
Illustrating Object-Oriented Library Reuse by Example

A Tool-Based Approach

Technical Report UW-CSE-98-05-01

Amir Michail and David Notkin

Dept. of Computer Science and Engineering

University of Washington, Box 352350

Seattle, WA 98195-2350

famir,notking@cs.washington.edu

Abstract

Once an object-oriented library has been selected for a

project, there is still the substantial problem of train-

ing developers to use it. In particular, reusing library

classes often requires understanding (at least part) of

the library design. For example, inheriting from a

library class often requires knowing how that class in-

teracts with other classes and what methods should be

overridden and how.

In this paper, we present a tool-based approach that

examines how example programs reuse a particular

library. In particular, we (1) extract a uni�ed class

diagram for each example that merges the example

class diagram with the library class diagram; (2) iden-

tify the reuse boundary in each uni�ed class diagram,

which shows instances of direct reuse of the library

in the example; and (3) intersect each subset of the

reuse boundaries to capture similarities and di�er-

ences among library reuse patterns in the examples.

By browsing the reuse boundary intersections, de-

velopers can immediately see what aspects of the li-

brary are demonstrated by the examples. In particu-

lar, our approach can facilitate reuse by: (1) guid-

ing the developer towards important library classes

of general utility; (2) guiding the developer towards

library classes particularly useful for a speci�c appli-

cation domain; and (3) providing access to the rele-

vant source code in each example for further inspec-

tion. All aspects of our approach are supported by

CodeWeb, a reuse tool we have built for C++ and

Java libraries.

1 Introduction

Once an object-oriented library

1

has been selected

for a project, there is still the substantial problem

of training developers to use it. Unlike function li-

braries, object-oriented libraries often require some

understanding of their design. This is particularly

true with frameworks as they tend to impose a struc-

ture on the application. In particular, reusing an

object-oriented library often requires knowing how li-

brary classes interact with each other what methods

should be overridden and how.

Current methods for learning to reuse an object-

oriented library include reading the manual and/or

books as well as taking a course. Sparks, Benner and

Faris give this advice for framework reuse:

\. . . expect to train every sta� member who

will use a framework. This often means hav-

ing individuals attend a one-week course at

the vendor site or training large groups at

the project site." [9, p. 54]

A crucial aspect of these techniques is that example

programs are used throughout to illustrate how to

reuse the library. Indeed, most libraries come with

many example programs to get the developer started.

Moreover, the selection of the examples is impor-

tant. Sparks, Benner and Faris say the following

about demonstration code:

\Demonstration code that is provided by

the framework builder. . . tends to demon-

1

To simplify the presentation, we use the term library to

mean any large software component, including libraries, frame-

works, applications, etc.

1

strate the uses of all the features of the

framework, rather than concentrating on

how the framework is to be used in an ap-

plication context." [9, p. 60]

In this paper, we present a tool-based approach that

examines how user-selected example programs reuse

a particular library. An important aspect of our ap-

proach is that it requires no extra e�ort on the part

of the library developer and can be used with any

existing object-oriented library. Our method is not

intended to replace current techniques for training

developers to reuse a library but, rather, to comple-

ment them.

Speci�cally, we (1) extract a uni�ed class diagram

for each example that merges the example class di-

agram with the library class diagram; (2) identify

the reuse boundary in each uni�ed class diagram,

which shows instances of direct reuse of the library

in the example (where the \boundary" is itself a

class diagram); and (3) intersect each subset of the

reuse boundaries to capture similarities and di�er-

ences among library reuse patterns in the examples.

By browsing the reuse boundary intersections, de-

velopers can immediately see what aspects of the li-

brary are demonstrated by the examples. In partic-

ular, our approach can facilitate reuse by: (1) guid-

ing the developer towards important library classes

of general utility; (2) guiding the developer towards

library classes particularly useful for a speci�c appli-

cation domain; and (3) providing access to the rele-

vant source code in each example for further inspec-

tion. All aspects of our approach are supported by

CodeWeb, a reuse tool we have built for C++ and

Java libraries.

