
Using Relaxed Class Diagram Intersection

to Ease Object-Oriented Library Selection

Technical Report UW-CSE-98-05-02

Amir Michail and David Notkin

Dept. of Computer Science and Engineering

University of Washington, Box 352350

Seattle, WA 98195-2350

famir,notking@cs.washington.edu

Abstract

A key step in software reuse is selecting from among

a set of potential reuse candidates. Selecting from

among a collection of object-oriented libraries is a

costly and di�cult activity, in part because they are

usually quite large. Current approaches for library

selection include informal rules of thumb and com-

plete analysis methods (such as SAAM), all of which

require the developer to inspect each library indepen-

dently.

In this paper, we present a tool-based approach in

which a complete collection of candidate libraries are

simultaneously compared and contrasted. Speci�cally,

we (1) extract a relaxed class diagram from each li-

brary, capturing key structures and also standardiz-

ing class and member names, (2) compute a relaxed

intersection for each subset of the relaxed class dia-

grams to capture essential similarities and di�erences

among the libraries, and (3) compute a lattice over

the collection of relaxed intersections.

By browsing this lattice, developers can begin

assessing the libraries in combination immediately

rather than after analyzing each library indepen-

dently. Our approach can facilitate the assessment

process by (1) guiding the developer towards impor-

tant functional and non-functional properties; (2)

helping the developer compare and contrast these

properties across libraries; and (3) providing access

to the relevant source code in each library for further

inspection. All aspects of our approach are supported

by CodeWeb, a tool we have built for assessing C++

and Java libraries.

1 Introduction

Selecting from among a set of candidates is an im-

portant step in software reuse [7]. There are a num-

ber of approaches for selecting from among relatively

small reuse candidates such as individual methods

or classes [3, 4, 9, 12]. These approaches are gen-

erally query-based, which usually works well in part

because there are often a reasonably large number of

candidates.

But selecting among larger candidates | such as

selecting a thread library or a user-interface frame-

work | is di�cult and potentially very expen-

sive [10].

1

Indeed, Sparks, Benner and Faris give this

advice for framework selection:

\Budget adequately to support frameworks.

Expect the evaluation and selection of a

framework to take up to six sta�-months per

new framework." [10, p. 54]

The selection among larger candidates introduces a

di�erent set of problems than those for small reuse

candidates. First, non-functional properties | ex-

tensibility, 
exibility, understandability, testability,

etc. | are increasingly important. Second, there

are usually a relatively small set of library candi-

dates (perhaps a dozen or so), at least in part because

the cost of producing libraries is necessarily higher

than that of producing smaller candidates. Third,

libraries are often pre-selected (for instance, the de-

veloper may manually gather a handful of user in-

1

To simplify the presentation, we use the term library to

mean any large candidate, including libraries, frameworks, ap-

plications, etc.

1



terface frameworks to assess), precisely because they

ostensibly provide the basic functional behavior that

the developer wants; therefore, comparing and con-

trasting structures of the libraries is likely to be more

important than with smaller candidates, where spe-

ci�c functional behavior is usually more important.

Fourth, the libraries are simply larger: each may have

100 or more classes, making it impractical to com-

pare libraries at the source level (even if there are

only a few under consideration). Moreover, super�-

cial di�erences between them can easily confuse tools;

for example, even a minor di�erence in naming (say,

between DocumentView and DocView) might cause a

tool to �nd a di�erence rather than a similarity be-

tween libraries, and, as another example, minor dif-

ferences in the inheritance structures might lead to a

similar confusion.

To address these issues, we have developed an ap-

proach for abstracting the essence of the structure

of the libraries, providing a tool that allows the de-

veloper to browse among the structural similarities

and di�erences among them. We present four spe-

ci�c steps and results:

� Given a library, we describe how to compute its

relaxed class diagram. The intent of a relaxed

class diagram is to capture the key structures

among the classes in a library as well as to stan-

dardize class and member names. This heuristic

computation is designed to emphasize essential

structures in the library while abstracting away

from minor and potentially distracting details.

� Given a collection of relaxed class diagrams from

a set of libraries, we describe how to compute

the relaxed intersection, or matching, of these

diagrams. The intent of the relaxed intersection

is to capture where libraries (represented by their

relaxed class diagrams) are essentially similar to

and di�erent from other candidates.

� Given relaxed intersections for every subset of

the relaxed class diagrams for a set of libraries,

we create a lattice that represents where speci�c

combinations of libraries are similar and di�er-

ent, and how.

� Our tool, CodeWeb, allows the programmer to

view a speci�c relaxed intersection and to browse

the lattice and the associated source code in a

variety of ways.

