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Abstract

Using Virtual Memory to Improve Cache and TLB Performance

by Theodore Haynes Romer

Chairperson of Supervisory Committee

Professor Brian N. Bershad

Computer Science and Engineering

This thesis introduces new operating system policies that use virtual memory to dynami-

cally improve memory system performance. Overall application execution time is increas-

ingly dependent on memory system performance, motivating the development of new tech-

niques for reducing cache and translation lookaside buffer (TLB) miss rates.

My thesis is that the operating system can effectively manage cache and TLB resources at

runtime on behalf of applications. I develop and evaluate two examples of operating system

memory system optimizations. First, I show how the operating system can optimize TLB

performance by dynamically constructing superpages. I introduce a policy that analyzes the

cause of each TLB miss, and uses this information to selectively create large pages, reducing

the TLB miss rate without the increase in memory consumption that would accompany a

global increase in the page size. Second, I show how the operating system can optimize

cache performance by dynamically remapping pages. The operating system controls which

virtual pages potentially conflict in a physically indexed cache, because it controls the map-

ping from virtual to physical pages. I propose two techniques that inform the operating

system when virtual pages are in fact resulting in conflict misses, allowing the operating

system to remap conflicting pages. By exploiting the associativity inherent in the mapping

from virtual pages to cache pages the operating system can eliminate cache conflict misses

without the hardware cost of an associative cache.

I use both simulation and implementation to show that these techniques can improve

application performance. I also show that the two techniques can be combined, resulting

in a new policy that outperforms either of the separate techniques. Since these policies are



implemented in the operating system, they benefit arbitrary applications, without modify-

ing existing processors and without rewriting or recompiling existing software. As long as

hardware memory system implementations provide adequate feedback and control mech-

anisms, the operating system can automatically improve performance by better managing

available hardware resources to meet application resource requirements.
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Chapter 1

Introduction

In this thesis I present operating system virtual memory policies that automatically,

transparently, and dynamically improve the memory system performance of arbitrary user-

level programs. The policies are automatic in that they do not require any hints from the

program about its memory reference patterns. The policies are transparent in that they do

not require any change to the program’s abstract model of storage, virtual memory. The

policies are dynamic in that they observe and respond to changing application behavior

as the program runs. The effect of these policies is to improve performance by matching

application resource requirements and the available hardware resources.

The effectiveness of the memory hierarchy is a key element in the performance of com-

puter programs. It has almost become an axiom of computer science that the time to access

memory is increasing relative to the time to process instructions. For example, Hennessy

and Patterson report that the gap between processor and memory performance is growing

at 50% a year [Hennessy & Patterson 95]. To address the high cost of accessing memory,

modern memory hierarchy implementations are becoming increasingly complex.

The focus this thesis is on the effect of caches and translation lookaside buffers (TLBs)

on performance. Caches hold a subset of the contents of main memory in high speed

storage, and TLBs hold a subset of operating system virtual to physical translations (page

tables) in high speed storage. Application memory references that are satisfied by the cache

avoid the penalty of accessing relatively slow main memory, and virtual addresses that can

be translated by the TLB avoid a relatively slow page table lookup. Memory references that

do result in cache or TLB misses, however, cost tens of processor cycles. Thus two key

predictors of overall application execution time are the cache and TLB miss rates.

One indication of the importance of memory system performance is the increasing in-

vestment of both money and engineering effort to reduce the impact of high memory la-

tency. An example of monetary investment in memory system technology is provided by

Rambus, a corporation that produces and licenses technology for high bandwidth mem-
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ory systems. The market capitalization of Rambus was $1.8 billion as of August 22, 1997,

reflecting a 580% increase since its initial public offering in May, 1997. An example of en-

gineering investment in memory systems is provided by the Digital Alpha 21264 micropro-

cessor [Keller 96]. This state-of-the art processor includes not just on-chip caches, but next

line and set predictors (to reduce the average time to access first-level instruction caches),

miss status holding registers (to allow the processor to continue to execute while satisify-

ing cache misses), and prefetch instructions (to allow the compiler to hide the latency of

memory references). Thus the stock market is willing to invest capital, and Digital (among

other microprocessor manufacturers) is willing to invest engineering resources, in order to

address the processor-memory performance gap. Like the solutions offered by Digital and

Rambus, the policies introduced in this thesis can transparently improve the performance

of arbitrary applications. Unlike those solutions, however, the policies in this thesis require

only minimal changes to hardware processor and memory system designs.

Despite the importance of the memory system implementation to program perfor-

mance, the details of cache and TLB configurations are hidden from user-level applications.

While this aids portability, it can also hinder performance. Applications can make memory

references that result in unnecessary cache or TLB misses. As a trivial example, a program

might repeatedly generate references to two memory addresses that map to the same cache

line. In a direct-mapped cache, only one of these two addresses can be in the cache, so the

alternating references will result in cache misses. Even though the cache is large enough to

hold both data items, the reference stream results in a large number of cache misses. This

state of affairs is only revealed indirectly to the program or to the user in the form of long

execution time. Only if the program is aware of the cache configuration will it be able to

attribute the poor performance to the conflicting memory references.

This pathological example reveals both a problem and an opportunity. Because the

user-level program is unaware of the details of the hardware, small problems such as this

conflict may persist and result in significant performance bottlenecks. At the same time, the

persistence of poor behavior means (1) that it is possible to detect problems and improve

future performance by correcting the causes of the problems and (2) that it is acceptable

for the detection and correction mechanisms themselves to have a high cost, as long as they

have an even larger benefit.

The policies described in this thesis are targeted at memory system performance prob-

lems that result from the interaction of the software memory reference stream and the hard-

ware implementation of the memory hierarchy, and that:
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� have locality – that is, they persist as the application runs;

� can be detected using feedback mechanisms; and

� can be corrected in the operating system by making more effective use of the cache

and TLB.

The policies I present to solve these problems:

� rely on a combination of simple hardware support and operating system modifica-

tions to monitor the dynamic behavior of applications;

� use the information collected to identify sources of memory system delays such as

cache misses and TLB misses;

� identify and resolve these bottlenecks, and as a result not only pay for the overhead

of the monitoring mechanisms, but also significantly improve overall system perfor-

mance; and

� require no changes to existing software or to existing CPU implementations.

The importance of such techniques will grow as the cost of accessing memory continues to

increase relative to processor cycle time.

1.1 Thesis statement and contributions

My thesis is that (1) effective management of hardware memory system resources requires

dynamic detection, analysis, and correction of memory system bottlenecks, and that (2)

the operating system is ideally situated to carry out these tasks. Static compiler-based tech-

niques for improving memory system performance rely on programs with predictable ref-

erence patterns, cannot address resource conflicts that arise among multiple programs, re-

quire recompilation, and may be tailored to a specific memory system configuration. Purely

hardware-based schemes are inflexible, in that the policies for analyzing and eliminating

bottlenecks cannot be modified once the hardware is designed and built. In contrast, given

appropriate feedback and control mechanisms, the operating system can implement soft-

ware policies that are tailored to the characteristics of both the workloads and the hardware,

and that can adapt dynamically as program behavior changes.
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The contributions of this thesis are to concretely demonstrate the opportunity to use

the operating system to improve memory system performance.

� First, I introduce a policy that improves TLB performance by monitoring the TLB

miss stream, analyzing the implied memory reference pattern of the workload, and

then selectively constructing superpages. A superpage increases the granularity of

virtual-to-physical translation, allowing a fixed-size TLB to map a larger portion of

the virtual address space without a corresponding increase in physical memory re-

quirements. This solution has three components: a feedback mechanism, namely

notification of the location of TLB misses; a control mechanism, namely the ability to

specify and construct superpages; and a superpage construction policy implemented

in software.

� Second, I introduce operating system policies that eliminate cache conflicts in direct-

mapped physically indexed caches by detecting pages that are suffering from cache

conflicts and changing virtual to physical mappings to resolve the conflict. The goal

of these policies is to arrange that active virtual pages are mapped to physical pages

that do not conflict in the cache. The primary difficulty in implementing these poli-

cies is in designing appropriate feedback mechanisms. I introduce and evaluate two

approaches to cache conflict resolution. One uses detection mechanisms based on ex-

isting hardware (TLB misses and cache miss performance counters), while the other

uses proposed new hardware that precisely identifies the pages suffering from conflict

misses. The details of the policies that interpret this feedback depend on the accuracy

of the feedback mechanism. The control mechanism, in this instance, is the ability to

transparently change virtual to physical mappings.

� Third, I analyze the interaction of these two techniques. The first technique relies on

selectively increasing the page size in order to increase the coverage of the TLB. The

second technique relies on a high degree of associativity in choosing the mapping

from virtual to physical pages, but as the page size increases, this flexibility decreases.

I show that despite this apparent conflict, the two techniques in fact complement one

another. Using the two techniques together results in better performance than when

using either technique alone.

Together, the contributions of this thesis illustrate the importance of using hardware feed-

back and control mechanisms and software operating system policies to analyze and elimi-
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nate memory system bottlenecks.

1.2 Thesis overview

The rest of this thesis is organized as follows:

� Chapter 2 provides background information on the interaction of the virtual memory

system, caches, and TLBs, and describes related work in this area.

� Chapter 3 describes a policy for dynamically constructing superpages in order to

eliminate TLB misses without increasing the hardware TLB size or significantly in-

creasing physical memory requirements.

� Chapter 4 describes how to detect and eliminate cache conflicts using standard hard-

ware. Once conflicting pages are detected, the operating system can be remap them

to physical pages that do not contend for the same location in a physically indexed

cache.

� Chapter 5 describes how the approach described in Chapter 4 could be made more

effective with the addition of a proposed simple hardware device, the Cache Miss

Lookaside (CML) Buffer, that summarizes per-page miss counts.

� Chapter 6 considers the performance impact of a combined policy for superpage con-

struction and cache conflict elimination, and also considers how the policies pro-

posed in this thesis would affect the performance of Windows applications compiled

for the x86 architecture.

� Finally, Chapter 7 summarizes and concludes.
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THE PRINCIPLE OF LOCALITY

“She’s made mistakes,” he said. “So have I and so have you.”

“At least I ain’t made the same ones over and over agin,” I said.

“Why not? You might as well make them you’re used to as to

make new ones all the time. It don’t do no more damage.”

Larry McMurtry, Leaving Cheyenne



Chapter 2

Background and Related Work

The memory system optimizations introduced in this thesis draw upon and extend the

efforts of many researchers to improve the design, implementation, and performance of

the memory hierarchy. In this chapter I describe the basic operation of virtual memory,

caches, and TLBs. I then discuss how prior research has sought to improve performance

by exploiting the interactions between virtual memory and caches, and between virtual

memory and TLBs. The work described in this thesis moves beyond the earlier research by

showing how to manage cache and TLB resources dynamically rather than statically, thus

allowing the system to adapt to changing application resource requirements.