The remainder of the paper is organized as follows.

Section 2 presents the computation of uni�ed class

diagrams. Section 3 shows how to identify the reuse

boundary in a uni�ed class diagram. Section 4 de-

scribes how to intersect reuse boundaries. Section 5

discusses the tool, CodeWeb, and shows how it can

be used to help reuse object-oriented libraries by ex-

ample. Section 6 discusses related work. Section 7

summarizes the work, concluding with a number of

open questions.

2 Extracting the Uni�ed Class

Diagram

The �rst step in our approach is to extract a uni�ed

class diagram for each example that merges the ex-

ample class diagram with the library class diagram.

In Section 3, we use this diagram to identify a \reuse

boundary" between the example and library, which

shows instances of direct reuse of the library in the

example.

We use the terms \example" and \library" loosely;

we only require that the example refers to some soft-

ware layer that reuses another software layer, which

we refer to as the library. For example, the \exam-

ple" may actually be a layer in a framework that

reuses another layer | the \library" | also in that

same framework. As another example, we may be

interested in seeing how an application reuses several

toolkits, in which case the \example" is the applica-

tion and the \library" is the collection of toolkits.

Since the example and library may themselves con-

sist of several software systems, we need to avoid

clashes in class names (which may occur when us-

ing namespaces in C++ and modules in Java). Con-

sequently, we pre�x each class name with the soft-

ware system name in which it is de�ned. For exam-

ple, a class Dialog from the application framework

ET++ is referred to as ET++:Widget. Similarly, a

class myDialog from an example ex1 is referred to as

ex1'myDialog.

In what follows, we show how to construct the uni-

�ed class diagram U

i

of an example i and the library.

Whenever we refer to the \example" in what follows,

we mean example i. (Refer to Figure 1 for examples

of uni�ed class diagrams.)

The diagram U

i

is a directed graph in which the

nodes denote classes and member functions while the

edges denote direct/indirect inheritance, reference,

and membership relationships between them.

Classes: a 2 U

i

i� a appears in the example/library.

Direct Inheritance: a) b 2 U

i

i� classes a and

b appear in the example/library and a directly

inherits from b.

We don't distinguish between composition (i.e., ag-

gregation) and reference (i.e., acquaintance). In gen-

eral, it is not always possible to determine whether a

reference is a composition.

Direct Reference: a 7! b 2 U

i

i� classes a and

b appear in the example/library and a directly

references b (i.e., a has a member variable of type

b or pointer to b).

A member function f cannot appear in isolation but

must be associated with some class a, which is done

2

U

1

U

2

U

3

f

v

 v w ! f

w

f

v

 v w ! f

w

f

v

 v w ! f

w

* * * * *

u (c u c

0

u (c

00

! g

c

00

* * * * *

h

t

 t b ! f

b

h

t

 t b

0

! f

b

0 h

t

 t

* * * * *

f

x

 x (a ! g

a

f

x

 x (a

0

f

x

 x (a

00

! f

a

00

*

f

d

0 d

0

! g

d

0

Figure 1: The uni�ed class diagrams for three examples that reuse a library with classes t; u; v; w; and x.

(We do not show redundant closure edges.)

by using the notation \f

a

". The subscript a on f

distinguishes di�erent de�nitions/declarations of f in

U

i

. (See Figure 1.)

Member Functions: f

a

2 U

i

i� class a appears in

the example/library and a de�nes or declares a

member function f .

Direct Membership: a! f

a

2 U

i

i� f

a

2 U

i

.

As discussed earlier, we want to intersect the reuse

boundaries to capture similarities and di�erences

among the library reuse patterns. To increase the

likelihood that some relationships match across reuse

boundaries, we consider not only direct relationships

but also the closure of these relationships. For this

reason, we add closure edges for inheritance, refer-

ence, and membership paths in the uni�ed class dia-

gram U

i

as follows.

