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Abstract

Extensible systems, such as Java or the SPIN exten-

sible operating system, allow for units of code, or ex-

tensions, to be added to a running system in almost

arbitrary fashion. Extensions closely interact through

low-latency, but type-safe interfaces to form a tightly

integrated system. As extensions can come from arbi-

trary sources, not all of whom can be trusted to con-

form to an organization's security policy, such struc-

turing raises the question of how security constraints

are enforced in an extensible system. In this paper, we

present an access control mechanism for extensible sys-

tems to address this problem. Our access control mech-

anism decomposes access control into a policy-neutral

enforcement manager and a security policy manager,

and it is transparent to extensions in the absence of

security violations. It structures the system into pro-

tection domains, enforces protection domains through

access control checks, and performs auditing of sys-

tem operations. It works by inspecting extensions for

their types and operations to determine which abstrac-

tions require protection, and by redirecting procedure

or method invocations to inject access control opera-

tions into the system. We describe the design of this

access control mechanism, present an implementation

within the SPIN extensible operating system, and pro-

vide a qualitative as well as quantitative evaluation of

the mechanism.
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1 Introduction

Extensible systems, such as Java [15, 22] or SPIN [6],

promise more power and exibility, and thus enable

new applications such as smart clients [44] or active

networks [41]. Extensible systems are best character-

ized by their support for dynamically composing units

of code, called extensions in this paper. In these sys-

tems, extensions can be added to a running system

in almost arbitrary fashion, and they interact through

low-latency, but type-safe interfaces with each other.

Extensions and the core system services are typically

co-located within the same address space, and form

a tightly integrated system. Consequently, extensible

systems di�er fundamentally from conventional sys-

tems, such as Unix [26], which rely on processes ex-

ecuting under the control of a privileged kernel.

As a result of this structuring, system security be-

comes an important challenge, and access control be-

comes a fundamental requirement for the success of

extensible systems. As system security is customar-

ily expressed through protection domains [19, 35], an

access control mechanism must:

� structure the system into protection domains

(which are an orthogonal concept to conventional

address spaces),

� enforce these domains through access control

checks,

� support auditing of system operations.

Furthermore, an access control mechanism must ad-

dress the fact that extensions often originate from

other networked computers and are untrusted, yet ex-

ecute as an integral part of an extensible system and

interact closely with other extensions.

In this paper, we present an access control mecha-

nism for extensible systems that meets the above req-

uisites. The mechanism separates the security policy



from its enforcement, as well as from the actual func-

tionality of the system. It builds on a simple, yet

powerful model for the interaction between its policy-

neutral enforcement manager and a given security pol-

icy, and is transparent to extensions and the core sys-

tem services in the absence of security violations. The

access control mechanism works by inspecting exten-

sions for their types and operations to determine which

abstractions require protection, and by redirecting pro-

cedure or method invocations to inject access control

operations into the system.

The access control mechanism provides three types

of access control operations. The operations are (1)

explicit protection domain transfers to delineate the

protection domains of an extensible system, (2) ac-

cess checks to control which code can be executed and

which arguments can be passed between protection do-

mains, and (3) auditing to provide a trace of system

operations. The access control mechanism works at the

granularity of individual procedures (or, object meth-

ods), and provides precise control over extensions and

the core system services alike.

Access control and its enforcement is but one aspect

of the overall security of an extensible system. Other

important issues, such as the speci�cation of security

policies, or the expression and transfer of credentials

for extensions are only touched upon or not discussed

at all in this paper. In particular, we assume the ex-

istence of some means (such as digital signatures) for

authenticating both extensions, as they are loaded into

the system, and users, as they log into the system.

These issues are orthogonal to access control, and we

believe that a simple, yet powerful access control mech-

anism, as presented in this paper, can serve as a solid

foundation for future work on other aspects of security

in extensible systems.

The remainder of this paper is structured as follows:

Section 2 elaborates on the goals of our access control

mechanism, and Section 3 describes its design. Sec-

tion 4 presents the implementation of our access con-

trol mechanism within the SPIN extensible operating

system. Section 5 reects on our experiences with de-

signing and implementing our access control mecha-

nism, and Section 6 presents a detailed performance

analysis of the implementation. Section 7 reviews re-

lated work, and Section 8 outlines future directions for

our research into the security of extensible systems.

Finally, Section 9 concludes this paper.

2 Goals

An access control mechanism for an extensible sys-

tem must impose additional structure onto the system.

But, at the same time, it should only impose as much

structure as strictly necessary to preserve the advan-

tages of an extensible system. Based on this realiza-

tion, we identify four goals which inform the design of

our system.

Separate access control and functionality. The access

control mechanism should separate the security policy

and its enforcement from the actual code of the sys-

tem and extensions. This separation of access control

and functionality supports changing security policies

without requiring access to extension or system source

code. This is especially important for large computer

networks, such as the Internet, where the same exten-

sion executes on di�erent systems with di�erent secu-

rity requirements, and where source code typically is

not available. This goal does not prevent a program-

mer (who writes an extension) from de�ning (part of)

the security policy for that extension. However, it calls

for a separate speci�cation of such policy, similar to an

interface speci�cation which o�ers a distinct and con-

cise description of the abstractions found in a unit of

code. This policy speci�cation may then be loaded into

an extensible system as the extension is loaded.

