
Privacy Interfaces for Information Management

Tessa Lau, Oren Etzioni, Daniel S. Weld
University of Washington

Department of Computer Science & Engineering
Box 352350

Seattle, WA 98195 USA
{tlau,etzioni,weld}@cs.washington.edu

ABSTRACT
To facilitate the sharing of information using modern com-
munication networks, users must be able to decide on a
privacy policy—what information to conceal, what to re-
veal, and to whom.  We describe the evolution of privacy
interfaces—the user interfaces for specifying privacy poli-
cies—in COLLABCLIO, a system for sharing web browsing
histories.  Our experience has shown us that privacy poli-
cies ought to be treated as first-class objects: policy objects
should have an intensional representation, and privacy in-
terfaces should support direct manipulation of these objects.
We also show how these conclusions apply to a variety of
domains such as file systems, email, and telephony.

Keywords
Privacy, user interfaces, direct manipulation, WWW, in-
formation retrieval, intensional/extensional set representa-
tions.

INTRODUCTION
It is commonplace that modern communication networks
should support the sharing of information while protecting
people’s privacy.  To this end networks provide mecha-
nisms that enable each user to specify a privacy policy—
what information to conceal, what to reveal, and to whom.
For example, file systems support protection modes for
directories and documents, and the telephone network
provides Caller ID but enables callers to make themselves
anonymous.

However, we observe that today’s privacy interfaces—the
user interfaces to these privacy mechanisms—are woefully
inadequate.  A user with a particular privacy policy in mind
often lacks a convenient means for enforcing it.  For exam-
ple, there is no way to instruct one’s phone to “ring if the
call is from a friend or family member, but forward every-
one else to the answering machine”; a user must either
screen each call individually or forward all calls to the an-
swering machine.  Similarly, to share files in Windows NT
or UNIX, one must individually manipulate each file and

folder.

Today’s privacy interfaces are based on properties of indi-
vidual objects—to enforce a general privacy policy, each
affected item must have its privacy property set individu-
ally.  This is inconvenient for large numbers of items.  For
example, users refuse to set a “protection” on each e-mail
message they receive.  Moreover, users do not have the
ability to proactively specify complex policies that will
cover messages not yet received.  For the sake of conven-
ience, people default to coarse-grained privacy policies
where all potentially sensitive information such as e-mail is
kept under “lock and key.”

In this paper, we recount the evolution of privacy interfaces
in COLLABCLIO—a system that supports automated sharing
of Web browsing histories.  COLLABCLIO stores a person’s
browsing history indexed by keyword (and other attributes).
A typical COLLABCLIO query might be “Show me all the
pages visited in the .edu domain containing the phrase
direct manipulation.”  Significantly, COLLABCLIO

users can make queries against the browsing history of
other users, raising obvious privacy concerns.

We have redesigned COLLABCLIO’s privacy interface sev-
eral times in response to user feedback.  Our experiences
led us to conclude that privacy policies should be first-class
objects that are easy to create, inspect, modify, and monitor.
They should have a compact representation and apply pro-
actively to items not yet created.

These conclusions are sufficiently broad as to apply to such
diverse domains as the Windows NT file system, e-mail,
and telephony.  We have analyzed the privacy interfaces in
each of these domains, and show how they fail to treat pri-
vacy policies as first-class objects.

RELATED  WORK
Several systems have already addressed the problem of
sharing URLs.  Warmlist [8] is similar to COLLABCLIO in
that it automatically indexes the content of web pages
stored in a user’s bookmark list.  However, the only facility
for sharing URLs with other users is by indirectly importing
other users’ Warmlists.  Several other systems allow users
to share URLs with one another directly.

WebTagger [7], Grassroots [6], and Jasper [2] provide fa-
cilities for sharing bookmarks between colleagues via a



centralized repository.  By requiring users to explicitly
choose which bookmarks are shared with which people,
however, they expect each user to anticipate the interests of
her colleagues, and manually enter the web page into the
system each time she comes across something which ought
to be shared.

Another area of related work concerns the issue of privacy
in conjunction with collaborative systems involving live
video feeds.  Bellotti [1] proposes a framework to guide the
incorporation of privacy into the design of collaborative
systems, as well as a set of criteria for evaluating such sys-
tems; the evaluation section discusses our experience with
COLLABCLIO in light of several of her criteria.  In addition,
Hudson and Smith [4] study privacy in conjunction with a
video awareness system.  The shadow-view technique (rep-
resenting areas of recent motion in a live video feed with
darkened squares) implements a compact and proactive
policy for video privacy.