Closure Inheritance: a)

+

b appears in U

i

i�

there is a path of length at least one from a to b

over inheritance edges ()) in U

i

.

Closure Reference: a 7!

+

b appears in U

i

i� there

is a path from a to b over inheritance ()) and

reference edges (7!), that includes at least one

reference edge, in U

i

.

Closure Membership: a !

+

f

b

2 U

i

i� b ! f

b

2

U

i

and either a)

+

b 2 U

i

or a = b.

3 Identifying the Reuse Bound-

ary

In Section 2, we have de�ned the uni�ed class dia-

gram U

i

which merges the class diagrams of example

i and the library. In this section, we show how to

identify the reuse boundary in each uni�ed class di-

agram, which shows instances of direct reuse of the

library in example i.

The reuse boundary is itself a kind of class dia-

gram. However, since we are not concerned about

reuse within the example or library, the reuse bound-

ary tends to be much smaller than the uni�ed class

diagram. In this way, the library reuse in the example

is more apparent.

Although the reuse boundary for each example can

be useful on its own, in Section 4 we intersect each

subset of the reuse boundaries to capture similarities

and di�erences among the library reuse patterns in

the examples.

The reuse boundary is a function of three things:

(1) the uni�ed class diagram U

i

; (2) a set of example

classes E

i

; and (3) a set of library classes L. (Observe

E

i

\ L = ;.) The reuse boundary, which we denote

by B

i

(E

i

; L), shows instances of direct reuse of the

library classes L in the example classes E

i

. The sets

E

i

and L need not include all the classes in example i

and the library, respectively | specifying a subset of

these classes allows one to narrow the results to only

items of interest (which we do in Section 5).

In the remainder of this section, refer to Figure 2

which shows the reuse boundaries corresponding to

the uni�ed class diagrams in Figure 1.

3.1 Inheritance and Composition

Reuse

The two most common techniques for reuse in object-

oriented systems are class inheritance and composi-

tion [4, p. 18]. These are the primary kinds of reuse

3

B

1

(fa; b; cg; ft; u; v; w; xg) B

2

(fa

0

; b

0

; c

0

; d

0

g; ft; u; v; w; xg) B

3

(fa

00

; b

00

; c

00

g; ft; u; v; w;xg)

w ! f

w

w ! f

w

* *

f

u

+

 u (c c

0

f

u

+

 u (c

00

+

*

+

*

+

*

+

*

x (a !

+

f

a

f

x

 x (a

0

f

x

 x (a

00

! f

a

00

*

f

d

0 d

0

Figure 2: The reuse boundaries corresponding to the uni�ed class diagrams in Figure 1. (We do not show

redundant closure edges.)

represented by the reuse boundary.

We say that a class a directly reuses another class

b if and only if a directly inherits from b or a di-

rectly references b. (As it is not always possible to

tell whether a reference is a composition, we consider

all references as instances of reuse.)

A class c appears in the reuse boundary if and only

if it is involved in a direct reuse relation across the

example/library boundary. (See Figure 2.) That is,

Classes: c 2 B

i

(E

i

; L) i� there exists e 2 E

i

and

l 2 L such that

� c = e or c = l; and

� e) l 2 U

i

or e 7! l 2 U

i

.

We include inheritance and reference relationships

among classes in the reuse boundary. This may in-

clude instances of reuse within the example or within

the library. However, such reuse does not determine

which classes go into the reuse boundary; we only

show such relationships among classes already in the

boundary according to the de�nition above.

Direct Inheritance: c

1

) c

2

2 B

i

(E

i

; L) i� c

1

2

B

i

(E

i

; L), c

2

2 B

i

(E

i

; L), and c

1

) c

2

2 U

i

.

Direct Reference: c

1

7! c

2

2 B

i

(E

i

; L) i� c

1

2

B

i

(E

i

; L), c

2

2 B

i

(E

i

; L), and c

1

7! c

2

2 U

i

.

