile)

10 M (wired) Ethernet

100 M (wired) Fast Ethernet

100 M (wired) FDDI

155 M (wired) ATM
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performance if they involve communication.

Further, an application running on a mobile computer is likely to be dependent

on the performance of the network and remote servers. This is due to the nature

of mobile computers as communicators and information utilities, and also due to a

greater dependence on remote resources than is traditional. Because of portability and

battery constraints, mobile computers have much more moderate computing resources

than stationary computers [33, 76]. Consequently, it is natural to compensate for the

lack of on-board resources by employing remote resources, for example, by making

use of a remote �le system [44] or remote virtual memory paging [78]. This leads

to implicit dependence on communication and remote servers, even where none is

entailed by the application, making it harder for application programmers to ensure

good responsiveness.

2.1.2 Variable Computational Performance

Up to this point we have focussed on the variability caused by one aspect of mobile

computing: wireless networking. Mobile computing illustrates another source of

uncertainty for application programmers if their applications are to run on both

mobile and stationary computers, the di�erence being that mobile computers have

less resources available to them because of their portability and battery constraints.

Modern desktop systems often have about twice the computing power of equivalently

modern notebook computers, and this di�erence grows dramatically if we include

less-advanced portables [34]. Even if we leave out mobile computers, there is wide

variety in performance among the heterogeneous machines in use today. For example,

among the various types of desktop workstations in use today here in the Department

of Computer Science and Engineering, there is a performance ratio of 25:1 between the

high end and low end machines, using SPECint'92 as the performance metric. At the

low end, DECstation 3100's are still in use, with a rating of 7.1; at the high end, there

are SGI Indigo2's, which are rated at 176. And this performance discrepancy would
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more than double with the purchase of certain machines on the market, supposing

that the slowest departmental hosts are not instantly jettisoned.

Such broad variation challenges application writers in building software that runs

well in diverse environments. A simple approach is to specialize software for particular

platforms, but this only works to a limited degree, and is a burden to the consumers,

the distributors, and the producers of the software. The hordes swarming to Java

these days are attracted particularly because software written in Java should be able

to run on diverse platforms without modi�cation [84]. It does not follow that these

programs will provide good responsiveness on any but the fastest platforms. The

goal of this research is to make such software run with good responsiveness on diverse

platforms. This is a particularly important property for software that is dynamically

downloaded to all manner of hosts in heterogeneous distributed environments, such

as with Java Applets or Telescript agents [23, 104].

2.1.3 Variable User Congestion

Service delivery can also vary extensively with user congestion. The impact of

this variability is growing with the trend toward wide-area resource sharing and

increasingly interactive use of wide-area networking, e.g., the World Wide Web and

enterprise intranets. Wide-area resource sharing exposes services to a potentially

tremendous user load. If service requests were to arrive independently and under

a steady distribution, then it would be feasible to size server resources statically to

meet demand with reasonable response time. Evenly distributed requests are atypical,

however; workload usually varies substantially with the time of day and the day of

the week, and can increase immensely under certain events. For an illustration,

while it typically takes about a �fth of a second to download a 20 KB image from

a particular Web site, home.netscape.com, under high user congestion it sometimes

takes up to thirty times as long. And to demonstrate variation around a special event,

we repeatedly measured the time to download a 31 KB �le from the IRS Web site
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www.irs.ustreas.gov. On average, it took 6.9 seconds on April 15th, 1996, when

taxes were due, but only 0.86 seconds the following day. (The server was so heavily

loaded on April 15th that it was rare even to get a successful TCP connection.)

Thus, workload variation and unpredictability makes it uneconomical to endow a

service with enough resources so that its response time never deteriorates under load.

2.1.4 Variable Data Magnitude

The �nal source of service time variability we discuss here is the broad variation

in the data magnitude of objects, which proportionally impacts their transfer and

processing times. The pervasive multimedia trend is causing some document sizes

to grow tremendously. For example, the sporadic inclusion of images in hypertext

documents is causing wide di�erences in the total data size of Web pages, and hence

their download times. To exemplify this, we measured for di�erent Web pages the

number of bytes of data that �ll the browser window when rendered: 850 bytes for a

text-only page; 18 KB for a personal home page bearing a small portrait; 67 KB for

GNN's corporate page containing a large, clickable image

3

; and 470 KB for a Java

Applet showing a six frame animation of the Department's steam powered Turing

machine mural

4

. Note the broad range and magnitude of data sizes here; expressed

as ratios they are 1:22:80:570, respectively. The discrepancy can easily exceed three

orders of magnitude if we include motion video clips; to be quantitative, at the MPEG

Movie Archive

5

the average size of a movie clip is 880 KB (the standard deviation

being 95% of this �gure| again representing great variation).

3

http://www.gnn.com

4

http://www.cs.washington.edu/education/courses/590s/w96

5

This movie database resides at http://w3.eeb.ele.tue.nl/mpeg, though it is extensively

mirrored throughout the world to provide users with better responsiveness.
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2.1.5 Compounding

A �nal note about the broad range of service delivery time: the extensive variability

described in the above subsections can compound, potentially multiplying the cited

ratios of variation. Consider the enormous potential for variation in service time when

downloading objects of widely diverse sizes across networks of various bandwidths

from servers of di�erent hardware capabilities and under varying amounts of user

congestion. The bottom line is that the degree of variation is so great that system

software cannot hope to hide it from applications. Applications themselves must

adapt [66, 77].

2.2 Volatility of Service Variability

While the previous section detailed the variability in modern environments, i.e., the

wide potential range in service delivery, this section discusses the orthogonal issue of

volatility: the short term 
uctuation in available resources.

The dynamic nature of wireless connectivity certainly introduces a level of

dynamic variation not present in statically networked hosts. However, as mobile

computing is not yet a well established paradigm, we do not attempt to characterize

its volatility here. Instead, we quantify via experiment the volatility of service delivery

from the World Wide Web, that is, from remote HTTP servers on the Internet [12].

An extensive range of services are being o�ered over the Web, including services built

upon other Web services, such as shopping agents [24] and the MetaCrawler [28, 81]|

they all depend on the lively performance of the Web. A great appeal of the Web

is that it provides a ubiquitous, cross-platform user interface with a potentially

enormous user population. And with the recent addition of dynamically downloadable

Java Applet programs, this interface becomes programmable.
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2.2.1 An Experiment to Characterize Volatility

While other studies have measured the variability of service delivery of the Web (i.e.,

with coarse grain measurements in time) [80, 96], our goal in this experiment is to

determine its short term volatility. To this end, we measure the service delivery

of Web requests, or probes, repeated in rapid succession and analyze their variation,

yielding one batch. Figure 2.2 de�nes the various timing measurements taken for each

successive probe. The total elapsed time (Ta) of a request and response is partitioned

into (T1) establishing the TCP connection, (T2) sending the request and receiving

the �rst byte, and (T3) reading the remainder of the response. We check the volume

of data received to identify and exclude failed probes.

receive remaining bytes

T1

T2

T3

Ta

establish TCP connection to server

send request
receive first byte

Figure 2.2: The timing measurements taken for each request.

Although our method makes multiple requests in rapid succession, it does not

impose a large or uncommon load on the Web servers. Popular Web browsers request

multiple inline images in parallel, hence our sequential requests are unlikely to exceed

the service demands of a genuine user at any given moment. This is important both

for public etiquette and so that probe measurements are not overly a�ected by the

impact of our prior probes.

Both to collect enough batches for signi�cance and to observe the variation by time

of day and day of the week, we repeated this test every half hour for a period of one

week, issuing 20 probes per batch. We selected nine heavily loaded Web servers plus

our local departmental server to measure in this manner: totaling three in Europe

and seven in North America. Table 2.2 lists for each of the ten server datasets the
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type of request made and the number of bytes returned. Three of the datasets use

keyword search queries, involving greater load at the server compared with simple �le

delivery. The di�erent servers were sampled out of phase with one another to avoid

in
uencing each other's measurements at the point of origin, a DEC Alpha 3000/400

running OSF/1.

Table 2.2: Server, Request and Data Volume Returned for each Dataset.

Dataset Server Request Bytes returned

� www.sti.� image �le 8205

se www.kajen.malmo.se image �le 18333

uk www.cl.cam.ac.uk HTML �le 2970

local www.cs.washington.edu data �le 16000

ncsa www.ncsa.uiuc.edu image �le 22719

netscape home.netscape.com image �le 23301

archive wuarchive.wustl.edu text �le 31520

sec www.town.hall.org keyword search 19280

webcrawler www.webcrawler.com keyword search 54586

yahoo search.yahoo.com keyword search 35645

We turn now to the statistics we apply here. Both the mean and the median

are useful measures of \typical" response time. Where the distribution of response

time has a long tail, the median better describes what is \typical." On the other

hand, it inadequately represents the impact of occasional lags in service time on

user frustration. Such occasional lagging is detectable when the mean is signi�cantly

higher than the median. However, there are better ways to describe variation. The

most commonly used measure is the standard deviation about the mean. Instead

of using this measure, we use the coe�cient of variation (CV), because it lends

itself to comparison across multiple batches and datasets of di�erent means. The

CV is de�ned as the standard deviation divided by the mean, and is expressed as a

percentage; e.g., a 95% CV implies the standard deviation is nearly as large as the

mean, indicating great variability. Another statistic that is useful for characterizing
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variability is the proportion of service times that exceed the median by some factor,

e.g., the proportion of service times that are greater than twice the median.

2.2.2 Presentation of Results

Figures 2.3a{d show the raw timing measurements for four of the datasets. The

vertical time scales of these graphs di�er by more than an order of magnitude. Notice

the service slowdown during the daytime, especially on weekdays.

One can detect a multi-modal distribution of T1, the connection establishment

time, by the multiple horizontal lines in Figure 2.3a, b, and d. The double row we

see in the webcrawler dataset is due to caching e�ects. In datasets webcrawler

and ncsa, the �rst connection usually took about twice as long to establish as the

following nineteen; 40% longer in datasets netscape and yahoo; and less than 14%

longer in the other datasets, respectively.

The multiple bands of T1 values seen in Figures 2.3b and d are the e�ect of

timeouts on failed domain name server lookups.

6

In fact, nearly every non-local

dataset exhibits these timeouts at about 6 seconds and 30 seconds. Figure 2.4 shows

a histogram of all T1 measurements of all datasets combined. Observe the two humps.

The uk dataset alone exhibits an additional hump at 12 seconds.

For each batch, we compute the CV of its twenty probes. Figure 2.5 shows

how the CV of the Ta measurements for dataset yahoo varies over the week.

Corresponding with the service lag experienced during weekdays and daytimes, as

shown in Figure 2.3, we see an increase in variation during those same times; recall

that by the de�nition of the CV, this means the standard deviation is growing more

than is the mean at these times. In the following analysis, keep in mind that if we were

to include only those batches taken when most people use the Web, the computed

6

The T1 measurement of each probe includes the time to resolve the host address with a call to

gethostbyname(). Somewhat surprisingly, timeout delays were not signi�cantly more likely for

the �rst probe of each batch, but were equally distributed among the twenty probes.
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Figure 2.3a: Raw Timing Measurements of the Web; Dataset webcrawler.
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Figure 2.3b: Dataset yahoo.



20

0.0

0.1

0.2

0.3

0.4

0.5

Wed Thu Fri Sat Sun Mon Tue Wed

se
co

nd
s

Ta
T3
T2
T1

Figure 2.3c: Dataset netscape.
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Figure 2.3d: Dataset se.
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Figure 2.4: Histogram of Connection Establishment Times (T1) of All Datasets.
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Figure 2.5: Coe�cient of Variation of Ta for Batches from Dataset yahoo.

degree of variation would be greater because of the diurnal and weekday increase in

variation.

To summarize over time, we average the CV values of the batches. Figure 2.6

presents this summary for each timing measurement type and dataset. In addition,

because the CV normalizes for di�erences in the mean, we can summarize across the

batches of all datasets combined. This is shown in the column labeled altogether.
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Figure 2.6: Coe�cient of Variation of Batches Averaged Across Time.

Overall, the average CV of T2, T3 and Ta is over 50%, while the average CV of T1 is

nearly 100%. In almost every dataset, the average CV of T1 signi�cantly exceeds the

other measures. Although it may vary to the greatest degree, it is not necessarily the

largest component of service time variation (measured in seconds). For evaluating the

relative impact of variation in the di�erent types of measurements, refer to Figure 2.7,

which shows the standard deviation of batches averaged across time for each type of

measurement and dataset. (The vertical axis is log scale in order to present them

together in one graph.) With this view, we see that, for most datasets, the major
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Figure 2.7: Standard Deviation of Batches Averaged Across Time.

factors of variation are the initial response (T2) and the reply bandwidth (T3). Notice

the latter shows very little variation in the local case. Only for datasets netscape

and sec does the variation in connection establishment time (T1) dwarf the other

factors. The datasets for which the overall standard deviation of Ta exceeds one

second correspond with the servers that sometimes feel sluggish when browsing the

Web.

Another way to characterize variation is by the proportion of requests that

signi�cantly exceed the typical response time. For this we divide the timing
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measurement Ta of each probe by the median Ta value of its batch, and produce a

cumulative distribution function for each dataset, shown in Figure 2.8. To determine
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Figure 2.8: CDF of Ta Divided by Median Ta of its Batch.

the proportion of probes that exceed the typical response by, say, 75% or more, follow

the 1.75 abscissa upwards to the curve for each dataset; the region above the curve

represents the proportion. Doing so, we see, for example, that for datasets yahoo

and fi approximately 11% of the probes exceeded the typical response by 75%, and

that 20% to 35% of the probes surpassed their medians by 25% or more for six of the

datasets. Alternately, one can slice the curves horizontally. For example, following

the 95% level across, we see that 5% of the probes exceeded the typical response by

50% or more for all but three of the datasets, and for half the datasets, 5% of the

probes took more than twice the typical response time.
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Section Summary

In this section, we have identi�ed volatility| the short term variation in service

time| as an important aspect of resource variability (whereas the previous section

discussed the range of variation independent of time scale). We have presented the

results of a study to measure the volatility experienced in one of today's resource-

variable environments: the World Wide Web. We characterized volatility by several

di�erent measures, including the average coe�cient of variation of the batches across

time, and the proportion that exceed by some factor the then-current typical response

time. We observed that for all but the local dataset the coe�cient of variation

averaged over batches identi�es the connection set-up time T1 as the most widely


uctuating, however, in absolute terms, the standard deviation of the data transfer

time T3 was typically the largest component of the total response time variation.

Finally, we found that for Ta in six of the ten datasets over 20% of the individual

probes exceeded their respective batch medians by 25% or more.



Chapter 3

EXISTING APPROACHES TO OBTAINING

RESPONSIVENESS

Given that an application should operate with good user responsiveness even in

environments with dynamically variable service delivery, what can be done? In this

chapter we brie
y discuss existing approaches to address this question. We �rst

describe how traditional practice and its obvious follow-on fail in dynamic, resource-

variable environments. In the next section we list what general techniques can be

used to improve responsiveness when resources lag. In the last part of this chapter

we look at existing facilities for implementing these techniques.

qu
al

ity

response time

Figure 3.1: Static Sizing: Qualitative Graph of Quality vs. Response Time.

In choosing what response to generate for a given manipulation of the user

interface, there is often a tradeo� between response time and quality, as illustrated

abstractly by the curve in Figure 3.1. The vertical axis represents response quality,

or level of functionality provided to the user, e.g., image resolution. The horizontal

axis represents elapsed time from user input to completed response. The curve

represents the choices available to the programmer in responding to a given user
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input; it takes more time to generate a higher quality response. Ideally, programmers

have a continuous range of choice, but in practice the choice is often discrete, e.g.,

in responding to a scrollbar being dragged by the mouse, one might re-display the

document in each new scrolled position, or show the scrolled document only when

the mouse button is released. The vertical dotted line suggests a perceptual deadline

to be met; for the scrolling example, one might be willing to wait up to a quarter

second, but not much more.

Static Sizing

Establishing responsive application behavior is straightforward in traditional envir-

onments where resources are approximately known in advance and stable during

execution. Programmers simply select the best quality response that provides satis-

factory response time based on the expected performance of the platform on which

the application will run. This static sizing method works well traditionally, but

is rendered ine�ective at ensuring good user responsiveness for environments where

runtime resources can be widely variable or are not approximately known in ad-

vance [34]. Statically sized applications su�er inadequate responsiveness during peri-

ods of low resource availability, and ignore the potential for higher quality responses

during periods of resource abundance. Poor responsiveness being the greater problem

of the two, programmers sometimes base their sizing on a lowest common denominator

platform, sacri�cing functionality and higher quality in favor of responsiveness. Even

this technique does not ensure responsive behavior if the environment can exhibit

delays beyond what was anticipated.

Dynamic Sizing

The obvious follow-on is dynamic sizing, where the programmer writes the code

necessary for a range of quality levels and also writes code to intelligently select the
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appropriate quality level based on resource availability at the time of the particular

operation [34, 66]. One could write a di�erent procedure for each quality level [49],

or write a single procedure that scales the data size or error tolerance to adjust

for di�erent quality levels [35]. The latter is accommodated, for example, by the

Kodak photograph format for compact disks, which stores each picture at �ve di�erent

quality levels ranging from 128�192 pixels to 2048�3072 pixels [18].

In theory, this technique ensures an appropriate balance between response time

and response quality. In practice, however, it may not meet its goal, and involves

signi�cant programming complexity. Notice that it requires writing a new variety

of code that forecasts the highest quality level that will meet a �xed response time.

In the real world, it can be di�cult to obtain an accurate prediction; there may be

uncertainty both in the current resources and in the workload that will be generated

at a given quality level. Also, for some resources, such as an unfamiliar Web server,

predicting service time may require test and measurement, involving additional load

on those resources and delay in getting to the real work to be done.

As the level of volatility in service delivery increases, advance measurements

cease to re
ect the actual conditions experienced when an operation �nally executes.

Response time su�ers if resources drop after the measurement and before the

operation completes. This calls for additional code that monitors resources during

execution and cancels operations that will take too long and restarts their execution

at a lower quality level. This carries additional overhead, and introduces the potential

for thrashing.

For highly dynamic, resource-variable environments, we do not envision dynamic

sizing to be a suitable use of programmer e�ort given the existence of other techniques,

such as those described in the following section. Nevertheless, dynamic sizing has its

place in writing code for environments where resources are stable but cannot be

estimated at programming time.
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3.1 Approaches to Obtaining Responsiveness Despite Volatility

In this section we highlight existing techniques that can improve user responsiveness

when request completion time is not approximately known in advance and potentially

much slower than desirable. Here we focus on methods that help cope with variable

service time from system resources, as opposed to methods that try to control service

time, such as dynamic sizing [34, 35, 66] and reservations [8, 5, 30, 97].