Separate policy and enforcement. The mechanism

should separate the security policy from its actual en-

forcement. This separation of policy and enforcement

allows for changing security policies without requiring

intrinsic changes to the core services of the extensible

system itself. Rather, the security policy is provided

by a (trusted) extension, and, as a result, the access

control mechanism leverages the advantages of an ex-

tensible system and becomes extensible itself.

Use a simple, yet expressive model. The mechanism

should rely on a simple, yet expressive model of pro-

tection which covers a wide range of possible security

policies, including policies that change over time or rely

on the history of the system. This goal ensures that the

access control mechanism can implement and strictly

enforce a wide range of security policies. Furthermore,

it requires that the security policy has control over all

relevant aspects of access control. In particular, the

policy should be able to specify the exact extent of pro-

tection domains, access control checks, and auditing.

At the same time, the access control mechanism should

favor simplicity over complex interactions between the

security policy and the enforcement manager.

Enforce transparently. The mechanism should be

transparent to extensions and the core system ser-

vices, in that they should not need to interact with

it as long as no violations of the security policy oc-

cur. This goal ensures that the mechanism actually

provides a clean separation of security policy, enforce-

ment, and functionality. Furthermore, it ensures sup-

port for legacy code (to a degree), and enables aggres-

sive, policy-speci�c optimizations that reduce the per-

formance overhead of access control. At the same time,

it ensures that extensions are noti�ed of security faults,
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Figure 1: Overview of access control in an extensible sys-

tem. The access control mechanism combines the extension

itself, the security constraints for the extension as speci�ed

by the programmer, and a site's security policy to place a

secure version of the extension into the extensible system.

and can implement their own failure model. This goal

attempts to reduce the access control interface, as seen

by extensions, to handling a program fault such as di-

vision by zero or dereferencing a NIL reference.

The above four goals, taken together, call for a de-

sign that isolates functionality, security policy, and en-

forcement in an extensible system, and that provides a

clear speci�cation for their interaction. In other words,

the goals call for an access control mechanism that

combines the extension itself, the security constraints

for the extension (as speci�ed by the programmer), and

a site's security policy to produce a secure extension.

At the same time, the mechanism is not limited to

changing only the extension as a result of this combi-

nation process, but can impose security constraints on

other parts of the extensible system as well. This pro-

cess of combining functionality and security to provide

access control in an extensible system is illustrated in

Figure 1.

A design that addresses the four goals e�ectively de-

�nes the protocol by which the security policy and the

enforcement manager interact, and by which, if neces-

sary, extensions are noti�ed of security-relevant events.

As such, this protocol is an internal protocol. In other

words, the abstractions used for expressing protection

domains and access control checks need not be, and

probably should not be, the same abstractions pre-

sented by the security policy. It is the responsibility of

the security policy manager to provide users and sys-

tem administrators with a high-level and user-friendly

view of system security.

2.1 Examples

As long as extensions, such as most early Java applets,

use only a few, selected core system services, provid-

ing protection in an extensible system reduces to iso-

lating extensions from each other and performing ac-

cess control checks in the core services. However, for

many real-world applications of extensibility, such a

protection scheme would be insu�cient as extensions

use some parts of the system and are used by other

parts. For example, an extension may provide a new

�le system implementation, such as a log-structured

�le system, o�er additional functionality, such as com-

pression or encryption, for existing �le systems, or sup-

port higher-level abstractions, such as transactions, on

top of the storage services. An extension may also

implement new networking protocols, such as multi-

cast, or higher-level communication services, such as

a remote procedure call package or an object request

broker (ORB), on top of the existing networking stack.

All of the above examples share the same struc-

ture in that they rely on some core services (the stor-

age services and the networking stack), while, at the

same time, they are shared by several other extensions.

From a security viewpoint, the programmer who writes

such an extension will want to protect the resources

used by that extension. So, for a transaction manager,

she would like to ensure that the �les or disk extents

used for storing transaction data can only be accessed

through the transaction manager. And, for an ORB,

she would like to ensure that the network port used for

communicating with other nodes can not be accessed

by other extensions.

A simple way to implement these security con-

straints would be to place the transaction manager or

ORB into its own protection domain and to use access

checks on the storage services or networking stack to

protect the resources used by the transaction manager

or ORB. The security constraints in these examples

thus not only a�ect the service provided by the exten-

sion itself, but also cover other services of an extensible

system. At the same time, overall security in an ex-

tensible system requires coalescing the constraints for

several extensions. Consequently, separating the speci-

�cation of security constraints and functionality would

clearly aid in providing security for an extensible sys-

tem.