Closure Inheritance: c

1

)

+

c

2

2 B

i

(E

i

; L) i�

c

1

2 B

i

(E

i

; L), c

2

2 B

i

(E

i

; L), and c

1

)

+

c

2

2

U

i

.

Closure Reference: c

1

7!

+

c

2

2 B

i

(E

i

; L) i� c

1

2

B

i

(E

i

; L), c

2

2 B

i

(E

i

; L), and c

1

7!

+

c

2

2 U

i

.

3.2 Member Function Overriding

Member function overriding is often used to cus-

tomize the behavior of base classes in various ways

and is a key part of inheritance reuse. However, it

is often more di�cult to override a member function

with appropriate code than it is to simply call a func-

tion in a library class. For this reason, we show only

overridden member functions in the reuse boundary

(and not just any member function). In this way, a

developer can look at member functions in the reuse

boundary and immediately see which functions are

commonly overridden in example classes and how (by

looking at the corresponding source).

Rather than including all member functions in the

reuse boundary that can potentially be overridden

(as indicated by the \virtual" modi�er in C++ or

the lack of a \�nal" modi�er in Java), we only in-

clude those member functions that are de�ned in the

library and actually overridden in the example. (Ob-

serve that we omit member functions g and h in Fig-

ure 2 for this reason.) By showing only these member

functions: (1) we show only overriding that spans the

boundary between the example and library; (2) we

show only those member functions which are typically

overridden in practice; (3) we always have access to

the source to see how such overriding is actually done;

and (4) we reduce the number of member functions

shown in the reuse boundary (thus reducing diagram

clutter).

Before we introduce the rule for associating mem-

bers with classes, we �rst de�ne a function F

i

that

helps us determine member functions de�ned in the

library and overridden in the example. In particular,

for a library class l 2 L, F

i

(l; E

i

) yields the set of all

member functions de�ned in an example class e 2 E

i

,

or any descendent of some e 2 E

i

, that is a descen-

dent of l in U

i

. (In Figure 1, F

1

(x; fa; b; cg) = fgg

4

and F

2

(x; fa

0

; b

0

; c

0

; d

0

g) = ff; gg.) Conversely, for an

example class e 2 E

i

, F

i

(e; L) yields the set of all

member functions de�ned in a library class l 2 L,

or any ancestor of some l 2 L, that is an ances-

tor of e in U

i

. (In Figure 1, F

1

(a; ft; u; v; w; xg) =

F

2

(a

0

; ft; u; v; w; xg) = ff; hg.)

Our rule for determining whether a member func-

tion f appears in the reuse boundary or not is com-

plicated by several factors: (1) we want to associate

each member with a class (e.g., f

a

) to distinguish

di�erent declarations/de�nitions of f ; (2) we want to

take into account inheritance of members; and (3)

we want to preserve member overriding relationships

(but not introduce new ones that don't exist in the

uni�ed class diagram). Formally, the rule for member

function associations is as follows.

Member Functions: f

c

2 B

i

(E

i

; L) i�

1. c 2 B

i

(E

i

; L);

2. there exists s such that

� c!

+

f

s

2 U

i

; and

� for any ancestor d of c in B

i

(E

i

; L) and any

t such that d !

+

f

t

2 B

i

(E

i

; L), we have

s)

+

t 2 U

i

(i.e., f

s

overrides f

t

in U

i

)

3. and the following holds:

� if c 2 L then f 2 F

i

(c; E

i

); and

� if c 2 E

i

then f 2 F

i

(c; L).