As discussed in the introduction, the focus of this thesis is on policies that can be imple-

mented in the operating system, without requiring changes either to on-chip hardware or

to applications. Memory system optimizations that require specialized on-chip functional-

ity are expensive and time consuming to implement. Optimizations that rely on algorith-

mic changes, program hints, or compiler support require varying degrees of programmer

intervention, and may be limited to improving performance for specific hardware configu-

rations. In this chapter, therefore, I describe background and prior work for cache and TLB

performance optimizations that require little or no hardware support, that are program-

independent, and that are automatic.

2.1 Background

Before presenting more detailed background, I first give some intuition about how virtual-

to-physical mappings can affect cache and TLB performance.

Figure 2-1 shows a simplified representation of the functionality of the TLB: it holds a

subset of the mapping from virtual pages to physical pages, where a page is just a contigu-

ous, aligned region of the address space. In the left half of the figure, five TLB entries are

needed to map the application’s working set. Four of the pages are contiguous and aligned

in the virtual address space, but not in the physical address space. In the right half of the

figure, the same virtual pages are in use, but now four of the pages are also aligned and con-
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Figure 2-1 Effect of page mappings on TLB performance. With appropriate virtual-to-

physical mappings, the page size can increase, so that fewer TLB entries are needed to

cover the same part of the virtual address space. In the mapping on the left, the four-entry

TLB cannot cover the shaded virtual addresses. In the mapping on the right, the same

virtual addresses are covered by just two TLB entries.
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Figure 2-2 Effect of virtual-to-physical mappings on cache performance. In the mapping

on the left, two active virtual pages are mapped to the same cache page, so cache conflict

misses can occur. In the mapping on the right, the set of active virtual pages is mapped to

disjoint cache pages, so cache conflict misses cannot occur.
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tiguous in the physical address space as well. If the TLB supports multiple page sizes, then a

larger page can be used to map the group of four pages. The working set of the application

can then be mapped with just two TLB entries, resulting in fewer TLB misses. In Chapter 3

I introduce dynamic virtual-physical mapping policies that transparently create large pages

as needed. In Section 2.1.1 I provide more detailed background on the role of the virtual

memory system in TLB performance and the opportunity to use superpages.

Figure 2-2 illustrates how virtual-to-physical mappings can affect cache performance.

Again, the figure shows mappings from virtual pages to physical pages. In addition, the

figure shows the mapping from physical pages to cache pages, page-sized regions of a phys-

ically indexed cache. Each cache page is assigned a different color, and each virtual page is

given the color of the cache page to which it is ultimately mapped. Pages of different colors

will never conflict in the cache. In the left half of the figure, pages 0 and 2 may conflict;

but in the right half of the figure, with exactly the same set of virtual pages, no cache con-

flicts are possible. In Chapters 4 and 5 I will describe techniques for dynamically creating

virtual-to-physical mappings like that in the right half of Figure 2-2 in order to reduce the

number of cache conflicts. In Section 2.1.2 I provide more detail on the operation of caches

and their interaction with the virtual memory system.

2.1.1 Virtual memory, translation lookaside buffers (TLBs), and superpages

In order to understand the virtual memory management policies that I present later

in this thesis, it is first necessary to understand the basic operation of virtual mem-

ory, and in particular to understand the role of page size in performance. For a more

complete treatment of virtual memory the reader can consult standard references such

as [Silberschatz & Galvin 97]. The material that I present here is intended only to pro-

vide enough background to motivate the use of multiple page sizes, page remapping, and

dynamic superpage construction.

Modern computer systems provide user-level programs with an abstraction of storage

called virtual memory. The program has uniform and exclusive access to a large virtual

address space, typically 232 bytes (4 gigabytes) or more. In this thesis I am concerned with

systems that implement paged virtual memory [Denning 70]. In a paged system, physical

memory is used as a cache of virtual memory, and the size of the cache element is the virtual

memory page size. Typically the page size is between 4 and 64 kilobytes (KB), and is fixed

system wide. The status of each virtual page is tracked by operating system page tables. Each

virtual page may be cached (mapped) by a page in physical memory, stored in secondary
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storage such as a paging file on disk, or in some special state (e.g. invalid). The operating

system is responsible for maintaining the page tables and other data structures that track

the status of each virtual and physical page in the system. As long as the program refers only

to virtual pages that are mapped to physical pages, it will have the illusion of fast exclusive

access to large amounts of storage, even on a system with a small physical address space.

When the program refers to virtual pages that are not cached in physical memory and must

be fetched from the paging file, it is paging, and its performance will suffer since secondary

storage is many orders of magnitude slower than physical memory.

Virtual address

VPN1 PPN1

Page offset

VPN2 PPN2

VPNn PPNn

Virtual page number
matches VPNi ?

TLB

Physical address

Virtual page number

Page offsetPhysical page number

Yes: TLB hitNo: TLB miss

Operating system
page table lookup

PPNi

Figure 2-3 A typical fully-associative software-filled TLB, with a single page size. On a

reference to virtual address v, the virtual page number is used to access the TLB. If there is

a TLB entry with a matching virtual page number, the physical page number is read from

the TLB entry and combined with the page offset to form the physical address. The page

number is simply the high order s� log2 p bits of the virtual address, where s is the number

of bits in the address and p is the page size in bytes.

Because the implementation of virtual memory is transparent to applications, user-

level programs are unaware of the status of any particular virtual page. In particular, the
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operating system can choose an arbitrary physical page to back a given virtual page, or even

change the physical page backing a virtual page while the application runs. Changing the

virtual to physical mapping for a page, or remapping, requires three steps: (1) copying the

data on the page to a free physical page; (2) updating the page table entry for the affected

page to reflect the new virtual-to-physical mapping; and (3) freeing the original physical

page. The policies introduced in this thesis rely on the ability to transparently remap pages.

While virtual memory is a great convenience to the programmer, it requires a virtual-

to-physical translation for each virtual address generated by the program. Conceptually

this means consulting the page tables to find the physical page corresponding to the virtual

page. To reduce the overhead of address translation, modern microprocessors include a

hardware cache of recently translated pages called a translation lookaside buffer (TLB) (Fig-

ure 2-3). Addresses that hit in the TLB result in no delay, while addresses that miss in the

TLB result in a page table lookup. The cost of a TLB miss is system-dependent, but as an

example, on a DEC Alpha 3000/700 a TLB miss costs at least 31 processor cycles. Once

the translation is found in the page tables it is inserted into the TLB, evicting some other

translation according to the TLB’s replacement policy. Some processors perform the page

table lookup in hardware (for example, the Intel x86), while others rely on operating sys-

tem software to perform the lookup (for example, the DEC Alpha, HP PA-RISC, and MIPS

R4x00). The hardware approach can reduce the cost of each TLB miss, but constrains the

operating system’s implementation of page tables. In this thesis I will focus on software-

filled TLBs, which notify the operating system on every TLB miss, and hence provide a

straightforward feedback mechanism. The techniques described in this thesis could also

be applied to systems with hardware-filled TLBs, although this would require a different

feedback mechanism.

The coverage of the TLB is the product of the number of TLB entries and the operating

system page size. When an application’s working set is larger than the TLB’s coverage, the

resulting TLB misses can adversely affect application performance. For example, Figure 2-4

shows the percentage of execution time spent by various applications running on a DEC

Alpha 3000/700 workstation. This system was running Digital Unix with fixed size 8 KB

pages, and is based on a DEC Alpha 21064 processor, with a 32 entry fully associative TLB

for data and an 8 entry fully associative TLB for instructions. The coverage of the data

TLB is therefore just 512 KB. Because the data working set of most of these applications

is much larger than 512 KB, the applications incur a large number of TLB misses as they

run. Coupled with a TLB miss penalty of 31 cycles, the high TLB miss rates result in the



12

0

10

20

30

40

50

co
ra

l

co
m

pr
es

s

na
sa

7-
5

na
sa

7-
4

fp
ga

ce
ci

l

at
om ff

t

sp
ic

e

gc
c

T
L

B
 T

im
e/

E
xe

cu
tio

n 
T

im
e(

%
)

Data TLB

Instruction TLB

Figure 2-4 Effect of TLB misses on performance on a DEC Alpha 3000/700. This graph

shows the percentage of execution time spent handling TLB misses. The data was collected

by instrumenting the TLB miss handler with calls to the hardware cycle counter. For

additional information on the system under test and the workloads, see Chapter 3.

significant performance degradation illustrated by the figure.

One way to increase the coverage of the TLB and deal with this performance problem

is to devote additional hardware resources to the TLB. For example, the follow-on to the

21064, the DEC Alpha 21164, expanded the TLB to 64 entries for data and 48 entries for

instructions, doubling the coverage of the data TLB (the primary source of TLB misses

for these applications). However, such hardware solutions may increase the time to access

the TLB for all references, not just misses; furthermore, merely doubling the TLB size is

insufficient for many memory-intensive applications.

Another way to increase the TLB coverage is to increase the operating system page size.

However, larger pages can result in inefficient use of physical memory. For example, if a

program uses only two words that are widely separated in the virtual address space, two

entire physical pages must be allocated to map the two corresponding virtual addresses.

The larger the page size, the more memory will be wasted due to internal fragmentation.

Inefficient use of memory, in turn, can result in paging – if the working set of the application

no longer fits in main memory it must in part be stored on secondary storage.

In contrast, the operating system policies that I describe in this thesis can increase the

coverage of a given sized TLB by much more than a factor of two, without requiring changes

to existing TLB implementations. In particular, these policies take advantage of TLBs that

support variable page sizes, or superpages. Variable page sizes offer an opportunity to in-
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Figure 2-5 A typical TLB, with support for multiple page sizes (superpages). Each TLB

entry includes an additional field corresponding to the page size. Conceptually the field is

simply a mask m, which indicates which of the bits in the virtual page number are used to

detect a match on a reference to the TLB. On a reference to virtual page v, a TLB hit occurs

if there is a TLB entry for virtual page v0 with mask m0 such that v&m0 = v0&m0, where &

is the bit-wise AND operation.

crease TLB coverage without incurring the internal fragmentation that would accompany

a global increase in the page size. A superpage is a page with a size that is a power of two

multiple of the minimum page size, and that is contiguous and aligned in both the virtual

and physical address spaces. Each page table entry and TLB entry is augmented with a field

that indicates how large the page is or equivalently, how many bits of the virtual address

make up the page number (Figure 2-5). One implication of supporting variable page sizes

in the TLB is that the TLB must be fully associative [Talluri 95]. Many current processor

architectures support multiple page sizes, including the DEC Alpha, the PowerPC, the Intel

Pentium, the Sun UltraSparc, and the HP Precision. The range of page sizes varies from

system to system; some examples are shown in Table 2-1.
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Table 2-1 Example TLB implementations. This table shows the parameters of the TLB

implementations on some current microprocessors. Four of the processors shown have

support for multiple pages in the primary TLB, while two (the PowerPC and the Pentium

Pro) support a single page size in the primary TLB and have auxiliary hardware to support

large pages.
Processor Primary TLB Auxiliary TLB

TLB size Page size(s) TLB size Page size(s)

IBM PowerPC 603e [IBM 95] 64I+64D 4 KB 4I+4D 128 KB, 256 KB, . . . , 256 MB
Intel Pentium Pro [Int 97] 32I+64D 4 KB 4I+8D 4 MB
Alpha 21164 [Dig 97] 48I+64D 8 KB, 64 KB, 512 KB, 4 MB not applicable
HP PA-8000 [Hunt 95] 96 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 8 MB not applicable
MIPS R10000 [Heinrich 96] 64 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 8 MB not applicable
UltraSparc II [Sun 97] 64I+64D 8 KB, 64 KB, 512 KB, 4 MB not applicable

2.1.2 Caches and virtual memory

The policies that I present in this thesis for improving cache performance exploit the inter-

action between operating system virtual-to-physical mappings and cache conflict misses.

