
Extensibility in a Visual Language for Web-based Interpersonal

Communication

Steven L. Tanimoto Carlo E. Bernardelli

Dept. Computer Sci & Engin. Visual Epistemologist

Univ. of Washington

Seattle, Washington 98195 Rome, Italy

Abstract

One of the challenges of developing a visual lan-

guage for human-to-human communication is coming

up with a large enough visual vocabulary that users

are not overly limited in the meanings they can ex-

press. If a language system can provide extension

mechanisms directly to its end users, then the lan-

guage, or various dialects of it, can grow with their

use. Using an experimental prototype of a visual lan-

guage called Vedo-Vedi, we present a mechanism that

permits its users to de�ne new objects, new icons for

those objects, and relationships among those objects.

The de�ned objects can be used to �ll slots in frames

that represent visual sentences, and they take places

within a hierarchical menu system. One of the chal-

lenges of providing such an extension mechanism for

a visual language is making it easy for users to de-

�ne new icons, even if they are not comfortable with

artistic drawing tools. In Vedo-Vedi, users can create

new icons by selecting arbitrary rectangular regions

within special images provided for the purpose, or for

that matter, within any of the more than 80 images

used in the system. Other possible extension mech-

anisms are also discussed along with implementation

and performance issues.

1 Introduction

1.1 Motivation

In order to extend the possibilities of Internet-based

messaging to situations where parties to a communi-

cation may not speak the same language, visual lan-

guages are being developed. Unlike older visual lan-

guages, these are computer-based, and so they can

exploit computation in various ways. One of these

ways is internal representation of some or all of the

semantics of messages, which in turn, can permit an-

imation, translation and data compression. The de-

velopment of these computer-based visual languages

therefore poses new challenges. Because users may

want to communicate about many ideas and subjects,

an important capability is a means within the lan-

guage or language system to create new language ob-

jects and new constructs. In visual languages, new

constructs typically involve new images or graphics,

and the extension mechanisms may involve tools for

design or synthesis of new images and icons. While

visual languages can be easy for users to understand,

the need to create new images can make it di�cult for

users to de�ne their own terms. This paper addresses

this paradox, discussing several techniques for extend-

ing visual languages. Some of them are demonstrated

using the experimental prototype called Vedo-Vedi.

1.2 Previous Work

While cave paintings, hieroglyphics, written Chi-

nese, and other visual modes of communication

demonstrate a long and sophisticated evolution,

computer-based visual languages are much more re-

cent. Those created or proposed for interpersonal

communication rather than for control of computers

are very few and limited. Beardon [1] has proposed the

use of diagrams representing case frames for human

communication. Various systems for authoring of mul-

timedia presentations can be considered to be visual

scripting languages for human communication. How-

ever, these systems produce documents which must

be \played" rather than read. Visual languages for

animation include systems like CAEL [4], which tend

to concentrate on control of geometry, lighting, and

motion, rather than story elements.

At VL'97, one of us presented a survey of past work

in visual languages for human-to-human visual com-

munication along with a collection of research issues

needing attention [3]. The reader is referred to that

paper for additional background to the current one.

Previous work on extensibility of visual languages

takes two forms: that applicable to all languages (e.g.,

subroutine mechanisms, means to alter syntax, pre-

processing techniques), and those speci�c to visual

languages (e.g., means to create new visual representa-

tions). There is a long tradition of research of the �rst

type, documented in such publications as publications

of the POPL conference.

The important question of how new icons can be

easily created when needed in a visual language was

addressed by Repenning for the case when the new

icons are geometric transforms of existing ones [2]. A

related technique is used in the Vedo-Vedi system re-

ported here.

2 The Vedo-Vedi System

Vedo-Vedi is a visual language that permits graph-

ical messages to be composed, \explained" (via sim-



ple animations), sent through the Internet, viewed,

and translated into various natural languages. It cur-

rently is oriented towards messages about vacation

travel that 10-year-old children might send to each

other on the backs of picture postcards. The program

is written in Java 1.1, and it can be run either as an

applet from a server at the University of Washington

or as a stand-alone application.

2.1 General Design

The Vedo-Vedi system consists of a script editor, a

semantic subsystem, an animation engine, a transla-

tion component, and a messaging system.