In addition to the programmer, the administrator of

an extensible system may want to impose additional re-

strictions on an extension. For example, she may want

to restrict how other extensions can call on the trans-

action manager in order to ensure that only a transac-

tion's initiator can actually commit it. Or, she may re-

quire auditing of the transaction manager's operations

to ensure that a log record is generated if the commit
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Figure 2: Structure of the access control mechanism. The

enforcement manager is part of the core system services,

provides information on the types and operations of an

extension (reection), and redirects procedure or method

invocations (interposition) to ensure that a given security

policy is actually enforced onto the system. The security

policy manager is a trusted extension, determines which

abstractions require which access control operations, and

performs the actual mediation.

operation is not performed by a transaction's initiator.

Alternatively, the administrator may want to impose

a security policy that conicts with the security con-

straints expressed by the programmer. For example,

she may want to integrate the ORB into the same pro-

tection domain as the networking stack, as the ORB

is the only means for remote communication in an in-

stallation (such as a corporate intranet), and providing

access control on the ORB is adequate for security. As

illustrated by these examples, the security policy for an

extensible system varies according to the requirements

of a speci�c installation, even if the functionality does

not change. It is thus not su�cient to only separate

access control from functionality, but also necessary to

separate the security policy from its enforcement to

allow for changing security policies without requiring

intrinsic modi�cations to the core system.

So far, we have argued for a clean separation of se-

curity policy, functionality, and enforcement, and for a

system that transparently manages security. However,

extensions need to be noti�ed of failures so that they

can implement their own failure model. For example,

the transaction manager might decide to abort the of-

fending transaction, or the ORB may need to clean up

the internal state of the corresponding connection. It

is thus important that access control is only transpar-

ent in the absence of failures, and that extensions are

noti�ed of security violations.

3 Design

The design of our access control mechanism divides

access control in an extensible system into an enforce-

ment manager and a security policy manager. The

enforcement manager is part of the trusted core ser-

vices of the extensible system. It provides information

on the types and operations of an extension, and redi-

rects procedure or method invocations to inject access

control operations into the system. The security pol-

icy manager is provided by a trusted extension, and

determines the actual security policy for the system.

It decides which procedures require which access con-

trol operations, and performs the actual mediation for

access control. This structure is illustrated in Figure 2.

The protocol that determines the interaction be-

tween the enforcement and the security policy man-

ager relies on two basic abstractions, namely security

identi�ers and sets of permissions, or access modes.

Security identi�ers are associated with both subjects

and objects, and represent privilege and access con-

straints. Permissions are associated with operations,

and represent the right to perform an operation. The

enforcement manager maintains the association of sub-

jects and objects with security identi�ers, and performs

access control checks based on access modes. At the

same time, it does not interpret security identi�ers and

access modes, as their meaning is determined by the

security policy manager which performs the actual me-

diation.

As extensible systems feature a considerably dif-

ferent structuring from traditional systems (such as

Unix), it is necessary to de�ne the exact meaning of

subjects and objects. We treat threads in an extensi-

ble system as subjects (as they are the only active en-

tities), and all other entities, including extensions, as

objects. This is not to say that subjects only represent

the principal that created a thread (as this principal

often is not a direct user of the system, but only rep-

resented by an extension which spawned the thread).

Rather, the rights of a subject depend on the current

protection domain, i.e. the extension whose code the

thread is currently executing, and, possibly, on previ-

ous protection domains, i.e. the history of extensions

whose code the thread has executed before entering

the current extension. Furthermore, while we treat ex-

tensions as objects, they are subject to a somewhat

di�erent form of access control than other objects in

an extensible system.

3.1 Access Control on Extensions

Conceptually, access control on objects other than ex-

tensions determines whether a subject can legally exe-

cute some operation on some object. Access control on

extensions di�ers from this concept in that it is some-

times necessary to control how one extension interacts

with another extension. Speci�cally, this is the case

at link-time: The extension to be loaded into the sys-

tem needs to be linked against other extensions, whose
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interfaces it will execute and extend. It is thus neces-

sary, at link-time, to provide access control over which

interfaces a given extension can link against for execu-

tion and extending [38, 32]. Enforcing this link-time

control over extensions is important, since it presents a

�rst line of defense against unauthorized access (after

all, if an extension can not link against an interface, it

can not directly use it), and since it may result in op-

portunities for optimizing away dynamic access control

operations.

Link-time control over extensions can, however, be

expressed through regular access control checks by en-

forcing checks on linkage operations, and by executing

these operations within a protection domain appropri-

ate for the extension to be linked. To impose access

control checks on linkage operations, the enforcement

manager injects the appropriate checks into the link-

ing service during system start-up. To execute these

operations within a protection domain appropriate for

an extension, the loader spawns a new thread for each

extension to be loaded into the system, which then per-

forms the actual linkage operations (and may also per-

form other necessary initialization on the extension's

behalf). The initial security identi�er of this thread

represents the corresponding protection domain. It is

determined by the security policy manager based on an

extension's signature, and is associated with the thread

(as well as with the procedures of the extension) by the

enforcement manager.