Section 2 discusses related work. Section 3 presents

the computation of relaxed class diagrams. Section 4

presents the de�nition of relaxed intersection across

a set of relaxed class diagrams. Section 5 describes

how to compute a lattice over the relaxed intersec-

tions. Section 6 discusses the tool and shows, by ex-

ample, how it can be used to infer functional and

non-functional properties. Section 7 summarizes the

work, concluding with a number of open questions.

2 Related Work

The current state of the art in selecting among library

candidates relies on qualitative assessment. This may

take the form of informal tips for selecting frame-

works [10] or a complete analysis method, such as

SAAM [5]. Either way, the developer manually in-

spects each library, reads the documentation, exam-

ines the architecture, considers subjective scenarios,

and other available information.

Tool support for candidate selection has been lack-

ing. Although there are tools that help a developer

examine an individual library in terms of architec-

ture, style, etc. [1, 6, 8, 11], we know of no tools that

help the developer directly compare several libraries.

With existing tools, the user must manually integrate

the knowledge learned about each library.

In contrast, there are numerous reuse tools that

help a developer select a �ne-grained component

(such as a function or class) in a particular library.

These include tools that use free-text indexing [4],

facets [9], signature matching [12], and formal speci-

�cations [3].

As noted above, such techniques do not carry over

to library selection because: (a) the libraries under

consideration usually have similar functional but dif-

ferent non-functional properties, while the compo-

nents in a particular library typically have di�erent

functional but similar non-functional properties; and

(b) there are usually only a few libraries under con-

sideration (typically less than ten) but there may be

hundreds or thousands of components within a partic-

ular library. Consequently, tools for selecting compo-

nents in a particular library are typically query-based

(since browsing hundreds or thousands of components

is not practical) and usually take into account func-

tional properties (since that's what the user is most

interested in).

Our approach does not and is not intended to

replace qualitative methods for assessing libraries.

Rather, it facilitates such methods by providing the

developer easy access to similarities and di�erences

among the library architectures as well as the rele-

2



vant source fragments in each library (which allows

the developer to infer functional and non-functional

properties about the libraries). The developer need

no longer consider each library in isolation (as with

manual inspection or with existing tools).

3 Relaxed Class Diagrams

The �rst step in our approach is to analyze each li-

brary, producing a relaxed class diagram, which is in-

tended to capture the essence of the class diagram for

that library in a way that makes �nding similarities

across libraries easier. (Although relaxed class dia-

grams are each a function of one library, the diagrams

are not designed to facilitate comparison within a sin-

gle library | but rather, to make it easier to �nd

similarities across libraries.)

Producing a relaxed class diagram consists of two

basic activities: standardizing names and extracting

structure.

3.1 Standardizing Names

Not all programmers use the same naming conven-

tions. For example, one programmer might write doc-

ument view while another would use DocumentView.

Libraries often add a pre�x to the name, as in

wxb DocumentView. To complicate matters fur-

ther, programmers may use abbreviations as with

wxb DocView. This variation makes it di�cult to

compare the class diagrams of di�erent libraries.

We standardize class and member names in three

ways by: (1) handling upper and lower case in a con-

sistent way; (2) expanding common abbreviations;

and (3) getting rid of unnecessary pre�xes. In par-

ticular, we de�ne two heuristic functions, �

i

and �

i

,

which yield the standard name of a class and a mem-

ber in library i, respectively.

Consider a class or member name. First, we per-

form the following two steps on each name:

� split the name x into words w

1

� � � � � w

n

where word boundaries are inferred from un-

derscores and/or capital letters (e.g., split class

wxb DocView into wxb-Doc-View and member

wx GetPos into wx-Get-Pos); and

� change each w

j

to w

0

j

where w

0

j

standardizes case

and expands any common abbreviations (e.g.,

we change wxb-Doc-View toWxb-Document-View

and wx-Get-Pos to Wx-Get-Position).

Next, we determine the maximal pre�x of words, w

0

1

�

� � � � w

0

m

of w

0

1

� � � � � w

0

n

, where 0 � m < n, such

that

� w

0

1

� � � � �w

0

m

occurs as a pre�x of this library's

class (or member) names at least f(N) times,

where N is the total number of classes (or mem-

bers) in the library and f is some heuristic func-

tion; and

� each word w

0

i

in the pre�x has length � k for

some constant k.

Intuitively speaking, it is not likely that a pre�x

contributes meaningfully to a name if it occurs in

many other names. In practice, we �nd that using

f(N) = max(3;min(10; 0:1N)) and k = 3 yields good

results. Returning to our example, suppose that this

procedure results in a Wxb pre�x in Wxb-Document-

View and a Wx-Get pre�x in Wx-Get-Position.

At this point, the procedure for standardizing class

and member names diverges so we describe each sep-

arately in what follows.