Yenta [3] is a distributed agent system that uses email and
other sources to build up a profile of a user; this profile is
used to automatically match users with similar interests.
While Yenta was designed to provide information security
using encryption, it does not directly address the issue of
information privacy which we are concerned with here.

COLLABCLIO
We now turn to the evolution of COLLABCLIO—our testbed
for investigating privacy interfaces.  We begin by describ-
ing COLLABCLIO’s domain.

Web History Domain
As we access more and more information via the web, stan-
dard navigation solutions such as bookmarks and favorites
become less adequate for enabling us to find our way back
to pages of interest.  There is a clear need for a technology
to mitigate the “lost in hyperspace” phenomenon, and fa-
cilitate the retrieval of useful links.

In response to this need, we developed CLIO—a program
that automatically indexes the content of web pages that its
user visits.  CLIO runs on a person’s workstation and cap-
tures her browsing history automatically.  A user can search
her CLIO for pages which she has previously visited by de-
scribing the desired web page in terms of attributes such as
the page’s keywords, parts of its title and URL, etc.  For
example, one could search for “All pages visited in the last
two weeks that contained the keywords privacy and se-
curity.”

In addition to retrieving URLs for personal use, we often
need to share URLs with colleagues.  Most approaches to
this problem have centered around shared bookmark lists
(for example [2, 6, 7]).  However, such approaches require
a user to anticipate which URLs may be of interest to oth-
ers, and to manually enter such URLs into the system.

To support URL sharing, each user may elect to register her
CLIO with a centralized server; any CLIO can be contacted at
any time to service a “remote” query on another user’s be-

half.  This network of CLIOs makes up the COLLABCLIO

system.  Thus, a user can ask his CLIO to query his col-
leagues’ CLIOs in order to discover who has visited web
pages with certain attributes.  For example, one could
search for “All pages which Joe has visited that contain the
phrase collaborative filtering.” To discover pet
owners, one might search everyone’s CLIOs for “All pages
containing the word cats.”

Of course, remote queries against users’ web browsing his-
tories might reveal information that they would prefer to
hide from other users, such as stock quotes, class grades,
fetishes, or health concerns.  Logically, pages in one’s web
browsing history can be partitioned into equivalence classes
based on the groups of people who are authorized to see
those pages. In the simplest case, there are two classes: pri-
vate web pages (those which should be visible only to the
owner) and public pages (those which can be shared with
other people).  Clearly, COLLABCLIO should only return
public pages in response to remote queries.  To allow users
to classify pages as public and private, we developed a pri-
vacy interface for COLLABCLIO.

Example-based privacy interface
Our first privacy interface design consisted of two mecha-
nisms: a record light and a search-and-mark tool.  The rec-
ord light widget (Figure 1) is designed to be kept onscreen
near a user’s web browser window.  It is based on the idea
of the red light on a video camera.  When the light is on,
actions (web page visits, in this case) are recorded as pub-
lic; when the light is turned off, web pages are recorded as
private.  Users can toggle the status of the record light at
any time; this action changes the classification of the page
currently displayed in the browser.  The record light is
sticky: once it has been toggled, it remains in that state until
the user explicitly toggles it back.  The use of this record
light interface lets users classify every web page immedi-
ately as either public or private.

Figure 1:  Screenshots of the record light window.
The top window is displayed when the record light is
toggled to PRIVATE, the bottom when it is set for
PUBLIC.



The second mechanism, the search-and-mark tool, was
meant to be used in conjunction with the record light, as a
method of reviewing and amending previous decisions.
Once web pages have been indexed into the COLLABCLIO

system, a user can use the search-and-mark mechanism to
change web page classifications.  She can do this by using
CLIO to search her history, selecting one or more of the re-
turned pages, and marking them as either public or private.

An informal user survey, however, revealed that this inter-
face was inconvenient to use for certain types of privacy
policies.  For example, to implement the policy “Hide all
visits to web pages in the .com domain,” a user would
have to remember to either toggle the record light to private
each time a .com site was visited, or to periodically search
for all .com pages and mark them private at a later date.  In
the first case, the number of actions on a user’s part in-
creases with the number of sites visited.  The second case is
equivalent to choosing a coarse-grained default protection
and periodically refining it to better reflect the desired pri-
vacy policy.  Furthermore, in this example there is a win-
dow of time during which private information could be re-
vealed: a remote query occurring after a page was visited,
yet before it was marked as private, might reveal sensitive
information.