For any speci�c application, some of the individual techniques described below

may not be suitable, but overall they cover a wide variety of domains and can have

a large payo�. Hence, application support for including these techniques in one's

program would be useful.

3.1.1 Feedback Before Completion| Incremental Quality

Users want responses immediately. At the very least, they demand some minimal

feedback to their input [88], else they may end up entering extraneous actions, such

as repeatedly clicking a button, until they see a response, sometimes with undesirable

consequences. If the complete response to a user action is generated instantly, great.

If not, a temporary response must be provided. Progress messages embody this

technique in a limited way.

A more sophisticated approach is to produce quickly a low quality response at �rst,

and incrementally improve its quality over time, as resources allow [19]. For example,

an application that dynamically downloads city maps could display the major streets

�rst, and later �ll in the other streets and improve street curve resolution. By riding

along the quality vs. response time curve in this fashion, this powerful technique

delivers both quick responsiveness and the highest quality users care to wait for

(although at some delay over what would be needed to provide only the high quality

response). Users simply proceed as soon as the response quality su�ces for their

purposes. The interface may also allow the user to in
uence dynamically which
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aspects of the response are improved in quality early on, such as in computational

steering for scienti�c visualization [27].

This brings up a comparative shortcoming of the dynamic sizing technique: if the

user wants a higher quality response than the one generated, some extra functionality

is needed, whereas with incremental quality, the user gets higher quality just by

waiting. Also, unlike dynamic sizing, under this technique the programmer need not

write any code to predict an appropriate quality level to meet a �xed response time.

The incremental quality technique works well in domains for which the e�ort

at each quality level contributes directly toward higher quality levels. Where this

\inclusion" property does not hold, the overhead of duplicated processing at each

quality level weighs against the improvement in response time. Fortunately, there

has been a great deal of research in cultivating multi-resolution representations with

this inclusion property in a broad variety of domains [19]: images [93], object graphics

[32], three-dimensional models [26, 35], movies [31], sound, etc. The general notion

of incremental processing and display can be applied to text documents as well, e.g.,

Netscape formats and displays HTML documents incrementally as they arrive.

3.1.2 Asynchronous Operation

Traditionally, sequential programming languages provide a \request-response loop"

model

1

for human interaction with computers, where each response completes before

the next request is processed. This model becomes unsatisfactory in variable-resource

environments, however, when delays in one response slow or suspend further human

interaction.

It is useful to allow the processing of user requests to proceed asynchronously from

one another, especially so that new user input can be processed even when a previous

1

It is known as the \read-eval-print loop" in the LISP community, and as the \event loop" for

graphical user interfaces.
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request is delayed, say, by a temporary network disconnection. Asynchronous oper-

ation also allows users to tap concurrent processing capabilities of the environment.

High latency operations to remote resources can be overlapped and di�erent resources

can be used in parallel.

Netscape employs this technique to a degree: for example, when a user follows

a hyperlink that takes a long time, he or she can open a new window that operates

independently of the �rst in order to browse another part of the Web.

Asynchrony is bene�cial not just at the granularity of whole user requests, but

also in executing the sub-tasks of an individual request. Netscape fetches multiple

inlined images of a Web page at the same time, for example; the display of each image

is thereby not held up by the others.

Another technique for asynchronously decoupling the response time to the user

from the response time of the system is to pre-fetch or pre-compute speculatively

information that will likely be needed. For example, work by Tait et al. [90] attempts

to predict future �le access patterns so that �les can be downloaded in advance of

their potential demand.

3.1.3 Resource Allocation

With asynchronous operation, we have multiple tasks executing concurrently, which

allows the possibility of intelligent resource allocation among them. If some tasks

are more important to user responsiveness than others, they should be given priority.

For example, demand-fetching of a document might be given priority use of a wireless

network over spooling to the printer.

Dynamic interaction with a user a�ords an application special opportunities

for directing resources to enhance perceived responsiveness. By focusing resources

on those tasks that currently occupy the user's attention, we can improve the

responsiveness of tasks the user cares about, trading o� the responsiveness of

peripheral tasks. Resource allocation can be especially bene�cial where results are
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produced in many di�erent panels of a graphical user interface, being that users

focus on only a fraction of them at a time. Cues for determining the user's attention

may include mouse location, keyboard focus, window manipulation and visibility,

and application-dependent knowledge, such as user commands that indicate focus on

particular window panes.

3.1.4 Cancellation

In an environment where asynchronous operations may take a long time to �nish,

newer user actions can cause outstanding tasks to become obsolete. By detecting these

situations and terminating obsolete tasks early, we can conserve system resources,

improving responsiveness for the tasks the user cares about. For example, suppose

an intelligent agent [24] is searching the Web for particular information and displays a

summary incrementally as results arrive. We can reduce contention for computation

and network service if we call o� the search as soon as, say, the user has seen enough

results and decides to search for something else. This optimization opportunity

presents itself because of the combination of (1) potentially slow responses to user

actions, (2) the ability to respond to new input asynchronously from outstanding

operations, and sometimes, (3) interaction with users, who change their minds about

what to do. The longer the delays of the resource-variable environment, the more

likely it is that outstanding operations may be superseded as users move ahead or

change their minds.

Cancellation could almost be viewed as a special case of resource allocation where

the canceled task has in�nitely low priority to suspend it from execution, preventing

it from consuming more resources. However, a suspended task may still be holding

resources, such as memory and network bu�er space. Thus, resource allocation alone

does not obviate the need for cancellation.
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3.2 Existing Support

Having cataloged several important techniques for providing good responsiveness,

we turn now to the rudimentary level of support a�orded programmers by existing

facilities.

There is no particular support for applying the incremental quality technique to

application features, besides the existence of a few standards for multi-resolution

formats [16].

Asynchronous operation is supported by three di�erent facilities: event callbacks

(as in user interface widgets [108, 109]), polling (as in the Smalltalk user inter-

face [107]), and threads (as in Microsoft Windows NT [20] and multi-threaded X

Windows implementations [79]). Event callbacks, as provided by most windowing

systems that manage the event loop, let the programmer designate a procedure to

be run when a particular event occurs. For example, instead of consuming an input

�le with a simple loop (which could virtually hang application responsiveness if �le

access were slow), the programmer speci�es the body of the loop as a procedure to

execute whenever data becomes available for the �le; after opening the �le and spe-

cifying the callback, control is returned to the windowing system. Even if the �le

is delivered slowly, the application continues to be responsive to new user actions.

Programmers must be vigilant to code every potentially slow I/O interaction with a

callback. This incurs a cost in programming e�ort, since programming with callbacks

is more cumbersome than the straightforward sequential programming style [63].

Callbacks help cover I/O delays and untangle interleaved user dialog actions, but

they are not a panacea. Incoming events are noticed in the main event loop, but

during the execution of a callback routine the application is unresponsive to new

input. Hence, for asynchronous operation of the interface during CPU intensive

tasks, callbacks alone are not adequate.

In such a case, the traditional implementation technique is to sprinkle the event
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processing routine with polling calls

2

that temporarily dive back to the event loop

to process any accumulated events. The principle problems with this approach are

that it clutters the code, and the polling calls need to be placed appropriately. If

polling is too infrequent, users experience unresponsive behavior; if too frequent,

polling overhead slows the application. For a widely variable environment, one cannot

determine statically where in the code to poll to manage this tradeo� well.

This brings us to threads, which overcome the problems mentioned above for

event callbacks and polling, and allow cleaner code structuring than either [59, 87].

Threads provide an appropriate vehicle for overcoming both computation and I/O

delays

3

, and are the recommended facility for implementing asynchronous operation

on modern, thread-capable operating systems [47].

Threads are a powerful, but primitive, facility. The interface typically consists

of calls for forking threads, joining with threads, changing thread priorities and

perhaps their scheduling policies, and possibly, terminating threads cleanly via

cancel signals/exceptions. The facilities for adjusting thread priority and canceling

threads provide a basis for implementing resource allocation and task cancellation,

respectively.

Multi-threaded programming, despite its advantages, has been di�cult historically

[17, 68]. The extra burden of managing threads and data synchronization adds

substantially to the programming complexity needed for the basic application.

2

One polls with PeekMessage in Microsoft Windows, update in Tcl/Tk, XmUpdateDisplay in

Motif, and XtAppPending in raw X Windows, for example.

3

Kernel threads, as opposed to user-level threads, allow the threads of an application to continue

to run even when one of them blocks on a system call. User-level threads with scheduler

activations [6] e�ectively provide the non-blocking bene�ts of kernel threads; for our purposes, we

do not distinguish between the two.
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3.3 Summary of the Motivation

In this chapter we outlined important techniques for attaining responsive behavior

when service from the environment may be highly variable or not accurately

estimable. Although they are known techniques, they are seldom encountered in

today's applications, because (1) their programming cost is large, and (2) computing

environments have typically been stable enough for the static sizing method to deliver

applications with satisfactory responsiveness. But the trend toward greater variability

in the environment is rapidly increasing the pressure on programmers to deploy

these \responsiveness enhancing" features. The shift from Mosaic to Netscape is

not arbitrary: Web browsers are one of the �rst highly interactive applications to

capitalize on the Internet, a much less stable environment than traditional stand-

alone or local-area networked computing.

This highlights the former issue above, programming cost, which is incurred for

each feature of each application to which these techniques are applied. The support

provided by existing facilities is, in a nutshell, negligible compared to what is o�ered

by the framework introduced in the following chapter. The bene�ts of this research

multiply, as the framework is reusable across a broad range of application domains.



Chapter 4

THE PETRA-FLOW FRAMEWORK

In this chapter we introduce a novel framework, which we call Petra-Flow, to

support programmers in constructing and executing applications that have good

responsiveness in modern computing environments exhibiting highly variable service.

We begin by presenting the key ideas independently of any particular embodiment,

and in the second section give an overview of the fundamental programming

components. Section 4.3 explains the practical use of Petra-Flow in an extensive

example, applying it to a hypothetical slide browser program. The subsequent section

furnishes particulars about the services Petra-Flow provides. Finally, the last section

describes in detail one of the fundamental components of Petra-Flow, a new kind of

software lock devised to improve responsiveness for important tasks.

A prototype implementation of the Petra-Flow framework is presented in the next

chapter.

4.1 Key Ideas

Imagine that somehow we are able to split the execution of an interactive application

into two conceptual components: one determines what needs to be done (the user

interface, primarily) and hands work requests over to the second component for

processing. With this asynchronous decoupling of the user interface responses from

work request completions, the user interface can better keep up with the user,

even if the execution component falls behind in delivering its �nal (full-quality)

results. (We assume that during such a resource shortage the response time of
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keeping the user interface current without full application-speci�c content is less

than that of displaying it with full content. This holds in many domains where

the service bottleneck is remote or the processing of user objects is large relative to

the manipulation of graphical user interface widgets.)

The backlog of speci�ed-but-uncompleted work presents an opportunity for

runtime optimization to make the execution component more responsive to the user,

e.g., determining whether portions of the outstanding work will go unused, and

eliminating them before they are executed.

As a means for optimization, we use runtime analysis of the data dependencies

among the pieces of outstanding work, or tasks. A task is essentially a procedure call

that executes asynchronously; the declaration of a task is like that of a procedure,

but it also speci�es input and output relationships to parameters and global variables

that it reads or writes. At runtime we maintain a global dependence graph of the

outstanding tasks, signi�cant program variables and their values. The dependency

arcs re
ect the input-output relationships. While there are many details to be

explained later, the key notion is that by maintaining this graph, we have a global view

of the dependencies among outstanding tasks. Shortly we will give a detailed example

and explanation of the global dependence graph, but �rst we motivate its construction

by showing that it gives us a great deal of leverage for runtime optimizations:

1. We can expose concurrency by allowing those tasks that do not violate any

dependencies in the graph to run in parallel. When a task completes, we

can start each of its dependent tasks, unless they have other unsatis�ed

dependencies.

2. We can use the dependence graph to apply runtime analogs of compiler

optimizations:

(a) An analog of variable splitting or variable renaming [70, 45] eliminates
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anti-dependencies (write-after-read) and output dependencies (write-after-

write) in the graph, enabling out-of-order execution and thereby greater

concurrency.

(b) An analog of dead code elimination [4] conserves resource consumption

by the early termination of tasks whose results no longer a�ect the �nal

computation. A branch of the dependence graph is obsolete, and can

be pruned, if no program output or variable is dependent on it, such as

happens when a user action overrides prior actions. Whereas traditional

dead code elimination occurs at compile time and eliminates lines of

code, this optimization occurs at runtime and eliminates task invocations.

Pruning tasks that are currently executing is delicate but feasible.

3. With a simple indication of which program variables are most important to

obtain results for quickly (e.g., where user attention is focused), we can employ

the dependence graph to determine which tasks they depend on and grant

those tasks priority for (ideally, all) resources. This serves as a basis for user-

centric global resource allocation. The development of a data-oriented model

for specifying time sensitivity (priority) is a natural transition from a focus on

processing to a focus on the products of that processing [15]. Were priorities

assigned to tasks instead of variables, as is common with most threads packages,

the dependence graph could be used in the same way to propagate that priority.

4. The dependence graph also supplies the underpinnings for the support of

incremental quality, a powerful technique for improving responsiveness, as

discussed in the previous chapter. Whereas in traditional programming a

function produces a single result and returns, we permit tasks to submit a

low quality result quickly and continue to work on higher quality results.

Meanwhile, the low quality result propagates down along the arcs of the
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dependence graph, executing the dependent tasks it feeds. For example, imagine

a low resolution version of an image quickly traversing down the graph of

outstanding tasks, while a full resolution version continues to be downloaded.

In this way, the user gets a low quality result processed through the backlog

of work swiftly and a high quality result eventually. Referring back to our

conceptual split of the application, this helps the execution component keep up

with the user, although at a lower quality of result.

5. Finally, by deriving a global view of the tasks and their dependencies at runtime,

we are in a good position to provide programmers with debugging information.

The Petra-Flow framework enables the user interface to operate asynchronously

from work completion. With traditional programs that process requests synchron-

ously, users are held up by service delays. The common technique of having user input

bu�ered by the system, known as type-ahead or mouse-ahead, can help to a limited

degree, but because it involves no interpretation of the bu�ered input (other than

perhaps detecting signals to 
ush the bu�er or interrupt the process), it is inferior

to asynchronous operation of the user interface, especially with incremental quality

results, resource allocation and task pruning. For example, if a user enters several

actions, some of which override earlier actions in the series, a traditional interface

with bu�ered input would dutifully execute each in turn, whereas an asynchronous

interface would automatically elide the obsolete ones. With bu�ered input, the user

may choose to 
ush the bu�er in order to purge the obsolete commands, but then

the bu�ered commands that are not obsolete are deleted as well, and need to be

re-entered. Further, users may have a hard time deciding whether to 
ush the bu�er

in these circumstances, because there is a race condition between the user 
ushing

the bu�er and the program consuming the obsolete commands.

Let us emphasize that these opportunities for optimization arise from the

potential for users to outpace resources. By exposing concurrency, prioritizing
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tasks, eliminating obsolete branches, and presenting incremental quality results, users

should be able to work faster when resources lag. This may allow users to outpace

resources even more, in turn, yielding further opportunity for optimization.

Notes About the Dependence Graph

Note that the dependence graph is shaped at runtime by the course of user events,

as opposed to those programming models where the programmer develops a static

dependence graph when writing an application, such as AVS [95], IBM Visualization

Data Explorer [1], IRIX Explorer [86], and Khoros [74]. The size of the graph is

determined by how much the user gets ahead of resources. Hence, it depends on

the speed of the user, the workload he or she generates, and the system resources

available to accomplish it. The graph is naturally acyclic, because it represents the

unfolding of computation over time as driven by the user; a work request in the past

will never depend on an as-yet-uninstantiated work request.

The granularity of the graph is constrained by runtime overhead. One can

conceive of statement-level granularity for a high-level interpreted script language,

such as Mathematica or shell scripts, but larger granularity is needed for performant

languages, such as C. While it might someday be possible for a compiler to select an

appropriate granularity for such languages without programmer intervention, in this

thesis we expect the programmer to specify the granularity manually.

4.2 Central Components

Here we describe the central components of the Petra-Flow framework, which makes

practical the ideas set forth above. The components are: asynchronous tasks,

versioned variables, and priority-mediated resources.

� An asynchronous task describes an application-level unit of work that may be

executed asynchronously. It speci�es its dependencies in terms of parameters
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and any global variables it reads or writes. When the task is invoked, these

dependency arcs are instantiated in the global dependence graph. For the

support of incremental quality, a task may over time submit multiple results

of improving quality for its outputs, unlike a traditional procedure call, which

returns only a single result.

� A versioned variable is a potential attachment point for dependencies in the

global dependence graph. This abstraction provides two levels of versioning:

values and quality versions. The former supports variable splitting for di�erent

assigned values. The latter supports the incremental quality versions generated

for a single assigned value. Every program variable could potentially be

versioned, but for overhead. In Petra-Flow, the programmer manually speci�es

this attribute for appropriate program variables so that it is only applied where

useful.

� Asynchronous operation is not permitted with many common facilities, for

example, software libraries that were not written to be thread-safe. For systems

and resources that must be used under mutual exclusion, one traditionally uses

a simple lock. In practice it turns out this defeats the resource allocation

mechanism, and so we provide the abstraction of priority-mediated resources:

these allow re-use of existing code bases that are not thread-safe without

sacri�cing the global perspective gained on resource allocation. This component

is discussed in detail in Section 4.5.

Together, the use of these components describe the data-
ow and synchronization

structure of a program, along with its exclusive resource needs.
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4.3 Hypothetical Example: Slide Browser Application

We illustrate the Petra-Flow framework and its bene�ts by applying it to a

hypothetical application. Consider a slide browser program that shows one slide

of a sequence at a time, and has three operations at the user interface: (1) advance to

the next slide, (2) print the current slide, and (3) mutate the current slide somehow,

say, by histogram equalization of the image colors. Figure 4.1 shows pseudo-code for

this application. In the initialization before the event loop, the �rst slide is loaded

from URL[1] (suggesting remote storage of the slides on the Web) into the variable

C, which stands for the current slide. From then on, the event loop processes user

actions. When the user presses the mouse button, it loads C with the next slide.