Part (1) of the above de�nition ensures that we as-

sociate f with c only if c is a class in the reuse

boundary. Part (2) ensures two things: that c in-

herits/de�nes f ; and that associating f with c does

not introduce an overriding relationship in the reuse

boundary that implies an overriding relationship that

doesn't exist in the uni�ed class diagram. This is

done in the following way: we check that for each

ancestor d of c in the reuse boundary, it must be the

case that c inherits/de�nes some f

s

which overrides

any f

t

inherited/de�ned by d in the reuse bound-

ary B

i

(E

i

; L), where the \overriding" must occur in

the uni�ed class diagram U

i

. (The de�nition is re-

cursive in ancestors of c since we need to know that

d!

+

f

t

2 B

i

(E

i

; L).) Finally, part (3) ensures that:

if c is a library class in L, then some descendent ex-

ample class must override f in U

i

; and conversely,

if c is an example class in E

i

, then some ancestor

library class must de�ne/declare f in U

i

. (Observe

x

I

f1;2;3g

w ! f

w

x

I

f1;2g

f

u

+

 u

+

*

x

I

f1;3g

f

x

 x

I

f2;3g

w ! f

w

f

u

+

 u

+

*

x

I

f1g

w ! f

w

f

x

 x

I

f2g

f

u

+

 u

+

*

f

x

 x

I

f3g

?

Figure 3: The lattice depicting the intersections of

the reuse boundaries in Figure 2. (We do not show

redundant closure edges.)

how in Figure 2 there is no f associated with x in

B

1

(fa; b; cg; ft; u; v; w; xg) since f 62 F

1

(x; fa; b; cg).

Also observe how we have a associated with f in

B

1

(fa; b; cg; ft; u; v; w; xg) but not a

0

associated with

f in B

2

(fa

0

; b

0

; c

0

; d

0

g; ft; u; v; w; xg) since that would

imply an overriding relationship with f

x

which does

not occur in U

2

.)

The direct and closure membership relationships

are de�ned as follows:

Direct Membership: c ! f

c

2 B

i

(E

i

; L) i� f

c

2

B

i

(E

i

; L) and c! f

c

2 U

i

.

Closure Membership: c !

+

f

d

2 B

i

(E

i

; L) i�

f

d

2 B

i

(E

i

; L) and either c)

+

d 2 B

i

(E

i

; L)

or c = d.

4 Intersecting Reuse Bound-

aries

In Section 3, we have shown how to identify the reuse

boundary B

i

(E

i

; L) in a uni�ed class diagram U

i

for

each example i that reuses a particular library. In

5

this section, we show how to intersect each subset

of the reuse boundaries to capture similarities and

di�erences among the library reuse patterns in the

examples.

We use the notation I

X

to denote the intersection

of the reuse boundaries B

i

(E

i

; L) over i 2 X . We

compute I

X

for every subsetX of the set of examples,

and we arrange the intersections in a lattice. A node

I

X

is an ancestor of I

Y

in the lattice if and only if

X � Y . (See Figure 3 which shows the lattice of

intersections for the reuse boundaries in Figure 2.)

We only include library classes in I

X

and these

must be present in all the reuse boundaries involved

in the intersection:

Classes: c 2 I

X

i� c 2 L and c 2 B

i

(E

i

; L) for all

i 2 X .

The inheritance and reference relationships between

library classes in I

X

are de�ned as follows.

Direct Inheritance: c

1

) c

2

2 I

X

i� c

1

) c

2

2

B

i

(E

i

; L) for all i 2 X .

Direct Reference: c

1

7! c

2

2 I

X

i� c

1

7! c

2

2

B

i

(E

i

; L) for all i 2 X .

Closure Inheritance: c

1

)

+

c

2

2 I

X

i� c

1

)

+

c

2

2 B

i

(E

i

; L) for all i 2 X .

Closure Reference: c

1

7!

+

c

2

2 I

X

i� c

1

7!

+

c

2

2

B

i

(E

i

; L) for all i 2 X .

We associate members with classes in a similar way

as that described in Section 3. However, the rule

is simpler since we need only concern ourselves with

library classes.

Member Functions: f

c

2 I

X

i�

1. c 2 I

X

;

2. for all i 2 X , there exists an s

i

such that

� c!