In addition, some users found it hard to go back and visu-
alize their privacy policy; there was no way to list or sum-
marize all the private web pages in one’s history.1 Another
criticism noted that the record light wasn’t proactive: if a
site was marked private in the past, subsequent visits to the
site weren’t automatically marked private, but were classi-
fied according to the current setting of the record light.

Lessons Learned
In considering these concerns, we realized that the root of
the problem was the lack of an explicit privacy policy ob-
ject: privacy was treated as a property of individual docu-
ments, not as an object in its own right.  We hypothesized
that a person’s privacy policy ought to a first-class object
with a compact representation; it should apply proactively
to items not yet created.  The privacy interface should make
it easy to create, inspect, modify, and monitor such objects.

To clarify this objective, we introduce the distinction be-
tween intensional and extensional representations of pri-
vacy policies [5].  An extensional representation describes a
set by enumerating the items in it (such as a list of all pri-
vate web pages).  The record light interface creates an ex-
tensional privacy policy.  In contrast, an intensional repre-
sentation describes a set by characterizing the objects in the
set.  Consider, for example, the policy “Hide all web pages
that contain the word sex.” Using an extensional privacy
interface such as the record light, one must notice when a

                                                          
1 An intermittent COLLABCLIO user was particularly vocif-

erous about the difficulty of recalling his privacy policy
after some time away from COLLABCLIO.

web page contains the word sex, and toggle the record
light accordingly. On the other hand, one would be able to
state this policy explicitly in an intensional representation,
and rely on the system to enforce it.  Furthermore, the inter-
face could “remember” the policy and apply it to future web
pages as they are being visited and indexed by
COLLABCLIO.

Although the search-and-mark mechanism gives the impres-
sion of an intensional representation, in fact it preserved the
extensional representation used by the record light mecha-
nism.  Privacy was still implemented as a property of each
document.  One user was surprised to hear that although he
had used the search-and-mark mechanism once to classify
.com sites as private, future visits to .com sites were not
automatically classified as private.

These considerations led us to develop a privacy interface
for COLLABCLIO that supported an intensional privacy pol-
icy representation.  This interface is described in the next
subsection.

Rule-based privacy interface
COLLABCLIO’s second privacy interface centers around the
privacy policy editor window (Figure 2).  This window
supports the creation, inspection, and modification of pri-
vacy policies.  A privacy policy consists of a default pro-
tection (either public or private), and a list of rules which
describe a set of exceptions to that default.

Figure 2: Screenshot of the privacy policy editor in-
terface.

Each line in the policy represents one rule.  Each rule is a
list of words, using a syntax similar to that used in popular
Web search engines such as Alta Vista and Lycos: a minus
sign in front of a word means negation, and a url: prefix
specifies a match against the document’s URL instead of its
textual content.  There is an implicit conjunction over the
words in each line.  The union of the sets described by the
rules makes up the set of exceptions to the default privacy.

For example, the privacy policy

url:washington
agent -travel



describes a set of documents consisting of all web pages
whose URL contains the string washington, as well as
all web pages that contain the word agent but not the
word travel.  If the default policy were private, then the
web pages contained in this set would be the only public
documents in this user’s CLIO.

Since users were not always sure of the exact coverage of
the rules they created, we added two monitoring facilities to
COLLABCLIO.  Figure 3 shows the monitor window that
displays the title of each web page and its classification as it
is visited in a web browser.  In addition, we provide a
query-log window that displays which URLs (if any) were
returned in response to remote queries.  The monitor and
query-log windows enable a user to verify that the policy
created in the rule-editor window is having the desired ef-
fect.

Figure 3: Screenshot of the monitor window.  Titles
of recently browsed web pages are displayed; they
are prefixed by their classification into public (+) or
private (-).  The icon at the bottom shows the classi-
fication of the current web page, displayed just
above it.

Direct manipulation of privacy policies
Our claim that privacy policies should be treated as first-
class objects leads naturally to the conjecture that a privacy
interface should support direct manipulation of privacy
policies.  This term, first coined by Shneiderman [9], refers
to user interfaces with the following three properties:

1. Continuous representation of the object of interest.

2. Physical actions or labeled button presses instead of
complex syntax.

3. Rapid incremental reversible operations whose impact
on the object of interest is immediately visible.

In this section we show that all of our interfaces embodied
some of these properties, but further improvement may be
possible.