When the user types \R", the current slide is recolored and the result stored back

into C. When the user types \P", the current slide is sent to the printer.

C = Load(URL[i=1])

event loop

case next: C = Load(URL[i++])

case recolor: C = Recolor(C)

case print: Print(C)

end;

Figure 4.1: Pseudo-Code for Hypothetical Slide Browser Application.

With traditional programming methods, this application stops responding to the

user if any of the actions takes a long time to execute, e.g., if the recolor function is

invoked on a much slower machine than it was designed for, or if slides are delivered

over a low bandwidth wireless network. This limitation can be overcome with

asynchronous operation and incremental quality results. Using Petra-Flow, we mark

each of the three procedures as asynchronous tasks, and indicate at the declaration
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of C that it is to be a versioned variable.

1

The main application thread merely

describes what needs to be done by asynchronous task invocations, rather than being

responsible for actually accomplishing each task. (Asynchronous tasks may also be

employed within individual tasks.)

We now examine a hypothetical execution of this hypothetical application built

with Petra-Flow. Let us presume that the environment is currently resource-poor.

The initialization step launches a task to load the �rst slide and store its value to

the variable C. Suppose the user prints this slide and then wants to move on quickly

to see the next slide, even though the load and print tasks take a while to complete.

Figure 4.2 illustrates the dependence graph through each of these transitions. The

initialization launches a load task (represented as an oval) that works at producing

a value (represented as a rectangle) for the versioned variable C (represented as a

diamond). (For now, think of a value as an allocated block of memory. Later we

reveal another level of indirection for managing the actual memory allocations of

incremental quality results.) When the user requests that the slide be printed, a

print task is attached to the graph, reading its input from the value of C.

C

Load("slide1")

Print

Load("slide2")Load("slide1")

Print

C

Load("slide1")

C C

Print Next

Figure 4.2: Dependence Graph Transitions Showing Variable Splitting.

1

The particular notation for this is immaterial at this point. The syntax for the prototype

implementation is given in Chapter 5.
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When the user decides to advance to the next slide, the mouse event leads to the

execution of the statement C = Load(URL[i++]), which con
icts with the value of C

needed by the print task. Ordinarily this new task would need to wait until the print

task completes and, say, releases a read lock on C, but with versioned variables as

supported by Petra-Flow, a separate region of memory can be used for the new value

of C, allowing the new load task to write to it without interfering with the existing

load-print chain of tasks. The rightmost dependence graph shows the situation after

executing the statement above. Note that the variable C is associated with a new

memory allocation to which the new load task writes. Just as in traditional sequential

programming, C refers hereafter to the new value, e.g., a newly launched print task

would print this slide. As illustrated by this example, asynchrony and variable

splitting in combination with incremental quality results allow the user interface keep

up with the user despite slow completion of prior actions.

Resource Allocation

Now, suppose we want to augment this application to hide latency by pre-fetching

the next slide while the viewer appreciates the current slide. The pre-fetch could

start either after or concurrent with loading the current slide. The advantage of

concurrent pre-fetching is that startup delays can be overlapped, and parallelism in

the environment can be exploited, e.g., if slides reside on di�erent servers. But we

do not want the pre-fetch to interfere with the download of the current slide by

contending for resources, so we need to communicate the relative priorities of these

requests to the execution environment. If these (incremental) download requests are

long lived, we will need to adjust their priorities dynamically as the user advances to

this pre-fetched slide and beyond.

Petra-Flow supports this dynamic priority management atop raw operating

system facilities for setting priority. We extend the above example with pre-fetching

to illustrate this. Figure 4.3 shows the enhanced pseudo-code. Pre-fetching disturbs
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C = Load(URL[i=1])

P = Load(URL[i=2])

C's priority = high

event loop

case next: C = P

P = Load(URL[i++])

case recolor: C = Recolor(C)

case print: Print(C)

end;

Figure 4.3: Pseudo-Code for Enhanced Slide Browser. (Modi�cations for pre-fetching

are italicized.)

the code of the prior example little: in initialization we launch an extra load task

that writes into P, the pre-fetched slide; and when advancing to the next slide, we

assign

2

the current slide variable C to the value of the pre-fetched slide P, then begin

pre-fetching the subsequent slide.

The third initialization statement exhibits a unique capability of Petra-Flow: it

asserts that the current slide variable C is of great importance, and so anything it may

depend on during the course of execution should be granted high priority. The global

view a�orded by the dependence graph puts the Petra-Flow framework in a position

to endow the appropriate tasks with priority throughout execution automatically.

Note that this is achieved here by writing a single line of code at initialization, rather

than having to add statements to deal with priority throughout the event loop. This

programming ease is facilitated by Petra-Flow's unique notion of assigning priority

to variables, in contrast with threads packages, which assign priorities to threads.

We now demonstrate this mechanism via a hypothetical execution in which the

user recolors and prints the �rst slide, then moves on to the next. Our purpose is to

2

The assignment is by reference so that C inherits any ongoing load task for P. Note that C is

una�ected when P is later re-assigned, because a new allocation is used rather than writing over

the old value.
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show how Petra-Flow automatically favors the tasks the user is waiting for.

Figure 4.4 shows how the dependence graph evolves throughout this execution.

The initialization statements launch two load tasks| the second for pre-fetching slide

two. The priority ascribed to C is conveyed up to the load task for the current slide,

as illustrated by the bold lines. When the user recolors the slide, the variable C is

P

Load("slide2")

PC

Load("slide1") Load("slide2")

Recolor

Load("slide1")

Load("slide2") Load("slide3")Load("slide1")

Recolor

Print

Next

C

PrintRecolor

C P

Load("slide2")

Recolor

Print

Load("slide1")

P

C

P

C

C

Figure 4.4: Dependence Graph Transitions Showing Priority Up-Flow.

split to follow the user through the statement C = Recolor(C); in the second graph
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of the �gure, the new recolor task reads from the old value of C and writes to a new

value. The priority associated with the variable C 
ows up the dependence graph,

granting priority to just those tasks involved with (incrementally) generating the

current slide. The resource demands of the pre-fetch load task for network bandwidth

and computation (say, for image decompression) are subordinate to those of the other

two tasks. This helps to achieve better responsiveness for the results that most

directly a�ect the user.

When the user prints the slide, the print task is attached to the current value of

C. The print task is not granted priority because C does not depend on it.

When the user advances to the next slide, the variable C is reassigned to the value

of P. Petra-Flow rescinds the priority boost given to the �rst load task and the recolor

task, and then grants priority to the existing task that is pre-fetching the second slide.

The last statement of the event handling code launches a new load task to pre-fetch

the third slide, and reassigns the variable P to the newly allocated value.

In this way, the pre-fetching task and the load-recolor-print chain of tasks are

implicitly run in the background at lower priority than the tasks involved with

generating the current slide for the user. It is implicit because no mention of priority

is needed in the event-handling code nor in the asynchronous tasks themselves.

Cancellation

In addition to managing priorities, Petra-Flow can conserve resources by pruning

branches of the dependence graph that become obsolete. For example, had the user

not printed

3

the �rst slide, when he or she moved on to the next slide there would be

3

Some tasks, such as the print task in this example, must be specially marked to indicate they have

important side-e�ects and therefore cannot be pruned even though they do not appear to write to

any variable in the dependence graph. We will suppose that such tasks write to a (non-existent)

\side-e�ect" variable to avoid having to develop and discuss special cases for side-e�ects.
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no present or future consumer

4

for the recolored slide and only an obsolete consumer

for the raw version of this slide. In this modi�ed scenario, when the user advances

the slide and the variable C is reassigned, Petra-Flow determines from an analysis of

the dependence graph that the load-recolor branch is obsolete and prunes it by �rst

canceling the tasks and then deallocating the anonymous values in the branch. This

reduces contention for the network, the processor, and memory.

Summary

In review, this section demonstrated the application of the Petra-Flow framework to

a hypothetical slide browser program. It showed how asynchronous tasks (producing

incremental quality results) and versioned variables enable the state of the user

interface to keep up with the user, despite slow completion of work orders when

resources are scarce. It also showed how the runtime dependence graph can be used

by Petra-Flow to automate resource allocation and obsolete branch pruning with

little programming overhead. Together, these facilities ease the addition of program

features for pre-fetching and backgrounded work while avoiding resource contention

with primary tasks.

4.4 Uses of the Derived Global View

Again, one of the key ideas in this work is that by the use of a few fundamental

components, we can derive at runtime a global view of the dependencies among

application-level units of work. This structure can be put to a number of uses,

principally resource allocation, management of multi-resolution results, and obsolete

branch pruning. In this section we address some of the details of these services.

4

There can be no future consumer attached to this version of C because it is no longer nameable.
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4.4.1 Resource Allocation

Given information about which program results are time-sensitive from the perspect-

ive of end-user responsiveness, Petra-Flow can control resource allocation among the

tasks to favor those on the critical path, i.e., those on which a time-sensitive result

depends. Here we have chosen the notion of priorities to express relative importance.

Whereas the slide browser example demonstrated the use of just high and low prior-

ities, Petra-Flow can support more general representations, e.g., a numerical value,

or a set of tokens, each with an associated priority.

Given a producer task that feeds multiple consumer tasks of di�erent priorities,

what priority should the producer inherit? Some straightforward choices are to

take the sum or the maximum of the priority values, or if using the token-sets

representation, the union. The summation option supports the notion that a task

should be given higher priority if it is on multiple critical paths (refer to Figure 4.5a),

however, it su�ers a pitfall

5

: if there are multiple paths in the dependence graph from

the producer task to a prioritized result value, the summation e�ectively multiplies

the priority of the source by the number of paths (Figure 4.5b). By using the token-

(a) summation, independent
sources of priority

(b) summation, multiple
paths to single source

(c) token-sets, independent
sources of priority

(d) token-sets, multiple
paths to single source

10 10

20

10

10 10

20

{a=10} {b=10}

|{a,b}|=20

{c=10}

{c}

{c}

{c}

|{c}|=10

10

Figure 4.5: Summing Priority Values vs. Unioning Priority Token-Sets.

5

This is related to the problem of correlated evidence in probabilistic reasoning[71, page 8].



50

set representation and set union to combine priorities, duplicate paths do not a�ect

the priority of upstream producers (Figure 4.5d). In the end, we take either the sum

or the maximum of the token values to convert a set to a numerical priority for the

operating system interface. In the �gure, we used the sum.

The operation of Petra-Flow is independent of the priority mechanism, and so the

application programmer is allowed to control representation and policy choices. The

operating system may also permit the programmer to select the e�ect of the priorities

on the underlying resources, e.g., priority-weighted time-slicing vs. strict priority

scheduling of the processor. The global dependence graph provides a framework for

propagating priorities to the appropriate tasks; we are dependent on the operating

system for the last step of translating priorities into improved service.

Resource allocation should be broader than processor scheduling alone. It should

a�ect any critical resource, and naturally has the greatest e�ect at the system

bottleneck. In mobile communications, the bandwidth bottleneck is the wireless hop

between the mobile device and the base transceiver connected to the wired network

infrastructure. This is good news, because it would be much easier for the network

infrastructure to provide prioritized use of the local wireless cell than of Internet-

wide networks. We look forward to widespread availability of prioritized service in

the future| there is certainly much work on the related problem of providing quality

of service support for isochronous streaming [8, 21, 30, 92, 97].

Finally, note that task priorities are updated dynamically under three kinds of

events: (1) the structure of the graph changes by the addition or completion of a

task, (2) a prioritized variable is (re-)assigned to a di�erent value in the dependence

graph, as demonstrated in the slide browser example, or (3) the priority of a variable

is changed dynamically. The latter is associated with shifts in user attention, whereas

the others suggest state changes in the application. The application is responsible

for translating user input events, such as mouse motion and window repositioning,

into priority shifts on program variables; Tcl/Tk's event binding mechanism makes
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this easy to program. Petra-Flow then propagates these priority shifts to all a�ected

tasks.

4.4.2 Incremental Quality Results

The global dependence graph is also used to support multi-resolution results. A task

at the top of the graph can quickly produce a low quality result that passes down

through the \data-
ow" graph to the user; meanwhile, the task can continue to work

toward higher quality. This is achieved via multi-threading. Given a few annotations

on asynchronous task declarations, Petra-Flow generates for the programmer the

necessary, low-level code to manage threads and data-
ow synchronization, as well

as the auxiliary code to maintain the dependence graph and debugging information.

As new quality versions arrive at the inputs of an intermediate task in the data-


ow graph, Petra-Flow determines whether to execute the task on the new set of

quality version inputs or whether to ignore them, according to the synchronization

semantics chosen by the programmer. For instance, in the slide browser application,

the print task should be run only on the �nal version of the slide image, whereas the

recolor task should be run whenever a better quality version arrives (and if multiple

versions arrive while the task is executing, we might like to skip to the best quality

version available next time the task executes). For each graph-managed input to a

task, the programmer selects under what conditions the task should be executed.

Below we list some possibilities available to the programmer. (For the time being,

consider only a single task input; later we will describe the execution semantics for

tasks with multiple inputs.)

Final: A task input with these semantics executes only on the �nal quality version.

Petra-Flow can detect which quality version is the �nal one either by an

indication from the producer task when it is submitted, or retroactively when
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the producer task terminates, i.e., when it is removed from the dependence

graph.

Any: An input with these semantics runs on any available quality version. If there is

a choice, it will choose the best available at the time. If the upstream producer

has not yet generated any version whatsoever, it will execute once when the

initial quality version is submitted. Once the task has executed, there is no

need to run it again on higher quality versions.

These semantics are useful for reading meta-data about a value that does

not improve with quality versions, e.g., the comment header �elds of a multi-

resolution image.

Every: An input with these semantics executes on every quality version in turn.

This choice of semantics is the only one that requires versioned values to retain

the full a sequence of quality versions. If these semantics are not needed, only

the best quality version for each value need be kept. This optimization may be

used wholesale if these semantics are not used anywhere within a program, or

with an analysis of the source program, may be applied on a per-variable basis

where no present or future consumer will ask for these semantics.

Skip: These semantics are like Every, except that intermediate quality versions are

skipped if multiple versions are submitted during the execution of the task.

Skipping the backlog of quality versions helps the program keep up with the

user despite slow resources.

Preempt: These semantics are like Skip, but with preemption if a better quality

version arrives while executing.
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The implementation of these semantics takes advantage of Petra-Flow's cancel-

lation facility. These semantics carry a risk of bounded starvation: if executions

keep getting canceled by the arrival of better inputs, the user might not get a

result for a long time.

Parallel: These semantics are like Every, except that a new thread is launched

as soon as each new quality version is submitted, instead of waiting for the

existing execution to complete. Multiple executions of a single task on di�erent

input quality versions could potentially run in parallel on a workstation with

multiprocessing capability.

With these semantics, the framework needs to take care that the outputs of

these tasks are managed appropriately. Should an execution submit its output

before a prior, lower quality execution does, then either the higher quality result

must be delayed until after the lower quality result is generated, or instead the

lower quality result may be elided if no current or future downstream consumer

uses the semantics choice Every or Parallel, in which case the lower quality

execution may be terminated altogether unless it is producing some other output

that is still needed. The latter is preferable to introducing arti�cial delay.

By providing execution semantics that restart a task's code on each set of

new inputs, Petra-Flow can take over the management of threads and data-
ow

synchronization for the programmer. The alternative is to have the programmer write

this tedious and error-prone code in a loop over input quality versions. The hardship

of writing this code correctly and repeatedly for each task is signi�cant, especially

when one considers complex interactions across multiple inputs: For example, a task

with four input parameters of semantics Final, Every, Preempt, and Any, would

wait until the �nal version becomes available for the �rst parameter, and run on every

version of the second parameter, sometimes being preempted and re-starting with a
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better quality version for the third parameter; the fourth parameter would receive

the best quality version available each time the task is executed.

We now state precisely the execution semantics for tasks with multiple Petra-Flow

inputs. The following rules are applied in order at any signi�cant state change, i.e., a

new task is installed in the graph, a new quality version is submitted for a task input,

a quality version that was submitted earlier is marked as the �nal version (when its

producer task terminates), or a task's thread completes or terminates early from a

preemption request:

Precondition: The task cannot be run yet if, for any input, no quality version is

available, or its semantics are Final and the best available quality version is

not (yet) marked �nal.

Thread Preemption: If the task has a running thread, early termination should be

requested if, for any input with semantics Preempt, the best available quality

version surpasses that on which the thread is running.

Thread Launch: There is \incentive to run" if, for any input:

1. it has semantics Final, the �nal quality version is available, and the task

has not yet run on this quality version,

2. it has semantics Any, a quality version is available, and the task has not

yet run at all, or else

3. it has one of the other semantics choices, and the best available quality

version surpasses those on which the task has already been run.

A thread is launched if there is \incentive to run" and the task does not already

have an executing thread, or else for some input with semantics Parallel, its

best available quality version surpasses those on which existing threads are

running.
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Task Removal: The task is �nished and removed from the graph if, for all inputs,

it has run and completed on the �nal quality version, or on any version if its

semantics are Any.

Whenever a thread is started, the quality version used for each input is the best

available, unless its semantics are Every or Parallel, in which case it receives the

next higher quality version than its previous execution. For example, a task with two

parameters with the semantics Every would be re-run whenever either parameter

improved; if a backlog develops for both parameters, they may advance together, so

long as no quality version is skipped for either parameter.

4.4.3 Obsolete branch pruning

Petra-Flow also uses the global dependence graph to prune branches that have become

obsolete, i.e., have no e�ect on the application's output other than delaying it. In

traditional garbage collection, if a program loses all references to a particular memory

allocation, it can be deallocated safely. Likewise, a versioned value can be deallocated

when all references to it are dropped. This can happen when a versioned variable

that was pointing to it is re-assigned, or a consumer task �nishes and is removed from

the dependence graph.

We can be more aggressive about deallocation in the Petra-Flow framework

than traditional garbage collectors because we have more knowledge about the

dependencies. Suppose a producer task is writing to a value that no longer is attached

to any versioned variable or consumer task. While a traditional garbage collector in

this situation would not have license to act, in Petra-Flow we can prune both the

task and the value, conserving on storage, processing and perhaps other resources

the task was holding, consuming, or going to consume. In general, a task or value is

obsolete unless there exists some path in the dependence graph down to a versioned

variable (or a side-e�ect pseudo-variable for tasks with side-e�ects). When a branch
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of the graph becomes disconnected from any program variable, it can be pruned.