+

f

s

i

2 B

i

(E

i

; L);

� for any ancestor d of c in I

X

and any

t

i

such that d !

+

f

t

i

2 I

X

, we have

s

i

)

+

t

i

2 B

i

(E

i

; L) (i.e., f

s

i

overrides f

t

i

in B

i

(E

i

; L));

3. for all i 2 X , we have f 2 F

i

(c; E

i

).

(Observe in Figure 3 that any intersection involv-

ing example 1 does not associate f with x since

f 62 F

1

(x; fa; b; cg).)

And �nally, the direct and closure membership re-

lationships are as follows:

Direct Membership: c ! f

c

2 I

X

i� f

c

2 I

X

and

c! f

c

2 B

i

(E

i

; L) for all i 2 X .

Closure Membership: c !

+

f

d

2 I

X

i� f

d

2 I

X

and either c)

+

d 2 I

X

or c = d.

5 Tool

All aspects of our approach are supported by

CodeWeb, a reuse tool for C++ and Java libraries.

Given a library and a set of examples, the tool au-

tomatically: extracts the uni�ed class diagrams as

described in Section 2; identi�es the reuse boundary

B

i

(E

i

; L) in each uni�ed class diagram as explained

in Section 3 (where E

i

and L are the sets of all classes

in example i and the library, respectively); and inter-

sects each subset of the reuse boundaries and arranges

the results in a lattice as shown in Section 4. Now,

each intersection I

X

in the lattice contains only li-

brary classes. If the user clicks on such a library

class l 2 I

X

, then CodeWeb shows the reuse bound-

ary B

i

(E

i

; flg) for each example i 2 X . (In other

words, the tool shows the part of each example that

directly reuses, by inheritance or composition, library

class l.)

To illustrate how CodeWeb might be used to fa-

cilitate library reuse, we demonstrate the tool on

ET++ 3b4, a C++ GUI application framework

which also provides basic data structures and object

input/output. The example applications, included

with the framework, are: Draw, Write, Debugger

(a point-and-click interface for line-oriented debug-

gers), and ProgEnv (the ET++ programming envi-

ronment). As explained earlier, the tool builds a lat-

tice of reuse boundary intersections for each subset

of the examples (which yields 16 nodes in this case).

CodeWeb shows exactly one node of the lattice on

the screen at a time. (See Figures 4 and 5.) The tool

represents classes in shaded rectangles while overrid-

den function members appear, with a \()" su�x, in

unshaded rectangles. Reference and inheritance re-

lationships between classes are shown by narrow and

wide edges, respectively. Direct and indirect relation-

ships are indicated by dark and light shading, respec-

tively.

5.1 Learning from Di�erent Examples

Figure 4 shows the lattice node representing the reuse

boundary intersection of Draw and Write. These ex-

amples are di�erent in the sense that the Draw appli-

cation is mostly graphical while the Write application

6

Figure 4: The lattice node depicting the reuse boundary intersection of Draw and Write is shown on top.

The reuse boundaries depicting reuse of Document in the examples are shown on the bottom.

Figure 5: The lattice node depicting the reuse boundary intersection of Debugger and ProgEnv is shown on

top. The reuse boundaries depicting reuse of CodeTextView in the examples are shown on the bottom.

7

is mostly concerned with text. Generally speaking,

looking at the reuse boundary intersection of di�er-

ent application can be useful in determining impor-

tant aspects of a library that are applicable to most

applications, independent of their purpose.

For example, observe that the reuse boundary in-

tersection of Draw and Write directs the user to im-

portant application framework classes such as Docu-

ment, View, SeqCollection, CollectionView, Command,

Object, VObject (i.e., visual object) as well as rela-

tionships between them such as the fact that Collec-

tionView inherits from View and has a reference to

SeqCollection. Also, observe the member functions

shown which are overridden in both Draw and Write.