At first, it may appear that the record light interface satisfies
all three properties.  However, while the light is indisputa-
bly a continuous representation, it represents the privacy
policy applied to a single point (the web page currently

being viewed) instead of the complete policy object itself.
Pressing the button in the record light widget causes the
function’s value at this point to change; this action can be
immediately reversed. In a sense this mechanism does sup-
port direct manipulation, but one can only view and change
the policy piece by piece.

While it does not provide a continuous representation, the
search-and-mark interface can be used to directly view and
modify a larger fraction of the privacy policy, by selecting a
set of web pages.  The results of the search are then dis-
played, along with their privacy classification.  A physical
action (selecting the desired web pages and activating a
menu item) will subsequently modify the privacy policy;
this action is reversible by reselecting those objects and
choosing a different menu item.

Since it does not have a compact representation, the privacy
policy object is not continually represented in either of the
extensional interfaces.  It would be cumbersome to traverse
a long list of web pages and their classifications.

In contrast, the rule-editor interface (by virtue of its inten-
sional representation) provides a continuous, compact tex-
tual representation of the privacy policy.  The policy can be
modified directly in the rule-editor window by editing the
text using standard text-editing commands.

Since privacy policies can grow complex, the monitor and
query-log windows provide two alternate views of the pri-
vacy policy function: monitoring and verification.  The
monitor window shows how the function classifies web
pages as they are browsed.  The query-log window verifies
that the function is correct by showing which web pages
were returned in response to a remote query.

Table 1 summarizes how well each of the privacy mecha-
nisms meets the criteria for direct manipulation.

Type Cont.
Repr.?

Physical
actions?

Reversible w/
feedback?

Record
light

Ext Low High High

Search-
and-mark

Ext Low High High

Rule-
editor

Int High Med Med

Table 1: Privacy interfaces in COLLABCLIO, and
how well they satisfy properties of direct manipula-
tion interfaces.

EVALUATION
Of the people using our system, four have been using the
record-light and search-and-mark privacy interfaces for
several months.  In an informal study, we introduced these
users to the rule-editor interface, had them use it for an
hour, and asked their opinions of the new interface. Based



on our preliminary results, all users preferred the rule-based
interface to the example-based interface.

We now analyze COLLABCLIO in terms of Bellotti’s [1]
criteria for evaluating ubiquitous computing services.

Flexibility: what counts as private varies according to
context and interpersonal relationships.  Thus mechanisms
of control over user and system behaviors may need to be
tailorable to some extent by the individuals concerned.  We
designed flexibility into the system from the start.  Privacy
policies are configurable, not fixed; the system does not
impose any particular privacy policy on anyone.  One
measure of flexibility is the expressiveness of the language
available for specifying privacy policies.

COLLABCLIO’s example-based privacy interface is fully
expressive since any policy can be specified by toggling the
record light between public and private at the appropriate
times, or by later changing the classification of web pages
using the search-and-mark mechanism.

The rule-based interface is fully expressive with respect to
the keyword and URL attributes it supports; any privacy
policy which can be expressed in terms of the keywords
used in web pages, or their URLs, can be entered into the
system.

Although the interface requires that a privacy policy be
encoded as a list of conjunctive rules, this restriction does
not reduce the expressive power of the interface.  The list of
conjunctive rules is treated by COLLABCLIO as a  disjunc-
tive normal form (DNF) formula, i.e. a disjunction of con-
junctions.  Any boolean logic function can be converted
into DNF, thus any policy over these attributes can be ex-
pressed in the rule language.  In practice, users who were
able to express their policies using compact rule sets were
satisfied with the ease of creating, inspecting, and modify-
ing their privacy policies using this interface.

Although the rule language is expressive, one user noted
that this presented a problem when trying to classify web
pages containing little text (for example, pages using
HTML frames, or heavily graphics-based pages); this user
had to resort to using an inconvenient list of URLs to clas-
sify those pages.  Otherwise, users found that a compact list
of keywords and URL fragments were sufficient to classify
most web pages.