The dependence graph can also be used for automatic pruning at another level as

well: individual quality versions and task executions can be managed in exactly the

same way. Before we can demonstrate this, we �rst need to describe the dependence

graph at a �ner level of detail than is needed for exposition elsewhere.

side-effect
pseudo-variable

thread

quality versionsvalue

versioned
variables

task

X

Y

Figure 4.6: Detailed Petra-Flow Graph.

Figure 4.6 illustrates an example Petra-Flow graph in �ne detail. As before, tasks

are represented by ovals, which read and write values, depicted as squares. The

versioned variables X and Y, represented as diamonds, each are linked to their current

value, which happens to be held in common. The lower task has side-e�ects, and

so is installed in the graph with an arti�cial write dependence to a pseudo-variable

representing side-e�ects. This practice ensures that such tasks are not pruned.

In addition to these elements, this detailed graph also shows the individual threads

(solid circles), and the individual quality versions (�lled rectangles) they are reading

and writing. The lower thread is reading a low quality version while the upper thread

is producing a better quality version. Each task is linked to its thread and each value

node is linked to its current quality version. The line between the value of X and
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its initial quality version is dotted to suggest that this link exists only if all quality

versions must be saved, e.g., to support the synchronization semantics Every. If

not, inferior quality versions can be dropped once better versions are available, and

so each value node would only point to the most recent quality version.

Having explained the dependence graph in �ner detail, the extension of obsolete

branch pruning to quality versions and threads is straightforward. The same rule

applies as before: a node is obsolete unless it is justi�ed by a dependence path down

to a variable. In this �gure, none of the quality versions, values, threads, or tasks are

obsolete| each is justi�ed by a path to the versioned variable X and to the side-e�ect

pseudo-variable. The low quality version near the center of the �gure is not obsolete,

even without the dotted link to the quality version, due to the path through the

thread to the side-e�ect pseudo-variable.

To prune an obsolete task from the graph, the Petra-Flow framework �rst cancels

any active thread(s) of the task. If there is currently no thread for it (such as while

it waits between input quality versions), it can be deleted immediately. Rather than

stopping threads dead in their tracks, we cancel them in an orderly fashion so that

they can clean up and release any resources they hold. This can be achieved either

by (1) setting a 
ag that the running task polls to discover that it should terminate

early, or (2) sending the thread an abort signal, which can be caught by the standard

exception handling mechanism to allow cleanup on termination. Both options are

available to the programmer. The task can then be removed when all of its threads

terminate.

4.5 Priority-Mediated Resources

The remaining component of the Petra-Flow framework is the priority-mediated

resource. Its purpose is to extend the bene�ts of resource allocation to existing

facilities that are incompatible with asynchronous operation.
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Resources that must be used under mutual exclusion, such as legacy software

libraries that were not written to be thread-safe, require the use of locks for their

correct operation. Yet where prioritized resource allocation and mutual exclusion

meet (without the capability for preemption), there arises the classical problem of

priority inversion. Put generally, priority inversion occurs when a high priority

task must wait for a resource that is held by a low priority task. Unfortunately,

applications that produce multiple incremental quality results tend to be especially

prone to this problem, as they go in and out of resource locks repeatedly to service

successive quality versions.

The traditional remedy for priority inversion, priority inheritance [82], temporar-

ily grants priority to the task holding the resource so that it can complete quickly,

releasing the resource for the blocked high priority task. Unfortunately, this is insuf-

�cient in an environment with widely varying resource availability| granting full use

of a network that is tremendously slow at the moment is unlikely to get the locking

task completed quickly. Note that low priority tasks will tend to have large holding

times in this environment during periods of scarce resources and also because their

low priority makes them operate slower than high priority tasks.

The approach adopted here is to defer low priority requests in favor of upcoming

high priority requests. In this way, we achieve better responsiveness for time-critical

actions by trading o� the responsiveness of non-critical actions. This is similar to the

approach taken by the priority ceiling protocol [83]; see related work in Section 7.2

for a comparison. Naturally, where priority queuing is involved, low priority requests

might experience starvation. (This was not found to be a problem, however, for any

of the applications we built.)

Tasks that will be wanting a priority-mediated resource state their interest in

advance, so that when requests arrive for the resource, the system knows the dynamic

priorities of the other tasks that will soon be requesting it. At the time of a

request, if no other task of strictly greater priority has an interest, the lock is granted
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Figure 4.7: Priority-Mediated Locks: Deferment Avoids Priority Inversion.
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Figure 4.8: Priority-Mediated Locks: Legend to Diagrams.

immediately. Otherwise, by choice of the programmer, the request is refused or else

queued until higher priority tasks have completed their interest in the resource or

priorities change to make the queued request of the highest priority. We name this

new type of lock a priority-mediated lock.

Figure 4.7 compares the behavior of a traditional lock to that of a priority-

mediated lock on an execution in which a low priority task requests the resource

at time t1 shortly before a high priority task requests it at time t2.

6

(Even under

strict priority scheduling, the low priority task is able to advance whenever the high

6

Refer to Figure 4.8 for the legend to this and subsequent locking diagrams. The right half of

the legend shows an example where task B obtains a lock, then a higher priority task A requests

it and blocks. The time until task B releases the lock to the higher priority task is counted as

priority inversion, depicted by diagonal dotting of the line that indicates blocking.
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priority task blocks, e.g., due to paging or input/output.) With a traditional lock,

the �rst request is granted immediately, causing the high priority task to have to wait

for the resource to be released. But with a priority-mediated lock, the resource is

e�ectively reserved for the high priority task by claiming an interest in the resource in

advance| the tradeo� being that the completion of the low priority task is delayed.

This is not equivalent to having the high priority task reserve the resource by locking

it in advance of need. Figure 4.9 demonstrates the di�erence on an execution in which

the relative priorities of the two tasks dynamically reverse. Obtaining a traditional

lock in advance of need results in priority inversion, whereas with a priority-mediated

lock, the shift in priority results in granting the resource to the blocked task, which

now has the highest priority.

task A

task B

(a) traditional lock (b) priority-mediated lock

task A

task B

Figure 4.9: Priority-Mediated Locks: Priority Shift Can Unblock a Request.

Priority-mediated locks exhibit further bene�ts for repeated requests, as is

common with incremental quality processing. When a task releases a resource, it

has the option to continue its interest in the resource for upcoming requests. If this

option were not available, a low priority task might grab the resource (potentially

for a long time) between repeated requests by the high priority task, as illustrated

in Figure 4.10. This risk is inevitable with traditional locking on individual requests.

On the other hand, this risk can be avoided even without priority-mediated locks

by securing a traditional lock once for the series of requests. This, however, bears

several comparative disadvantages. If the low priority task were to secure the lock

�rst, the coarser granularity locking would increase the potential for priority inversion.
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(a) without retained interest (b) with retained interest

task A

task B

task A

task B

Figure 4.10: Priority-Mediated Locks: Retained Interest Avoids Priority Inversion.

The coarser granularity also increases lock contention; the resource could otherwise be

multiplexed with other tasks of equally high priority under priority-mediated locking.

Further, this scheme is prone to long periods of priority inversion after dynamic

priority changes. Figure 4.11 shows the behavior of three locking schemes under a

dynamic shift in priorities. Each su�ers from priority inversion immediately after

the locking task drops below the blocked task in priority. (a) With traditional locks

(c) priority-mediated lock over individual requests

(a) traditional lock over multiple requests

task A

task B

task A

task B

(b) traditional lock over individual requests

task A

task B

Figure 4.11: Priority-Mediated Locks: Resilient Under Dynamic Priority Changes.

over aggregated requests, the coarse grain locking causes the priority inversion to

last a long time compared with the other schemes. (b) With traditional locks over

individual requests, this priority inversion is resolved more quickly because of the �ner

granularity of locking, but there is inevitably priority inversion between requests using

traditional locks, as discussed earlier. (c) Priority-mediated locks resolve the priority
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inversion quickly as in (b) and avoid stalling the high priority task between requests

as in (a)| the best of both worlds. The resource can be reserved for the high priority

task without any priority inversion occurring if it happens to be released by task A

before task B requests it.

4.6 Summary

In this chapter we have introduced a novel framework to help programmers implement

application features that help improve responsiveness when resources are scarce.

The original concept was spawned from the desire to apply optimizations to the

backlog of work that piles up whenever users surpass the ability of resources to keep

up. In these circumstances we want the user interface to keep in synch with the

user, and have the response time of the ensuing results to be improved by means

of (1) delivering results incrementally via multi-resolution techniques, (2) exposing

concurrency, (3) controlling resource allocation to deliver important results sooner

than peripheral results, and (4) cancellation of work that has become obsolete. These

optimizations are enabled by deriving a global dependence graph among concurrent

tasks at runtime.
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A PROTOTYPE PETRA-FLOW IMPLEMENTATION

In order to validate the Petra-Flow framework, we constructed a prototype

implementation, which is presented in this chapter. We validated the practical

adequacy of the model by building several applications with the prototype, as

discussed in the subsequent chapter. The importance of building the prototype for

validation is demonstrated by the fact that it was only through experience with actual

applications written with Petra-Flow that we learned how susceptible such programs

are to priority inversion with traditional locks. It was for this reason that priority-

mediated locks were added.

When introducing new programming abstractions, there is a tension between

realizing them as a library or with language extensions. The former often has the

advantage of easier portability and acceptance, the latter cleaner expression. We built

the prototype as a library principally, but for the implementation of asynchronous

tasks, we built an analog of a remote procedure call (RPC) stub generator [13] to

generate the necessarily tedious stub procedures that maintain the dependence graph.

(Refer to Figure 5.1 for a diagram of the compilation process.) Unlike most RPC stub

C++ with
Petra-Flow
annotations

Preprocessor
Compiler
& Linker

Petra-Flow
library

executable
program

C++

with stub
procedures
for tasks

Figure 5.1: Petra-Flow Pre-processing and Compilation Process.
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generators, which require a separate input �le for the generated procedures, the Petra-

Flow preprocessor was designed to consume normal source code with task declarations

interspersed. It passes the source code through and inserts stubs when it encounters

a task declaration, i.e., source-to-source translation.

1

By not imposing constraints

on the structure of the source �les, we lower the barrier to using a preprocessor

somewhat.

The process of developing the prototype involved (1) selecting a language and

platform on which to build, (2) devising syntactic annotations for asynchronous

tasks and a preprocessor to accept annotated source code and generate appropriate

procedure stubs, (3) fashioning a runtime library that supports the Petra-Flow

abstractions and services, and (4) integrating support for debugging. These are

discussed in turn below.

5.1 Language and Operating System

The Petra-Flow framework is independent of any particular language or operating

system, yet these must be chosen in order to build a working system. To demonstrate

its practicality, it is worthwhile to select a widely used and performant language; we

selected C++. Its template class mechanism in particular facilitates the seamless

integration of versioned variables; the template parameter accepts any user-de�ned

or built-in type for which versioning is to be provided. (In languages that lack this

facility, such as Java, a textual preprocessor can generate the type-parameterized

classes, as is done for prototype classes in the GNU C++ library [52].)

Our requirements of an operating system are that it support kernel threads (as

opposed to just user-level threads, which block the entire application when any

individual thread blocks for operating system service), dynamically adjustable thread

1

The preprocessor also generates source-level debugging information so that the compiler and

debugger can refer to the correct line numbers in the original source �le.
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priority, and thread cancellation that allows for cleanup. We selected the POSIX-

standard Pthreads interface on DEC OSF/1 version 3.2 (a 
avor of UNIX that runs on

DEC Alphas); no other supported platform available to us at the time supplied kernel

threads. This threads package enables clean termination of a thread by sending it an

abort signal (pthread cancel(thread)), as opposed to the more widespread interface

for killing a thread instantly (e.g., lwp destroy(thread) in SunOS). Threads can

dynamically select whether the signal is to be received asynchronously or held until

the thread polls pthread testcancel(). When the signal is received, it causes a

runtime exception, which can be caught using the TRY-CATCH-FINALLY exception

handling mechanism supplied by DEC or by the C++ language standard [89, r.15].

This provides an avenue for threads to deallocate any resources they are holding

before terminating.

5.2 Annotations for Asynchronous Tasks

An asynchronous task is declared just like a normal procedure, but with two additions:

(1) it is preceded by the word \task,"

2

and (2) each input and output managed by

Petra-Flow receives an annotation specifying its synchronization semantics. Table 5.1

lists the synchronization choices (described in Section 4.4.2) that were implemented.

Table 5.1: Choice of Synchronization Semantics.

read final run only on the �nal quality version

read any run once on any available quality version

read skip run on each new version, skipping backlog

write once will submit a single quality version

write multi will submit a series of increasing quality versions

2

To avoid name-space con
icts, all names associated with the prototype are pre�xed with \TG"

(Task Graph). The names have been changed in this thesis for a clearer presentation, e.g., \task"

instead of \TGtask."
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An example task declaration is given below:

task Mytask(int i, read_skip int j, write_multi int k)

This task will be executed on each new quality version that becomes available for the

parameter j, skipping any backlog that might accumulate while this task is executing

on a prior quality version. It will generate multiple quality versions for the output

parameter k. Notice that traditional parameters can be included as well. The value

passed in for i will be handed to the task each time it is run; this works for normal

reference parameters, as well.

The preprocessor generates three procedures for each asynchronous task Foo:

User Foo: This procedure contains the user's source code for the task verbatim.

It is renamed so that we can interpose on calls to the task. Because quality

versions may be large objects, they are passed as reference parameters to task

inputs; C++ performs the dereferencing implicitly. Task outputs are references

to Petra-Flow value nodes, for which the essential public operations are to

(1) submit a quality version, and (2) get a reference to the previously submitted

version, or null if none has been submitted yet. The latter call allows tasks to

generate improved quality versions by building on the previous one.

Foo: This is the routine actually invoked directly by the programmer's calls. It

installs the task into the dependence graph, allocates new values for its output

parameters (which are assigned to versioned variables), and marshals the

arguments into the task node for use later. Finally, if the input synchronization

semantics are already met, it starts a thread on the procedure Thread Foo. If

not, the responsibility for starting a thread for this task lies with the runtime

library, speci�cally when new quality versions are submitted on the inputs.

Thread Foo: New threads start at this procedure. It establishes the default

cancellation mode (asynchronous reception of cancel signals is turned o�) and
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sets the thread priority according to the task. It then unmarshals the arguments

from the task node, obtains handles to the appropriate quality versions, and

calls User Foo. This call is made in a TRY-FINALLY scope so that it can perform

cleanup regardless of uncaught exceptions.

When the user's function returns, the synchronization semantics are checked

against the currently available input quality versions. If warranted, it loops

back and calls User Foo again. If the task is �nished forever, it is removed

from the graph. The thread then terminates, freeing its stack for use by other

threads. If the task remains in the graph, a thread will be started anew when

its synchronization semantics are met again.

Alternately, one could have designed the prototype to keep the thread throughout

the task's existence, blocking it while the task does not need to execute. This would

consume more memory for the stack space of blocked threads (the default stack

allocation is over 20 KB for OSF/1 Pthreads) and would not admit as cleanly the

parallel execution of threads on di�erent quality versions for a given task.

Simpli�cations for the Prototype

Ideally, tasks should be able to use Petra-Flow services for global variables as well as

for parameters. Support for globals was omitted from the prototype implementation,

however, because the C++ default parameter value feature can be easily applied by

hand to mock up the support of globals. For example, a task that reads versions from

the global versioned variable I and writes versions to the global versioned variable O

would be declared thusly:

task Globtask(read_skip int I = I, write_versions int O = O)

From the perspective of the call site, it is just as though task globals were supported,

i.e., \Globtask()." The body of the task can use the global names, although they
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are in fact parameters. The shortcoming of this approach is that such parameters

must be passed along to any subroutines the task calls that need them.

The notational luxury of functional return results was also dropped from the

implementation e�ort, although it would be straightforward to add. Instead, tasks

use output parameters. So, the call site looks like \UserTask(var)" instead of

\var = UserTask()."

Some tasks have important side-e�ects, such as printing output to the user, and

cannot be pruned. The notation \output task Mytask(..." is designated to mark

such tasks, however, this was omitted from the prototype implementation. Instead,

programmers manually attach such tasks to dummy output variables, e.g., a task

that displays something for the user and also generates quality versions for an output

parameter would be given a second output to prevent it from being pruned if its

�rst output became obsolete in the course of execution. (As a special case, tasks are

assumed to have important side-e�ects if they have no output parameters whatsoever,

such as the print task in the slide browser example, otherwise there would be no point

in creating them.)

5.3 Runtime Library

The remaining Petra-Flow abstractions are furnished by the library.

5.3.1 Versioned Variables

Versioned variables are the essential abstraction with which the programmer interacts.

They are de�ned as a template class that takes a type as its parameter, e.g.,

versioned<any_user_type> variable1, variable2, ...;

The public methods of versioned variables are to (1) set and get their priority,

(2) assign them to one another, (3) get a reference to their current quality version, or

null if none has been submitted yet, and (4) reset a variable so that it again has no
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value (inciting branch pruning). An assignment \X = Y" is by reference to the current

value of Y, which may have an associated task generating improved quality versions.

Unlike traditional assignment by reference, X is una�ected if Y is later reassigned to

a new value because of the versioning.

An Example

At this point we have introduced enough of the notation to demonstrate what Petra-

Flow code looks like in practice. Figure 5.2 shows a simple producer-consumer

task Producer(write_multi float out)

{

loop N times { // generate incremental quality versions

float* qv;

qv = user computation generating new quality version,

perhaps based on previous quality version *qv

out->Submit(qv); // out = *qv;

// quality version *qv is now read-only

};

}

task Consumer(read_skip float in)

{

printf("%g", in);

}

main()

{

versioned<float> V;

Producer(V);

Consumer(V);

Producer(V); // writes to a new version of V

Consumer(V);

V.SetPriority(1); // whatever V depends on shall have priority

}

Figure 5.2: Petra-Flow Producer-Consumer Example.
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example. The main program declares a versioned variable V and then launches

producer and consumer tasks that read and write to this variable. Two versions

of V exist simultaneously if the �rst pair of producer and consumer tasks have not

completed when the second producer task is launched. From the point of view of

the programmer, however, the semantics are that of a sequential execution. Splitting

the variable into multiple versions is handled by Petra-Flow transparently. The �nal

statement in main boosts the priority of the variable and, indirectly via Petra-Flow

services, also raises the priority of the producer task that V depends on| that is,

the second producer task. No other task in this example receives priority. (A sample

dependence graph for this program will be shown shortly in Section 5.4.)

Each producer task generates and submits multiple quality versions (using the

method Submit), causing the consumer to be re-run on each new quality version,

skipping backlog.