This section provides background on the operation of caches and gives a simple example

of the effect of virtual to physical mappings on cache behavior. As with virtual memory

systems, a complete treatment of caches is beyond the scope of this thesis, and the reader is

referred to the literature for additional background [Smith 82, Hennessy & Patterson 95].

A cache consists of high-speed memory that holds a subset of the data in virtual or

physical memory. The cache is divided into cache lines, typically between 16 and 64 bytes.

On a memory reference, the address is divided into three fields. The low order bits are the

offset of the data within the cache line. The middle bits are used to index into the cache. A

cache is called virtually indexed or physically indexed depending on whether the virtual or

physical address is used to index into the cache. Virtually indexed caches have the advantage

of not requiring an address translation before the cache lookup, but have the disadvantage

of introducing aliases (a single virtual address referring to multiple physical addresses) and

synonyms (multiple virtual addresses referring to a single physical address).

The high order bits of the address are the tag, and are used to distinguish addresses that

index to the same cache location. If the address tag and the tag stored in the cache line

match, then the reference is a cache hit. Otherwise, the reference is a miss, and the data

must be fetched from the next level in the memory hierarchy. In a direct-mapped cache,

each memory address maps to exactly one cache line. In an n-way associative cache, each

address can map to any one of n lines.

Cache conflict misses occur because previously referenced data has been displaced by
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data that maps to the same cache location. For example, when the cache is large enough

to hold the data in use, but the data is unfortunately mapped to lines that contend for the

same cache locations, cache misses will occur. Such conflict misses could be prevented with

a different mapping of addresses to cache lines.

In a physically indexed cache, the mapping from physical addresses to cache lines is

fixed by the hardware cache index function. The mapping from virtual addresses to cache

lines, though, is controlled by the combination of the operating system’s virtual-to-physical

mappings and the hardware cache index function. As a result, cache conflicts in a physically

indexed cache are in part due to the operating system’s assignment of physical pages to

virtual pages. The virtual memory page size partitions a direct-mapped physically indexed

cache into a set of cache pages [Wheeler & Bershad 92]. The set of physical pages, in turn, is

partitioned into multiple equivalence classes, or colors, where pages of the same color map

to the same cache page. Conflicts can only occur between pages of the same color, and no

conflicts can occur within a single page as long as the page size is not larger than the cache

size.

Any virtual-to-physical mapping that assigns the active virtual pages to physical pages

of different colors pages is optimal in that it avoids conflict misses. A mapping that assigns

two or more virtual pages to the same color may not be optimal and can induce cache con-

flict misses. For example, Figure 2-2 showed a “good” and a “bad” mapping for the same set

of virtual pages. In the good case, the active virtual pages all map to different cache pages,

so no cache conflict misses are possible. In the bad case, two of the virtual pages map to

the same cache page, so addresses at the same offset within the two pages will contend for

the same cache lines, resulting in conflict misses. In Section 2.2.2, I describe some common

static mapping policies that use heuristics to avoid cache conflicts. Since these policies are

static, however, they cannot be adjusted if the working set of the application changes or if

the heuristic turns out to be inappropriate. As mentioned in the virtual memory section

above, it is possible to change virtual to physical mappings transparently to the applica-

tion. Later in this thesis I will introduce policies that take advantage of this opportunity to

eliminate cache conflicts due to poor virtual to physical mappings.

The impact of cache conflict misses on application performance is illustrated by Fig-

ure 2-6. The figure shows the simulated improvement in execution times that result from

replacing a direct-mapped cache with a two-way associative cache with the same size and

access time. Unfortunately, real associative caches have higher cost and higher access time

than a direct-mapped cache of the same size [Wood 86], so these results may not be attain-
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Figure 2-6 Effect of conflict misses (simulated). This graph shows the predicted improve-

ment in execution time by replacing a direct-mapped off-chip cache with a hypothetical

two-way associative cache with the same size (512 KB) and access time. The simulated

memory system is based on the DEC Alpha 3000/500. The reduction in execution time

indicates the opportunity to improve performance by eliminating cache conflicts. For

further details on the simulation and the workloads, see Chapter 4.

able in practice. The goal of the policies introduced in this thesis is to use operating system

virtual-to-physical mapping policies to eliminate cache conflicts in software without incur-

ring the costs of hardware associativity.

2.2 Related work

In this section I briefly describe prior research based on the observation that the operat-

ing system’s virtual memory policies affect cache and TLB performance. These techniques

generally consist of finding static virtual-to-physical mappings that result in relatively good

memory system performance. This thesis shows that by changing page sizes and virtual-to-

physical mappings as a program runs, performance can be improved even further.

2.2.1 TLB management

A number of researchers have noted that large pages could improve the TLB performance

of applications with large working sets. Most have proposed user-level policies for setting

the page size, but have not actually demonstrated the effectiveness of such policies:
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� Harty and Cheriton[Harty & Cheriton 92] propose mechanisms that would allow an

application to manage its own physical memory, including varying the page size

within segments of its address space. They do not discuss policies for selecting

page sizes. Implementing the superpage construction policies described in this paper

could use their mechanisms for controlling page sizes, but would require extensions

to provide feedback on TLB performance to the application.

� In Chen et al.’s study of TLB performance [Chen et al. 92], the authors suggest using

compiler feedback to identify regions of the program text that could be mapped by

larger pages, and tuning memory allocation algorithms to map frequently used data

to contiguous regions in order to facilitate the use of large pages. They do not evaluate

these proposals, however.

� Mogul [Mogul 93] also suggests using large pages to increase TLB coverage. He de-

scribes qualitatively the tradeoffs involved in constructing superpages dynamically,

and suggests this as a possible research direction.

Talluri et al. [Talluri et al. 92, Khalidi et al. 93, Talluri & Hill 94, Talluri 95,

Talluri et al. 95] go further, proposing techniques that use the operating system to

improve TLB performance without requiring user-level intervention. They consider

superpages, but focus on proposed partial subblock TLBs. A subblock TLB, akin to a

subblock cache [Hennessy & Patterson 95], has multiple entries associated with each tag.

For example, in a TLB with base page size of 4 KB and subblock factor 16, a single TLB

entry could map a contiguous aligned region of the virtual address space as large as 64 KB.

As with superpages, for partial subblock TLBs to be effective the operating system must

map contiguous aligned regions of virtual memory to contiguous aligned regions of phys-

ical memory. Subblock TLBs have less stringent requirements than superpage TLBs, how-

ever. If one or more of the component virtual pages cannot be represented by the shared

TLB entry (because it differs in protection or validity, or because it is mapped to a different

part of the physical address space), it can be marked invalid and mapped with a separate

TLB entry. To arrange that pages are aligned and contiguous in the virtual and physical

address spaces, Talluri et al. propose an operating system policy of page reservation to sup-

port superpage and subblock TLBs. The virtual and physical address spaces are divided

into 64 KB regions; the operating system makes a best effort to allocate virtual pages in one

64 KB region to physical pages in one 64 KB physical region.
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This reservation policy can allow the creation of superpages with no runtime cost, and

similarly can allow a single subblock TLB entry to map a large number of 4 KB pages.

However, it restricts the freedom of the virtual memory system to map virtual pages to

specific physical pages (to avoid cache conflicts), and effectively constrains the operating

system to allocate pages in 64 KB regions, regardless of the actual access patterns of the

application. As a result, this policy may needlessly fragment the physical address space.

Specifically, reservation makes it difficult to construct superpages of varying size, since there

is no way to decide a priori how many base pages to reserve at page allocation time. For

small superpages, reservations may often hold until they are needed. As the superpage

size grows, however, it is increasingly likely that a reservation will fail: that is, some base

page within the reserved superpage is allocated for another purpose before the superpage is

actually created.

Talluri et al.’s primary interest is in measuring the effectiveness of subblock TLBs. How-

ever, they do propose one superpage policy simply to provide a point of comparison. This

policy creates a superpage as soon as some fraction of the component pages have been refer-

enced. They do not explore the design space of this policy, nor do they consider policies that

copy pages dynamically in order to create superpages at runtime. In effect, superpages are

created only if the original reservation was successful. Both their superpage and subblock

TLB policies effectively limit the maximum page size to 64 KB, and would be ineffective for

applications with working sets larger than would be mapped by a TLB with 64 KB pages.

They suggest that larger pages can be created in response to application hints, but do not

consider using larger pages for arbitrary applications.

2.2.2 Virtual memory mapping policies

Several other researchers have investigated the impact of the operating system’s virtual-to-

physical mapping policies on both cache performance and address translation performance.

Cache performance is affected by mapping policies as described in Section 2.1.2. As a result,

prior research has focused on techniques for mapping simultaneously active virtual pages to

physical pages of different colors. Knowing the operating system mapping policy in advance

can allow optimizations in the implementation of address translation hardware.

Page coloring

The work of Chiueh and Katz [Chiueh & Katz 92], Taylor [Taylor et al. 90], and

Lynch [Lynch 93] is based on a simple static mapping policy called page coloring. Page
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coloring assigns virtual pages to colors in a round robin fashion, assigning virtual page 0 to

the first color, virtual page 1 to the second color, and so on. (To avoid inter-address space

conflicts, different permutations of the color order can be used for different processes —

for example, by hashing the virtual page number with the process identifier to determine

the color.) This heuristic has the virtue that pages close together in the virtual address space

will not conflict in the cache.

Generally page coloring is not strictly enforced by the operating system: if there is no

free page of the desired color, a free page of another color is chosen. However, Lynch,

in his thesis on the cache performance of various static page allocation policies, focuses

on “perfect coloring,” in which the operating system does enforce page coloring strictly.

Perfect coloring has the advantage of allowing the placement of virtual pages in the cache

to be easily controlled at user-level, and can allow the index into a physically indexed cache

to be computed from the virtual address without performing address translation (since the

low order bits of the physical page number are determined by the virtual page number.)

Unfortunately, by constraining the associativity of the mapping from virtual to physical

pages, perfect coloring may result in increased paging rates. Since fetching a page from

secondary storage is many orders of magnitude more expensive than a cache miss, real

systems do not implement strict page coloring.