In addition to authenticating both the protection do-

main of an extension and the initial thread for link-

ing and initialization, the enforcement manager de-

termines the types and operations exported by that

extension, and passes this information to the security

policy manager. Based on this information and an ex-

tension's signature, the security policy manager deter-

mines which operations and types require which access

control operations. The security policy manager, in

turn, instructs the enforcement manager to provide se-

curity identi�ers for an extension's types, and to inject

access control operations into the extension (and other

parts of the system if necessary). Once the actual link-

ing of an extension is complete, and the appropriate

access control operations have been injected into the

system, the extension is fully and securely integrated

into the system, and its code can now be executed.

3.2 Access Control Operations

The enforcement manager supports three types of ac-

cess control operations, and also manages the security

identi�ers associated with subjects and objects. The

operations are (1) protection domain transfers to struc-

ture the system into protection domains, (2) access

control checks to enforce these protection domains, and

(3) auditing to provide a trace of system operations.

Protection domain transfers change the protection do-

main associated with a thread, based on the current

protection domain of a thread and on the procedure

that is about to be invoked. Access checks determine

whether the current subject is allowed to execute a

procedure at all, and control the passing of arguments

and results. For each argument that is passed into

a procedure, and for each result that is passed back

from the procedure, access checks determine whether

the subject has su�cient rights for the object. Finally,

auditing generates a log-entry for each procedure invo-

cation, and serves as an execution trace of the system.

When instructing the enforcement manager to per-

form access control operations on a given procedure,

the security policy manager speci�es the types of ac-

cess control operations (i.e., any combination of pro-

tection domain transfer, access checks, and auditing).

For access checks, it also speci�es the required access

modes, one for the procedure itself, one for each argu-

ment, and one for each result.

When performing access control checks, the enforce-

ment manager veri�es that the subject has at least

those rights to the object (including the procedure it-

self) as represented by the corresponding access mode.

The access control operations are ordered as follows.

Before a given procedure is executed, the enforcement

manager performs �rst access checks, then a protec-

tion domain transfer, and, �nally, auditing (which also

records failed access checks). On return from the pro-

cedure, the enforcement manager performs �rst the re-

verse protection domain transfer, then access checks on

the results, and, �nally, auditing (again, also recording

failed access checks).

To perform the access control operations, the en-

forcement manager requires three mappings between

security identi�ers, types, and access modes. These

mappings are used to communicate a site's security

policy between security policy manager and enforce-

ment manager. Using Sid for security identi�ers,

Type for types as de�ned by the extensible system,

and AccessMode for access modes, the three map-

pings are:

(1) Sid � Sid �! Sid

(2) Sid � Sid �! AccessMode

(3) Sid � Type �! Sid

The �rst mapping is used for protection domain

transfers. It maps the current (or, original) security

identi�er of a thread and the security identi�er of the

procedure that is about to be called into the new secu-

rity identi�er of the thread. The enforcement manager

associates the thread with the new security identi�er

before control passes into the actual procedure, and it

restores the original security identi�er upon completion

of the procedure.
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The second mapping is used for access checks. It

maps the security identi�er of a thread and the security

identi�er of an object into an access mode represent-

ing the maximum rights the subject has on the object.

This access mode must include all permissions of the

requested access mode (as established by the security

policy manager when requesting access checks for the

procedure) for the access check to succeed.

The third mapping is used for the creation of objects.

It maps the security identi�er of a thread that is about

to create an object and the type of that object into

the security identi�er for that object. When a new

object is created by a thread, the enforcement manager

associates the new object with the security identi�er

as speci�ed by this mapping. A simpli�cation of this

mapping may omit the object type from the mapping,

and simply map all objects created by a thread into

the same security identi�er.

Both variations of the third mapping provide rel-

atively coarse-grained control over the security iden-

ti�ers associated with objects, and are clearly insuf-

�cient for some services (such as a �le server which

typically executes threads within its own protection

domain but may need to associate di�erent �les with

di�erent security identi�ers). Thus, to support trusted

services that provide �ner-grained control over the se-

curity identi�ers associated with objects, the enforce-

ment manager provides an interface through which a

trusted security service can change the security identi-

�er of an object.

New subjects, that is freshly spawned threads, are

associated with the same security identi�er as the

spawning thread so that they possess the same priv-

ileges. An exception to this rule occurs for threads

that are created to link and initialize extensions (as dis-

cussed above), and for threads that are created when

a user logs into the system. In the latter case, an ap-

propriate form of authentication (such as a password)

establishes the identity of the user to the security pol-

icy manager, and the enforcement manager associates

the thread with the corresponding security identi�er.

Depending on the complexity of the security policy

implemented by the security policy manager, lookup

operations for the three mappings may incur a rela-

tively high performance overhead. Consequently, the

enforcement manager caches individual entries in the

three mappings, which reduces the frequency with

which the security policy manager needs to resolve en-

tries and therefore the overall performance overhead of

access control operations. The security policy manager

has full control over this mediation cache. It sets the

overall size of the cache, can remove any entry from the

cache at any time, and also ush the entire cache. Fur-

thermore, for any lookup operation on any of the map-

pings, it speci�es whether that particular entry can be

cached and, if so, for how long.