Trustworthiness/Learnability: systems must be technically
reliable and instill confidence in users.  In order to do this
they must be understandable by their users. Proposed de-
sign solutions should not require a complex mental model
of how the system works. While the extensional privacy
interface appears to be conceptually simple, several users
misunderstood how it worked.  The interface implements a
model in which each visit to a web page is either public or
private; as web pages are visited, they are added to the sys-
tem with a classification determined by the current setting
of the record light.  Subsequent use of the search-and-mark
mechanism changes the classification of documents already

in the system, but this action does not apply proactively to
future visits to web pages.  Two users mistakenly believed
that by using the search-and-mark mechanism to specify a
privacy policy, this policy would be applied to web pages
seen in the future.

We designed COLLABCLIO’s rule language and monitoring
facilities so that this interface would be easily understood
by users.  The interface relies on a simple rule language
with a familiar syntax; neither disjunction nor parentheses
are allowed in rule antecedents to maintain rule simplicity.
In addition, the interface avoids rule conflicts by stipulating
that all rules (except the default) classify pages in the same
way.  If the default is public, all pages matching any rule
are private and vice versa.  Thus, rule conflicts are impossi-
ble and rule ordering has no impact on which pages are
private.  Finally, the query-log and monitor window help
the user to verify that her policy is having the intended con-
sequences.

Although not our main concern, bugs and security issues
continue to be an impediment to user acceptance of our
system.

Low effort: Design solutions must be lightweight to use,
requiring as few actions and as little effort on the part of
the user as possible.  The record light requires a small, con-
stant amount of effort to classify each incoming web page.
As mentioned in the previous section, some users found that
this interface required too much effort. In essence, the pol-
icy object created using the extensional privacy interface is
neither compact nor proactive, thus making the effort re-
quired to create, inspect, and modify one’s privacy policy
too high.  For one user, difficulties in visualizing his policy
also served to erode his trust in the interface: “if I can’t
remember or visualize my policy as encoded in
COLLABCLIO, how can I be sure it’s doing the right thing?”

By virtue of being intensional, the rule-based interface has
two key properties that reduce the effort required to use it.
First, the interface supports a compact privacy policy ob-
ject—instead of a list of thousands of web pages and their
classifications, the policy representation consists of a set of
keywords and URL fragments.  As the number of web
pages in a user’s CLIO grows, a simple change to her pri-
vacy policy may change the classification of a large number
of web pages.  Second, the interface is proactive—the pri-
vacy policy is easily applied to documents as they are added
to the user’s CLIO.  Users agreed that while the rule-based
interface required more effort up front to create a policy,
over time it required less effort and was more convenient
than the original example-based approach.

Ideally we might allow a user to enter single-page excep-
tions to rules, rather than having to change rules in the pri-
vacy policy until every web page is classified correctly.
However, this would make rule ordering significant, re-
quiring a more complex mental model to use the rule lan-
guage.



Appropriate timing: feedback and control should be pro-
vided at a time when they are most likely to be required
and effective.  Both interfaces display immediate feedback
about the operation of one’s privacy policy.  If the page is
not classified correctly, one may immediately change the
privacy policy in order to rectify the problem.

Perceptibility: feedback and the means to exercise control
should be noticeable.  Feedback and control are provided
by the record light, monitor, and query-log windows.

Unobtrusiveness: feedback should not distract or annoy.  It
should be selective and relevant and should not overload
the recipient with information.  See Figures 1, 2, and 3.

Minimal intrusiveness: feedback should not involve infor-
mation which compromises the privacy of others.   We
adopt the principle that one’s privacy policy ought to re-
main private, despite multiple queries against that person.
(We considered numerous “attacks” against a user’s privacy
policy and designed the query facility to prevent them.)
Also, when a person issues an anonymous query against
other people, her name is not logged along with the names
of people making normal queries in the query-log.

Fail-safety: in cases where users omit to take explicit ac-
tion to protect their privacy, the system should minimize
information capture, construction, and access.  In both
interfaces, the default privacy policy is to classify web
pages as private, thus minimizing the amount of information
shared with others.

Meaningfulness: Feedback and control must incorporate
meaningful representations of information captured and
meaningful actions to control it, not just raw data and un-
familiar actions. The record light is analogous to the fa-
miliar red light on a video camera.  The rule language is
similar to the language used in major web search engines
for finding web pages.

Low cost: Naturally, we wish to keep costs of design solu-
tions down.  Our implementation is a prototype; the empha-
sis on low-cost design and implementation reflects a trade-
off in the trustworthiness and reliability of the resulting
system.