3.1.1 Class Names

We would like to rename w

0

1

�� � ��w

0

n

to w

0

m+1

�� � ��

w

0

n

by stripping the (possibly empty) pre�x w

0

1

�� � ��

w

0

m

. However, we would also like �

i

to be a bijection

to avoid merging the members of two separate classes

in library i that have similar names. So we will not

necessarily strip all pre�xes.

Now, a maximal pre�x that occurs more frequently

than another maximal pre�x is more likely to be a

standard pre�x in the library. So, we strip a pre�x

w

0

1

� � � � �w

0

m

if and only if the pre�x w

0

1

� � � � �w

0

m

occurs more frequently than any other maximal pre�x

w

00

1

�� � ��w

00

q

of a class w

00

1

�� � ��w

00

q

�w

0

m+1

�� � ��w

0

n

.

(By de�nition, an empty pre�x occurs in�nitely many

times.)

For example, we rename Wxb-Document-View to

Document-View if and only if no other maximal pre�x

w

00

1

� � � � � w

00

q

of a class w

00

1

� � � � � w

00

q

�Document-

View occurs as frequently as Wxb. If renaming oc-

curs, �

i

(wxb DocView) yields DocumentView. Oth-

erwise, �

i

(wxb DocView) yields the original name

wxb DocView.

If we assume that the class names in library i are

distinct, then one can show that �

i

is a bijection.

3.1.2 Member Names

Unlike with class names, we do not care if two original

member names map to the same new member name.

3



Instead, we are more interested in having member

names match across libraries. Indeed, we do not dis-

tinguish member functions and member variables (so

a member function and member variable can have

their names mapped to the same name), and we per-

form the following steps:

� always strip the pre�x (e.g., strip the pre�x Wx-

Get from Wx-Get-Position to get Position); and

� strip any remaining standard pre�xes such as

Get, Set, etc. (e.g., if the pre�x were only Wx

then this step would strip out the following Get).

Now consider the remaining words in the member

name (e.g., Position in our example). To avoid clutter

in the relaxed class diagram, we ignore the member

completely if more than one word remains. In our

experience, multi-word members tend not to be as

\fundamental" to the class as single word members.

In any case, multi-word members are not likely to

match across di�erent libraries.

Moreover, even if only one word remains, we ignore

the member if that word is in the stop list. The stop

list contains common members, such as those which

copy or destroy objects, which tend to say very lit-

tle about what a particular class does (as they are

common to so many classes).

Returning to our example, �

i

(wx GetPos) would

yield Position. Unlike �

i

which is a bijection, �

i

may

be partial and not one-to-one.

3.2 Extracting Structure

Given a library i and renaming functions �

i

and �

i

,

we show how to compute the corresponding relaxed

class diagram C

i

. The diagram C

i

is a directed graph

in which the nodes denote classes and members while

the edges denote direct/indirect inheritance, refer-

ence, and membership relationships between them.

Classes: fag 2 C

i

i� there is some class a

0

in library

i such that �

i

(a

0

) = a.

(The reason for the singleton set notation for classes

will become apparent in Section 4.) Observe that we

abstract out any properties of a

0

so that it is more

likely that a class matches across libraries. For ex-

ample, we don't care whether a

0

is an abstract class

(i.e., type/interface) or concrete class.

Of course, it is possible to keep this distinction and

allow matching across libraries by introducing three

kinds of classes: \abstract only", \concrete only",

and \abstract/concrete". When comparing several

libraries, we would say that an \abstract/concrete"

class a is shared among them if a is abstract in some

libraries and concrete in some others.

However, we do not see this distinction as impor-

tant enough to warrant a more complicated notation

for representing classes that match across libraries

since that would make it harder for the user to inter-

pret the results. (We shall also abstract out member

properties for the same reason.)

Direct Inheritance: fag ) fbg 2 C

i

i� there are

classes a

0

and b

0

in library i such that �

i

(a

0

) = a,

�

i

(b

0

) = b, and a

0

directly inherits from b

0

in

library i.

Direct Reference: fag 7! fbg 2 C

i

i� there are

classes a

0

and b

0

in library i such that �

i

(a

0

) = a,

�

i

(b

0

) = b, and a

0

directly references b

0

(i.e., a

0

has a member variable of type b

0

or pointer to

b

0

) in library i.

Observe that we don't distinguish composition from

reference. This is done because: (1) it makes match-

ing across libraries more likely (without complicating

the notation, as mentioned earlier); and (2) it is gen-

erally not possible to determine whether a reference

is a composition.

Members: m

fag

2 C

i

i� there is a class a

0

and mem-

ber m

0

in C

i

such that �

i

(a

0

) = a, �

i

(m

0

) = m,

and a

0

de�nes or declares member m

0

in library

i.