4 Implementation

We have implemented our access control mechanism in

the SPIN extensible operating system [6]. Our access

control mechanism does not depend on features that

are unique to SPIN, and could be implemented in other

systems. It requires support for dynamically loading

and linking extensions, for multiple concurrent threads

of execution, for determining an extension's types and

operations, and for redirecting procedure or method

invocations (for example, by patching object jump ta-

bles either statically or dynamically). Consequently,

our access control mechanism can be implemented in

other extensible systems that provide these features,

such as Java.

Our implementation is guided by three constraints.

First, it has to correctly enforce a given security pol-

icy as de�ned by the security policy manager. Sec-

ond, it has to be simple and well-structured to allow

for validation

y

and for easy transfer to other systems.

Third, the implementation should be fast to impose as

little performance overhead as possible.

In SPIN, a statically linked core provides most ba-

sic services, including hardware support, the Modula-3

runtime [39, 18], the linker/loader [38], threads, and

the event dispatcher [32]. All other services, including

networking and �le system support, are provided by

dynamically linked extensions. We have implemented

the basic abstractions of our access control mechanism,

such as security identi�ers and access modes, as well

as the enforcement manager as part of this static core.

Services in the static core are trusted in that, if

they misbehave, the security of the system can be un-

dermined, and the system may even crash. At the

same time, the static core must be protected against

dynamically linked extensions which usually are not

trusted. Consequently, the enforcement manager im-

poses access control on the core services, including the

linker/loader as described in Section 3.1, to protect it-

self and other core services, and to ensure that only a

trusted extension can de�ne the security policy.

The implementation consists of 1000 lines of well-

documented Modula-3 interfaces and 2400 lines of

Modula-3 code, with an additional 50 lines of changes

to other parts of the static core. It uses the Modula-3

runtime to determine the types and operations of an

extension, and the event dispatcher [32] to inject ac-

cess control operations into the system. It de�nes the

abstractions for security identi�ers and access modes.

Security identi�ers are simply integers. Access modes

y

We have not validated the implementation. However, a crit-

ical characteristic for any security mechanism is that it be small

and well-structured [35].
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are immutable objects, and are represented by a set of

simple, pre-de�ned permissions in addition to a list of

permission objects. The simple permissions provide 64

permissions at a low overhead. The list of permission

objects lets the security policy manager de�ne addi-

tional permissions (where each permission object can

represent several permissions) by subtyping from an

abstract base class, at some performance cost.

The functionality of the enforcement manager is vis-

ible through two separate interfaces. One interface lets

extensions discover the state of system security in the

presence of security faults. The other interface, to-

gether with the interface of the security policy man-

ager (which is also part of the static core), de�nes the

trusted protocol between the security policy and the

enforcement manager. The enforcement manager op-

erates as described in Section 3. It uses the simpli�ed

third mapping for assigning objects to security iden-

ti�ers (see Section 3.2), and thus provides a default

security identi�er for all objects within a protection

domain.

On object creation, the standard Modula-3 alloca-

tor (through a call-back into the enforcement manager)

stores this default security identi�er in the header of

the newly allocated object. At the same time, only

some types in an extensible system require access con-

trol. For example, an auxiliary object that is only used

within an extension and never passed outside will never

require access control. Thus, to limit the memory over-

head of allocating an additional word in each object

header, the security manager can dynamically activate

and deactivate object security for each Modula-3 type

individually. Access checks on objects that are not as-

sociated with a security identi�er simply fail.

To maintain a thread's security identi�er and the

corresponding default object security identi�er, the en-

forcement manager associates each thread with a secu-

rity identi�er stack. Each record on this stack con-

tains the two security identi�ers for the subject and

its objects. The enforcement manager pushes a new

record onto the stack only during a protection do-

main transfer before the thread enters the correspond-

ing procedure or method, and pops the record o� the

stack when the thread returns from the procedure or

method. Records are pre-allocated in a global pool to

avoid dynamic memory allocation overhead, and are

pushed and popped using atomic enqueue and dequeue

operations to avoid the overhead of locking the global

pool.

5 Discussion

By using our access control mechanism, �ne-grained

security constraints can be imposed onto an extensible

system. However, the expressiveness of our mechanism

is limited in that it can not (entirely) supplant pru-

dent interface design. In particular, three issues arise,

namely the use of abstract data types, the granularity

of interfaces, and the e�ect of calling conventions.

Our access control mechanism provides protection

on objects in that it provides control over which oper-

ations a subject can legally execute on an object. To

do so, it relies on abstract data types to hide the im-

plementation of an object. In other words, if the type

of an object does not hide its implementation, it is pos-

sible to directly access and modify an object without

explicitly invoking any of the corresponding operations

and thus without incurring access control.

The structure of an interface also inuences the de-

gree of control attainable over the operations on an

object. In particular, the granularity of an interface,

i.e. how an interface decomposes into individual op-

erations on a type, determines the granularity of ac-

cess control. So, an interface with only one operation

(which, like ioctl in Unix, might use an integer ar-

gument to designate the actual operation) allows for

much less �ne-grained control than an interface with

several independent operations.