5.3.2 Priorities

The prototype implements integer priorities with programmer-selectable options for

determining how priorities are to be combined (sum or maximum) when propagated

up the global dependence graph, and how priorities are mapped to the operating

system's notion of priorities. Unfortunately, OSF/1 allows only �ve discrete priority

values for unprivileged processes, thus Petra-Flow priorities in general must be clipped

or compressed into this range. Worse, priority di�erences have only a small e�ect

under the priority-weighted time slicing policy (SCHED OTHER); in running two threads

at di�erent priorities, each discrete step in their priority di�erence grants only about

10% more processor time to the favored thread, for a maximum of 40%. We would

like this factor to be adjustable up to an order of magnitude at least. At the extreme,

the programmer can select strict priority scheduling instead.

The notion of Petra-Flow is independent of any speci�c priority mechanism. With

only minor changes to the prototype, programmers could be allowed to replace the
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standard priority class with their own implementation having its own representation

and methods for combining and mapping down to operating system priorities. This


exibility could be used, say, to implement the priority token-sets developed in

Section 4.4.1.

The current implementation avoids unnecessary traversal of the dependence graph

when propagating priority changes. For example, if we are combining priorities by

taking the maximum and the priority up-
ow from an arc rises from 3 to 5 while

another arc to the same node has priority 10, we need not propagate the priority

change any further up the graph. This feature could be preserved even with user-

de�ned priority classes by having the method that merges priorities indicate when no

substantial change takes place in a merge. Without this, we would need to propagate

priority changes all the way to the top leaves of the dependence graph.

Once the prototype was built, we discovered another source of unnecessary graph

traversal that should be eliminated in any future implementations. In assignments

of the form \X = UserTask(X)" where X has priority associated with it, Petra-Flow

propagates priority changes up the graph twice: once to rescind the priority boost

when X is detached from its old value, and again to restore the identical priorities

when X is attached to the new value being produced by UserTask. This was not a

signi�cant source of overhead for the applications we built with the prototype.

Finally, the prototype provides an interface to install and remove callback routines

to be invoked when a task changes priority. This has been used, for example, in an

implementation of prioritized TCP sockets that connect a task's priority with the

network socket without any programmer involvement.

5.3.3 Reference Counter

When a quality version is submitted, the system can (optionally) take the respons-

ibility for deallocating it when it becomes obsolete. Because C++ objects can be

allocated in di�erent ways, the submit routine takes an optional parameter to indic-



72

ate whether it should be deallocated with \delete p," \delete[] p," or \free(p)."

This is di�cult to arrange in C++. One cannot simply pass the address of the appro-

priate delete method; this is forbidden in C++[89, r.12.4] and besides, each method

requires a di�erent syntax. The solution involves obtaining a pointer to one of three

template functions that are parameterized by the user's type and deleting the object

with the appropriate method.

The prototype provides a reference counter module for this service. It maintains

a hash table on memory addresses to keep the reference count and a pointer to the

appropriate deallocation function. Its interface is made public so that programmers

can also use it for objects that are not managed by Petra-Flow, or to increment and

decrement reference counts for managed quality versions for special needs unknown

to Petra-Flow.

5.3.4 Task Services

For task cancellation, Petra-Flow sends an abort signal to the thread as well as

providing a polling interface for tasks that are not equipped to be canceled at any

moment. Tasks can enable asynchronous cancellation with the incantation:

pthread_setcancel(CANCEL_ON); // enable (synchronous) cancels

pthread_setasynccancel(CANCEL_ON); // enable asynchronous cancels

This can be put in a TRY-FINALLY scope if there is cleanup code that must be

performed whether or not the task is canceled. If special actions must be performed

only on cancellation, the programmer can catch the exception pthread cancel e.

Finally, the library also provides an interface for determining the number of

outstanding tasks or waiting until there are none, e.g., before terminating the process.

5.4 Debugging Support

Petra-Flow presents a rare opportunity to provide the programmer with high-level

debugging information, because it automatically maintains a global view of what is
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Figure 5.3: Producer-Consumer Dependence Graph Snapshot Viewed with Dotty.

going on during execution. We built in several forms of such debugging output to

validate that this support is practical. In our experience, we found them helpful, and

so we discuss them here as an observation about the prototype.

The prototype can generate a snapshot of the global view at any time on request.

Alternately, by turning on snapshot tracing, a history of the global view is saved to

disk. Snapshots of the dependence graph can be viewed graphically with dotty, a

graph editor and automatic layout tool from AT&T in the graphvis package [67].

Figure 5.3 shows an example dependence graph snapshot visualized with dotty. Tasks

are represented by ovals, values by squares, and versioned variables by diamonds.

(The small circles on the dependence arcs are added by dotty as handles for

manipulating the arcs.) The text within each node shows its unique name on the �rst

line, and its (derived) priority on the last. The text for a task node also indicates

whether a thread is currently running for that task. The text within a value node
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shows the number of quality versions submitted so far, and whether the current best

quality version is known to be �nal. This particular dependence graph is from the

producer-consumer example program in Figure 5.2.

We provide a simple shell script to view a trace history as a slide show. Although

graphvis is a powerful and 
exible tool, it does not have the capability to animate

smoothly the transition from one snapshot to the next. Also, because there is no way

to enforce coherence between layouts, nodes sometimes jump around unintuitively.

In addition, the prototype can generate a time-line trace showing in di�erent

columns when tasks produce and consume values, quality versions, etc. The

programmer can select independently classes of events to be included in the time-

line, i.e., those dealing with tasks, threads, priorities, cancellation, quality versions,

or versioned variables.

Meaningful labels on the debugging output are derived from several sources. The

preprocessor generates code to record names for tasks and values. Versioned variables

can be given a descriptive label at their declaration by an optional argument to the

class constructor. This can be speci�ed either explicitly by the programmer, or more

conveniently with the help of a supplied macro that declares the variable and also

passes its name as a string (#var) to the constructor:

#define declare_versioned(type,var) versioned<type> var(#var)

Arrays in C++, however, do not permit an argument to the constructor[89, r.5.3.3].

For this case and others, a descriptive label may be explicitly assigned to any

dependence graph node. When a task submits a new quality version to Petra-Flow,

it can be given a descriptive label via an optional parameter; this is most useful for

noting the quality in domain-speci�c terms, such as image resolution, instead of just

the version number, which is the default.

Finally, because of the high level view established by Petra-Flow, the system can

also detect certain programming errors, for example, the use of a versioned variable



75

before any assignment has been made to it or an upstream producer task terminating

without producing any quality versions.

5.5 Conclusion

For the implementation of asynchronous tasks, we view the choice to use source code

annotations and a preprocessor to generate the needed stub routines a good one|

the structure of the programmer's source code is unconstrained and the preprocessor

generates a substantial amount of tedious code, most of which would otherwise need

to be written by the programmer. For example, it generates about 90 lines of code

for a task with one input and one output (involving only three words of annotation).

More speci�cally, it generates approximately 70 lines per task plus an additional

9{13 lines per task parameter.

Note that the prototype does not involve a specially designated master thread

to implement the Petra-Flow services. The worker threads themselves maintain the

graph and perform services for other tasks, such as launching a thread when a task's

inputs are ready or adjusting task priorities throughout the graph.

In the process of building applications with the prototype, opportunities arose

for code reuse across applications, so we constructed reusable components for some

of them, including a multi-versioned image class and routines for iterating across

an abstract 2-D integer parameter space for quality versions. For tasks that use

the network, we provide a prioritized TCP stream class that transparently employs

priority update callbacks (described in Section 5.3.2) to conduct task priority changes

to the network connection.

3

While these are not strictly part of Petra-Flow, such

auxiliary support naturally complements any Petra-Flow implementation.

As some measure of the e�ort involved in building the prototype, we list here

3

Since the operating system does not provide for prioritized network connections, we also had to

build an implementation of this service, as discussed in Section 6.1.4.
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the approximate number of lines of C++ code (including comments) that compose

these software artifacts. (The use of the LEDA C++ class library helped raise the

level of programming abstraction signi�cantly [60].) The preprocessor is 500 lines

and the runtime library is 2200 lines, 200 of which are for debugging support. Of

that total, the reference counter module comprises 275 lines, and priority-mediated

locks 500. The auxiliary support amounts to nearly 600 lines, including prioritized

TCP streams, but excluding the implementation that was needed to supplement the

operating system with network priorities.



Chapter 6

EVALUATION

Having presented the Petra-Flow framework and its conceptual bene�ts, we turn

now to its practical evaluation. This involved building the prototype implementation

atop DEC Alpha OSF/1 using POSIX Pthreads, as described in the preceding

chapter, and applying it to build multiple applications. We are going to look at

two kinds of measures principally: coding e�ort and runtime performance. For coding

e�ort, we use two metrics: code size and elapsed coding time. For one of the programs

we built, a Mandelbrot fractal explorer, there are over a dozen similar programs

available by anonymous FTP, and so we are able to compare coding e�ort across

similar applications built without Petra-Flow. Naturally, such comparisons are coarse

and cannot provide indisputable evidence that Petra-Flow eases the programming

task; nevertheless, the comparison does make a compelling case.

For runtime performance, we present three kinds of measures: the macroscopic

percentage overhead for Petra-Flow, the absolute timings of individual micro-

benchmarks compared against equivalent actions using raw Pthreads, and the

response time for particular benchmarks under the presense and absence of individual

features facilitated by Petra-Flow.

Additionally, we developed a lock simulation, calibrated with dynamic measure-

ments from one of the applications, to evaluate the cost and bene�t of priority-

mediated locks.

This chapter is organized as follows. The �rst section describes three applications

we built, and in addition, a testing harness that supports network priorities (which

are lacking from the base operating system) and allows us to control (simulated)
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network conditions dynamically. The static analyses are grouped in Section 6.2, and

the dynamic analyses are grouped in Section 6.3. Finally, Section 6.4 presents the

lock simulation.

6.1 Applications

The three non-trivial applications we constructed are listed below. Each was built to

explore a di�erent critical resource.

Name Application Domain Critical Resource

pDatabase database front-end text remote server

pFractals Mandelbrot fractal explorer images processor

pAlbum Web browser for photo albums images network

In the sections below, we describe each application, how it bene�ts from Petra-

Flow, and key points about its implementation. Keep in mind that the challenge for

Petra-Flow is to improve responsiveness during periods of poor service. Hence, we

focus on what can be done when resources are scarce.

These applications were written for X Windows atop several libraries: the

graphical user interface is provided through Tcl/Tk extended for color photos [69],

database communication is parsed with Expect [54], and general data structures are

provided by LEDA [60].

6.1.1 Database Front-End

The �rst application that was built is a database front-end that interfaces with

existing back-ends supported by the University of Washington for campus-wide access,

including the library catalog, Grolier's Encyclopedia, Books in Print, and the INSPEC

database of periodical abstracts. The critical resource for this application is the back-

end database. Service varies widely with query complexity and with user contention,

especially for the library catalog.
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Figure 6.1: Snapshot of the Database Front-End.
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A screen snapshot of this application is shown in Figure 6.1. From top to bottom,

users can (1) dynamically select which database back-end to connect with, (2) enter

queries, (3) view the list of \hits" to a query, and (4) view the full record for a selected

hit. The standard front-ends provided by the University of Washington, Wilco and

Willow [43], have additional features, such as the ability to print or e-mail results,

select which �elds to display, and generate sophisticated queries via menus and forms

rather than with complicated query syntax. These amenities are not essential to the

application, and so were not included in our implementation.

On the other hand, the Petra-Flow framework facilitates features either not

present at all or not as pervasive in each of the the standard front-ends and which

are especially bene�cial when database service is slow:

Asynchrony: The operation of the user interface is permitted to outpace request

completion. For example, one can enter a query while the database connection

is still being established (which takes about six seconds even during periods of

good service); when the connection is �nally made, the query is put through.

Wilco and Willow do not permit further user input while in the process

of connecting to a database, executing a query, or retrieving a full record.

Even were they to allow bu�ered user input during these times, asynchronous

operation of the user interface is nevertheless superior. To illustrate this,

consider what happens if, while waiting for the database connection, a user

enters a query and then another one, obsoleting the �rst. Under Petra-Flow,

the �rst query task would be constructed and deleted before it ever had a chance

to execute, but under a traditional interface with bu�ered input, the user must

either wait for both queries to complete, or manually interrupt the program (if

it is provided for, e.g., by the escape key) to 
ush the no longer desired query.

This 
ushes the desired one, as well, and possibly also terminates the connection

to the database, depending on how the program handles the interruption.
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Incremental Quality: Text from the database is retrieved and displayed increment-

ally from top to bottom, both for hits and for full records. The former is needed

even when service is fast, because a query may generate a huge number of hits.

This is the only case for which the standard front-ends implement incremental

retrieval.

Prefetching & Caching: Records are prefetched and cached for the user, whereas

the standard front-ends re-fetch a record each time the user selects it. The

implemented policy is to prefetch the �rst hit immediately, and whenever a

user demands a record, to prefetch the subsequent one as well.

Priority: The connection to the back-end database allows only synchronous oper-

ation per user session. It is therefore represented to Petra-Flow as a priority-

mediated resource so that it is arbitrated in an intelligent way among the mul-

tiple incremental fetching tasks.

1

The simultaneously outstanding tasks may

include multiple prefetches and old demand fetches, a current demand fetch

that is to be displayed, and the ongoing retrieval of hits. Logically, priority


ows from the visible window panes to the appropriate tasks. In practice, high

priority is assigned to the variables representing the window panes for hits and

for the full record. The latter is given an additional priority boost whenever the

mouse points to the full record. The e�ect of these policies is that fetches whose

results are immediately visible take priority over other fetches, and the demand

fetch takes strict priority over all other activities when the mouse hovers over

the full record window. Otherwise, activities of equal priority interleave among

incremental quality versions.

Recall that Petra-Flow is independent of the graphical user interface. The

1

Priority-mediated resources are also used to represent software libraries that were not written to

guarantee thread-safety, such as Tcl/Tk and the license acquisition routines re-used from Wilco.
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responsibility for translating mouse movements to changes in the priority of

the record pane variable falls to the application code (in our case, two Tcl/Tk

event bindings and four lines of C++). Petra-Flow then conveys this priority

information up the dependence graph to the right tasks.

Cancellation: Because records are cached, selecting a di�erent record to view does

not cancel the old fetch, but simply lowers its priority to that of a prefetch.

When the user enters a new query or selects a new database, the outstanding

tasks are canceled implicitly when the variables are reassigned. In contrast,

the standard front-ends require the user to explicitly cancel the current activity

before he or she can begin entering new commands (with the exception that

commands are accepted while hits are being downloaded).

The implementation uses four kinds of asynchronous tasks: (1) establish a

connection to a back-end database, (2) submit a query and retrieve the hits

incrementally, (3) fetch a full record incrementally, and (4) display each version of

a record to the lower window pane. Figure 6.2 shows how these tasks interrelate in

an example dependence graph. (In actual operation, the task that establishes the

connection would be terminated before any fetching tasks are launched.) An array

of versioned variables, allocated as needed, is used to cache records. In the �gure,

the degree of priority is illustrated by line width. The window pane displaying the

full record currently has the highest priority| as when it contains the mouse. This

priority 
ows up through the display task to one of the record versioned variables

and then to the appropriate demand fetch task. The \hits" window pane carries an

intermediate priority level between demand fetching and prefetching.

Figure 6.3 shows the structure of the program in pseudo-code. (Although the

prototype does not support function return results, we have used this notation in this

pseudo-code to make the input/output relationships clearer.) The initialization in

main establishes the priorities of the two window pane variables and the event loop
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adjusts the priority of the record window pane whenever the mouse enters or leaves

it. When the user enters a query, a query task is launched and the �rst record is

prefetched. When the user selects a particular hit to view, it is demand fetched (if

it does not already have a prefetching task) and a display task is started that will

display each successive quality version that is brought in. In addition, a prefetch task

is started for the following record, unless it already has one.

6.1.2 Mandelbrot Fractal Explorer

The second application generates Mandelbrot fractals, which are computationally

intensive [56]. This implementation uses Petra-Flow to help maintain responsiveness

even when the requested computations dominate the available processing resources by

far. Figure 6.4 shows a screen snapshot. There are essentially three user commands:

(1) zoom in on a region of a fractal, (2) zoom back out to the starting position, and

(3) re-color a fractal by a somewhat computationally intensive procedure (histogram

Query

hits
window

connection

Get_Record(4)
(current)

Get_Record(5)
(prefetch)

Get_Record(1)
(old prefetch)

...records

Establish
Database
Connection

record
window

Display
Record

Figure 6.2: Example Dependence Graph for Database Front-End.
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versioned<socket> connection; // current database connection

array<versioned<string>> records; // full records to current query

versioned<hwindow> hits_window; // upper Tcl/Tk window pane

versioned<rwindow> record_window; // lower Tcl/Tk window pane

// establish a connection to a database back end

task write_once socket Establish_Connection(string database_selection);

// send a query to back end and retrieve/display hits incrementally

task write_multi hwindow Query(string query, read_any socket connection);

// fetch a full record incrementally a few fields at a time

task write_multi string Get_Record(int record_num, read_any socket connection);

// display full record in lower window

task write_multi rwindow Display_Record(read_skip string record);

main()

{

hits_window.SetPriority(1);

record_window.SetPriority(1);

user event loop {

case mouse enters record window: record_window.SetPriority(2);

case mouse leaves record window: record_window.SetPriority(1);

case select database:

connection = Establish_Connection(user's selection);

case query:

hits_window = Query(user's selection, connection);

records[1] = Get_Record(1, connection); // prefetch

case view record i:

if (records[i] is unassigned)

records[i] = Get_Record(i, connection); // demand fetch

record_window = Display_Record(records[i]);

if (records[i+1] is unassigned)

records[i+1] = Get_Record(i+1, connection); // prefetch

}

}

Figure 6.3: Program Structure of pDatabase.
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Figure 6.4: Snapshot of the Mandelbrot Fractal Explorer.

equalization). A toggle switch at the bottom of each window selects whether the

contents of the window may be replaced or a new window should be spawned. There

is a corresponding command to delete a window.

Like the �rst application, Petra-Flow supports a number of features for enhancing

responsiveness in this application:

Incremental Quality: A low resolution version (� 64

2

pixels) of a fractal is put

up at once, and its resolution is re�ned as computational resources allow.

Image resolution quadruples with each new version. This application domain

admits another dimension for incremental quality versions: the maximum

number of Mandelbrot iterations attempted at each point. Since this is of

no bene�t on large portions of the fractal where iteration terminates quickly,
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our implementation does not take advantage of this (nor does any other fractal

program that we have found).