Both Chiueh et al. and Taylor et al. consider how to reduce the hardware needed for

address translation when the operating system attempts to map pages according to the page

coloring heuristic. While the two papers propose different mechanisms, the basic observa-

tion is that in the presence of page coloring, the low order bits of the virtual page number

are a good predictor for the low order bits of the physical page number. Taylor et al. exploit

this observation in their design of the “TLB slice.” The TLB slice is a hardware table that

provides a translation hint for just the low order bits of the virtual page number in order to

generate the index into a physically indexed cache. This allows a virtually-tagged, physically

indexed cache to be accessed without performing a full TLB lookup. Page coloring helps

the performance of the TLB slice by allowing multiple virtual pages to share a single entry

in the table.

Other static mapping policies

Kessler et al. [Kessler & Hill 92] considered static page mapping policies that use varying de-

grees of sophistication to avoid conflicts in a physically indexed cache. They provide an ex-

cellent overview of the interaction of page mapping policies and cache performance. They
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introduce several “careful” mapping policies that use heuristics to avoid cache hot spots.

They find that sophisticated policies that try to measure the number of pages allocated to

any color provide some minor performance advantages. However, for the workloads under

study a simple bin hopping heuristic works nearly as well as policies that maintain much

more information about past allocation decisions. Bin hopping assigns virtual pages to

colors cyclically according to the order in which they are initially mapped. This policy has

the virtue that pages initially referenced close together in time will be assigned to different

colors and hence will not conflict in the cache. In addition, it is feasible for user-level ap-

plications to manipulate the cache placement of virtual pages by controlling the order in

which they initially reference pages [Bugnion et al. 96].

Dynamic mapping policies

Finally, Sites [Sites 95] proposes a technique for changing virtual-to-physical mappings in

response to application cache miss behavior. This technique is based on hardware that ef-

fectively records the address of every cache miss. By periodically sampling the cache miss

address, the operating system can identify pages suffering from large numbers of misses.

Depending on the cause of the cache misses, such pages can be migrated (to reduce coher-

ence misses on a multiprocessor) or remapped (to eliminate cache conflicts). A potential

disadvantage of this policy is that the sampling technique may allow a large number of

cache misses to occur before the offending pages are identified and remapped or migrated.

In contrast, the techniques that I propose in Chapter 5 can identify conflicting pages after a

relatively small number of cache misses.

2.3 Evaluation of prior work

While the prior research in this area has demonstrated some performance benefits, it falls

short of the potential for operating system virtual memory policies to eliminate cache and

TLB misses. The fundamental shortcoming of all of the preceding work, except for Sites’s

proposal, is that it attempts to derive static solutions to what are inherently dynamic per-

formance problems. Application memory reference patterns are difficult to predict stat-

ically, so optimizing memory system performance for general purpose applications re-

quires dynamic analysis of application behavior. Static mapping policies cannot adapt

as the working set of an application changes. There is a class of scientific codes that do

have relatively predictable reference patterns, and a body of work devoted to the auto-
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matic optimization of memory use for these applications. But even for these applications,

static memory management policies cannot detect contention between different applica-

tions for memory system resources, or between the operating system and user-level pro-

grams [Mogul & Borg 91, Chen 94].

Another optimization technique is to use profiles of past runs to predict the behav-

ior of future runs. The appeal of this approach is that if future behavior is identical to

past behavior, it should be possible to use profile information to provide optimal perfor-

mance. Unfortunately the resulting optimizations will be specific to the program, to the

input stream, and to the hardware platform. Attaining the maximum benefit from profile-

driven optimization would require case-by-case profiling and optimization for each pro-

gram, for each hardware platform, and for each input stream. In contrast, the techniques

developed in this thesis seek to obtain the benefit of such custom optimizations while using

generic policies that apply to all programs and platforms. These policies effectively profile

and optimize performance dynamically, obtaining the benefits of profile-driven optimiza-

tion as programs run rather than afterwards. Although application-specific optimizations

will always perform at least as well as generic optimizations, the techniques proposed here

often perform as well or nearly as well as optimizations that have exact information about

the program’s reference patterns, at a far lower implementation cost.

Drawing an analogy from the hardware domain, a cache is a simple and effective device

that adapts at runtime to application reference patterns. A cache works because it takes into

account the past behavior of the application, and uses the principle of locality to predict

(usually correctly) that recently referenced addresses will be referenced again in the near

future. However, a cache only considers a very small window onto the application’s memory

reference stream. As the cost of memory accesses increases relative to processor speed, it

will become increasingly attractive to collect more detailed information and employ more

sophisticated run time analysis to better manage the memory hierarchy. This thesis, then,

explores how to apply the principle of locality within the operating system’s virtual memory

system to detect and eliminate cache and TLB misses.

In the remainder of this thesis I will describe techniques that go beyond the prior work

by taking advantage of dynamic information about application memory reference patterns,

and use this information to transparently remap pages, optimizing page sizes and page

mappings to eliminate TLB misses and cache conflict misses. The policies introduced in

this thesis rely on runtime analysis to trade off the cost of remapping pages with the ex-

pected benefits from reduced miss rates. They do not require changes to on-chip hardware,
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nor are they specialized to particular applications. The net result is operating system virtual

memory policies that match the memory system resource requirements of existing appli-

cations to the resources available on existing hardware, improving upon static mapping

policies in terms of memory consumption, overall execution time, or both.



Chapter 3

Using Virtual Memory to Improve TLB

Performance

3.1 Introduction

In this chapter I show how to use the operating system to improve application execution

time by dynamically managing the memory system resources provided by the TLB. The

techniques I describe rely on variable size pages — superpages — to increase the coverage of

the TLB and hence reduce TLB miss rates. A naive strategy for using superpages to improve

TLB performance would be to use large pages throughout the address space. While this

strategy would increase TLB coverage by increasing the amount of memory mapped by each

TLB entry, the internal fragmentation of the large pages would cause memory consumption

to increase relative to a system that used only small pages. The contribution of this chapter

is to introduce a policy that selectively creates superpages at runtime, providing the good

TLB coverage of large pages and the good memory consumption of small pages.

TLB performance can have a dramatic effect on application execution time. To quantify

this effect, I measured the percentage of execution time spent handling TLB misses for a

collection of programs running on a DEC Alpha 3000/700. (These programs are used as

benchmarks throughout this chapter, and are described in Table 3-1.) Table 3-2 shows the

results of this experiment: the applications spent between 5.2% and 41.4% of their time in

the TLB miss handler.

Improving TLB performance requires either reducing the number of TLB misses in-

curred by an application, or reducing the cost of individual TLB misses. While some re-

cent research has focused on reducing the cost of TLB misses [Chen et al. 92, Bala et al. 94,

Uhlig et al. 94, Austin & Sohi 96], TLB miss paths are already highly optimized, with a sin-

gle miss costing as little as 10–30 cycles [Kane & Heinrich 92, Dutton et al. 92]. The other

alternative for improving TLB performance is to reduce the number of TLB misses. One

approach would be to intervene at the level of the user or the language to obtain better lo-

cality, but this strategy is limited to applications that can be rewritten or recompiled, and
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Table 3-1 This table describes the applications considered in this study. compress, gcc, the

two nasa7 programs, fft, and spice are drawn from the SPEC92 benchmark suite. Coral is

a benchmark used in the Wisconsin TLB study. Atom, cecil, and fpga are tools used in the

University of Washington research environment. The “working set size” columns shows

the total amount of memory (in megabytes) used during the full run of the program,

assuming a page size of 4 KB.

Benchmark Description Working set

size (MB)

coral The Wisconsin coral database performing a nested join 33.0

[Ramakrishnan et al. 93].

compress compress compressing a 977 KB input file. 0.8

nasa7-5 Gaussian elimination for a 3.8 MB matrix. 2.3

nasa7-4 Block tridiagonal matrix solver for a 131.8 KB matrix. 3.1

fpga Logic bipartitioner targeted to FPGAs, using a 1626 KB input 41.6

file [Hauck & Borriello 97]

cecil cecil compiling a 21 KB input file [Chambers 93]. 280.4

atom atom instrumenting a 2.6 MB binary with the TLB simulator. 32.7

fft Fast Fourier transform of a 32 MB array. 32.4

spice The spice circuit simulation benchmark on the 15 KB reference 3.2

input set

gcc gcc compiling a 109 KB input file. 1.4

will not benefit programs that have inherently large working sets.

A technique for reducing the number of TLB misses for arbitrary programs is to increase

the TLB coverage – the amount of virtual memory mapped by the TLB. TLB coverage is just

the product of the number of TLB entries and the page size. For example, the DEC Alpha

21164 has 64 TLB entries for data, which together with a page size of 8 KB results in TLB

coverage of 0.5 MB for data. This example points out the fundamental problem with cur-

rent TLB performance: while modern systems frequently ship with hundreds of megabytes

or even gigabytes of RAM to satisfy the requirements of memory-intensive applications,

TLB coverage is on the order of one megabyte. Improving TLB coverage requires either

increasing either the TLB size or the page size. Increasing the TLB size is unsatisfactory,

however: if enough TLB entries are added to allow the TLB to map the working sets of large

applications, TLB access time will rise, slowing down every memory reference.

Increasing the page size, in contrast, requires only modest hardware support and has

the potential to greatly increase TLB coverage – current systems provide superpages as large

as 4 MB. Increasing the page size system-wide is not a good solution, however: since pages

mapped by the TLB must be physically resident, large pages that are sparsely populated will
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Table 3-2 Baseline performance. I measured the TLB performance of the benchmark

suite on a DEC Alpha 3000/700 running DEC OSF/1 2.1. This system contained a 225

Mhz Alpha 21064 processor with a 32 entry DTLB and an 8 entry ITLB, a 2 MB off-chip

cache, and 160 MB of main memory. The execution time is the average of five runs on

an unloaded system, after an initial run to warm the file buffer cache. I collected the TLB

miss statistics using a TLB miss handler instrumented with the Alpha cycle counter.

Benchmark Exec. TLB Misses TLB Time
Exec. Time

(%)

Time (s) (100s)

coral 51.6 1,242,456 41.4

compress 1.1 25,650 35.2

nasa7-5 9.0 205,845 34.7

nasa7-4 1.0 23,787 34.4

fpga 53.8 806,331 28.4

cecil 126.2 969,255 16.6

atom 9.8 94,304 16.1

fft 43.7 294,899 10.7

spice 210.5 1,212,271 9.4

gcc 1.5 4,389 5.2

increase the physical memory requirements of an application. To determine how small and

large pages affect system performance, I measured the simulated performance of the bench-

mark suite on systems that used a range of fixed page sizes. The two metrics of interest are

TLB management cycles per instruction (TLBMCPI) and memory usage overhead. TLBMCPI

is the total number of cycles spent in service of the TLB divided by the total number of user

instructions executed. On a single-issue machine with an infinite cache, overall CPI (cycles

per instruction) would be 1+TLBMCPI. Memory usage overhead is the increase in memory

consumed relative to a system with fixed-size 4 KB pages, reflecting the cost of memory lost

to internal fragmentation.