The calling convention used for passing arguments

to a procedure or object method a�ects whether argu-

ment passing can be fully controlled. Notably, call-

by-reference grants both caller and callee access to

the same variable. As caller and callee may be in

di�erent protection domains, call-by-reference e�ec-

tively creates (type-safe) shared memory. In a multi-

threaded system, information can be passed through

shared memory at any time, not just on procedure in-

vocation and return. Consequently, caller and callee

need to trust each other on the use of this shared mem-

ory, and access checks on call-by-reference arguments

are not very meaningful. Furthermore, in SPIN, call-

by-reference is almost always used to return additional

results from a procedure, as Modula-3 only supports

one result value. This unnecessary use of shared mem-

ory could clearly be avoided by supporting multiple

results or thread-safe calling conventions such as call-

by-value/result at the programming language level.

The three issues just discussed are directly related to

our access control mechanism relying on an extension's

interface, that is on the externally visible types and op-

erations of an extension, to impose access constraints.

A more powerful model could be used to express �ner-

grained security constraints. And, more aggressive

techniques, such as binary rewriting [42, 40, 16, 34],

could be used to enforce these constraints onto an ex-

tensible system. But such a system would also require

a considerably more complex design and implementa-

tion. At the same time, an extension's interface is

a \natural" basis for access control, as it provides a

concise and well-understood speci�cation of what an
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extension exports to other extensions and how it in-

teracts with them. Consequently, we believe that our

access control mechanism strikes a reasonable balance

between expressiveness and complexity.

As our access control mechanism relies on exten-

sions' interfaces to provide protection for an extensi-

ble system, it also requires some means to ensure that

these interfaces are, in fact, respected by the actual

code. SPIN uses a type-safe programming language

(Modula-3), and a trusted compiler to provide this

guarantee. As a result, the compiler becomes part of

the trusted computing base. Clearly, it is preferable to

establish this guarantee in the extensible system that

actually executes the code, especially for large com-

puter networks. Considerable work has been devoted

to this issue, and viable alternatives include typed

byte-codes [22], proof-carrying code [30], as well as

typed assembly language [28]. All of these e�orts are

complementary to our own.

6 Performance Evaluation

To determine the performance overhead of our imple-

mentation, we evaluate a set of micro-benchmarks that

measure the performance of access control operations.

We also present end-to-end performance results for a

web server benchmark. We collected our measure-

ments on a DEC Alpha AXP 133 MHz 3000/400 work-

station, which is rated at 74 SPECint 92. The machine

has 64 MByte of memory, a 512 KByte uni�ed exter-

nal cache, and an HP C2247-300 1 GByte disk-drive.

In summary, the micro-benchmarks show that access

control operations incur some latency on trivial opera-

tions, while the end-to-end experiment shows that the

overall overhead of access control is in the noise.

6.1 Micro-Benchmarks

To evaluate the performance overhead of access control

operations in our access control mechanism, we exe-

cute seven micro-benchmarks. All seven benchmarks

measure the total time for a null procedure call (a pro-

cedure that returns immediately and does not perform

any work), with and without access control operations.

The �rst benchmark simply performs a null procedure

call with no arguments. The other six benchmarks

additionally perform a protection domain transfer, an

access check on the procedure, and access checks on

one, two, four and eight arguments, respectively.

The performance of the security policy manager is

determined by a given security policy and its imple-

mentation. Consequently, for the micro-benchmarks,

we �x the necessary entries in the mediation cache of

the enforcement manager (see Section 3.2). The bench-

marks thus measure common-case performance, where

the security policy manager is not consulted because

Hot Cold

Null procedure call 0.1 0.5

Protection domain transfer 4.4 7.8

Access check on procedure 2.8 6.4

Access check on 1 argument 4.0 9.7

Access check on 2 arguments 6.7 12.0

Access check on 4 arguments 12.1 17.7

Access check on 8 arguments 24.0 29.5

Table 1: Performance numbers for access control opera-

tions. All numbers are the mean of 1000 trials in microsec-

onds. Hot represents hot microprocessor cache performance

and Cold cold microprocessor cache performance.

Operation # Instr.

Enter new protection domain

Get thread's security ID 3

Get procedure's security ID 1

Lookup in mediation cache 52

Locking overhead 62

Set up exception frame 7

Push security ID record 26

Overhead 10

Total number of instructions 161

Restore old protection domain

Pop security ID record 22

Remove exception frame 4

Overhead 4

Total number of instructions 30

Table 2: Instruction breakdown of the common path for

protection domain transfers, excluding the cost for the

event dispatcher. \Overhead" is the overhead of perform-

ing both protection domain changes within their own pro-

cedure. The other operations are explained in the text.

the necessary information is already available within

the enforcement manager. Furthermore, benchmarks

that perform access control checks use simple permis-

sions instead of permission objects (see Section 4).

Table 1 shows the performance results for the seven

micro-benchmarks. All numbers are in microseconds

and the average of 1000 trials. To determine hot mi-

croprocessor cache performance, we execute one trial

to pre-warm the processor's cache, and then execute

it 1000 times in a tight loop, measuring the time at

the beginning and at the end of the loop. To deter-

mine cold microprocessor cache performance, we mea-

sure the time before and after each trial separately,

and ush both the instruction and data cache on each

iteration.