Direct Membership: fag ! m

fag

2 C

i

i� m

fag

2

C

i

.

A member m cannot appear in isolation but must be

associated with some class fag using the m

fag

nota-

tion. The subscript fag on m distinguishes di�erent

de�nitions/declarations of m in C

i

.

Suppose a

0

and b

0

both de�ne m

0

, a

0

directly inher-

its from b

0

, �

i

(a

0

) = a, �

i

(b

0

) = b, and �

i

(m

0

) = m.

In such a case, fag ! m

fag

, fbg ! m

fbg

, and

fag ) fbg all appear in C

i

. Just as m

0

is overrid-

den in library i, it also overridden in C

i

(as indicated

by the two instances of m and the inheritance rela-

tionship between fag and fbg in C

i

).

As explained above, we do not distinguish mem-

ber functions from member variables. Moreover, we

abstract out any properties of m

0

. For example, we

don't care in what ways (if any) m

0

is accessible to

clients and base classes (e.g., private, protected, or

4



public) and we also don't care whether or not m

0

is

abstract, virtual, constant, and/or static. Again, this

allows more member matches across libraries without

complicating the notation.

Unique Membership: fag $ m

fag

2 C

i

i� fag !

m

fag

2 C

i

and only classes fbg that inherit (di-

rectly or indirectly) from fag de�ne m

fbg

(in

which case m

fbg

overrides m

fag

).

Observe that fag $ m

fag

2 C

i

implies fag !

m

fag

2 C

i

. Unique membership edges are used as

an indicator that m's behavior is somehow speci�c

to a class fag in the library (modulo any methods

that override m in descendents of fag). We say that

m is the unique member of fag. Unique members

can be used to match classes with di�erent names as

discussed in Section 4.

We can increase the likelihood that some relation-

ships match across libraries by considering not only

direct relationships but also by considering the clo-

sure of these relationships. However, we keep a dis-

tinction between the two since we believe the user

would want to know when relationships are direct or

not (even at the cost of a more complicated notation).

We add closure edges for inheritance, reference,

and membership paths in the relaxed class diagram

C

i

as follows.

Closure Inheritance: fag )

+

fbg appears in C

i

i� there is a path of length at least one from fag

to fbg over inheritance edges ()) in C

i

.

For example, if fag ) fbg and fbg ) fcg are in C

i

,

then fag )

+

fbg, fbg )

+

fcg, and fag )

+

fcg are

also in C

i

.

Closure Reference: fag 7!

+

fbg appears in C

i

i�

there is a path from a to b over inheritance ())

and reference edges (7!), that includes at least

one reference edge, in C

i

.

For example, if fag ) fbg, fbg 7! fcg, and fcg )

fdg are in C

i

, then fag 7!

+

fcg, fag 7!

+

fdg, and

fbg 7!

+

fcg, fbg 7!

+

fdg are also in C

i

.

Closure Membership: fag !

+

m

fbg

2 C

i

i�

fbg ! f

fbg

2 C

i

and either fag )

+

fbg 2 C

i

or a = b.

For example if fag ) fbg, fbg ) fcg, and fcg !

m

fcg

are in C

i

, then fag !

+

m

fcg

, fbg !

+

m

fcg

,

and fcg !

+

m

fcg

are also in C

i

.

4 Relaxed Intersection

In Section 3, we have shown how to determine the re-

laxed class diagram C

i

of a library i. In this section,

we de�ne the relaxed intersection of a set of relaxed

class diagrams fC

j

1

; : : : ; C

j

k

g, which we denote by

I

fj

1

;::: ;j

k

g

. We use the same node and edge notation

in the relaxed intersection graph as that used in the

individual relaxed class diagrams. Moreover, we de-

�ne the intersection so that I

fig

= C

i

.

4.1 Class Matching

We assume that classes with the same name in dif-

ferent libraries are likely to serve similar purposes, so

they should appear in the intersection.

Of course, it may be the case that the libraries

use completely di�erent names to denote classes with

similar functionality. For example, class task in one

library may be similar to thread in another. In such

a case, we would want to match task with thread and

use the class set ftask, threadg to denote the match

in the relaxed intersection.

We match classes structurally based on their con-

tents. In particular, if several classes, each in a di�er-

ent library, share a unique member (see Section 3.2),

then this indicates that the member's behavior is spe-

ci�c to those classes and no others. This is a strong

hint that these classes may have a similar purpose in

each library. For example, we might match task with

thread because in each library we have a class, either

task or thread, with unique member yield().

In what follows, we denote class sets by upper-

case letters and individual classes by lowercase let-

ters. Class matches and unique membership edges

are determined in the intersection as follows.