From such information, one can learn important

aspects about writing applications using this frame-

work. For example, it is apparent that the frame-

work provides support for undo since both applica-

tions de�ne commands by inheriting from Command

and overriding the member functions DoIt() and Un-

doIt(). One can also infer that programming an ap-

plication using ET++ involves separating its model

(i.e., data structure) from its view (the way it is de-

picted on the screen). One can verify this by exam-

ining the source to Document and View, respectively.

Indeed, further examination would show that a docu-

ment may have several (possibly di�erent) views and

that this principle is used throughout the framework

in more �nely-grained ways, as with SeqCollection and

CollectionView.

However, identifying and understanding the pur-

pose of important ET++ classes is not enough. The

user still needs to know how to write code that reuses

such classes. To do this, one can click on a library

class to see how it is reused in each example. (See

Figure 4.) For example, by clicking on Document we

see that both Draw and Write inherit from Document

and override key member functions such as DoMake-

MenuBar(), ReturnObjectToStore(), and Control(). By

clicking on a class in the reuse boundary, one can see

the corresponding source code. By doing this one

would �nd that DoMakeMenuBar() creates the appli-

cations menu bar, ReturnObjectToStore() returns that

aspect of the model state that is to be stored on disk,

Control() handles user events, etc.

5.2 Learning from Similar Examples

Figure 5 shows the lattice node representing the

reuse boundary intersection of Debugger and Pro-

gEnv. These examples are similar in the sense that

both Debugger and ProgEnv are C++ software de-

velopment tools. Generally speaking, looking at the

reuse boundary intersection of similar applications

can be useful in determining aspects of a library that

are useful for this class of applications (in addition to

those of more general utility).

For example, observe that the reuse boundary in-

tersection of Debugger and ProgEnv directs the user

to classes relevant to the software development tool

domain such as CodeTextView, RegularExp, and Pret-

tyPrinter. (In addition, we also �nd important classes

of more general utility such as Dialog, Font, TextField,

and Manager.)

Again, by clicking on one of these classes, one can

see how it is reused in each example. For example, by

clicking on CodeTextView, we see that both Debugger

and ProgEnv inherit from CodeTextView and override

member functions such as MakePrettyPrinter() which

determines which pretty printer to use (which is a

subclass of the PrettyPrinter class mentioned above).

Finally, observe that Debugger provides two examples

of reuse of the CodeTextView class.

6 Related Work

We know of no tools that examine how examples

reuse a library to give insight into how one might

reuse that library in a new application. However,

there has been much research into tools for software

reuse, and we discuss some of them in what follows.

Perhaps the most well-known approaches are those

concerned with �nding a suitable component (such

as a function or class) in a library that �ts a particu-

lar need. Such work includes tools that use free-text

indexing [3], facets [8], signature matching [11], and

formal speci�cations [2]. While our approach is not

query-based, browsing reuse boundary intersections

for example programs would show important classes

and relationships between them in the library | even

if the developer does not know exactly what kinds of

classes to look for.

Moreover, as discussed earlier, reusing an object-

oriented library requires some understanding of its

design, so tools that help a developer examine an in-

dividual library in terms of structure can be useful

[1, 6, 7, 10]. However, object-oriented libraries are

often huge, consisting of hundreds or thousands of

classes with non-trivial relationships between them.

The developer would rather just understand that part

of the library that is crucial to the task at hand rather

than examine the structure of the entire library.

8

In our approach, The lattice of reuse boundary in-

tersections shows \views" of the library design that

are relevant to various subsets of the example pro-

grams (and so the developer can see the library design

at various levels of detail). Moreover, the developer

can pick examples to show those aspects of the library

that are of interest.

More recently, \exemplars" have been suggested as

a way of library reuse [5]. An exemplar is an ex-

ecutable visual model consisting of one or more in-

stances of at least one concrete class for each abstract

class in a library. For example, a GUI library might

have an exemplar that consists of a window object

together with its menu bar, tool palette, canvas, and

some widgets on the canvas. (Since libraries have

only a few abstract classes, a small number of in-

stances su�ce in creating an exemplar.) The devel-

oper would not only explore the structural relation-

ships in the exemplar but also the collaborative rela-

tionships among objects by observing message pass-

ing among these objects.