Table 2 shows the instruction breakdown of the com-

mon path for protection domain transfers, excluding

the overhead for the event dispatcher (which amounts
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to 31 or 48 instructions, depending on the optimiza-

tions used within the event dispatcher [32]). On a

protection domain transfer, the enforcement manager

establishes the new protection domain before control

passes into the actual procedure, and restores the orig-

inal protection domain upon completion of the proce-

dure. Before entering the procedure, the enforcement

manager �rst determines the security identi�ers of the

thread and of the procedure. Then, based on these

security identi�ers, it looks up the security identi�ers

for the thread and new objects in the mediation cache,

which requires obtaining a lock for the cache. Next,

it sets up a new exception frame, so that the original

protection domain can be restored on an exceptional

procedure exit. Finally, it pushes a new record con-

taining the security identi�ers for the thread and new

objects onto the thread's security identi�er stack. Af-

ter leaving the procedure, the enforcement manager

pops the top from the thread's security identi�er stack

and removes the exception frame.

Additional experiments show that performing a pro-

tection domain transfer in addition to access checks

adds 3.9 microseconds to hot cache performance and

5.6 microseconds to cold cache performance for those

of the above benchmarks that perform access checks.

Furthermore, using permission objects instead of sim-

ple permissions for access checks, where the required

permission object matches the tenth object in the list

of legal permission objects (which represents a pes-

simistic scenario as each permission object can stand

for dozens of individual permissions), adds 6.8 mi-

croseconds for hot cache performance and 7.0 microsec-

onds for cold cache performance per argument.

The performance results show that access control op-

erations have noticeable overhead. They thus back our

basic premise that access control for extensible systems

should only impose as much structure as strictly neces-

sary. Furthermore, they underline the need for a design

that enables dynamic optimizations which avoid access

control operations whenever possible.

6.2 End-to-End Performance

To evaluate the overall impact of access control on sys-

tem performance, we present end-to-end results for a

web server benchmark. The web server used for our

experiments is implemented as an in-kernel extension.

It uses an NFS client to read �les from our group's �le

server, and locally caches the �le data in a dedicated

cache, backed by a simple, fast extent-based �le sys-

tem. As spawning new threads in SPIN incurs very

little overhead, the web server forks a new thread for

each incoming request. The thread �rst checks whether

the requested �le is available in the local cache, and,

if so, sends the �le data directly from the cache. Oth-

erwise, it issues an NFS read request, stores the �le in

the local cache, and then sends the data.

Our security policy places the web server into its

own protection domain. It performs access control

checks on all NFS and local cache operations. Files

in the local cache are automatically associated with a

security identi�er as described in Section 3.2. Files in

NFS are associated with a security identi�er by using

a mapping from the �le system name-space to security

identi�ers (similar to the one described in [3, 2]) to

provide �ne-grained control over which �les are asso-

ciated with which security identi�er. Since the secu-

rity policy imposes access control checks on both the

NFS client and the local cache, and since the individual

threads (spawned to serve requests) can only commu-

nicate through NFS and the local cache, the policy en-

sures that only authorized �les are accessible through

the web server. Furthermore, it makes it possible to

securely change privileges on a per-request basis, ei-

ther based on a remote login, or based on the machine

from which the request originated.

Our performance benchmark sends http requests

from one machine that is running the benchmark script

to another that is running the web server. It reads the

entire SPIN web tree, to a total of 79 �les or 5035

KByte of data. We run the benchmark without access

control, as a baseline, as well as with access control, to

measure the end-to-end overhead of our access control

mechanism. For each measurement, we �rst perform

15 runs of the benchmark to pre-warm the local cache,

and then measure the latency for 20 runs. The aver-

age latency for one run of the benchmark both with-

out and with access control is 16.9 seconds (including

5.4 seconds idle time on the machine running the web

server), and the di�erence between the two is in the

noise. Trials with access control incur a total of 1573

access checks, on average 20 for each �le.

The end-to-end performance experiments show that

the overhead of access control operations is negligi-

ble for a web server workload. We extrapolate from

this result that other applications will see a very small

overhead for other real-world applications. To better

quantify this overhead, we plan to conduct further ex-

periments in the future that use more complex security

policies and require �ner-grained access control opera-

tions.

7 Related Work

A considerable body of literature focuses on system

protection [19, 35] and appropriate security policies.

Starting from multi-level security [5, 12, 7], which has

become part of the U.S. Department of Defense's stan-

dard for trusted computer systems [13], much atten-

tion has been directed towards mapping non-military

policies onto multi-level security [23, 21], de�ning al-
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ternative policies more suitable for commercial appli-

cations [8, 10, 9, 3, 2, 1], and expanding multi-level

security to be more exible and powerful [24, 29].