PRIVACY INTERFACES IN OTHER SYSTEMS
Our experience with COLLABCLIO led us to the conclusion
that privacy interfaces ought to support privacy policies as
first-class objects, and that compact, proactive privacy poli-
cies can best be represented intensionally.  To show that our
insights can be applied to domains besides web browsing,
we use them to critique the privacy interfaces in three dif-
ferent systems: Windows NT 4.0, email, and telephony.

Windows NT 4.0 enables users to share files with col-
leagues across the network. Each file has associated with it
a set of permissions; these permissions grant varying levels
of access to listed users.  A dialog box displays the list of
users/groups allowed to access each file or directory, along
with the permissions granted to each one.  Checkboxes

control whether a setting is applied to the current file, or to
all files recursively in this subtree.  In this dialog box, users
and groups may be added, deleted, or have their access
rights modified.2

This system treats privacy as a property of files and folders
instead of as an object in its own right.  Due to this exten-
sional representation, privacy does not scale to large num-
bers of items.  It is difficult to visualize.  For example, there
is no way to list which files are shared with a particular user
in Windows NT 4.0.  In addition, the privacy of a particular
file depends on its location (whether or not its enclosing
folder is shared).  Excepting the case where a file inherits
permissions from its enclosing folder, privacy is not proac-
tive—it does not apply to items that have not yet been cre-
ated.  There is no way to express a proactive policy such as
“Share all Microsoft Word documents, regardless of their
location.”

Email clients such as Pine, MH, and Eudora provide no
specific mechanisms for expressing a privacy policy over
email messages.  For example, a user might send and re-
ceive email messages related to camera equipment, and
wish to share this archive with other users.  Since his email
program provides no mechanisms for automatically sharing
information, he must use the file system to accomplish
sharing, subject to the underlying mechanism’s limitations.
In this case, the user must manually save all camera-related
messages to a special folder, and use whatever file system
mechanisms are available to make the contents of this
folder public.3

In the telephony domain, both the caller and the recipient of
the call have information they may choose to keep private.
Caller ID is a technology that reveals the name and number
of the phone used to make the call.  The caller may wish to
keep her phone number private and the recipient may wish
to avoid revealing whether she is at home to take the call.
To protect her privacy, the caller has the option of remain-
ing anonymous on a particular call or on all calls.  In re-
sponse, the recipient has the option of refusing to receive
any anonymous calls.  Answering machines are a technol-
ogy that enable a person to “screen” individual calls, see
who is calling, and decide whether to answer the call or let

                                                          
2 The UNIX file system provides a similar command-line

based interface.  The umask command implements a dy-
namically-scoped default protection, in contrast with the
lexically-scoped protection of NT’s folder permission in-
heritance.

3 This single mechanism conflates multiple objectives.  A
user has no way of dissociating the privacy of email mes-
sages with his organization for locating them himself.  A
user who ordered a used camera via email might want to
keep this with his other camera messages, yet be unable to
do this safely if the message contained his credit card
number.



the caller leave a message.  Both technologies allow people
to make decisions regarding individual calls (or all calls)
but fail to enable them to articulate more expressive poli-
cies based on groups of users.

The telephone system uses an extensional representation of
privacy policies, and hence policies for phone calls are not
compact or proactive.  For example, the telephone system
does not allow one to state the proactive policy “Answer all
phone calls from coworkers, and direct all other calls to the
answering machine.” In order to enforce such a policy, a
person would have to screen each call individually.  Simi-
larly, a person cannot instruct the Caller ID system to reveal
his phone number under certain conditions (when calling
family) but not others (when calling vendors).

FUTURE WORK
Our testbed implementation is only the beginning.  We plan
to gather more users so we can conduct larger studies of
user acceptance.  There are many directions to go from
here, but we focus on two main areas: increasing the ex-
pressiveness of privacy policies, and making it more con-
venient to use the system.

User feedback has revealed several areas in which the pri-
vacy rule language in COLLABCLIO is not expressive
enough.  These areas include time-based policies and finer-
grained classification.

Our simplification of policy assumes that policies are not
time-dependent.  However, this precludes the expression of
policies that are a function of time, for example:

•  Don’t share any information about class grades until
grades have been released at the end of the grading pe-
riod.

•  Hide all web pages visited during non-work hours.