Unique Membership: A$ m

A

2 I

X

i�

� for all a 2 A, fag occurs in at least one C

i

where

i 2 X ;

� for all i 2 X , exactly one of the classes a in A

occurs in C

i

; and

� for all a 2 A and i 2 X , if fag appears in C

i

then fag $ m

fag

appears in C

i

.

Classes: A 2 I

X

i�

� A = fag and fag 2 C

i

for all i 2 X ; or

� A$ m

A

2 I

X

for some m.

5



C

1

C

2

I

f1;2g

fyg ! m

fyg

*

feg ! m

feg

fdg feg ! m

feg

feg ! m

feg

*

fxg ! m

fxg

fbg ! m

fbg

fbg ) fdg !

+

m

fdg

* *

+

*

+

*

fbg ) fdg fcg fag ) fcg !

+

m

fcg

* * *

fag ) fcg ! m

fcg

fag ! m

fag

Figure 1: Preserving overriding relationships among members. (We do not show the redundant closure

edges.)

Observe that if classes a and b both occur in some

library i, then they will not be matched in an inter-

section of libraries that includes i. The reason is that

since library i has both classes a and b, there is evi-

dence against the hypothesis that these classes serve

the same function.

Also, observe that we show all potential matches

in the intersection. For example, it may be that a

matches b based on unique member m and yet a also

matches c based on unique member m

0

. In such a

case, we leave it up to the user to determine which

(if any) of the matches is correct.

In the de�nitions that follow, it will be convenient

to map a class set A = fa

1

; : : : ; a

k

g in the relaxed

intersection I

X

to the singleton class set fa

j

g (where

a

j

2 A) that appears in a particular relaxed class

diagram C

i

:

� 	

X

(A; i) = fa

j

g i�

{ A = fa

j

g and fa

j

g 2 I

X

; or

{ A $ m

A

2 I

X

for some m and fa

j

g $

m

fa

j

g

2 C

i

.

4.2 Inheritance, Reference, and Mem-

bership Relationships

Inheritance and reference edges, whether direct or

closure, occur in the relaxed intersection if and only

if they occur in each of the relaxed class diagrams in

that intersection. More precisely, we have the follow-

ing for direct inheritance and reference.

Direct Inheritance: A ) B 2 I

X

i� 	

X

(A; i) )

	

X

(B; i) 2 C

i

for all i 2 X .

Direct Reference: A 7! B 2 I

X

i� 	

X

(A; i) 7!

	

X

(B; i) 2 C

i

for all i 2 X .

And for closure inheritance and reference we have:

Closure Inheritance: A )

+

B 2 I

X

i�

	

X

(A; i))

+

	

X

(B; i) 2 C

i

for all i 2 X .

Closure Reference: A 7!

+

B 2 I

X

i�

	

X

(A; i) 7!

+

	

X

(B; i) 2 C

i

for all i 2 X .

Our rule for determining whether a member m ap-

pears in the relaxed intersection or not is compli-

cated by several factors: (1) we want to associate

each member with a class set (e.g., m

A

) to distin-

guish di�erent declarations/de�nitions of m; (2) we

want to take into account inheritance of members;

and (3) we want to preserve member overriding rela-

tionships across libraries.

Formally, by \overriding" we mean the following:

� m

A

overrides m

B

i� A)

+

B.

To understand how we preserve overriding rela-

tionships in the intersection, consider all class sets

fA

1

; : : : ; A

r

g in I

X

that de�ne/inherit a particular

member m in C

i

for all i 2 X . If one includes all the

direct/closure inheritance relationships among these

class sets in I

X

(as de�ned above), then we have one

or more directed acyclic graphs (DAGs) G

1

; : : : ; G

s

in I

X

induced by the A

j

's and inheritance relation-

ships among them. (See I

f1;2g

in Figure 1 which

shows two such DAGs.)

In each G

k

, a \root" A

j

doesn't inherit from any

other class set that de�nes/inherits m in I

X

. (See

\roots" fdg and feg in Figure 1.) Since 	

X

(A

j

; i)

de�nes/inherits m in each C

i

but A

j

can't inherit m

6



from any class set in I

X

, we associate m with A

j

by

placing A

j

!

+

m

A

j

in I

X

.

In each G

k

, a \non-root" A

j

inherits from some

other class set in I

X

that de�nes/inherits m. (See

\non-roots" fag; fbg; and fcg in Figure 1.) Should

A

j

!

+

m

A

j

appear in I

X

? If so, then this implies

that A

j

de�nes/inherits an m that overrides that de-

�ned/inherited by its ancestors in G

k

. We preserve

the member overriding relationship in the following

sense: A

j

!

+

m

A

j

appears in I

X

if and only if for ev-

ery C

i

, 	

X

(A

j

; i) de�nes/inherits some m that over-

rides all m's de�ned/inherited by 	

X

(A

j

; i)'s ances-

tors in C

i

that are also its ancestors in G

k

. More

formally,

Members: m

A

2 I

X

i� for all i 2 X there exists an

s

i

such that

� 	

X

(A; i)!