Asynchrony: Multiple windows can be re�ning simultaneously and new commands

can be accepted at any time, unlike most fractal programs available on the

Internet that must �nish the current fractal before beginning the next user

request. The main program thread, which processes the event queue, has the

highest non-privileged priority available from the operating system so that new

events are noticed even when there is work outstanding.

Cancellation: Branches of the dependence graph that become detached from a

window are pruned automatically by Petra-Flow. This may occur, but does

not always occur, when a window is deleted or its contents are replaced. For

example, if one starts a new fractal zoom and immediately requests a recolored

copy in a newly spawned window, the task that is generating the fractal would

be canceled only when both of these windows are replaced or deleted.

Priority: The application prioritizes among simultaneously generating fractals to

give better responsiveness in the window(s) that hold the user's attention, as

determined approximately by the position of the mouse and window state: All

windows are given a small degree of priority. While a window is iconi�ed its

priority is dropped to zero. A priority boost is given to the window containing

the mouse, if any. There are other cues that could also have been incorporated

but were not, such as the window stacking order and overlap. In practice, we

�nd our attention is frequently focussed on the most recent zoom. This rule

could be included easily.

This application is built from three kinds of asynchronous tasks for: (1) generating

a fractal incrementally, (2) re-coloring each version of a fractal, and (3) displaying
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each version of a fractal to a particular window. The �rst two task types accept

cancellation signals asynchronously, imposing no overhead for polling. Figure 6.5

fractal3

window3

Display

Recolor

window2

Display

fractal2

Generate

window1

fractal1

Display

Generate

Figure 6.5: Example Dependence Graph for Fractal Explorer.

shows a hypothetical snapshot of the dependence graph, clarifying the relationships

among tasks. As before, priority is indicated with bold lines. In this situation, one

window has high priority, and this propagates up through a display task, a re-color

task, and all the way up to the fractal generator task. In the actual program, the

fractal and window variables are organized as dynamically extendible arrays.

The structure of the pFractals program is shown in Figure 6.6 in pseudo-code.

The variable coordinates is used to map from screen coordinates to Mandelbrot

space. There is no need to use versioning for this variable, because its maintenance

requires only a few 
oating point operations and should be reasonably quick in any

environment.

The program begins by launching two tasks| one to compute a canonical

Mandelbrot fractal (incrementally) and another to display it. The �rst two cases

of the user event loop translate user interface actions to priority adjustments for the

individual windows. When zooming or re-coloring a fractal, we may spawn a new

Tcl/Tk window �rst, depending on the state of the toggle button at the bottom of

the particular window.

We call attention to the case where a window is deleted. The versioned variables
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array<pair<complex>> coordinates; // regions in Mandelbrot space

array<versioned<image>> images; // & their fractal images

array<versioned<window>> windows; // Tcl/Tk window panes

// compute fractal image

task write_multi image Compute_Fractal(pair<complex> corner_coords,

int width, int height);

// re-color an image by histogram equalization

task write_multi image Recolor(read_skip image in);

// display image in Tcl/Tk window pane number i

task write_multi window Display(read_skip image in, int i);

main()

{

coordinates[1] = pair(complex(-1.5,-1), complex(0.5,1));

images[1] = Compute_Fractal(coordinates[1], 640, 480);

create Tcl/Tk window 1

windows[1] = Display(images[1], 1);

user event loop {

case window i gets mouse or de-iconified: windows[i].AdjustPriority(+1);

case window i loses mouse or iconified: windows[i].AdjustPriority(-1);

case zoom a sub-region of window i:

// first we spawn a new Tcl/Tk window, if called for

d = replace_window ? i : new destination window;

map mouse drag through coordinates[i] to get coords

coordinates[d] = coords;

images[d] = Compute_Fractal(coords, 640, 480);

windows[d] = Display(images[d], d);

case recolor the fractal in window i:

d = replace_window ? i : new destination window;

coordinates[d] = coordinates[i];

images[d] = Recolor(images[i]);

windows[d] = Display(images[d], d);

case delete window i:

windows[i].Free();

images[i].Free(); // detaches image value, but it may not be

// obsolete if used by another window

}

}

Figure 6.6: Program Structure of pFractals.



89

Figure 6.7: Snapshot of the Photo Album Web Browser.

representing the window and the fractal are both cleared, that is, detached from any

value. This is equivalent to a versioned variable that has been declared, but as yet

has no value assigned to it. When the values are detached, they may become obsolete

and be pruned. A display task will certainly be pruned, but a fractal generator task

might not be if, say, a non-obsolete re-color task still depends on its result.

6.1.3 Photo Album Web Browser

The third application was chosen to be network intensive in order to demonstrate

the bene�ts of Petra-Flow in, say, a wireless environment. It is a Web browser

for collections of pictures, akin to an album of developed photographs labeled with

descriptive titles.

Figure 6.7 shows a screen dump of this application. In the top text entry �eld,

users enter a URL address for a photo album stored at a Web server. An album �le
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contains titles and Web addresses for a sequence of images, each of which is stored

in a multi-resolution format. These are displayed in a horizontally scrollable strip

just below the text entry �eld. The photos are fetched in parallel using separate

asynchronous tasks, each with an independent, prioritized

2

TCP connection to the

HTTP server, and are displayed incrementally. One such task is launched for each

photo that is visible in the strip, plus an additional one o� to the right of the strip.

This prefetching task (plus any others that have been launched but are no longer

visible in the scrolling strip) automatically operate at lower priority by the Petra-Flow

priority mechanism, which is used to grant priority only to those tasks associated with

a visible window pane. This application uses the summation policy when combining

priorities, rather than the maximum, as the other two applications. Users can open (or

close) a large window pane for any picture by clicking on it, in which case its loading

task receives an even greater priority boost by the association with multiple visible

window panes. This boost is rescinded whenever the these windows are iconi�ed, and

therefore not visible. The presence of the mouse grants an additional priority boost

to the window. Furthermore, users can manually adjust the priorities of individual

photos, e.g., to have one downloaded at high priority even when it is not visible.

Because summation is used and the interface allows manually adjusted priorities to go

negative, the user can e�ectively reduce the priority of a photo below the base priority.

Again, these are application policies, which are implemented with just over a dozen

Tcl/Tk event bindings, as opposed to being speci�c to Petra-Flow. Finally, like the

other applications, Petra-Flow provides for asynchronous operation and automatic

2

Tasks use the prioritized TCP stream class provided with the Petra-Flow library to link the task's

dynamic priority to the network connection transparently. Network priorities are not currently

supported by the operating system, but by our test harness software, described in the following

section. While network connection priorities are mainly intended to address network scheduling in

bandwidth-scarce situations, they could conceptually be communicated also to the HTTP server

to in
uence its scheduling.
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cancellation of obsolete tasks.
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Figure 6.8: Example Dependence Graph for Photo Album Browser.

A hypothetical dependence graph for this program is depicted in Figure 6.8. It

shows four display tasks corresponding to a strip of four small images panes, plus

two more display tasks for large window panes. The user has scrolled to the right

by two images; note that the following image, image7, is being prefetched. Priority


ows up from the window variables, granting highest priority to demand fetches for

large windows, intermediate priority to demand fetches only visible on the strip, and

low priority to prefetching tasks. When the user last scrolled to the right, the second

image stopped being visible, but it continues to be fetched at a lower priority.

The pseudo-code in Figure 6.9 approximates the structure of the pAlbum program.

(To simplify the exposition, the image strip window panes and the large \blow-up"

windows have been combined into a single array and the task that fetches the album

directory has been inlined.) When the user opens a new album, pairs of tasks are

launched to fetch and display incrementally the �rst six images in the image strip.

Then an additional fetch is launched for the following image, which is automatically

performed at lower priority, since it is not initially attached to a window. When the

user scrolls the strip, display tasks are established corresponding to the six images

that are currently visible. Tasks to fetch the images are assigned for any of these six



92

array<versioned<image>> images; // album photos

array<versioned<window>> windows; // Tcl/Tk window panes. The first 6 are

// in a small image strip; others are large and instantiated as needed.

// fetch an image (incrementally)

task write_multi image Fetch_Image(string URL);

// display image in Tcl/Tk window pane number i

task write_multi window Display(read_skip image in, int i);

main()

{

for (i = 1..6) windows[i].SetPriority(1);

user event loop {

case window i gets mouse or de-iconified: windows[i].AdjustPriority(+1);

case window i loses mouse or iconified: windows[i].AdjustPriority(-1);

case new album URL:

clear images and windows

get album (list of URLs) from Web server

for (i = 1..6) {

images[i] = Fetch_Image(URL[i]);

windows[i] = Display(images[i]);

}

images[7] = Fetch_Image(URL[7]); // prefetch

case scroll to position p:

for (i = p..p+6) {

if (images[i] hasn't been assigned yet)

images[i] = Fetch_Image(URL[i]);

windows[i-p+1] = Display(images[i]);

}

if (images[p+7] hasn't been assigned yet) // prefetch

images[p+7] = Fetch_Image(URL[p+7]);

case open a large window for an image i visible in the strip:

make new Tcl/Tk window w

windows[w].SetPriority(2);

windows[w] = Display(images[i]);

case close large window i:

windows[i].Free();

}

}

Figure 6.9: Program Structure of pAlbum.
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images (or the following one) that has not yet had a fetching task assigned to it, such

as can happen when scrolling to the right �ve positions in one step.

Image Format

Unfortunately, we found it in our best interest to develop a new data format for

progressively encoded, color-mapped images. Existing formats and re-usable software

libraries either (1) only permit a few levels of incremental quality, (2) are not thread-

safe, or (3) require colors that are not in the original color-map when merging pixels

for lower quality versions, which explodes the number of colors needed in the display

color-map [19]. Our format consists of the color-map followed by progressively �ner

sub-samplings of the image until all pixels have been encoded. No pixel is encoded

redundantly| higher resolution passes exclude pixels previously included.

For a fair comparison against standard formats, which nearly all involve compres-

sion, our format is compressed as well. Again, we were unable to �nd a reusable

compression library that is thread-safe, so we implemented our own from scratch.

Our method of compression employs dynamic frequency sorting of encoding-adjacent

pixels using the \move-to-top" rule and a static Hu�man encoding of the resulting

indices to the frequency table [53]. We do not encode redundant sequences of pixel

values specially, as the common LZW compression scheme [103] does for GIF encod-

ing [16]. Even so, our compression typically beats GIF compression for photographic

images. Comparing the two on a sample of eighteen 640�480 photographs, our format

is 7% smaller in the median (1% smaller on average). This is remarkable, since our

reordering of pixels for progressive encoding su�ers a loss in spatial locality; GIF

format grows by 6% in the median (8% on average) in experiments where we forced

it to use our reordering of pixels.
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Figure 6.10: Snapshot of the Testing Tool for Prioritized Network Tra�c.

6.1.4 Testing Tool for Prioritized Network Tra�c

The photo album Web browser relies on Petra-Flow for the intelligent allocation

of (scarce) network bandwidth among multiple TCP connections, each increment-

ally downloading a di�erent image. Petra-Flow performs resource allocation by con-

trolling priorities, leaving the job of prioritized scheduling to the operating system.

Unfortunately, today's operating systems have little support for prioritized network

communication (although there is plenty of work in this direction [2, 9, 48, 72]).

For the short term, we built a tool that runs as a separate process to give the e�ect

of prioritized network tra�c and to let us adjust the simulated network conditions

dynamically. TCP connections that are made through this tool have their tra�c

delayed arti�cially as if they shared a simulated network, such as a wireless cell. The

graphical user interface of the tool is shown in Figure 6.10. One can set latency

and bandwidth explicitly with the numerical �elds, or select known con�gurations

with the push-buttons| the depicted setting is for the e�ective performance we

measured for Proxim RangeLAN2. Furthermore, one can dynamically select the

priority scheduling policy. Among the choices are strict priority scheduling, priority-
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weighted timesharing, and lottery scheduling [98].

We have used this tool also with the database application to make the network

connection the critical resource. This has been useful to control the rate of database

service arti�cially, and to simulate the conditions of using the databases over cellular

telephony, such as CDPD [37].

6.2 Static Analysis

Having discussed the applications we built using Petra-Flow's support for respons-

iveness, we present several static analyses. Speci�cally, a rough measure of coding

e�ort for each, a comparative survey against other programs available by anonymous

FTP, and an analysis of storage overhead.

6.2.1 Coding E�ort

First, we evaluate the e�ort to produce these applications with Petra-Flow. It is

di�cult to measure coding e�ort precisely, but as some rough estimate, Table 6.1

lists for each application the number of lines of code

3

, the number of semicolons, and

the approximate calendar time that elapsed during the implementation according to

the revision control logs (Unfortunately, the number of days of actual programming

time was not measured.). The numbers in parentheses indicate how many extra lines

of code are generated by the preprocessor and the number of asynchronous tasks,

respectively.

The application sources grow by 10% to 30% with the preprocessor, but in every

case they are signi�cantly less than the Petra-Flow library itself, which amounts to

1376 lines of code (1242 semicolons). Presuming that the Petra-Flow prototype was

3

In this chapter, we exclude comments and blank lines from code size measurements to normalize

for di�erent styles and degrees of documentation. This helps facilitate comparison across programs

written by di�erent authors in the following subsection.
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Table 6.1: Coding E�ort of Petra-Flow Applications.

Application Code Lines Semicolons Elapsed Time

pDatabase 676 (+247/4) 474 10 days. . . 2 months

pFractals 615 (+222/3) 341 15 days

pAlbum 700 (+173/3) 420 1 month

not written in a particularly ine�cient way, we conclude that Petra-Flow contributes a

substantial amount of code to each of these applications, some signi�cant portion of

which would otherwise need to be re-designed and re-written for each application.

Since Petra-Flow itself is reusable, the e�ort to construct it is amortized across

applications built with it.

The time that it took to build the pDatabase application is less precise than the

others. There is an entry in the revision log at ten days that indicates the application

was limping along well, and one other at two months with the fully functional version.

The elapsed implementation time was prolonged by the completion and debugging

of the Petra-Flow prototype (this being the �rst signi�cant application built with it)

and by an arcane license and communication interface to the back-end databases.

Likewise, the implementation of pAlbum was prolonged by having to build support

for network priorities.

6.2.2 Comparative Survey of Other Programs

How can we judge whether the coding e�ort for these programs is great or little given

the application? For the evaluation of pFractal, at least, there are a number of

other interactive Mandelbrot fractal explorer programs written without Petra-Flow

that are available by anonymous FTP. Table 6.2 compares pFractal with all such

programs we were able to obtain.

4

The table is sorted by the number of lines of

4

Many of these are available at ftp://spanky.triumf.ca/fractals/programs/unix/.
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Table 6.2: Comparison of Interactive Mandelbrot Fractal Generator Programs.

# Program/Author Code Lines Semicolons Interruptible? Incremental?

1 fractal/Young 133 78 no no

2 xmandel/Freeman 576 463 no no

3 pFractals/Forman

1

615 341 tacit 2-D

4 xmandel/Zsoldos 635 346 tacit no

5 xmandel/UC Santa Cruz 1052 514 manual no

6 mandelbrot/Anderson 1064 645 tacit

2

2-D

7 xfractal/Delabre 1142 674 tacit

2

2-D

8 fun factory/Burgess 1479 454 no no

3

9 gnumandel/Swiston

4

1700 1068 tacit no

10 xfracky/Jensen

1;5

2000 tacit

2

no

11 xmb/Helminen

4

2304 1411 no no

12 net-fract/Johansson

4

2523 1313 no no

13 mxp/Brady 2835 2106 tacit

2

no

14 xfexplorer/Guerin 6216 4295 manual

2

no or 2-D

15 xmfract/House 56477 34952 manual 1-D or 2-D

16 xfractint/Shirri� 61341 34824 tacit 1-D or 2-D

1

These programs are written in a combination of C++ and Tcl/Tk, whereas the others are in C.

2

Although these programs are interruptible, they poll at a granularity coarser than the other

programs by over two orders of magnitude.

3

The \Fractal Fun Factory" program lets the user select what resolution granularity to use while

dragging a fractal with the mouse or after \dropping" it. In this way, the user explicitly controls

the trade-o� between quality and responsiveness.

4

These three programs employ distributed multiprocessing to compute fractals faster.

5

The size of program #10 was estimated by its author, as its source code is not publicly available.
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code, as evaluated by feeding the source code to the software metric program csize.

5

The last two columns indicate whether certain features that improve responsiveness

at the user interface are present| speci�cally, whether one can interrupt an active

fractal computation, and whether multi-resolution techniques are used to present

the fractal incrementally. (The label \tacit" means that fractal computations are

canceled tacitly when a new user input makes the computation obsolete, as opposed

to having to manually cancel the computation before entering new inputs.) Nearly

all the programs that did not support incremental resolution at least presented the

fractal in row-major order while it was being computed.

Note that pFractals is one of the smallest programs listed, almost half the size of

the next smallest program that provides for multi-resolution display. This evidence

should not be given too much weight, however. There are a few caveats to consider,

the principal one being that no other program implements the same set of features

as pFractals. While several have signi�cant features that we left o� (e.g., multiple

types of fractals, 3-D views, image saving, and boundary �nding methods to speed

calculation), our program has features not found in the others (e.g., generation of

multiple fractals simultaneously, priorities, and no polling overhead). One other

program (#12) does provides for multiple fractal windows, but it does not generate

them simultaneously and is completely unresponsive during a computation.

The other signi�cant caveat is that these common measures do not necessarily

re
ect coding e�ort. Di�erent authors may vary in their ability to express programs

e�ciently. Moreover, the use of C++ and Tcl/Tk, as opposed to raw C, may allow

pFractals and program #10 to be more expressive with fewer lines of code. (This

is exactly the purpose behind Petra-Flow.)

Nonetheless, this survey does lend credibility to the statement that pFractals

was comparatively easy to produce, even with its advanced features for improving

5

ftp://ftp.sterling.com/usenet/comp.sources.reviewed/volume04/csize
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user responsiveness and for producing fractals simultaneously in separate windows

with multi-threading. If one were to rewrite our applications without using Petra-

Flow but preserving the responsiveness features, one would need to reproduce the

global view for resource allocation and cancellation of outstanding tasks. This means

re-implementing a signi�cant portion of Petra-Flow in an application-speci�c setting.

This e�ort must be repeated for each program written without Petra-Flow, whereas

the e�ort to build Petra-Flow is amortized by re-use.