The script editor contains a hierarhical menu of ob-

ject types, a script panel in which the current script is

displayed, and a panel of control buttons. A script is

made out of Vedo-Vedi objects. Each Vedo-Vedi ob-

ject is either a frame (playing the role of a verb) or a

slot �ller (playing the role of a noun). A script is a

sequence of frames, each of which may contain zero or

more slot �llers. A message is represented by one or

more scripts.

The semantic subsystem contains a database that

keeps track of certain relations de�ned among Vedo-

Vedi objects. It also includes inference mechanisms

that can derive certain simple conclusions from knowl-

edge in the database. The semantic subsystem can

keep track of time by counting minutes, hours, and

days that elapse within a narrative time frame; it can

work with both relative and absolute time and dates.

It can keep track of space in terms of an inclusion

hierarchy. It also keeps track of membership in the

narrator's travelling group and the current location of

the travelling group in the parts of the world that it

knows about.

The animation subsystem consists primarily of

a script interpreter and a cinematographic library

of simple e�ects that the script interpreter uses to

present a dynamic display of a script.

The translation mechanism employs for each tar-

get language (e.g., Italian) a �le of schemata, one per

frame type, to translate a script into natural language.

This mechanism is designed to coordinate with the an-

imation engine in such a way that fragments of sen-

tences can be displayed as cinematographic subtitles

synchronized with animation events.

The messaging system provides a means to post a

message on the Vedo-Vedi server and send an email

noti�cation and key to the intended recipient of the

Vedo-Vedi message. If one includes the server in this

discussion, then we should also mention the existence

of the message database and CGI scripts for accessing

it as parts of the messaging system.

2.2 Script Editing

Most of a user's time interacting with Vedo-Vedi is

spent writing scripts. The script editor supports this

activity with a visual display of the script, a tool bar

of command icons, and a hierarhical menu of icons

for creating script elements. Figure 1 shows how the

program appears in a typical script-editing session.

The script is displayed in a panel as a sequence

of rectangular boxes, laid out left-to-right and top-

to-bottom (like English text). Each box represents a

Figure 1: Screen shot of Vedo-Vedi in script editing

mode.

Vedo-Vedi frame, and each frame, together with any

objects it might contain, represents a sentence. Let's

call the boxes that represent frames by the same name,

\frame." Between each pair of frames in the script is

a small vertical bar which can be selected in order to

set the insertion point. When the user creates a new

frame instance by clicking on a frame icon from the

hierarhical menu, the new frame is placed at the in-

sertion point, and then the insertion point is updated

to follow the new frame.

The box representing a frame is divided into several

regions: the frame canvas, zero or more slots (each of

which is a rectangle), and the frame border (which

consists of all the remaining area). Each frame has a

frame image, which identi�es the type of the frame,

and this image is displayed on the frame canvas. The

frame canvas is usually the largest part of the frame in

terms of area. Each slot of the frame has its own rect-

angular area which contains a slot canvas (a slightly

smaller rectangular area) and a slot border. Frames

and slots can be selected for editing. A single frame

can be selected by clicking on its border. A range

of frames can be selected by �rst selecting a single

frame to indicate one end of the sequence and then

shift-clicking on another frame to indicate the other

end of the sequence. A slot can be selected by click-

ing anywhere on it. Slots and frames are treated as

di�erent kinds of objects, and so they have separate

selection states. It is possible to have a frame selected

at the same time that a slot is selected in the same or

another frame. However, clicking on the script panel

background cancels any current selections whether of

frames or slots.

Clicking on the frame canvas of a frame indicates

a request for additional information or editing capa-

bility for the frame. For most types of frames, this

causes a translation into the currently selected natu-

ral language to appear for the frame. For de�nition

frames, as will be explained later, this opens up the

de�nition for editing.

The meaning of a frame does not depend on its

size. Therefore, frames can be resized within the

script panel at the user's convenience. More detail can



be seen in images when frames are enlarged, whereas

more frames can be seen at one time when frames are

made smaller.