+

m

fs

i

g

2 C

i

; and

� for any ancestor B of A in I

X

and any t

i

such that 	

X

(B; i) !

+

m

ft

i

g

2 C

i

, we

have fs

i

g )

+

ft

i

g 2 C

i

(i.e., m

fs

i

g

over-

rides m

ft

i

g

in C

i

).

Closure Membership: A !

+

m

B

2 I

X

i� m

B

2

I

X

and either A)

+

B 2 I

X

or A = B.

Finally, we de�ne the direct membership edges.

Direct Membership: A ! m

A

2 I

X

i�

	

X

(A; i)! m

	

X

(A;i)

2 C

i

for all i 2 X .

5 Lattice of Relaxed Intersec-

tions

In Section 4, we showed how to compute a relaxed

intersection I

X

of a set of librariesX . However, as the

number of libraries grows, the libraries share fewer

class diagram fragments. This means that I

X

may

contain few (if any) shared elements among a large

set of libraries X .

Moreover, computing a single relaxed intersection

I

X

only tells us what all the libraries X share in com-

mon and does not tell us anything about similarities

and di�erences among subsets of X .

Consequently, we not only compute the relaxed in-

tersection of X but also the relaxed intersection of

every subset of X . We then place the relaxed inter-

sections in a lattice which users can browse to iden-

tify similarities and di�erences among any subset of

libraries in X [2].

(fa; bg; empty)

(U

f1;2;3g

; I

f1;2;3g

)

�

fa; bg; fag !

+

m

fag

�

(U

f1;2g

; I

f1;2g

)

�

fa; bg; fbg $ m

fbg

�

(U

f1;3g

; I

f1;3g

)

�

fa; bg; fa; bg $ m

fa;bg

�

(U

f2;3g

; I

f2;3g

)

0

@

fa; bg;

fbg $ m

fbg

*

fag

1

A

(U

f1g

; I

f1g

)

�

fag; fag $ m

fag

�

(U

f2g

; I

f2g

)

�

fbg; fbg $ m

fbg

�

(U

f3g

; I

f3g

)

?

Figure 2: A sample lattice. (We do not show the

redundant closure edges in the relaxed intersections.)

In particular, each lattice node consists of a pair

(U

Y

; I

Y

) where set U

Y

keeps track of all the classes

de�ned by one or more libraries in Y (and so can be

used as an index as we explain in Section 6):

� a 2 U

Y

i� there is an fag 2 C

i

for some i 2 Y .

There is a node (U

Y

; I

Y

) in the lattice for every sub-

set Y of X (including the empty set). Although this

means the lattice has 2

jXj

nodes, this is not a serious

problem since one often compares fewer than ten li-

braries in a particular domain. Moreover, as we men-

tion in Section 6, our tool has several user interface

features that allow one to quickly move to interesting

nodes in a large lattice.

The nodes are arranged in the lattice in the follow-

ing way:

� node (U

Y

; I

Y

) is an ancestor of (U

Z

; I

Z

) if and

only if Y � Z.

Intuitively speaking, (U

Y

; I

Y

) appears as an ancestor

of (U

Z

; I

Z

) in the lattice if and only if (U

Y

; I

Y

) is

more \general" than (U

Z

; I

Z

). (See Figure 2.) More-

over, the more general (U

Y

; I

Y

) represents a superset

of the libraries in (U

Z

; I

Z

).

7



(a) Thread Libraries: Presto-1.0 and �C++-4.6 (b) GUI Libraries: Qt-1.2 and JX-1.0.3

Figure 3: The top node in the thread and GUI lattices.

6 Tool

All aspects of our approach are supported by

CodeWeb, a tool we have built for assessing C++ and

Java libraries. Given a set of libraries, the tool auto-

matically performs the steps described in Sections 3,

4, and 5 to build the lattice over the collection of

relaxed intersections.

We have run CodeWeb on simulation, thread, and

GUI libraries, with as many as eight libraries at a

time. To illustrate the kinds of similarities and dif-

ferences that CodeWeb identi�es among libraries, and

how one might use them to infer functional and non-

functional properties, we demonstrate the tool on two

C++ thread libraries, Presto 1.0 and �C++ 4.6, and

two C++ GUI libraries, Qt 1.2 and JX 1.0.3.

CodeWeb shows exactly one node of the lattice on

the screen at a time. In particular, Figure 3 shows

the top node (U

Y

; I

Y

) of the thread and GUI lattices

in parts (a) and (b), respectively. (The top node

represents the relaxed intersection of two libraries in

each case; both lattices contain four nodes, one for

each subset of the libraries.) Observe that the set of

classes in U

Y

is shown on the left while the relaxed

intersection I

Y

is shown graphically on the right.