The problem with an exemplar is that it is too

abstract and is not representative of any particular

application reusing the library. Our approach can be

used to see how real example applications reuse the

library at various levels of abstraction (which may

include many concrete classes).

7 Conclusions and Future

Work

In this paper, we have described a tool-based ap-

proach that examines how example programs reuse

a particular library. Our approach is not intended

to replace current methods for training developers to

reuse a library but, rather, to complement them.

We have demonstrated how a developer might use

CodeWeb to help reuse the ET++ application frame-

work. For future research, we plan to conduct exten-

sive user testing to see how developers would use the

tool in practice and how much utility it provides them

in the reuse process.

It is possible to run CodeWeb on di�erent versions

of the same example to see how it reuses a library

over time. One may expect that early versions of the

example would reuse the most fundamental parts of

the library (which tend to be of general utility) while

later versions would reuse parts more speci�c to that

application. It would be interesting to explore this

idea further.

From our research, it appears that class diagrams

are an appropriate high-level abstraction for com-

paring examples that reuse a library. However, it

may also be interesting to consider collaboration di-

agrams, sequence diagrams, state diagrams, etc. (al-

though these would be harder to extract automati-

cally from the source).

One may extract class diagrams and intersect them

in di�erent ways than that described in this paper.

Indeed, CodeWeb has a di�erent mode in which it

can help select one of several libraries to use in a

particular application by intersecting the library class

diagrams in a \relaxed way".

For future research, it would be interesting to pro-

vide yet another mode that helps developers deter-

mine if reusing a set of libraries S would result in

problems (and to �nd workarounds if any). For ex-

ample, one might run the tool on applications that

reuse several libraries, at least one of which is in S.

References

[1] T. J. Biggersta�. Design Recovery for Mainte-

nance and Reuse. Computer, 22(7):36{49, 1989.

[2] P. Chen, R. Hennicker, and M. Jarke. On the Re-

trieval of Reusable Software Components. In 2nd

International Workshop on Software Reusabil-

ity), pages 99{108. IEEE, 1993.

[3] W. B. Frakes and B. A. Nejmeh. Software Reuse

through Information Retrieval. In 20th Hawaii

International Conference on System Sciences,

pages 530{535. IEEE, 1987.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis-

sides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley,

1995.

[5] D. Gangopadhyay and S. Mitra. Understanding

Frameworks by Exploration of Exemplars. In

7th International Workshop on Computer-Aided

Software Engineering, pages 90{99. IEEE, July

1995.

[6] R. Kazman and S. J. Carriere. View Extraction

and View Fusion in Architectural Understand-

ing. In 5th International Conference on Software

Reuse. IEEE, 1998.

[7] G. C. Murphy, D. Notkin, and K. Sullivan. Soft-

ware Reexion Models: Bridging the Gap be-

tween Source and High-Level Models. In 3rd

9

ACM SIGSOFT Symposium on the Foundations

of Software Engineering, pages 18{28, 1995.

[8] R. Prieto-Diaz and P. Freeman. Classifying Soft-

ware for Reusability. IEEE Software, 4(1):6{16,

1987.

[9] S. Sparks, K. Benner, and C. Faris. Managing

Object-Oriented Framework Reuse. Computer,

29(9):52{61, 1996.

[10] A. S. Yeh, D. R. Harris, and M. P. Chase. Manip-

ulating Recovered Software Architecture Views.

In Proceedings of the International Conference

on Software Engineering, pages 184{194, 1997.

[11] A. M. Zaremski and J. M. Wing. Signature

Matching: A Tool for Using Software Libraries.

ACM Transactions on Software Engineering and

Methodology, 4(2):146{170, 1995.

10