A larger page size effectively trades higher memory consumption for lower TLBMCPI.

Figure 3-1 illustrates this tradeoff, showing TLBMCPI as a function of memory usage over-

head as the page size varies. While an ideal system would have both TLBMCPI and memory

usage overhead of zero, the figure shows that there is no single page size that approaches this

ideal point for any of the applications that have significant TLB overhead. With fixed-sized

pages, program behavior is constrained to follow these curves.

The goal of this chapter is to develop an operating system policy that will selectively

create superpages at runtime, using large pages to map virtual memory where the virtual
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Figure 3-1 TLB overhead as a function of memory usage overhead for a range of page

sizes. This graph shows that increasing the page size can sometimes both reduce TLBM-

CPI and increase memory usage. For each program, each point on the line represents

a different page size, ranging from 4 KB (the points with the highest TLB miss rate) to

256 KB (the points with the highest memory usage). These data were gathered using

trace-driven simulation. Note that the two graphs use different scales.

address space is used densely and frequently and small pages elsewhere. If such a policy is

successful, application behavior will approach the origin on these tradeoff graphs.

Superpages have been used before to increase TLB coverage by mapping large, static re-

gions of memory such as the operating system’s text or the window manager’s frame buffer,

but they have not been used to support general applications. This support has been absent

because it is difficult to predict statically whether superpages will benefit a given appli-

cation: the appropriate set of superpages depends on how an application uses its virtual

address space at runtime. Thus it is more effective to create superpages as an application
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runs.

Creating variable size pages dynamically requires modest extensions to the operating

system virtual memory system. Most clients of the virtual memory system continue to

see an interface based on a fixed page size, which I will refer to as the base page size. The

machine-dependent layer of the virtual system must be extended to support two new op-

erations, page promotion (or “construction”) and demotion. Recall that superpages must be

contiguous and aligned in both the virtual and physical address spaces. Promotion is the

operation of coalescing two or more adjacent virtual pages into a single large superpage.

Promotion may involve copying one or more of the component pages to preserve the re-

quirement of physical contiguity. (The experiments in this chapter assume that all of the

physical pages must be copied on promotion.) Demotion is the operation of breaking a

single page into two or more smaller pages. Demotion typically occurs when a client of the

virtual memory system requests some operation on a base page.

While the operating system mechanisms to support superpage creation are straightfor-

ward, determining when to use superpages can be challenging. On the one hand, super-

pages can reduce TLB miss rates and hence execution time because the coverage of a single

TLB entry increases as the page size increases. On the other hand, superpages can increase

execution time, because pages may need to be copied to make the component pages of a su-

perpage physically contiguous. Therefore, to use superpages effectively, the operating sys-

tem must balance these factors, ideally creating just those superpages whose performance

benefits outweigh their costs.

This chapter shows how to perform this cost-benefit analysis automatically at runtime.

I describe online policies that take into account both past miss cost and superpage construc-

tion cost in order to determine which pages should be promoted into a larger superpage.

Accounting takes place during the handling of TLB misses. While this approach increases

the cost of each miss, using trace-driven simulation I show that it substantially reduces the

total number of misses, improving overall system performance. Online superpage manage-

ment policies reduce TLB overhead by as much as 99%, and overall execution time by as

much as 48%, when compared to a system using small fixed-size pages. When compared to

a system using large fixed-size pages, TLB overhead is approximately the same, but memory

consumption is substantially less. The performance of these online policies across a range

of applications comes close to that of a nearly optimal offline allocation policy that uses

future reference knowledge to allocate superpages.

In summary, this chapter introduces an online policy for superpage management that:
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� dramatically improves TLB coverage and hence overall program performance by re-

sponding dynamically to application reference patterns;

� does not require special modifications to hardware or changes to the operating system

interface;

� operates automatically, requiring no modification to programs or compilers and re-

quiring no hints from the user; and

� transparently improves performance by changing page sizes as required by the appli-

cation.

The rest of this chapter

In this chapter I describe how I designed and evaluated online superpage management poli-

cies. I begin with some comments on the experimental methodology in Section 3.2.

The core of the chapter is the description of the online policies. In Section 3.3 I discuss

the principles underlying the design of online superpage promotion policies. Then in Sec-

tion 3.4, I describe the specific policies based on these principles, as well as several alternate

policies to serve as points of comparison.

I evaluate the performance of these policies using trace-driven simulation. In Sec-

tion 3.5 I describe how the experiments account for the space and time overhead incurred

by different policies. In Section 3.6 I describe the performance impact of the various poli-

cies. The experiments quantify the benefits of creating superpages as applications run,

showing that an online policy improves overall application execution time without the in-

crease in memory consumption that would accompany using large fixed-size pages system-

wide.

I conclude the chapter with a discussion of some potential avenues for future work. In

Section 3.7 I describe issues that would arise in implementing the policies in Digital Unix

on a DEC Alpha. In Section 3.8 I identify some possible refinements and extensions to the

policies described in this chapter. Finally, in Section 3.9 I conclude.

3.2 Methodology

I measured system behavior using trace-driven simulation of the benchmarks described in

Table 3-1. I used five of the benchmarks (compress, nasa7-5, nasa7-4, fft, and gcc) to develop
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and tune the online policies. Once the policy parameters were established, I augmented this

“training set” with the remaining five benchmarks (coral, fpga, cecil, atom, and spice), with-

out any further changes to the parameters. I simulated the TLB behavior of the applications

using ATOM, a binary rewriting tool from DEC WRL [Srivastava & Eustace 94]. The simu-

lated system had two 32-entry fully-associative TLBs, one for instructions and one for data,

and used a least recently used (LRU) replacement policy. The TLBs support superpages

with sizes that are power of 2 multiples of the base page size (4 KB) ranging from 4 KB up

to 8 MB.

3.3 Policy design principles

The goal of this chapter is to show how to automatically create beneficial superpages at run-

time in order to improve application performance. This is challenging, however, because

without full knowledge of the future it is impossible to predict whether constructing a given

superpage will in fact be beneficial. This section describes how to design policies that result

in good program performance even in the face of incomplete information.

Constructing superpages at runtime carries both a cost and a benefit. The cost is the

time required to coalesce pages into a contiguous, aligned region of physical memory. The

benefit is the elimination of future TLB misses. With complete information about the fu-

ture reference stream, it would be possible to design an optimal offline policy: that is, a

policy that constructs exactly the set of superpages whose benefit outweighs their construc-

tion costs. Although this goal is unobtainable in practice, by applying principles drawn

from competitive analysis it is possible to design online policies that have total TLB man-

agement costs that are bounded relative to the optimal offline policy. The policies proposed

here do not explicitly attempt to optimize memory consumption relative to a system with

small fixed-size pages. In practice, the online policies tend to create superpages in densely

populated regions, so the increase in memory consumption is small.

Constructing superpages can also affect the performance of a physically-indexed cache,

because larger pages limit the operating system’s flexibility in mapping virtual pages to

cache pages. In this chapter I assume that the operating system consistently uses page col-

oring to map virtual pages to physical pages, regardless of the page size. With this mapping

policy the construction of superpages will not affect the behavior of a physically-indexed

cache for memory references within a single virtual address space. In Chapter 6 I con-

sider the interaction of superpage construction and cache performance for mapping poli-
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cies other than page coloring.

3.3.1 The ski-rental problem

My approach to designing online superpage construction policies can be understood by

considering an analogous situation that arises in the “ski-rental problem.”1 Consider a

graduate student who occasionally goes cross-country skiing to avoid working on his thesis.

He can either buy skis for $100; or rent skis for $10. With complete information about the

future, the problem is straightforward: he should buy skis if he will go skiing 10 or more

times, and rent skis otherwise. In practice, of course, the student does not know how long

the ski season will last, or how long he’ll be in graduate school, or how often he’ll choose to

procrastinate. Nonetheless, he would like to bound his total expenditures on ski equipment.

To do this he should begin by renting skis. If he eventually goes on an eleventh ski trip, he

should then buy skis. This policy guarantees that he will never spend more than twice as

much as the optimal ski-rental policy, no matter how many times he goes skiing. (In the

worst case, the optimal offline policy would have spent $100, whereas the graduate student

would have spent $200.)

To apply a similar approach to the superpage construction problem, an online policy

must take into account the cost and benefit of each superpage. In effect, the skiier in the

example above maintained a small amount of bookkeeping information that reflected the

past cost of not owning skis. Once this past cost equalled the cost of buying skis, he made

the purchase.

Similarly, the online superpage construction policies will maintain information reflect-

ing the number of TLB misses each superpage could have prevented had it been constructed

earlier in time. A policy analogous to the one proposed for the cross-country skiier is to

promote to a superpage when the cost of past TLB misses that the superpage would have

prevented equals the cost of constructing the superpage. With respect to this superpage,

such a policy will have total TLB management costs at most twice that of the optimal of-

fline superpage construction policy.

The rest of this section describes how to maintain counters that reflect the history of

past TLB misses, and how to select a promotion threshold based on these counters.

1 This analogy was originally suggested by Larry Rudolph in explanation of the results described
in [Karlin et al. 88].
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3.3.2 Maintaining miss charges

Designing a superpage construction policy based on the ski-rental analogy requires “charg-

ing” each TLB miss to any superpage that could have prevented the miss. Once the charges

to a given superpage reach some threshold value – such as the cost of creating the superpage

– the superpage is promoted. I now describe the details of how TLB misses are charged to

specific superpages.

A superpage can prevent a miss to a page p in one of two ways. First, the superpage may

cover both p and a page already in the TLB. In this case the miss would have been prevented

if the superpage had already been constructed, because the translation for the page already

in the TLB would have covered p. Second, a superpage may increase the capacity of the

TLB, so that a prior translation for p would not have been evicted from the TLB, avoiding

the miss. Preventable misses can be tallied by maintaining two counters that keep track

of these two different miss charges to a potential superpage P: prefetch(P) and capacity(P).

The counters are updated on a TLB miss to a page p as follows:

� Prefetch charges are updated on each miss by incrementing prefetch(P) for each po-

tential superpage P that contains the currently referenced page p and one or more

TLB entries.