The menu of frame and slot-�ller icons is arranged

in a hierarchy. The root of the hierarchy is not seen

by the user and has value only to the system. The

next level consists of eight nodes, each represented by

an icon. These icons are permanently displayed at

the top of the menu panel. They are divided into

two groups of four. The �rst four are used to select

submenus for frames, whereas each of the second four

brings up a submenu of slot-�ller object types. When a

submenu is selected, its icons appear below the icons

of the permanent level. In a submenu, an icon may

correspond to a leaf node, or it may stand for an even

lower-level submenu. If it's a leaf, clicking the icon

either inserts a new frame instance into the script or

indicates what object to use to �ll a particular slot in

an existing frame.

2.3 Post-O�ce Support

In order to send a Vedo-Vedi message, assuming its

script has been created, the user clicks on the MailTo

button, �lls in the recipient's email address, a return

email address, and then the user clicks on the Send

button. The program then generates a unique key for

the message. Assuming the user has an Internet con-

nection open, the script is posted on the Vedo-Vedi

server using an HTTP POST operation. A database

on the server stores the key-message pair in an asso-

ciative array. The program also sends an email mes-

sage to the recipient which not only serves to notify

the recipient that a message has arrived at the server

but also to provide a URL or key for retrieving the

message. If picked up with the URL, the Vedo-Vedi

applet is started. If picked up using the Vedo-Vedi

application and the key, then Vedo-Vedi is not run as

an applet.

Running Vedo-Vedi as an application is usually

preferable to running it as an applet, because when

run as an applet all class �les and image �les must be

downloaded from the server, a process which can take

ten or more minutes with typical bandwidth available.

On the other hand, if run as an application, the class

�les and image �les are simply loaded from the local

disk of the user's machine, taking only a few seconds.

3 De�nition Mechanism

Vedo-Vedi's primary means by which the user can

extend the language is the object de�nition frame.

There are three varieties of these in version 1.0: new

place frame, new person frame, and new portable ob-

ject frame. Here we describe how the object de�nition

frames work.

3.1 New Object Frames

Object de�nition frames (or new object frames) are

used to extend the set of objects that can be used in

Vedo-Vedi scripts. Each new object frame introduces

a single new object. It speci�es the following for the

new object: (1) an icon, (2) a more detailed image, (3)

a submenu within the menu hierarchy, and (4) a tex-

tual name. The submenu is generally one of \places,"

\people," or \portable objects." However, it can be a

submenu of one of these.

New objects are de�ned using frames for these rea-

sons: (a) so that the de�nitions are part of a script,

and (b) so that frames consistently handle all the

needs for expression within the language. Thus we

have followed the philosophy that de�nitions are part

of the script and the script is the document that gets

authored, not a meta-script.

A new-object frame has an appearance in the script

like other frames, and its instance variables are slot

�llers, too. Not all of the slot �llers are shown visually,

however. For example, the textual label for the object

is not shown on the frame, although it does appear

in the expanded view and on the icon button in the

menu. In Figure 2 there appear a new-place frame, a

new-person frame, and a new-portable-object frame.

Figure 2: Examples of the three kinds of new-object

frames.

The new-object frames are identi�ed with an image

consisting of a monochrome (gray) background image

and a freehand yellow overlay that encircles the image

and also marks it with a stylized supernova. The back-

ground image is either of a place (the city image), a

person (the boy image) or a thing (the suitcase image),

depending upon whether the new-object frame intro-



duces a new place, person, or portable object. Thus

the image for a new-object frame indicates the type of

object being de�ned together and also indicates that

the frame is a new-object frame.

3.2 Examples

The new-object frames shown in Figure 2 have ex-

panded views that give the composer of the script the

means to specify the details of the de�nitions. The ex-

panded view for a new-place frame starts out with a

display of the \Place World" image. This image con-

tains a rendering of a variety of geographical types,

including mountains, sea, islands, cities, rivers, �elds,

etc. This can be seen in Figure 3.

Corresponding expanded views for a new-person

frame and a new-portable-object frame are given in

Figures 4 and 5.

Figure 3: An expanded view of the new-place frame

with a de�nition of \Genoa."

Figure 4: An expanded view of the new-person frame

with a de�nition of \Giovanni."

In each of these expanded views there is a text�eld

in which the label for the object is given. There is

also a red rectangle overlaid on the base image that

indicates what portion of the base image is to be used

for the de�ned object. The selected region is used as

the animation image for the de�ned object, and a 32

Figure 5: An expanded view of the new-portable-

object frame with a de�nition of \�ns."

by 32 scaled version of the region is used as the icon

for the object. This icon appears in the hierarchical

menu after the de�nition has been executed.