CodeWeb represents classes in shaded rectangles

while their members appear, with a \()" su�x, in un-

shaded rectangles. Matched classes are denoted with

the \j" symbol. Reference and inheritance relation-

ships between classes are shown by narrow and wide

edges, respectively. Direct and indirect relationships

are indicated by dark and light shading, respectively.

Clicking on a class (or matched classes) in I

Y

displays the corresponding source de�nition for

each library i 2 Y . For example, clicking on

BaseTaskjThread shows the source for BaseTask in

�C++ and Thread in Presto. Clicking on a class in

U

Y

moves from the current node to the most general

lattice node whose relaxed intersection contains that

class. Thus, one can view U

Y

as an index for descen-

dent nodes. For example, clicking on BaseTask moves

to the child node representing �C++.

CodeWeb also provides two other facilities to sim-

plify browsing (which are not shown in Figure 3): (1)

a list of lattice nodes with a rank associated with each

one to indicate how \interesting" it is|where inter-

esting means that it contains a substantial number

of class diagram fragments shared by many libraries;

and (2) \graphical deltas" from the current node to

each parent and to each child which make it easier to

see how parents and children di�er from the current

node.

8



6.1 Inferring Functional Properties

One can often �nd important functional concepts in

a domain by browsing the nodes near the top of

the lattice. In the thread example, the top node

has BaseTaskjThread which indicates a match be-

tween classes BaseTask and Thread as inferred from

the unique member sleep(). Indeed, the names

\task" and \thread" are often used interchangeably

in thread libraries and are central concepts to that do-

main. The top node also shows classes for two impor-

tant synchronization primitives: condition variables

and locks.

Similarly, important functional concepts are also

shown in the GUI example. For example, the top

node has Window, Widget, Button, MenuBar, Image,

and Painter. Observe that Button and MenuBar in-

herit from Widget in both libraries. One can also see

key members in a class. For example, Window has

show(), hide(), visible(), move(), raise(), display(), and

icon(). Finally, observe that MultiLineEditjTextEditor

indicates a correct match between the classes Multi-

LineEdit and TextEditor as inferred from the unique

members cut() and paste().

The lattice also provides a way to compare and

contrast functional properties across libraries. For ex-

ample, further exploration of the lattice nodes would

reveal that �C++ has extensive real-time facilities

while Presto does not. In particular, one could eas-

ily see real-time classes such as RealTimeTask, Re-

alTimeCluster, PeriodicBaseTask, SporadicBaseTask,

and DeadLineMonotonic which are not in Presto.

CodeWeb provides another way to compare and

contrast functional properties: by clicking a class in

a relaxed intersection, one can see its source code def-

inition in each library in the intersection. For exam-

ple, by clicking on the Painter class in the GUI exam-

ple, one can easily compare the drawing primitives

(which are members of Painter) that are supported

by each library. One might determine, for instance,

that while both Qt and JX support lines, rectangles,

ellipses, and arcs, only Qt supports Bezier curves.

6.2 Inferring Non-Functional Proper-

ties

CodeWeb can also help a developer infer non-

functional properties from a library such as exten-

sibility, adaptability, modularity, 
exibility, under-

standability, maintainability, testability, etc. These

properties are particularly important with respect to

the fundamental domain classes (and the relation-

ships between them). Consequently, one can use

CodeWeb to (1) identify these classes and relation-

ships (as discussed in Section 6.1) and (2) inspect

the corresponding source code fragments in each li-

brary to infer non-functional properties (as we shall

discuss below).

Consider extensibility. Clearly, it is desirable to be

able to easily extend and/or modify the functionality

of classes in various ways. For example, in the GUI

libraries, one can compare how easy it is to create

new widgets by inspecting the source code of classes

Button, RadioButton, and Slider, all of which inherit

from Widget in both JX and Qt.

One way to gauge extendibility is to look for vir-

tual member functions in the libraries. Virtual mem-

ber functions indicate \hot-spots", or areas that can

be altered in descendent classes (but at the cost of

performance). CodeWeb's ability to compare source

code side-by-side for classes in di�erent libraries can

be very useful in this regard.

As an example, comparing the source for the

Thread class in Presto and the BaseTask class in

�C++ shows that almost every key member function

in Thread (such as start(), run(), wakeup() and sleep())

is declared virtual while this is not the case for similar

member functions in BaseTask. Further examination

of the libraries shows that while Presto has virtual

member functions sprinkled liberally throughout, the

authors of �C++ have used more restraint and only

put virtual member functions where they thought was

absolutely necessary.