� Capacity charges are computed by examining the TLB miss stream at the time of

the reference to p. Capacity(P) is incremented for each potential superpage P that

coalesces enough TLB entries to have kept p from having been evicted from the TLB

in the past. (The TLB miss stream is maintained in a LRU stack data structure that

reflects the set of referenced pages in order of most recently referenced to least recently

referenced. That is, if the LRU stack at some time is (p1, p2, : : : , pn), then pi is the ith

most recently referenced page.) 2

Figure 3-2 illustrates the use of these counters. Consider a TLB with three entries. Im-

mediately after servicing the stream of virtual page references 8,1,7,6,5,0 the TLB contains

translations for pages 0, 5 and 6. Suppose the next reference is to virtual page 1, resulting

in a miss. If the system had created superpage f0, 1g initially, this miss would not have

2 The LRU stack is described as a totally ordered list to simplify the exposition. Since information about
the LRU stack is updated on a TLB miss, it is only possible to record the set of pages that have translations
in the TLB in addition to the precise LRU stack of pages that do not have translations in the TLB. This
information is sufficient, though, to accurately update capacity charges.
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occurred: on the prior reference to page 0, a translation for f0, 1g would have entered the

TLB, and the subsequent reference to page 1 would have hit. Therefore, prefetch(f0, 1g)

is incremented. Alternatively, if the system had created superpage f4, 5, 6, 7g initially, this

miss would not have occurred. This can be seen by observing the entire LRU stack prior

to the reference to page 1. In order of most recently to least recently referenced, the LRU

stack contains 0,5,6,7,1,8. If f4, 5, 6, 7g had been initially promoted, the LRU stack would

reduce to 0,f4, 5, 6, 7g,1,8. Page 1 is now one of the top 3 entries in the stack and, under

LRU replacement, its translation would be in the TLB. Since the promotion of f4, 5, 6, 7g

would have prevented virtual page 1 from being evicted from the TLB, capacity(f4, 5, 6, 7g)

is incremented.
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the final reference to page 1 results in a TLB miss.
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(c) The same sequence of TLB references with the superpage 
{4,5,6,7}.  In this scenario, the existence of this large superpage 
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Figure 3-2 Example of prefetch and capacity charges. Each part of the figure shows the

changing contents of the TLB when presented with the reference stream of virtual pages

8,1,7,6,5,0,1. In part (a), the final reference to page 1 results in a TLB miss. Part (b)

shows why superpage f0,1g incurs a prefetch charge: had the superpage f0,1g existed, the

final reference would have resulted in a TLB hit. Similarly, part (c) shows why superpage

f4,5,6,7g incurs a capacity charge: had the superpage f4,5,6,7g existed, the final reference

would have resulted in a TLB hit.

The two counters reflect substantially different information. The promotion of f0, 1g in
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the previous example effectively causes a prefetch of the translation for virtual page 1, since

the first reference to page 0 causes a translation for f0, 1g to enter the TLB. On the other

hand, the promotion of f4, 5, 6, 7g effectively increases the capacity of the TLB by reducing

a set of entries in the LRU stack to a single entry, thereby preventing the prior eviction of

some other entry.

In Section 3.5 I show that in practice the prefetch counter is more important than the ca-

pacity counter in identifying the best potential superpage. Fortunately, the prefetch counter

is the less expensive of the two to maintain. A simple way to compute prefetch charges is to

scan the TLB on a miss to page p and check if some potential superpage contains both p and

a current TLB entry. A more efficient algorithm for maintaining prefetch charges is given

in Section 3.5.2. On the other hand, determining capacity charges requires scanning both

the TLB and the LRU stack of pages referenced prior to the last reference of p to determine

if there is a potential superpage that would have coalesced enough entries to have prevented

p’s eviction.

Resetting miss charges on promotion

The miss charge of a potential superpage should reflect the number of misses that pro-

motion would have eliminated that were not already eliminated by previously promoted

pages. So in addition to updating the counters on each TLB miss, the counters must be

updated when promoting to a page P, to reflect the new, perhaps diminished benefit of

subsequent promotions. To adjust the prefetch charges when P is promoted, prefetch(P0) is

decremented by prefetch(P) for all superpages P0 containing P, since whenever prefetch(P)

is incremented, prefetch(P0) is also incremented. Adjusting the capacity charges when P is

promoted is more difficult: for every superpage Q, capacity(Q) must be decremented for

each past miss that incremented both capacity(Q) and capacity(P).

3.3.3 Threshold selection

Given counters that associate past TLB misses with specific superpages, the next step is to

choose a threshold value for promoting superpages. Intuitively, the goal in choosing this

threshold is to ensure that a superpage is promoted early enough to avoid future misses, but

late enough to ensure that the cost of promotion does not dominate TLB overhead. More

rigorously, by using a carefully selected threshold, an online superpage construction policy

can bound its cost relative to the optimal offline policy, as follows.
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An optimal offline superpage construction policy has the luxury of observing all fu-

ture references prior to making a promotion. Suppose that there is one candidate N KB

superpage P consisting of two N=2 KB pages, and that in the run of an application, m

TLB misses will become hits if P is constructed at time 0. The optimal offline policy,

knowing m, will perform the promotion at time 0 if m is at least the ratio of P’s con-

struction cost (cycles lost due to copying) and the cost of a TLB miss. This ratio is called

R = Construction Cost=TLB Miss Cost. The optimal offline policy will never promote to P if

m < R. An online policy that promotes when the miss charges to a page reach R is guar-

anteed to deliver performance no worse than twice the optimal offline with respect to this

single superpage. If m � R, then both the online and offline policies pay for m TLB misses.

If m > R, the offline policy pays for a promotion at time 0, while the online policy pays for

R TLB misses and the promotion, for a total cost of two promotions.

In practice, the online policy of waiting until the miss charges exceed R is overly con-

servative. Because of locality in page reference patterns, most potential superpages either

never accumulate miss charges exceeding a fraction of R, or else accumulate miss charges

greatly exceeding R. Therefore, a promotion threshold substantially less than R will work

well. In Section 3.4.2 I present data that support this hypothesis.

The effect of bookkeeping overhead on threshold selection

The analysis presented above does not take into account the additional overhead incurred

on every TLB miss by an online superpage construction policy. Intuitively, it might seem

that given this additional cost, online policies should use a promotion threshold different

from R in order to best bound their overhead compared to the optimal offline algorithm.

However, I show here that this is not the case. Even when the additional bookkeeping

overhead is included in the analysis, the online policy should still use a promotion threshold

of R to minimize its overhead compared to the optimal offline policy.

Consider again the case in which constructing superpage P at time 0 would prevent m

TLB misses, at a construction cost of C. Letting b be the baseline TLB miss cost, the ratio of

construction cost to TLB miss cost is R = C=b. The optimal offline policy, knowing m, will

perform the promotion at time 0 if m is at least R, and will never promote to P if m < R.

The remaining question is what value of thresh, the promotion threshold for the su-

perpage, will minimize the worst-case ratio assuming that the online algorithm incurs an

additional overhead of o time units on each TLB miss. The worst-case ratio occurs when

the online algorithm promotes a page that will in fact never prevent any future misses.



35

This ratio will occur for a page P that would prevent exactly thresh misses — that is, when

m = thresh.

In this case, the cost to the online algorithm is (b + o) � thresh + C, and the cost to the

offline algorithm is min(b � thresh, C). Thus the ratio of the online cost to the offline cost is

max
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To see that the online algorithm should use a threshold of R = C=b, consider the ratio of

the online cost to the offline cost for each of three cases: (1) thresh = C=b, (2) thresh < C=b,

and (3) thresh > C=b.

1. For thresh = C=b, the ratio of the online cost to the offline cost is:
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2. For thresh < C=b, the ratio of the online cost to the offline cost is:

max

 

1 +
o

b
+

C

b � thresh
, 1 +

(b + o) � thresh

C

!

� 1 +
o

b
+

C

b � thresh
> 2 + o=b.

3. For thresh > C=b, the ratio of the online cost to the offline cost is:
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Hence, the promotion threshold for P that minimizes the online to offline performance

ratio in the worst case is R. With this threshold, the online policy incurs at most 2 + o=b

times the cost incurred by offline policy with respect to P.
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3.3.4 Policy design principles: summary

The high-level goal of an online superpage construction policy is to automatically identify

and construct beneficial superpages as an application runs. To achieve this goal, an online

policy needs to “blame” each TLB miss on specific superpages. In particular, it must main-

tain one or more counters for each potential superpage, indicating how many past TLB

misses the superpage could have prevented. By waiting to promote a given superpage un-

til a threshold value is reached, the operating system can avoid the performance problems

inherent in promoting too soon (high copying costs) or too late (high TLB miss rates). Fur-

ther, this strategy results in a policy that bounds overall TLB management overhead relative

to the optimal offline policy that has full knowledge of the future. In the following sections

I will show how a policy based on these principles improves application performance.

3.4 Promotion policies

Using the policy design principles described in the previous section, I now introduce several

TLB management policies that perform cost-benefit analysis in order to selectively con-

struct superpages. As an initial reference point, I also include one offline policy, which

constructs superpages based on complete knowledge of the application’s memory reference

stream. I then consider online policies that maintain the counters described in Section 3.3

in order to selectively construct superpages. The goal of the online policies is to approach

the performance of the offline policy without using advance knowledge. Also, in order to

evaluate whether the overhead associated with collecting the information needed by the

online policies is justified, I also consider “oblivious” policies, which construct superpages

without considering their cost and benefit.

The rest of the section motivates and describes each of the policies in more detail. The

simulation results in Section 3.6 show that well-designed online policies can, with low over-

head, eliminate nearly as many TLB misses as an offline policy, despite having no informa-

tion about the future reference pattern of the application.

3.4.1 OFFLINE – an approximation to the optimal offline policy

A good lower bound on the performance of online superpage construction policies would

be the performance of the optimal offline policy, which constructs a set of superpages that

minimizes total TLB management costs using complete knowledge of the future. Unfortu-

nately, computing the optimal offline solution is NP-complete by reduction from Set-Cover.
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An alternate lower bound is provided by a greedy approximation to the optimal solution

called OFFLINE. Like the optimal offline policy, OFFLINE eliminates future TLB misses by

creating appropriate superpages. Unlike the optimal solution, however, it greedily selects

the superpages to promote. Initially, OFFLINE analyzes the TLB miss stream and promotes

the superpages with the highest ratio of misses eliminated to promotion cost. OFFLINE

then continues promoting incrementally, examining a revised TLB miss stream based on

the current set of superpages, iterating until it can find no superpages whose benefit exceeds

the promotion cost.

The simulations presented in Section 3.6 show that OFFLINE reduces total TLB man-

agement overhead to less than 0.1 MCPI for all of the workloads I measured, indicating

that it does in fact provide a reasonable approximation to the performance of the optimal

offline promotion policy. Thus OFFLINE provides an approximate lower bound on the

performance of online promotion policies.