The program includes two features by which new

images can be used in the de�nitions. One of these

is access to the \gallery." The gallery consists of an

iconic index to all (or nearly all) of the images used in

Vedo-Vedi. By clicking on the gallery button and then

on the icon for the desired image, the base image for

the de�nition can be chosen instead of being assigned

by default. The second feature is a provision for the

user to type in a �lename that contains an image to

be used for the de�ned object. If the program is being

run as an application, then Java permits this �le to

be anywhere on the user's hard disk. However, there

is no provision at present for this image data to be

automatically posted on the server when the message

is mailed to someone, so images from �les are useful

only in non-mail demonstrations at this time. If the

image resides on the server in the default directory,

and the program is being run as an applet, then the

image can not only be used by the sender, but the

receiver should be able to see the image in the message

that is received as well.

The animation for a new-place frame consists of

a presentation of the new-place image followed by a

transition into the de�ned place's image. Stills before

and after the transition are shown in Figures 6 and 7.

3.3 Limitations on Icon Design and Im-

portation of Images

Wewould like it if the users of Vedo-Vedi could have

more options and tools for extending the system with

their own images. For example, when Vedo-Vedi is

run as an applet, the Java security provisions prevent

the user from accessing an image �le residing locally

on the hard disk. Also at this time, there is no prac-

tical way to cut an image to the clipboard in a paint

program such as Adobe Photoshop and subsequently

paste it into Vedo-Vedi. Perhaps we could implement

a means to convert an image �le into ASCII text and

then permit the user to paste it into a TextArea and

have Vedo-Vedo convert it into a GIF or JPEG image,



Figure 6: Screen shot at the beginning of the anima-

tion of the new-place frame.

Figure 7: Screen shot at the end of the animation of

the new-place frame for \Rome."

but we have not done so. We are hoping that a sub-

sequent release of Java or a Java toolkit will include

a means for pasting images from the clipboard into a

Java applet.

Were we to provide a means to paste images into

Vedo-Vedi, we would also need a mechanism by which

any custom images in a message would be posted on

the server when the message itself is posted. Then

there would need to be a corresponding mechanism

by which the applet started by the recipient of the

message could access these custom images and delete

them from the server when used. Because images can

take large amounts of disk space, there is a set of ques-

tions that would need to be answered regarding disk

quotas, expiration dates, and policies about spatial

resolution.

The present primary mechanism for de�ning new

images and icons, which consists of the above-

described means for selecting arbitrary rectangles out

of any of the images used in Vedo-Vedi, has a disad-

vantage with its current implementation: if the base

image for a new image has not already been down-

loaded from the server, then it must be downloaded in

its entirety, even if only a small portion of it is used in

the new image. This is obviously true during the act of

de�ning the image, because the user needs to see the

base image in order to select a portion of it. At this

time, it is also true when the recipient views a mes-

sage containing such a de�nition, because the server

software is not capable at this time of responding to a

request for only a portion of an image. Because each of

the standard images for new de�nitions provides a va-

riety of imagery, it is large. Downloading these images

in their entireties is consequently time consuming.

3.4 Hidden Scripts

Early user testing revealed that although users ap-

preciate the ability to de�ne their own places, people,

and portable objects using new-object frames, they

did not want the new-object frames to appear either

in the script or the animation of the script. Conse-

quently, they deleted the new-object frames from their

scripts once the de�nitions had been executed. This

posed two problems: (1) the de�nitions would not be

transmitted to the recipient as part of the message,

and so the references within the message to the new

objects would be uninterpretable at the receiving end,

and (2) the sender, no longer having any handle for

the de�nition, could not reopen the expanded view in

order to edit the image or to adjust the label for the

new object.

We solved this problem by creating an additional

script for each message called the \hidden script."

Whenever a new-object frame is instantiated, it is

entered into both the regular script and the hidden

script. If the user deletes the frame from the main

script, it remains on the hidden script. Since the ani-

mation is based on the main script and not the hidden

script, the animation need not include any presenta-

tion of the introduction of new objects. However, if the

user needs to edit the de�nition of an object after its

de�ning frame has been deleted from the main script,

it is possible to call up the hidden script for editing and



�nd the frame there. (If the user deletes the de�nition

frame from both the main and hidden scripts, then the

de�nition frame is really gone.) When the message is

sent to the server for posting and eventual pickup by

the recipient, both the hidden and main scripts are

sent. That way, the de�nitions for new objects can be

delivered to the recipient's copy of Vedo-Vedi even if

the de�nitions have been deleted from the main script.