As a byproduct, this study produces some support for Petra-Flow's approach

to attaining asynchronous operation of the user interface. Among the programs that

allow interruption, sometimes their authors forgot to poll for new user input in certain

long-running auxiliary operations, such as 
ipping the image end for end in programs

#15 and #16. Some programs poll at a much coarser granularity than others. While

this reduces polling overhead, it also leads to greater latency in responding to new

user input, especially when the maximum number of Mandelbrot iterations is high.

It is di�cult for an author to manage this trade-o� by static sizing, as discussed in

the introduction to Chapter 3.

Three of the programs (#14, 15, & 16) have a command to continue an interrupted

fractal computation. This provides a less than elegant way for one to use other

operations of a program in the midst of computing a fractal. Full asynchronous use

of the interface is superior.

We can evaluate the runtime cost of polling and multi-resolution incremental

display by using a feature of program #14 that allows these options to be selectively

disabled. We repeatedly measured the elapsed time to generate the canonical

Mandelbrot fractal (�1:5 � i to 0:5 + i) at 640�512 resolution under di�erent

combinations of options. We found that the multi-resolution feature added 3{13%

overhead and polling added 25{40% overhead, depending on whether the other feature

was enabled. Although multi-resolution display delays the �nal result, \reasonable

quality" was visible in just a tenth of the total time. By increasing the maximum
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Table 6.3: Storage Sizes.

Object Size (bytes)

versioned variable 25 (+50)

versioned value 145 (+175)

asynchronous task invocation 230 (+50)

integer 4

pointer 8

Tcl variable (overhead only) 40+

thread stack 21,000+

database record 1000{2000 (typical)

640�480 color-mapped image 308,000

(compressed) 192,000 (on average)

number of Mandelbrot iterations from 250 to 2500, we brought the overhead for

polling down to 6% and completely eliminated the measurable overhead for multi-

resolution. It is important to understand that under these conditions incremental

display is even more valuable, since the overall elapsed time is much longer, but the

time until an image of \reasonable quality" appears is only somewhat longer. Though

the delay may be proportional, the time scales are di�erent.

These analyses and our qualitative experiences with the applications mentioned

in this chapter have con�rmed for us that incremental display is a valuable and

worthwhile technique, and that polling can have signi�cant overhead, programming

complexity and pitfalls.

6.2.3 Storage Overhead

The use of Petra-Flow abstractions incurs storage overhead for the runtime depend-

ence graph. Table 6.3 shows these overheads in comparison to the size of several

application-independent and application-dependent objects. The numbers in paren-

theses indicate how many extra bytes are added for debugging information, which

could potentially be omitted for production compilations.
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The overheads are signi�cant

6

compared to raw C++ data types and therefore

should not be applied to every program variable. On the other hand, for an

interpreted language such as Tcl, where the overhead for each variable exceeds 40

bytes, it might be reasonable to provide Petra-Flow capabilities for any variable.

Observe that these overheads are much smaller than application objects or thread

stacks (which Petra-Flow conserves by keeping threads only for executing tasks).

This leads us to evaluate the extra storage requirements for incremental quality

versioning, which is not speci�c to Petra-Flow itself, but only to the general technique.

Consider our image domain where each quality version contains twice the number of

pixels in each dimension as the previous version. In the worst case, where all quality

versions coexist simultaneously, the total space consumed is characterized by the

series:

1 +

1
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1

16
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1
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+ : : : =

n
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�

1
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4

= 1:33

where one unit is equal to the space for the full quality version. That is, 33%

overhead in the worst case. If old quality versions can be deallocated when higher

versions become available, at most two versions need to exist simultaneously, i.e.,

25% overhead.

No extra space is needed in some applications, such as those that only append

to a data structure to improve its quality, as in the database application. In the

other two applications, as well, is it possible to reuse the full quality image space

for all sub-versions, if only we promise not to change the subset of pixels that have

been submitted for earlier versions. This optimization is not admissible for all image-

domain applications and was not implemented in our applications.

Finally, there is the issue of how much memory is used for multiple versioned values

of a single program variable, i.e., variable splitting as opposed to quality versioning.

6

The size of a pointer on the DEC Alpha architecture is twice that of most architectures. This

enlarges dependence graph nodes signi�cantly, since they are pointer-rich.
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This cannot be determined statically, as it depends on the speci�c application and on

the degree to which users actually outpace resources and cause variables to be split

into multiple values.
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6.3 Runtime Analysis

In this section we evaluate Petra-Flow from a dynamic perspective. While we are able

to measure the runtime costs of the Petra-Flow framework (that is, of its prototype

implementation), it does not make sense to try to quantify its runtime bene�ts. The

bene�ts vary tremendously depending on the situation and are not due to Petra-Flow

itself, but to the underlying techniques, such as prioritization and incremental quality.

The bene�t of Petra-Flow is in facilitating the programming and execution of those

techniques.

The �rst two subsections evaluate overhead costs via macro- and micro- measure-

ments, respectively. The third subsection evaluates the individual techniques that

Petra-Flow incorporates, including incremental quality results, prioritization, and

cancellation. We focus on situations where the resource demands exceed the supply,

since good responsiveness is not a challenge when resources are plentiful.

Before turning to the quantitative discussions, let us �rst say that qualitatively

we and a half dozen others who have run our applications have indeed appreciated

the responsiveness enhancements facilitated by Petra-Flow. Further, control over

the resource allocation mechanism, a new component to the user interface, comes

naturally to people. With little explanation, people are quickly able to use it to their

bene�t.

6.3.1 Macroscopic Runtime Overhead

We can estimate macroscopically an upper bound on Petra-Flow's overhead by

measuring the proportion of time spent in Petra-Flow code, as opposed to application-

speci�c code, while a user is actively driving the interface. We found this proportion

relatively insensitive to the speci�c user actions taken. More important was the

overall level of activity.

Unfortunately, we could not get a code pro�ler to function in our multi-threaded
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environment, so instead we measured the proportion of time the dependence graph

lock is held. Nearly every public interface to Petra-Flow begins by acquiring this lock

and ends by releasing it, so our measurement is a near approximation to the actual

time spent in Petra-Flow code. We instrumented the macros that manipulate this lock

to measure and accumulate the elapsed locking time using the DEC Alpha instruction

cycle counter (read with the assembly instruction \rpcc $0"). We sampled at ten

second intervals via a signal handler while a user drove the interface at a rapid but

reasonable pace for skimming. We calculate the overhead as a percentage of real time

(i.e., overhead to the processor), and also as a percentage of the application's process

time; these are nearly the same for a compute-bound application. We repeated this

experiment to try to drive up the overhead as high as possible for an upper bound

by having the user trigger Petra-Flow features at an extreme pace, e.g., wiggling the

mouse rapidly among windows to twiddle dependence graph priorities. In the case

of pFractals, we reduced the image size by a factor of 75 to amplify further the

proportion of overhead. The results of this study are presented in Table 6.4.

Table 6.4: Macroscopic Measurement of Overhead (as percentage).

Application: pDatabase pFractals pAlbum

Time relative to: real process real process real process

Reasonable Use:

median 0.1% 3.2 0.1 0.1 1.6 1.6

average 0.1 3.6 0.2 0.2 3.0 3.5

Extreme Use:

median 0.5 7.7 1.9 3.3 2.2 2.2

average 0.5 7.4 2.4 3.6 8.7 9.0

The overheads are quite low, incurring less than one or a few percent typically,

and even under unnaturally heavy usage, they continue to be reasonably low, under

10% in the worst case. (If these �gures were substantially larger, it would be prudent

to reduce the potential for contention by replacing the single lock for the dependence
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graph with a more sophisticated mechanism based on graph partitioning [102, 106].)

Note that for an input/output-bound application, such as pDatabase, the overheads

with respect to real time vs. process time have a signi�cant disparity. Under extreme

use of Petra-Flow features, we see this discrepancy grow for pFractals, because we

reduced the computation by a factor of 75, making it an input/output-bound process.

6.3.2 Micro-Benchmark Comparison with Raw Pthreads

Here we present a micro-benchmark evaluation of individual Petra-Flow operations

compared against the cost of performing similar actions with the raw Pthreads

interface. These measurements were made on an unloaded DEC3000/400 (Alpha)

computer using 100 repetitions of each test. The results are shown in Table 6.5

below.

The �rst grouping measures the time to launch a thread. In the case of Petra-Flow,

we measure the elapsed time while installing a new task invocation in the dependence

Table 6.5: Micro-Benchmark Comparison to Raw Pthreads (microseconds).

Test Median Average CV(%)

1. Pthread thread startup 1290 1300 5

2. same, but with pthread detach() 790 800 10

3. P-F task startup 1020 1040 6

4. Pthread thread startup & join 1480 1500 6

5. same, but with pthread detach() 908 914 7

6. P-F task startup, submit, & start consumer 2700 2700 25

7. P-F submit & start consumer 810 840 19

8. Pthread set priority, sleeping thread 56 57 6

9. P-F set priority, sleeping thread 83 85 6

10. P-F set priority, no thread 18 18 3

11. P-F set priority of chain w/o threads (per task) 7.6 7.7 3

12. Pthread cancel, sleeping thread 62 64 11

13. P-F cancel, sleeping thread 125 125 11

14. P-F cancel, no thread 284 290 17
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graph and starting a thread for it. There are two measurements listed for Pthreads.

The later achieves nearly 40% savings by indicating via pthread detach() that a

retired thread may be recycled. To prevent dangling references, programmers can

only recycle threads when they are certain that no future thread will want to collect

its result via pthread join(). In Petra-Flow, because data synchronization is done

with the dependence graph and not by joining, we detach all threads, allowing for

maximal re-use.

The second group of tests measures the time to launch a thread and get its result.

Again, we see nearly 40% savings if retired threads are detached. In this simple test,

we have a single join per thread, so it is easy to determine when threads may be

detached; in practice, it is not always so easy. The Petra-Flow version of this test

(#6) includes two full task startups (#3). The last test in this group measures the

time to submit a result and start up the downstream consumer thread; both the

producer and consumer tasks were created before the timer started.

The fourth grouping is for priority adjustments. Changing the priority of a Petra-

Flow task only incurs the 56 microsecond Pthread system call overhead if there

currently exists a thread for the task. Tasks that are waiting for new inputs to

execute have no thread and therefore less overhead when changing priority. This

di�erence is illustrated between tests #9 and #10, the latter executing nearly �ve

times faster for having no thread. In test #11 we repeatedly adjust the priority of a

chain of 100 tasks, none of them having threads. In this case, the call overhead per

task is halved.

The �nal tests measure the overhead of cancellation. If there is no thread behind a

Petra-Flow task at the time of cancellation, we remove the task from the dependence

graph and check for newly uncovered opportunities for cancellation. But if there is a

thread, we simply signal for its cancellation and defer removing the task node until

the thread terminates.
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6.3.3 Evaluation of Techniques Supported by Petra-Flow

Again, although it does not make sense to try to measure the runtime bene�ts of

Petra-Flow itself, we can recon�rm the known usefulness of the techniques it employs,

such as incremental quality, prioritization, and cancellation. Even so, the bene�ts

depend greatly on the speci�c situation, e.g., the bene�t from granting high priority

to a thread depends on the scheduling policy, the number of other threads competing

for service, and their relative priorities. In this section we brie
y demonstrate the

trade-o�s of the responsiveness-enhancing features in the fractal explorer application.

Incremental Quality

First, we address the technique of producing and displaying results in an incremental

fashion. Recall that for fractal program #14 of the survey in Section 6.2.2 we

measured a 3{13% overhead for displaying a fractal incrementally by re�ning its

resolution vs. displaying it in one pass in row-major order. We did not quantify the

bene�ts, however. We do that here by instrumenting pFractals.

Qualitatively, one experiences a clear view of the whole fractal much earlier with

multi-resolution display. It is awkward to determine this quantitatively, however,

since there is no well de�ned moment in time when the quality becomes \adequate"

for the user. In lieu of de�ning such a point arti�cially, we measure and present each

point of improved quality.

Moreover, matters are complicated by the fact that quality is a subjective issue

that depends on the content of the image and its intended use. Rather than measuring

subjective quality with human subjects, we use the logarithm of the image resolution,

since user studies in the human factors literature have determined that subjective

image quality is roughly proportional to the logarithm of the image resolution

(improving less steeply at high resolutions) [11, 10].

The quality vs. response time graph in Figure 6.11 plots a typical set of pFractal
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Figure 6.11: Incremental Quality Results: Quality vs. Response Time.

incremental responses. The additional hollow point at 24.5 seconds marks the

response time with the incremental quality feature is disabled| the baseline for

comparison. The incremental results were produced in 12%, 22%, 45%, and 117% of

the non-incremental time, respectively, and more importantly, on a time scale that

matters to real users, i.e., seconds as opposed to microseconds. In cost-bene�t terms,

the initial quality version is produced in an order of magnitude less time than the

non-incremental result, while the �nal quality version takes 17% longer to produce.

If one deems 17% overhead unacceptable, the cost can be reduced somewhat by using

fewer multi-resolution passes.

Prioritization

To assess the e�ectiveness of Petra-Flow's resource allocation mechanism in trading

o� the response time of some activities for others, we generated two identical fractals

simultaneously under various priority policies and measured the response time at each
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Figure 6.12: Prioritization: Quality vs. Response Time.

incremental resolution. The results are shown in the quality vs. response time graph

in Figure 6.12.

Under a policy of strict priority scheduling, the favored fractal completes before

the other even begins. Under priority-weighted timesharing, the favored fractal

achieves better response time at each quality level than the disfavored one (20{90%

faster), but is generally slower than under strict priority scheduling (by about 65% at

the highest quality level). Finally, as a baseline, we performed the experiment with

no priority di�erence. In this case, the response times of the two fractals are nearly

indistinguishable. Relative to this baseline, the favored fractal is generated twice as

fast under strict priority scheduling, and about 16% faster under the timesharing

policy.

The level of processor service depends on the speci�c priority values under the

timesharing policy. More speci�cally, it is proportional to the di�erence between the
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priorities of the two fractal tasks (their absolute values are irrelevant). For the results

presented so far, the priority di�erence was four (the maximum allowed without

privilege by the operating system). In experiments where we tried di�erent priority

values, the two curves grow closer to the baseline as the priority di�erence decreases.

We would like future operating systems to permit much greater 
exibility so that we

can cover the territory between the strict priority curves and the timesharing curves.

Observe that the �nal completion time for the latter fractal is the same under

all policies, i.e., prioritization has no penalty on the completion of the unfavored

computation, because the total amount of work is unchanged. Only by measuring

the response time of the intermediate quality results can we detect any cost

for prioritization. This illustrates nicely that prioritization does not a�ect total

throughput, but merely trades o� the response time of the intermediate quality

results of the unfavored computations for improved response time for the favored

computations at all quality levels.

Cancellation

Next, we demonstrate quantitatively the bene�t of Petra-Flow's automatic cancella-

tion mechanism. For this test we start two fractal computations in rapid succession,

the second obsoleting the �rst, and measure the response time at each quality level of

the second task. (The Petra-Flow priority mechanism was not used in these experi-

ments to avoid compounding bene�ts from di�erent features. Normally, the obsolete

generator task would also be reduced in priority.)

As a baseline for comparison, we repeated the experiment without the bene�t of

cancellation, i.e., the measured task competes for service with an identical task that

is obsolete but not canceled. And to compare against a hypothetically optimal case,

we timed a single fractal computation with no competitor.

Additionally, we measured several variants of the program that poll to check for

cancellation, instead of accepting cancel signals asynchronously. We repeated the
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Figure 6.13: Cancellation: Quality vs. Response Time.

experiment with the polling call placed at di�erent points in the code, e�ectively

varying the polling granularity and hence its overhead.

The results of these experiments are given in Figure 6.13, which shows the response

time for each quality version. The four curves that represent the polling experiments

are at the following granularities, from left (fastest) to right (slowest): every row of the

image, every pixel, every 100 Mandelbrot iterations beginning with the hundredth (of

256 maximum in this experiment)

7

, and every 100 Mandelbrot iterations beginning

with the �rst.

Asynchronous cancellation achieves the ideal speedup factor of two over the

baseline at each quality version, and comes within a tenth of a percent of the optimal

7

Mandelbrot points that iterate fewer than 100 times result in no polling, hence, this technique

is dependent on the Mandelbrot region generated and will not poll at all in some regions of

Mandelbrot space. For this test, we generated the canonical Mandelbrot set.
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case, hence only one curve is visible for the two experiments.

The experiments with polling, however, do not bene�t as much from canceling the

obsolete task, because of the additional overhead for polling. The bene�t depends

strongly on the polling granularity: at the coarsest, the �nal quality version exceeds

the optimal case by only 2%; at the �nest, polling costs exceeds the bene�t of canceling

the obsolete task.

Polling at a coarse granularity has its downside, as well: increased latency until

the obsolete task detects that it should cancel. To explore this trade-o�, we ran the

experiment again, varying the polling granularity from every pixel to every 153600

pixels, i.e., 50% of the entire image. (Incremental quality was disabled for this

experiment.) For comparison against an optimal baseline, we ran the experiment

again with no competing task and once more with asynchronous cancellation. The

latter achieved optimal performance in this test, as well, and so we will discuss it no

further.

Figure 6.14 plots the results of these experiments as the percentage slowdown over

the optimal case vs. polling granularity on a log scale. For each data point we use

the median of �ve repetitions of the experiment to smooth out noise. To give more

meaningful labels, a portion of the horizontal axis is labeled as the percentage of the

image, rather than the speci�c number of pixels.

At �ne granularity, the polling overhead slows the computation by as much as

30%. (Recall that polling overhead causes a 25{40% slowdown for fractal program

#14 of the survey in Section 6.2.2.) Keep in mind that this overhead is paid even in

situations where there are no obsolete tasks to cancel.

At coarse granularity, the task pays an opportunity cost in competing for a longer

duration with the obsolete task, which is polling at the same granularity. In the

extreme, if the obsolete task only polls once when it is half �nished with the image,

the �rst half of the useful task takes twice as long, resulting in 50% slowdown.

Such coarse polling is a realistic possibility for applications that do not have one
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Figure 6.14: Slowdown vs. Polling Granularity.

or a few reasonably �ne grain loops in which to poll, as we have for the fractal

explorer application. For a large body of code with many subroutines, it can be

di�cult to estimate where polling tests are needed. A long-running routine may be

overlooked, or one may not be able to inject polling tests for library routines. (In

fairness, neither are most library routines today equipped to handle exceptions from

asynchronous cancellation, so neither cancellation mechanism would be active while

in the library.) For any of these reasons, there may be a signi�cant delay before the

task recognizes that it should terminate early.