3.4.2 ONLINE – the basic online algorithm

The algorithm ONLINE is based on the prefetch and capacity counters described in Sec-

tion 3.3. Once the miss counters for a superpage reach a certain threshold, ONLINE pro-

motes the superpage. To determine an appropriate threshold, I analyzed the distribution of

final miss charges for all potential superpages that were not constructed by OFFLINE. For

these unpromoted superpages, 99% of the capacity charges were less than 0. 625 � R, and

99% of the prefetch charges were less than 0. 125 � R, where R is the ratio of promotion

cost to TLB miss cost. An online policy that uses promotion thresholds above these values

is unlikely to promote unnecessarily, whereas one that uses thresholds below may. There-

fore, ONLINE promotes to a superpage P if capacity(P) exceeds 0. 625 � R, or prefetch(P)

exceeds 0. 125 � R. When a promotion occurs, the policy decrements prefetch charges for

each superpage containing the promoted superpage, as described in Section 3.3. The policy

does not decrement capacity charges precisely on a promotion, as properly resetting them

requires keeping track of the capacity counters to which each miss contributed. Because

this involves considerable bookkeeping overhead, capacity charges are instead simply reset

to zero on a promotion. Although this is overly conservative, I found that the results are

relatively insensitive to how sharply capacity charges were reduced following a promotion.
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3.4.3 APPROX-ONLINE – an approximate online algorithm

While ONLINE collects precise information about the causes of each TLB miss, this preci-

sion comes at the cost of high bookkeeping overhead for maintaining the capacity counters.

The algorithm APPROX-ONLINE reduces overhead while potentially reducing accuracy: it

is the same as ONLINE except that it only maintains prefetch charges. As with ONLINE,

when prefetch(P) reaches 0. 125 � R, the policy creates superpage P and decrements the

prefetch counters by the threshold value for larger superpages containing P. Section 3.6 will

show that APPROX-ONLINE is in fact almost exactly as effective as ONLINE in eliminating

TLB misses, with much lower bookkeeping overhead.

3.4.4 ASAP – the as-soon-as-possible algorithm

The online promotion policies described so far add overhead to every TLB miss. To de-

termine whether this runtime bookkeeping and analysis is valuable, I also considered two

policies that create superpages but do not evaluate the expected costs and benefits of pro-

motion.

ASAP promotes a superpage as soon as all of its component base pages have been ref-

erenced. Although it requires minimal bookkeeping, it has two potential drawbacks. First,

the policy may copy too frequently, since it creates superpages without concern for promo-

tion cost. Even if pages are rarely referenced, it will still pay the cost to create a superpage.

Second, ASAP may fail to create beneficial superpages if any one of the component base

pages is not referenced.

ASAP-4-64 is a variant of ASAP based on a policy used in Talluri’s thesis [Talluri 95].

ASAP-4-64 allows only two page sizes: 4 KB and 64 KB. The policy promotes to a 64 KB

superpage as soon as half of the component 4 KB pages have been referenced. The mea-

surements here differ from Talluri’s in the way they account for reservation. Talluri is

optimistic, assuming that reservations at the granularity of 64 KB always succeed. This

effectively makes promoting to 64 KB pages free. In contrast, I conservatively assume that

reservation is not used, so that promotions always require copying all of the component

pages. A more detailed assessment of the impact of reservation is difficult, since the effec-

tiveness of reservation depends on the level of contention for physical memory, and this in

turn depends on the behavior of the entire system, not just a single application.
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3.4.5 Promotion policies: summary

Together, the policies described in this section cover a cross-section of the design space for

superpage promotion policies. Specifically, the policies vary in the amount of information

they use to make promotion decisions. At one end of the spectrum, ASAP and ASAP-4-64

only examine the set of pages in use, but not the frequency or interleaving of references to

those pages. At the other end of the spectrum, OFFLINE uses complete knowledge of the

future memory reference stream to construct a near-optimal set of superpages. In between,

ONLINE and APPROX-ONLINE dynamically monitor the TLB miss stream, attributing

each TLB miss to one or more potential superpages. By applying the policy design princi-

ples described in Section 3.3, these policies can identify and construct superpages in order

to substantially reduce TLB miss rates without incurring excessive overhead. In Section 3.6

I present data that support this claim.

3.5 Policy space and time costs

For a TLB management policy to be effective, it must have reasonable time and space over-

heads. For example, while it is acceptable to increase the time to handle an individual TLB

miss in exchange for reduced TLB miss rates, there is still a limit on the acceptable cost of

a single TLB miss. In this section, therefore, I describe how I accounted for the time and

space costs of the various policies, and I describe an algorithm for efficiently maintaining

the prefetch counters used by the online policies. The performance results presented in

Section 3.6 include these sources of overhead.

3.5.1 Baseline costs

Every TLB miss requires a page table lookup to satisfy the cause of the miss. To account

for this overhead, every policy is charged 30 cycles per TLB miss, in addition to any policy-

specific bookkeeping overheads. This is consistent with TLB miss costs on current systems.

For example, I measured a minimum TLB miss penalty on a DEC Alpha 3000/700 of 31

cycles. All of the promotion policies also incur overhead when creating a new superpage.

Each 1 KB of memory copied incurs a charge of 3,000 cycles. This cost reflects both the

instructions to perform the copy and stall cycles due to cache misses that may occur during

the copy.
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3.5.2 Maintaining prefetch charges

I describe here the details of an algorithm for maintaining the prefetch counters on each

TLB miss, as required by the ONLINE and APPROX-ONLINE policies, without incurring

excessive space or time overhead. The algorithm executes on average 100 instructions per

TLB miss to maintain the counters, and incurs a memory overhead of at most 0.3%.

Recall that the prefetch counters are updated as follows. On a TLB miss to a page p,

prefetch(P) is incremented for each superpage P that covers both p and some page already in

the TLB. To avoid the overhead of scanning the contents of the TLB on each miss, the system

maintains an additional counter for each superpage P, called tlbcount(P), that indicates

whether or not P or one of its component pages is currently in the TLB. This information

allows the prefetch charges to be updated quickly on a miss.

tlbcount(P) takes on one of four values, and satisfies the following invariants:

� If P is part of a larger superpage that has already been promoted, tlbcount(P) = �1.

� If P and none of its component pages are in the TLB, tlbcount(P) = 0.

� If a translation for P is in the TLB, tlbcount(P) = 1.

� If a translation for a subpage of P is in the TLB and only one of tlbcount(P1) and

tlbcount(P2) is positive, where P1 and P2 are the two component subpages of P,

tlbcount(P) = 1.

� If a translation for a subpage of P is in the TLB and both tlbcount(P1) and tlbcount(P2)

are positive, where P1 and P2 are the two component subpages of P, tlbcount(P) = 2.

On a miss to p, the invariants are maintained and the prefetch counters are updated as

follows. Let p = p0, p1, : : : pm be the set of superpages containing p, in increasing order of

size. (The size of pm is the maximum superpage size.) For each pi with tlbcount(pi) = 0, and

the smallest i with tlbcount(pi) > 0, tlbcount(i) is incremented. For all i with tlbcount(pi) >

0, prefetch(i) is incremented. Suppose that the translation for q is replaced in order to bring

p into the TLB. Let q = q0, q1, : : : , qr be the superpages containing q in increasing order of

size, such that qr is the smallest one with tlbcount(qr) = 2. Then for each qi, 0 � i � r,

tlbcount(qi) is decremented.

Finally, if a page P is promoted, tlbcount(P0) is set to -1 for each P0 component to P.

(Note that tlbcount(P) > 0 already.) If a page P is demoted, tlbcount(P) is reset to 0.
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While the algorithm as described so far avoids the overhead of scanning the TLB on

every miss, it still updates a counter for pages as large as the maximum page size. Since these

large superpages are promoted only rarely, the bookkeeping overhead of the algorithm can

be reduced further by maintaining precise prefetch charges for large pages only when they

are candidates for promotion.

For example, in the simulations, APPROX-ONLINE’s promotion threshold for a 128 KB

superpage is 1600 (0. 125�R, where R is the ratio of promotion cost to TLB miss cost for a

128 KB page). Thus it is impossible that a 128 KB superpage will be promoted until at least

1600 TLB misses have occurred. Rather than performing 1600 individual updates to su-

perpages of sizes 128 KB through 8 MB (the maximum superpage size), the updates can be

deferred until the system experiences 1600 TLB misses, and the updates can be performed

all at once, sharply reducing the average overhead per TLB miss.

Implementing an algorithm based on this idea of “batching” updates requires choosing

how accurately to maintain the prefetch counters. If the system maintains precise prefetch

counters for pages that are too large, then the overhead of each TLB miss remains too high.

On the other hand, if the system maintains precise information only for very small pages,

then the batched updates will have to be performed too frequently.

I simulated an algorithm that uses the tlbcount counters and batched updates to reduce

the overhead per TLB miss. I found that propagating updates eagerly to superpages of

size 64 KB or less and deferring updates to larger superpages resulted in the best overall

performance. This approach requires an additional counter, deferred(P), that reflects the

updates to prefetch counters that have not yet been propagated to superpages containing P.

The algorithm maintains deferred(P) for all superpages of size 64 KB and larger.

When I profiled the execution of this algorithm with the TLB miss stream of the bench-

mark suite, I found that on average it executed 100 instructions per TLB miss. The algo-

rithm as implemented also consumes space: one prefetch counter for every potential su-

perpage, one tlbcount counter for every potential superpage and every base page, and one

deferred counter for every superpage of size 64 KB or larger. Altogether this results in an

average of 3.125 counters per base page. Thus with 4 KB base pages, even at one four-byte

word per counter, the space overhead is (3. 125 � 4)=4096 (0.4%) to maintain the prefetch

counters.
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3.5.3 Maintaining capacity charges

The ONLINE policy maintains capacity charges as well as prefetch charges. I describe here

a simple algorithm to estimate of the cost of maintaining the capacity counters. Since in

practice the capacity counters do not significantly affect the ability of the online policy to

eliminate TLB misses, I did not refine the algorithm further.

Recall that the capacity count is incremented for each superpage that would have co-

alesced enough TLB entries to prevent the current miss to page p. The capacity count is

incremented as follows. The number of TLB entries that must be coalesced depends on the

depth of the previous reference to p in the LRU stack, referred to as lru-depth. The pseudo-

code below computes the number of TLB entries covered by each superpage Q, storing the

result in the variable coverage(Q). The pseudo-code then increments capacity(Q) for every

potential superpage Q that covers at least lru-depth TLB entries.

lru-depth: the depth of the page that missed in the LRU stack

coverage(Q): number of TLB entries covered by superpage Q, initially 0.

for each page P in the TLB f

for each superpage Q containing P f

increment coverage(Q);

if ( coverage(Q) == lru-depth ) f

increment capacity(Q);

check for promotion;

g

g

g

In a system with 32 TLB entries and page sizes ranging from 4 KB to 8 MB (i.e. each

base page is contained in 11 superpages), the body of the loop will be executed at least

32*11 = 352 times. With the assumption that the loop body requires 7 instructions (load,

increment, store, subtract, conditional branch, update index, conditional branch), updat-

ing the capacity counters will require 352 � 7 = 2464 instructions per TLB miss. In terms of

space, the algorithm requires an average of one counter per base page, resulting in memory

overhead of (1 � 4)=4096 (0.1%) to maintain the capacity counters.
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3.5.4 Policy costs: summary

Table 3-3 summarizes the TLB miss cost incurred by each of the policies evaluated in this

chapter, determined as follows. All of the policies incur the baseline cost of 30 cycles per

miss. APPROX-ONLINE must also maintain the prefetch counters, adding 100 cycles per

miss for a total TLB miss cost of 130 cycles. ONLINE additionally maintains the capacity

counters, adding approximately 2470 cycles for a total of 2600 cycles per miss. ASAP and

ASAP-4-64 are not charged any overhead beyond the baseline miss cost, since the necessary

bookkeeping can be performed as pages are mapped. Likewise, OFFLINE does not incur

extra overhead, since it can perform all of its accounting computation offline.