Based on the realization that no single security pol-

icy is appropriate for all environments, the DTOS ef-

fort [27, 31, 37, 36] has the goal of providing a policy-

neutral access control mechanism. Their design re-

lies on the same basic abstractions (security identi-

�ers and access modes) as our access control mecha-

nism, and also features a separate security policy man-

ager. DTOS has been implemented on top of the Mach

micro-kernel. It di�ers from our access control mech-

anism in that it relies on address-spaces for protec-

tion domains, resulting in a relatively high overhead

for changing protection domains. Furthermore, it uses

explicit access checks on pre-de�ned permissions for en-

forcing protection domains, which makes it impossible

to change or remove access checks.

As reported in [37], adding explicit access checks to

the micro-kernel presented a considerable challenge as

it �xed part of the security policy within the system.

Furthermore, as noted in [36], their choice of check-

ing whether a subject can perform an operation on

an object (where the object is the primary argument

to an operation) does not provide su�cient exibility,

since the security decision may depend on other pa-

rameters to the operation as well. Our access control

mechanism avoids these limitations, as access control

operations are dynamically speci�ed and injected into

the system, and as they are strictly more expressive.

Due to Java's [15, 22] popularity for providing ex-

ecutable content on the Internet, and prompted by a

string of security breaches [11, 25] in early versions of

the system, research into protection for extensible sys-

tems has mostly focused on Java. In departure from

the original sand-box model, which grants trusted code

full access to the underlying system and untrusted code

almost no access, the Java security architecture is cur-

rently being extended [14] to allow for multiple protec-

tion domains, provide �ne-grained access control prim-

itives, and support cryptographic protocols.

The basic technique for performing dynamic access

checks in Java, called extended stack introspection, is

described in [43]. With this technique, each extension

is implicitly associated with a protection domain, and

access checks essentially take the intersection of all pro-

tection domains represented on the current call-stack

to determine if an operation is legal. While extended

stack introspection is su�ciently expressive to provide

�ne-grained access control, the current design relies on

explicit access control checks, and thus fails to separate

functionality from protection. Furthermore, as access

checks need to walk the entire call-stack, the perfor-

mance impact of extended stack introspection on ex-

tensible systems is still unclear.

Hagimont and Ismail [17] describe an alternative de-

sign for access control in Java which provides for a

separate description of security constraints through an

extended interface de�nition language. In their design,

security constraints are expressed as part of the inter-

face speci�cation for each extension, and result in the

creation of proxy objects which provide only limited

functionality to their clients. The design essentially

provides a form of type hiding [43] at the granularity

of entire methods, as the visibility of object methods

is controlled by the security constraints.

In its ability to provide access control at the granu-

larity of object methods, Hagimont and Ismail's design

is similar to CACL [33] which presents a general pro-

tection model for objects. At the same time, CACL

o�ers a more complete model (which includes explicit

representations of the owner of an object and its imple-

mentor) and a more e�cient implementation (through

object jump tables instead of proxy objects). The idea

of using limited e�ective types to avoid repeated dy-

namic access checks that determine whether a subject

can call on an object is complimentary to our design.

We thus believe that it could be used to provide an ef-

�cient implementation of the enforcement manager in

a pure object-oriented system.

8 Future Work

The access control mechanism described in this pa-

per provides us with an ideal test-bed for future re-

search on the security of extensible systems. Speci�-

cally, the policy-neutral and transparent enforcement

manager, with its ability to arbitrarily inject protection

domains and access checks into an extensible system,

o�ers us considerable power and exibility. We are

particularly interested in three areas for future work:

First, programmers and security administrators need

to be able to specify security constraints for the code

they write and use. We thus plan to investigate ap-

propriate speci�cation languages that are both user-

friendly (i.e., present a high-level of abstraction) and

su�ciently powerful to conveniently express detailed

security policies (i.e., provide enough exibility). Sec-

ond, as extensions often execute in networked environ-

ments, a protocol for the secure expression and transfer

of credentials is required. We thus intend to examine

distributed authentication protocols, such as those de-

scribed in [20, 4], in the context of extensible systems.

Finally, as illustrated by the micro-benchmarks in Sec-

tion 6, the access control operations show a relatively

high overhead when compared to a simple procedure

invocation. We thus plan to explore aggressive opti-

mizations that avoid dynamic access control operations

whenever possible.
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9 Conclusions

The access control mechanism for extensible systems

described in this paper breaks up access control into

a policy-neutral enforcement manager and a security

policy manager, and is transparent to extensions in the

absence of security violations. It structures the system

into protection domains through protection domain

transfers, enforces these protection domains through

access control checks, and provides a trace of system

operations through auditing. It works by inspecting

extensions for their types and operations to determine

what abstractions require protection, and by redirect-

ing procedure or method invocations to inject access

control operations into the system. The access control

mechanism is based on a simple, yet powerful protocol

by which the security policy and the enforcement man-

ager interact, and by which, if necessary, extensions are

noti�ed of security-relevant events.

The implementation of our access control mechanism

within the SPIN extensible operating system is sim-

ple, and, even though the latency of individual access

control operations can be noticeable, shows good end-

to-end performance. Based on our results, we predict

that most systems will see a very small overhead for

access control, and thus consider our access control

mechanism an e�ective solution for access control in

extensible systems.
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