We conclude that Petra-Flow's asynchronous cancellation facility is the mechan-

ism of choice. It avoids the overhead risk of polling too often and the latency risk

of polling too seldom. The latency risk concerns both timely cancellation of obsolete

tasks and, in applications that poll for new user input instead of having a separate

thread for it, good user responsiveness. Finally, polling complicates programming.

The source code must be sprinkled with polling tests, which are unrelated to the com-

putation at hand. To achieve good polling granularity, the programmer must estimate



114

the running time of portions of the computation. Recall that variable environments

thwart the \static sizing" approach.

6.4 Simulation Analysis of Priority-Mediated Locks

The priority-mediated lock was designed to reduce priority inversion in circumstances

where the lock holding time is signi�cant relative to the time between lock requests,

such as during periods of scarce resources. In order to verify that it meets its goal,

we developed a simulation to measure its trade-o�s quantitatively in a controlled

environment. For comparison, we also simulated the traditional lock, and the priority-

queued lock. The latter improves on the traditional lock by using a priority queue

when selecting which blocked thread to resume.

We divide this presentation into three parts: workload and parameterization,

statistics and stopping criteria, and results.

6.4.1 Workload and Parameterization

The workload for the simulation is derived and parameterized from the pDatabase

application, though somewhat simpli�ed. It takes the form of one (or more) low

priority tasks (simulation customers) that prefetch records in a loop, and a high

priority customer that demand fetches records in a loop that includes a \thinking"

delay to allow time for the hypothetical user to skim the record before demanding

the next.

To simplify the workload characterization, we suppose that the record demanded

is never cached, i.e., the prefetching task is doing a terrible job of predicting the user's

access pattern. Further, we assume that there is no contention besides the critical

section and that the time spent in the critical section is not dependent on other tasks

in the system. These assumptions factor out any compounding e�ects of priority

scheduling of the processor. They are also consistent with input/output-bound tasks,
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or running the program on a computer that has enough processors to run all active

tasks simultaneously.

Just as in the real application, fetching a record is done incrementally in three

installments, each of which requires mutually exclusive access to the back-end

database followed by a relatively short period outside the critical section to store

the results. In addition, there is a preparatory computation that happens before the

�rst of three accesses to the database.

The high priority task states its interest in the priority-mediated lock sometime

during this preparatory period.

8

In the experiments that follow, we vary this point

and parameterize it as the percentage of preparation time during which the interest is

registered in advance of need, e.g., \100% in advance" means that we state our interest

in the priority-mediated lock as the �rst step of the preparatory computation. The

registration of interest is removed immediately after relinquishing the lock for the

�nal quality installment. This parameter has no e�ect when simulating the other

locking policies for the critical section.

We exercised the pDatabase application with prefetching disabled (i.e., a single

thread of execution) in order to measure the service time distribution for the back-

end database and the processing time outside the critical section where there is no

lock contention. In the simulation, we generated random service times according to

these measured distributions. For the think time of the hypothetical user, we used

a negative exponential distribution with a mean of a half second. We experimented

with other values from one quarter of a second to two seconds, verifying that the

relative shape of the results is una�ected by this parameter. (We note that the

database literature often uses the negative exponential distribution for human think

times between transactions [83, 94].)

8

So does the low priority task, but it has no e�ect, since it has the minimum priority.
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6.4.2 Statistics and Stopping Criteria

The statistics we collected for the simulation runs include the percentage of time there

was priority inversion (i.e., the customer holding the lock had strictly lower priority

than a customer blocking for the lock) and the percentage of time that the lock was

free but unclaimable by a blocking thread due to a reservation of higher priority. We

will call the latter statistic the \percent waste."

Note that we have a steady-state simulation, as opposed to one that runs to

completion for a �xed number of cycles. Accordingly, we chose statistics that are

independent of the length of simulated time we measure. In collecting statistics, we

used the \batch means" method [51, page 296], terminating the simulation when the

con�dence interval for each statistic was less than 1% of its mean.

6.4.3 Results

We present the results of two experiments here. In the �rst, we vary the percentage

of advance reservation to explore the trade-o� between waste and priority inversion,

and to compare the amount of priority inversion across locking schemes.

Figure 6.15 plots for each locking policy the percentage priority inversion vs. the

percentage waste

9

, and for priority-mediated locks, we vary the advance percentage

from 0% to 100%.

In these simulations there were two prefetching tasks. (For greater numbers

of prefetching tasks, the data looks substantially the same. With only a single

prefetching task, there is no di�erence between the two traditional locking policies,

since only one thread can be blocked on the lock at a time.)

First, notice priority inversion is greatly reduced for priority-mediated locks: by

a factor of four over traditional locks and a factor of three over priority-queued

9

The two traditional types of lock naturally exhibit no waste, since their policies never keep a (low

priority) thread out of the critical section.
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Figure 6.15: Simulation Results: Priority Inversion vs. Waste.

locks. Second, observe the trade-o� between priority inversion and waste for priority-

mediated locks. A good reduction in priority inversion is had even at 0% advance

warning, because the reservation is held over three consecutive fetches from the back-

end database.

In the second experiment, we held the advance percentage at 30% and varied the

number of prefetch tasks that compete with the high priority demand fetch task.

The graph in Figure 6.16 shows the percentage priority inversion as a function of

the number of prefetch tasks (i.e., the total number of tasks is one greater). Under

priority-mediated locking, the level of waste was consistently 1%. The curves converge

at the origin: where there is no contention, there can be no priority inversion.

Observe that the degree of priority inversion is highly sensitive to the level of

contention under traditional locks, but much less so for the other two kinds of locks.

Even so, a single competitor task raises the amount of priority inversion signi�cantly

for priority-queued locks compared to priority-mediated locks.
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Chapter 7

CONCLUSION

In this thesis we have identi�ed a trend in modern environments toward greater

service variability and performed a study of the variability and short term volatility

in one such modern environment, the World Wide Web. We identi�ed a resulting

need to support programmers in building and executing applications with good user

responsiveness even in such resource-variable environments. To meet this need, we

proposed a new framework that provides responsiveness-enhancing services based on

a global view of the interdependencies among concurrent tasks that are producing

incremental results. The framework takes advantage of the fact that users can

outpace resources during periods of poor service, turning the backlog of work into an

opportunity for optimization. In similarity to providing implicit memory management

services through language facilities (e.g., in LISP and Java), by providing services

such as obsolete task cancellation and resource allocation in a reusable, application-

independent manner, we can lighten the burdens of many programmers in writing and

maintaining user-responsive codes and help instill greater con�dence that they will

exhibit responsive behavior even under scarce resources. Finally, in evaluating the

framework quantitatively and qualitatively through experience with the applications

we built with it, we found the trade-o�s it makes for improved responsiveness

reasonable and worthwhile.

In the �rst section below we discuss straightforward generalizations of the

presentation given in this thesis. Following that, we review related work, and conclude

with future work.
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7.1 Generalizations

In the foregoing chapters we simpli�ed the discussion by restricting the context in

which Petra-Flow is used, namely, a single user running a single application in a

resource-variable environment. Petra-Flow generalizes in several ways that broaden

its applicability beyond what has been described.

First of all, the human user in non-essential, i.e., Petra-Flow is not restricted to

applications that are interactive. It is advantageous also where the application driver

is, say, an intelligent agent [24, 29] that may act on preliminary incremental quality

results and \change its mind" about which results to focus resources on and which

to discontinue interest in (cancel).

Second, Petra-Flow generalizes to applications that consist of multiple (distrib-

uted) processes that are cooperating either in a nested application model, such as

OLE [61] and OpenDoc [3], or in a client-server relationship via sockets or remote

procedure calls [13]. In such a scenario, the Petra-Flow graph spans multiple pro-

cesses with dependence arcs along the communication channels. The implementation

would require a parallel channel to communicate at the \meta" level, i.e., Petra-Flow

information. This might be facilitated by an extended RPC interface that accepts

supplemental operations to indicate, e.g., priority changes and obsoleteness.

Third, with the addition of such a facility, Petra-Flow could be extended to

multi-user environments. The idea is that servers (central resources) are constructed

with Petra-Flow and requests of the server can enjoy Petra-Flow services, including

incremental quality results, cancellation, and resource allocation, as hinted at in

Section 6.1.3 regarding the prioritized delivery of photo album images.

1

1

A server may only compare the priorities of concurrent requests from the same user, unless users

agree to a common priority scale and are willing to dispense with equal share scheduling. Suppose

a widespread application, say Netscape, employs a known priority scale for all users. This allows

enhanced Web servers to deliver visible images before o�-screen images for those users. People

using other Web browsers that either do not provide priorities or are not calibrated to the same
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Fourth, Petra-Flow's priority mechanism may be applied to applications trans-

parently at a very coarse grain by embedding it in the operating system and display

management system (e.g., the X Server or the window manager). Tasks become

whole processes and priority 
ows along inter-process communication links starting

from the window manager. Such an implementation also bene�ts cooperating pro-

cesses as described above, but because it it has no knowledge of the internals of the

applications, it cannot provide other Petra-Flow services, such as cancellation| just

because a process currently has no write dependence path to the window system or

�le system does not mean that it never will, and so it cannot be canceled.

The uniform constraint on any Petra-Flow embodiment is that there be low

latency communication with the driver of the program (human or otherwise) so

that the interface can keep up. It would not be e�ective to use Petra-Flow in

an environment where the principal source of service variability is between the

application and the user's terminal| one potential model for mobile computing [50].

Figure 7.1 illustrates the gamut of mobile computing models in terms of where the

system is cut by the wireless network, the chief source of variability. A well known

example of the remote �le system model is Coda [44]. The application partitioning

model is characterized by keeping the user interface running near the user for good

responsiveness and executing remotely the (core) application operations that require

resources unavailable on the mobile computer, as embodied by, e.g., Wit [100, 99].

Petra-Flow is applicable to all of these models except for the mobile terminal model

(unless low latency communication with the mobile terminal can be assured, as with

the Berkeley InfoPad project [64, 85]).

scale should not have their priorities compared against those assigned by Netscape. Instead, they

may receive service in proportion to the population of requests, as in the current system; within

that proportion, they may be prioritized.
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7.2 Related Work

There are several classes of related work to consider.

7.2.1 Asynchronous Programming

Petra-Flow facilitates concurrency through its asynchronous tasks, automated syn-

chronization for incremental quality versions, and versioned variables. The notion of

asynchronous tasks was motivated by LISP futures [38], which provide a higher level

interface for asynchronous execution than threads. A future is a handle to a result

that is being produced by a separate thread of execution. Futures do not permit mul-

tiple quality results to be returned and require explicit synchronization to retrieve a

result, whereas synchronization for consumers in Petra-Flow is implicit via their data

dependencies. The LISP runtime environment does not develop a dependence graph

for tasks, and hence cannot provide the level of service that Petra-Flow does.

Execution paradigms that do construct explicit dependence graphs, such as

AVS [95], IBM Visualization Data Explorer [1], IRIX Explorer [86], Khoros [74],
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and other data-
ow programming languages [22] provide for multiple results and

implicit synchronization via \restart semantics" of task code. These di�er from

the Petra-Flow paradigm in several important ways. They are not geared toward

incremental quality results and so, for example, do not tear down parts of the

graph that have achieved full quality. To program in these paradigms, programmers

construct static dependence graphs explicitly, rather than having them built implicitly

and dynamically via the data dependencies that transpire at runtime from traditional

imperative programming.

The idea for versioned variables came from the compiler optimization technique of

variable splitting [45] and is also found in register scoreboarding [70] and multiversion

database systems [36, 46, 105]. Its purpose is to eliminate false dependencies: write-

after-write and write-after-read con
icts. This helps expose greater concurrency. No

previous work provides versioned variables at the language level, as Petra-Flow does.

7.2.2 Resource Allocation

Resource allocation in Petra-Flow is served by priority up-
ow, priority-mediated

locks, and cancellation of obsolete tasks. The idea of controlling resource allocation

by automatically adjusting priorities along a graph of interdependent tasks was

derived from the Synthesis operating system [57, 58], where real-time tasks that

are interlinked by pipes have their relative time slices adjusted whenever an I/O

bu�er approaches full or empty. An appropriate balance is achieved over many �ne-

grain iterations. Petra-Flow, however, does not require iteration to establish new

task priorities when the priority of a result is changed. Petra-Flow is furthermore

distinguished in that it establishes task priorities in terms of their results (variables)

as opposed to the tasks themselves; this data-centric stance is also taken by the time-

sensitive object model [15], where real-time constraints are placed on objects, causing

update procedures to be invoked at appropriate times.

Regarding priority-mediated locks, the literature is rife with concurrency control



124

protocols that favor tasks with priority. Priority queuing of blocked tasks is the

simplest of them [39]. Priority inheritance [82] is commonly used to help reduce

priority inversion: the task holding a lock is boosted to the maximum priority of all

the tasks that it are blocking. This is insu�cient when critical sections may take a

long time to execute, such as during periods of scarce resources. Locking protocols

in the real-time database literature typically assume that tasks (transactions) can be

aborted if a higher priority task arrives that con
icts with it [91, 94]. In that domain,

all priority inversion can be avoided at the cost of re-starting aborted transactions.

In our domain, we cannot safely assume that tasks in critical sections can be aborted

and restarted.

Of the non-preemptable locking protocols, the closest to that of priority-mediated

locks is the dynamic priority ceiling protocol (DPCP) [62]: for a �xed set of tasks

that run periodically and require exclusive access to a resource, it determines the

maximum priority (earliest deadline) task that intends to reserve the lock (its dynamic

priority ceiling) and blocks any lower priority tasks that try to seize it. DPCP also

includes priority inheritance based on this priority ceiling, not just those that are

currently blocking for the resource. It has been shown to be deadlock-free under

earliest deadline �rst scheduling. The principal di�erence with priority-mediated

locks, besides the absence of the priority inheritance sub-protocol, is that tasks can

determine how far in advance of locking they wish to stake their interest in each

resource. As we saw in Section 6.4, this lets us control the trade-o� between priority

inversion and wasted utilization. DPCP is more restrictive in that priority ceilings

are computed from the entire task set, i.e., 100% in advance.

Obsolete task cancellation is related to terminating orphan tasks in remote

procedure call (RPC) systems [41]: an RPC invocation without side-e�ects may be

killed if its calling process terminates. This is achieved by noti�cations of process

deaths and, for fault tolerance, \keep alive" messages. A distributed implementation

of Petra-Flow would need these features as well. What distinguishes Petra-Flow is
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that a task may have multiple results written to distinct variables that each need to

be checked for obsolescence.

The work in computational steering [27] is related to Petra-Flow in that it also

allows users to direct a parallel computation in real-time. Its method, however, is

primarily to adjust the parameters of a scienti�c computation, e.g., error tolerance,

and although the computation is composed of concurrent tasks, user responsiveness

cannot be improved by adjusting their relative priorities.

7.2.3 Responsiveness

The applications we built with Petra-Flow bene�t a great deal from incremental

quality, or multi-resolution, techniques by temporarily

2

trading o� quality for

responsiveness. There is a great deal of work in multi-resolution techniques for

encoding and computing information, also known as approximate results [49, 18,

35, 19]. Petra-Flow itself does not implement any one technique, but supplies an

infrastructure to support the programming of such techniques.

In contrast with the approach taken in this thesis, another way of leveraging

multi-resolution techniques is to measure the current resource availability in the

environment and generate a single quality result that meets the response time

requirements [34, 35, 66]. As discussed in Chapter 3, this dynamic sizing approach

is ill suited to highly volatile environments where resources may change dramatically

between measurement and execution. In some environments this volatility can

be eliminated by securing a guarantee for a known level of resources, known in

the literature as reservations [7, 5] or quality of service [8, 30, 92, 97]. In other

environments, the guarantee cannot be kept reliably because of conditions beyond

the control of the resource scheduler, such as preserving bandwidth promises when

2

The �nal quality result, though delayed somewhat by the intermediate results, is as good as

without multi-resolution.
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shifting from a wired interface to the network to a wireless one. Even when the

scheduler does have the ability to keep its promises, they may need to be broken to

accommodate new demands of greater importance [42, principle 3].

7.3 Future Work

This work could be extended in several interesting ways. First, the priority mechanism

could be enhanced. In our experience with the applications we found that, although

it typically does what we would like, it could make better trade-o�s if the priority

decayed as incremental results reached their �nal quality levels. While initially we

want the visible objects to take priority over non-visible prefetching, at some quality

level, prefetches should take favor. Such decisions are bound to be application-

dependent. However, Petra-Flow could incorporate a common paradigm to ease the

introduction of this feature.

Second, it may be possible to improve overall responsiveness by being less

aggressive about starting threads on new input quality versions. In the current

scheme, we start a thread on new quality inputs as soon as the input parameter

semantics are satis�ed. For the applications in the image domain we frequently found

that the �rst two quality versions would arrive in rapid succession. Consumer tasks

using the Skip semantics (run on every version, skipping backlog) are all started on

the �rst version, yet it would be preferable to wait until the second quality version

before starting the threads. We propose two ways to accomplish this. The �rst is

a new option for input parameter synchronization semantics that lets one specify a

time delay to wait before running on new quality versions| if better quality versions

arrive in the meantime, we use the highest available when the time delay expires.

This would be useful at low quality versions and when resources are plentiful. At

high quality versions, the delay would typically be insigni�cant. The delay could be

suppressed for the �nal quality version.
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The second method is to supplement the global dependence graph with inform-

ation about task execution time as a function of quality level, either speci�ed by

the programmer or measured by pro�ling, and use this information to perform some

degree of global optimization about which quality versions to send down through the

graph. Assuming resources are relatively stable, we can estimate whether it is best

to execute on the next available version or to wait for the next. Making optimal

decisions is likely to be NP-hard.

Petra-Flow uses variable splitting to expose concurrency. This may, however, be

a problem for mobile computers that have stringent storage constraints due to their

portability requirements [33, 76]. On such computers, Petra-Flow would need to be

extended to control this memory vs. concurrency trade-o� intelligently, rather than

greedily splitting variables and executing tasks concurrently.

7.4 Conclusion

Future and modern computing environments can exhibit high variability in service

delivery. This causes the responsiveness of traditional applications to su�er. While

there are known techniques to cope with variability, they necessarily add to the

complexity of building an application. To reduce this marginal cost, we have proposed

a novel framework called Petra-Flow. In our experience building and executing

applications with it, we �nd it a promising approach to this general problem that

otherwise would need to be re-solved by many independent application programmers.
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