In the future, we plan to investigate interfaces for allowing
users to specify time-dependent policies.

We have assumed a binary classification scheme for web
pages: public and private.  However, there are many cases
in which this is insufficient: for example, a user might want
to define a group of friends, with whom he’ll share in-
formation that is private to everyone else.  This complicates
visualization of the privacy policy.

Although not described in this paper, COLLABCLIO provides
a small amount of support for tailoring privacy policies
based on the identity of the person asking for information
(the asker).  The current system provides anonymity set-
tings similar to those found in the Caller ID system; the
asker can be anonymous when making a query, and the re-
sponder has the option of refusing anonymous queries or
responding anonymously.  A future extension will be to
support a richer set of asker attributes, and allow a privacy
policy to be conditional based on these attributes, such as
the asker’s privacy policy or his research group.  This
would allow policies such as:

•  Symmetry: answer a query only if the asker would an-
swer the same query for me.

•  Share my current research results only with people in
my research group.

In addition to expressiveness, it would be possible to in-
crease the convenience of the current system.  One way to
accomplish this would be the use of machine learning to
generalize privacy policy rules based on a set of labeled
examples, or construct an intensional policy given an exten-
sional representation.  However, users might not understand
how the machine learning algorithm worked, and would be
less likely to trust it to learn the correct policy.  A system
which incorporated machine learning might allow a user to
classify certain representative pages, and use the machine-
generated rules as guidelines to help the user formulate his
desired privacy policy.

CONCLUSION
We have introduced the notion of an explicit privacy policy
object, and discussed two classes of interfaces for specify-
ing privacy policies.  We have conducted a case study of
intensional and extensional interfaces in the web browsing
domain, and discussed the tradeoffs between them.  Our
experience has led to the following conclusions:

•  Privacy policies should be treated as first-class objects.

•  Policy objects should be easy to create, inspect, modify
and monitor; this is facilitated by a direct manipulation
interface.

•  Policy objects should have a compact representation
and apply proactively to items not yet created; this is
facilitated by an intensional representation.

ACKNOWLEDGMENTS
This research was funded in part by Office of Naval Re-
search grants 92-J-1946 and N00014-94-1-0060, by
ARPA/Rome Labs grant F30602-95-1-0024, by a gift from
Rockwell International Palo Alto Research, by National
Science Foundation grants IRI-9357772 and IRI-9303461,
and by a National Science Foundation graduate fellowship.

REFERENCES
1. Victoria Bellotti.  Design for Privacy in Multimedia

Computing and Communications Environments.  Tech-
nology and Privacy: the New Landscape.  MIT Press,
1996, in publication.

2. N. J. Davies, R. Weeks, and M. C. Revett. Information
agents for the World Wide Web, pages 81-99, Springer-
Verlag, 1997.

3. Leonard N. Foner. A security architecture for multi-
agent matchmaking. In Proceedings of the Second In-
ternational Conference on Multiagent Systems, pages
80-86, Kyoto, Japan, December 1996.



4. Scott E. Hudson and Ian Smith. Techniques for Ad-
dressing Fundamental Privacy and Disruption  Tradeoffs
in Awareness Support Systems. In  Proceedings of the
ACM 1996 Conference on Computer Supported Coop-
erative Work, pages 248-257, Boston, MA, November
1996.

5. Peter Jackson, Han Reichgelt, and Frank van Harmelen.
Logic-Based Knowledge Representation, page 41.  MIT
Press, 1989.

6. K. Kamiya, M. Roscheisen, and T. Winograd. Grass-
roots: a system providing a uniform framework for
communicating, structuring, sharing information, and
organizing people. Computer Networks and ISDN Sys-
tems, 28(7-11):1157-1174, May 1996.

7.  Richard M. Keller, Shawn R. Wolfe, James R. Chen,
Joshua L. Rabinowitz, and Nathalie Mathe. A Book-
marking Service for Organizing and Sharing URLs. In
Sixth International World Wide Web Conference, Santa
Clara, CA, April 1997.

8. P. Klark and U. Manber. Developing a personal Internet
assistant. In Proceedings of ED-MEDIA 95 - World
Conference on Educational Multimedia and Hyperme-
dia, Graz, Australia, pages 372-377, June 1995.

9. Ben Shneiderman.  Direct manipulation: a step beyond
programming languages.  Computer, 16(8):57-69,
August 1983.