In addition to new-object frames, the hidden script

may contain certain other kinds of frames that are

used to establish background knowledge for a message.

For example, instances of INSIDE frames are placed in

the hidden script; an INSIDE frame expresses a con-

tainment relationship between a pair of places: \Rome

is in Italy." These obvious facts may be distracting in

a message, but they can be useful if and when the

program needs to make inferences about whether the

travelling group is in a particular place or not.

3.5 Textcodes of New Objects

The system manages references to new objects in-

ternally using textual codes generated for each object.

These codes called textcodes belong to a name space

that can potentially have conicts. At present, little

e�ort has been made to avoid conicts that might hap-

pen across multiple conversational threads. However,

it would not be di�cult to provide means for the re-

duction or elimination of these conicts in a variety of

situations.

One obvious means by which to reduce the likeli-

hood of name conicts is through the use of longer

textcode symbols, perhaps containing randomly gen-

erated substrings. Generated symbols might be pre-

�xed with the name of the sender and the date the

de�nition is executed, for example.

Currently, name space conict handling is re-

stricted to avoidance of old text codes as new objects

are de�ned. However, a substitution mechanism could

be used to make sure that two sets of user-de�ned ex-

tensions to Vedo-Vedi use non-conicting textcodes.

A more ambitions means to manage the growth of

extentions to the language is to design a large catalog

of preselected names and categories, encourage users

to select names from this catalog when they create new

objects, maintain a record of all these de�nitions, and

administer a knowledge base (linked to the catalog)

consisting of validated de�nitions. Such an e�ort has

been beyond the scope of our project.

4 Other Extensibility Issues

4.1 Performance

Our experience designing Vedo-Vedi has under-

scored the existence of a tradeo� between extensibil-

ity and network delays in image-oriented visual lan-

guages. As long as both the sender and the recipient

are working with the same database of images stored

locally on their machines, extensions based on those

images can be communicated rapidly. However, if one

user extends the database of images by incorporating

an entirely new image with lots of pixels, then a sub-

stantial bulk of new data must be delivered to the re-

cipient. When bandwidth is limited, this delay can be

not only annoying but an impediment to the adoption

of the language.

4.2 Image Transformations

Even without provisions for letting users import

their own scanned images, more could be provided

to help users make new icons and images for their

extensions to the language. At present, users can se-

lect rectangular subsets of existing images to use for

their new objects. It would be nice if they could also

transform the images with color changes (e.g., nega-

tion, tinting and shading), composition of two or more

selected subimages, and the superimposition of geo-

metric shapes. An objective of such a mechanism for

deriving new images from old is not only the provi-

sion of greater variety in the set of possible resulting

images but also a means to constrain the lengths of

the representations of these images to amounts that

can be e�ciently transmitted through the Internet and

posted on the server without requiring vast amounts

of storage. The current representation of a new image

in Vedo-Vedi is very e�cient, consisting of an abbre-

viation of the name of an existing image and a short

string giving the coordinates of the selected rectangu-

lar subset.

4.3 Levels of Image Derivation

In the current implementation of Vedo-Vedi there

is an interesting problem with the use of the gallery

when a user-de�ned image is selected as a base im-

age for a new de�nition. In this case, one de�nition

depends on another, and the user may set up this de-

pendence inadvertently. If the user were to delete the

�rst de�nition, then the recipient's copy of Vedo-Vedi

would not be able to interpret the second de�nition.

Since any image obtained as a rectangular subset of a

rectangular subset of an original image could be ob-

tained directly as a rectangular subset of the original,

there is relatively little expressive value in the system's

permitting this double derivation now, and we could

forbid it in a future version by including in the gallery

only original images. Alternatively, we could permit

the user to de�ne images indirectly but compile them

into direct derivations from the originals. In a richer

image-creation environment including color transfor-

mations and geometric primitives, the expressive ben-

e�ts of indirect de�nition would be more valuable to

users, and compilation into direct references could still

be accomplished.