On the other hand, �C++ uses more �nely-grained

classes than Presto, and these classes are arranged in

a more elaborate and deeper inheritance hierarchy.

For example, whereas Thread inherits from Object in

Presto, BaseTask inherits from BaseCoroutine which

in turn inherits from MachContext. Consequently,

one can more easily extend classes in �C++ with-

out inheriting unneeded baggage (assuming of course

that one doesn't run into the virtual member problem

discussed earlier).

As another example, consider the GUI libraries JX

and Qt. If one clicks on the Button class to inspect

the corresponding source in each library, one would

notice that both libraries use implicit invocation to

provide loose coupling between objects. It is well

known that this improves adaptability, understand-

ability, and maintainability.

Further investigation of the source code shows that

Qt allows one to connect a member that \emits" a

signal to other members that will receive it. JX uses

9



a more coarse-grained approach: one connects ob-

jects rather than object members. However, Qt uses

a preprocessor to implement its mechanism, which

may cause problems with support tools that require

valid C++ source.

7 Conclusions and Future

Work

In this paper, we have described a tool-based ap-

proach for library selection. Our approach is not in-

tended to replace qualitative methods for assessing li-

braries but, rather, to complement them by providing

easy access to similarities and di�erences among the

library class diagrams as well as the relevant source

fragments in each library.

We have demonstrated | using our tool CodeWeb

| how a developer might infer functional and non-

functional properties from a set of libraries. For fu-

ture research, we plan to conduct extensive user test-

ing to see how useful our approach is in practice.

We have observed that CodeWeb may also be use-

ful for evolution and slicing. For example, one may

run the tool on di�erent versions of a library to

browse its evolutionary history. It is also possible

to run the tool on two libraries A and B, where A

is more general than B, to extract a \slice" of the

narrower domain of B from A (and thus learn about

that aspect of A). It would be interesting to explore

evolution, slicing, and other potential uses of the tool

further.

From our research, it appears that class diagrams

are an appropriate high-level abstraction for compar-

ing libraries. However, it may also be interesting to

consider collaboration diagrams, sequence diagrams,

state diagrams, etc. (although these would be harder

to extract automatically from the source).

Also, one may de�ne other forms of relaxed class

diagrams and relaxed intersection that are useful for

purposes other than selection. For example, we are

currently working on a variation that allows a de-

veloper to compare how several sample applications

reuse a particular library. This would then help the

developer reuse that library in a new application.

Acknowledgments

We would like to thank Will Tracz and Michael Ernst

for valuable feedback on this research.

References

[1] T. J. Biggersta�. Design Recovery for Mainte-

nance and Reuse. Computer, 22(7):36{49, 1989.

[2] C. Carpineto and G. Romano. A Lattice

Conceptual Clustering System and Its Applica-

tion to Browsing Retrieval. Machine Learning,

24(2):95{122, 1996.

[3] P. Chen, R. Hennicker, and M. Jarke. On the Re-

trieval of Reusable Software Components. In 2nd

International Workshop on Software Reusabil-

ity), pages 99{108. IEEE, 1993.

[4] W. B. Frakes and B. A. Nejmeh. Software Reuse

through Information Retrieval. In 20th Hawaii

International Conference on System Sciences,

pages 530{535. IEEE, 1987.

[5] R. Kazman, L. Bass, G. Abowd, and M. Webb.

SAAM: A Method for Analyzing the Properties

of Software Architectures. In 16th International

Conference on Software Engineering, pages 81{

90. IEEE, 1994.

[6] R. Kazman and S. J. Carriere. View Extraction

and View Fusion in Architectural Understand-

ing. In 5th International Conference on Software

Reuse. IEEE, 1998.

[7] C. W. Krueger. Software Reuse. ACM Comput-

ing Surveys, 24(2):131{183, 1992.

[8] G. C. Murphy, D. Notkin, and K. Sullivan. Soft-

ware Re
exion Models: Bridging the Gap be-

tween Source and High-Level Models. In 3rd

ACM SIGSOFT Symposium on the Foundations

of Software Engineering, pages 18{28, 1995.

[9] R. Prieto-Diaz and P. Freeman. Classifying Soft-

ware for Reusability. IEEE Software, 4(1):6{16,

1987.

[10] S. Sparks, K. Benner, and C. Faris. Managing

Object-Oriented Framework Reuse. Computer,

29(9):52{61, 1996.

[11] A. S. Yeh, D. R. Harris, and M. P. Chase. Manip-

ulating Recovered Software Architecture Views.

In Proceedings of the International Conference

on Software Engineering, pages 184{194, 1997.

[12] A. M. Zaremski and J. M. Wing. Signature

Matching: A Tool for Using Software Libraries.

ACM Transactions on Software Engineering and

Methodology, 4(2):146{170, 1995.

10