4.4 Resolution Problems

Another lesson we have learned developing Vedo-

Vedi is that our method for new image derivation suf-

fers from a resolution problem. The \Place World"

image was designed to provide a wide variety of geo-

graphical imagery. Consequently the image has sub-

stantial detail. Downloading this image, even after

JPEG compression causes some of the noticeable de-

lay in working with Vedo-Vedi place de�nitions. Then,

when the user has de�ned a new place by selecting a

subimage of Place World, the new image tends to be

fairly small. When used as an icon, the new image

works very well. However, when used in a full-screen

animation, the new image is usually very blocky and

unattractive. Were we to double the linear resolution



of the Place World image, download times would go

up by a factor of four. Is this worth it to improve the

appearance of the user's image during an animation?

The answer probably is that it depends. It depends

on the Internet bandwidth available to the sender and

to the receiver. It also depends upon how much each

of them cares about resolution. The images are some-

what symbolic already { that is necessarily the case

when the user must select imagery from a constrained

database to match any new concept s/he may have.

The blockiness can help communicate the fact that

the representation is in fact an approximation, color-

ful as it may be.

Ideally, the Vedo-Vedi system would provide a com-

bination of options and smart mechanisms for the

management of image resolution and transmission

times. It would make maximal use of high resolu-

tion imagery already in the possession of both sender

and receiver. It would dynamically select resolution

on a per-image/per-session or even per-subimage/per-

subsession basis to best meet the preferences of both

parties to the communication given the currently

available bandwidth and storage space. Progressive

transmission methods would also be used. A spe-

ci�c enhancement we are considering to Vedo-Vedi is

a means to avoid the downloading of any large im-

ages other than the icon base when bandwidth is at

a premium. The system already uses a lazy down-

loading policy, only downloading images speci�cally

needed for the current script or animation. However,

some of these images are large, and the display of the

script and the animation could often be accomplished

without them, at the expense of the user coping with

low resolution, of course.

5 Summary and Conclusions

Extensibility is important in visual languages for

human-to-human communication because people want

to share thoughts and experiences about lots of new

topics, people, places, and objects. Vedo-Vedi includes

a useful mechanism for de�ning new objects and the

new icons to represent them. It provides for the hiding

of de�nitions and transmitting them with messages. It

manages the placing of new icons on submenus. Vedo-

Vedi does not yet support user de�nition of new types

of frames, extensions to the ontology, to the animation

engine or to the messaging model.

Our experience with Vedo-Vedi has underscored the

existence of a tradeo� between extensibility of imagery

and transmission delays. More research is needed on

the subject of how best to make maximumuse of pixels

shared by sender and receiver.

Acknowledgments

The authors would like to thank Stefano Levialdi,

Luigi Cinque and Paolo Bottoni of the Pictorial Com-

puting Laboratory, Rome, Adam Carlson of the Uni-

versity of Washington, Genny Tortora of the Univer-

sity of Salerno, Margaret Burnett of Oregon State Uni-

versity, Allen Ambler of Kansas State University, and

S.K. Chang and Robert Korfage of the University of

Pittsburgh for their help or encouragement on this

project.

References

[1] Beardon, C. 1993. Computer based iconic com-

munication. In Ryan, K., and Sutcli�e, R. (eds.)

AI and Cognitive Science '92, London: Springer-

Verlag, pp.263-276.

[2] Repenning, A. 1994. Bending icons: Syntactic and

semantic transformations of icons. Proc. VL'94,

held at St. Louis, MO, Oct. 4-7. pp.296-303.

[3] Tanimoto, S. L. 1997. Representation and learn-

ability in visual languages for web-based interper-

sonal communication. Proc. VL'97, held at Capri,

Italy, Sept. 23-26, pp.2-10.

[4] Van Reeth, F., and Flerackers, E., 1990. Visual

programming in a computer animation environ-

ment. Proc. VL'90, held at Skokie, IL, Oct. 4-6,

pp.194-199.

Appendix

The applet version of Vedo-Vedi can be found at

the following URL.

http://trillium.cs.washington.edu:8080/

tanimoto/vv/applet/run-vvap.html

It can take several minutes to initialize version 1.0

of the applet, due to the volume of image data and

class �les that must be downloaded.