These cycle counts assume that the bookkeeping code is not slowed by cache misses.

When I simulated the cache effects of counter updates (using the memory system simula-

tor described in Chapter 4), I found that cache misses on average doubled the number of

cycles to update the counters. There are a number of potential optimizations that could

compensate for this increase in the counter update cost. For example, rather than reacting

to every TLB miss, the TLB miss stream could be sampled. Sampling every other miss, for

example, would reduce bookkeeping cost by a factor of two. Another optimization would

be to reduce the range of potential page sizes, decreasing the number of levels in the tree

of counters updated on each miss. I do not attempt to measure the precise effect of such

optimizations here. However, I expect that taking into account both the effect of mem-

ory system delays and optimizations on the cost of counter updates, the bookkeeping costs

shown in Table 3-3 are in fact pessimistic estimates.

Table 3-3 Cost of a single TLB miss for each policy, computed as baseline TLB miss cost,

plus any bookkeeping cost. Sections 3.5.2 and 3.5.3 describe the calculation of the book-

keeping cost for ONLINE and APPROX-ONLINE. The value for ONLINE reflects the high

overhead of maintaining capacity counters. ASAP and ASAP-4-64 can perform the nec-

essary bookkeeping as pages are mapped, while OFFLINE can perform its bookkeeping

offline, so these three policies have the same overhead as FIXED.

Policy TLB miss cost

(cycles)

FIXED (4 KB, 16 KB, 64 KB) 30

OFFLINE 30

ONLINE 2600

APPROX-ONLINE 130

ASAP 30

ASAP-4-64 30
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3.6 Simulation results

To evaluate the effectiveness of constructing superpages at runtime using cost-benefit anal-

ysis, I used trace-driven simulation of the benchmarks described in Section 3.2. I simulated

each of the policies introduced in Section 3.4. For comparison, I also simulated policies that

use fixed-size pages, referred to as FIXED 4 KB, FIXED 16 KB, and FIXED 64 KB. This sec-

tion describes the impact of each of the policies on TLB miss rates, TLBMCPI, and memory

consumption. The results show that the online policies are nearly as effective as large fixed

size pages in eliminating TLB misses, without incurring the memory consumption costs

of large pages. Further, the APPROX-ONLINE policy performs nearly as well as the OF-

FLINE policy, despite operating without knowledge of the future reference pattern of the

application.

3.6.1 Impact on TLB miss counts

Table 3-4 shows the impact of the policies described in Section 3.4 on TLB miss counts. All

of the promotion policies are capable of eliminating the majority of TLB misses for many

of the programs. However, ASAP performs poorly for programs with fragmented memory

Table 3-4 The number of TLB misses, in 100s, that occurred using each policy. These

numbers are proportional to the “TLB Miss Handler CPI” components of the bar graphs

shown in Figure 3-3.
FIXED FIXED FIXED ASAP- APPROX-

Benchmark 4 KB 16 KB 64 KB OFFLINE ASAP 4-64 ONLINE ONLINE

coral 1,205,951 858,980 410,424 405 1,193,847 412,253 12,517 16,107
compress 29,198 9,201 0 1 2 1 85 117
nasa7-5 407,140 100,880 5 3 6 8 249 249
nasa7-4 30,044 7,084 3 38 8 18 316 352
fpga 744,183 643,967 487,609 251 734,965 489,516 8,827 10,446
cecil 482,885 274,927 156,059 42,006 433,048 158,025 28,731 35,497
atom 49,511 428 70 930 1,164 128 864 1,041
fft 317,447 231,161 58,162 10 83 58,199 4,112 4,112
spice 1,852,305 215,924 355 3 1,002,570 380 605 823
gcc 1,207 48 0 237 21 2 187 232

access patterns, such as coral, fpga, cecil, and spice, since it never promotes a superpage that

is not fully populated. For coral, fpga, cecil and fft, the policies that impose too small a

maximum page size (the FIXED policies and ASAP-4-64) do not result in a large reduction

in the miss counts. The table also shows that ONLINE and APPROX-ONLINE sometimes

cause slightly more TLB misses than the two ASAP policies because the online policies defer

promotion until there is evidence that it will be beneficial. Finally, the table shows that
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� OFFLINE reduces TLBMCPI substantially when compared to FIXED 4 KB or FIXED

16 KB.

� Although APPROX-ONLINE does not perform as well as OFFLINE, for most of the

workloads its performance is significantly better than a policy that uses small fixed-

size pages.

� For APPROX-ONLINE the largest component of TLBMCPI is page promotion cost,

which reflects the overhead of physically coalescing pages. This indicates that both

baseline TLB miss cost and bookkeeping overhead can be negligible in a system that

eliminates most TLB misses, as long as the bookkeeping overhead per TLB miss is not

excessive.

� While ONLINE has similar performance to APPROX-ONLINE in terms of TLB miss

rates, the high cost of maintaining the capacity counters diminishes or even over-

whelms the benefit of reduced TLB misses. This indicates that the prefetch counters

are more relevant than the capacity counters in capturing an application’s current

working set, and that the overhead of maintaining the capacity counters is not justi-

fied.

� ASAP-4-64 achieves an overall TLBMCPI that is close to APPROX-ONLINE except

for applications with extremely large working sets such as coral, fpga, atom and fft. For

these applications, ASAP-4-64’s imposition of a maximum superpage size of 64 KB

results in performance worse than that of APPROX-ONLINE.

� Some workloads, such as gcc, do not benefit from larger pages. This is unsurprising,

since gcc has a low TLB miss rate even with 4 KB pages. In such cases, no policy

performs better than one that uses fixed-size 4 KB page. It would be straightforward

to modify the online policies so that they remain inactive until the TLB miss rate

exceeds some threshold.

3.6.3 Execution time

While the TLBMCPI measurements focus on the effect of superpage management on TLB

performance, it is also important to understand the effect of the various policies on end-

to-end execution time. To estimate this effect, I first measured the non-TLB execution time
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of each application on the DEC Alpha. I instrumented the TLB miss handler with the

Alpha cycle counter, and then subtracted the total time spent in the miss handler from the

execution time. I then added the simulated TLB overhead for each program and policy

to the non-TLB execution time. Finally, I computed the percentage improvement of each

policy relative to a system with fixed-size 4 KB pages. The results of this computation are

shown in Table 3-5. The table shows that for these workloads, the reduction in TLBMCPI

due to the APPROX-ONLINE policy translates into a reduction in program execution time

of as much as 48% relative to a hypothetical system with small fixed-size pages. 3

Table 3-5 This table shows the estimated percentage improvement in end-to-end execu-

tion time relative to a hypothetical system with fixed-size 4 KB pages. Negative entries

reflect a slowdown.
FIXED FIXED ASAP- APPROX-

Benchmark 16 KB 64 KB OFFLINE ASAP 4-64 ONLINE ONLINE

coral 10.0 22.9 33.8 0.3 21.9 -0.8 29.5

compress 23.7 34.6 33.9 32.0 33.7 24.8 33.1
nasa7-5 36.2 48.1 47.9 47.1 47.8 45.3 47.8

nasa7-4 28.7 37.6 35.7 22.9 33.5 0.6 33.5
fpga 2.8 7.1 19.4 0.2 5.8 -3.0 17.4

cecil 2.5 3.9 4.5 0.5 0.4 -26.2 2.0

atom 7.3 7.4 7.2 6.9 2.4 -4.1 6.6
fft 2.7 8.0 8.8 4.0 7.0 -2.3 8.2

spice 1.1 1.3 1.3 0.6 1.3 1.2 1.3

gcc 1.1 1.1 0.6 -1.6 -0.4 -15.0 -0.8

3.6.4 Memory usage overhead

The results presented so far have focussed on the impact of TLB management on execution

time. Without taking into account memory consumption, though, the picture is incom-

plete. For example, a trivial way to drive TLB overhead towards zero would be globally

increase the page size towards infinity. Taking into account memory consumption, though,

shows that increasing the page size is not without cost. As shown in Section 3.1, large fixed-

size pages increase memory consumption because of internal fragmentation.

Figure 3-4 shows that the promotion policies can obtain improvements in TLBMCPI

without the increase in memory usage associated with large fixed-size pages, because the

online policies delay promotion until warranted by TLB miss patterns. The figure shows

3 These improvements in execution time are greater than those possible on a DEC Alpha, which has a base
page size of 8 KB, not 4 KB.
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that the online policies never increase memory usage by more than 4%, and only in one

case by more than 2%. In contrast, ASAP 4-64 increases memory usage by 5% or more for

four of the benchmarks, and as much as 12% for one.

The effectiveness of APPROX-ONLINE in limiting memory consumption is due to its

ability to dynamically create a wide range of page sizes. Table 3-6 quantifies this effect,

showing the distribution of final page sizes created with APPROX-ONLINE.

3.6.5 Simulation results: summary

Section 3.1 illustrated how large fixed-size pages obtain improved TLBMCPI at the expense

of increased memory consumption. Figure 3-5 revisits the tradeoff between TLBMCPI

and memory usage in the context of policies that use superpages. As before, the ideal policy

would have both zero TLBMCPI and zero memory usage overhead, and so would be plotted

at the origin of these graphs.

The graphs show that APPROX-ONLINE, by paying a small overhead on each TLB miss

to analyze the cause of TLB misses, is able to selectively construct superpages that will im-

prove future performance. The result is an overall improvement in performance nearly

as great as that of the omniscient OFFLINE policy. Furthermore, APPROX-ONLINE out-

performs all of the other promotion policies on every benchmark in terms of TLBMCPI,

memory usage overhead, or both.

3.7 Implementation issues

Given the performance benefits of dynamic superpage construction revealed in the previ-

ous section, a practical future project would be an implementation of such a policy on a real

system. In this section I outline a strategy for implementing an online superpage construc-

tion policy. While the broad strategy should be applicable to any system with appropriate

hardware support for superpages, to make the discussion concrete I will focus on a possi-

ble implementation in the context of Digital Unix running on an Alpha processor. I first

describe the differences between this environment and the system simulated in this chap-

ter, and how these differences would affect the policies introduced here. I then describe

software extensions to the Digital Unix TLB miss handler and virtual memory system to

support dynamic superpage construction.
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Figure 3-5 (Facing page.) Tradeoff between memory usage and TLBMCPI. The dynamic

policies (ONLINE, APPROX-ONLINE, and OFFLINE) can achieve the benefits of small

pages, in terms of memory usage, and those of large pages, in terms of TLBMCPI. The

origin represents the ideal point in the tradeoff between memory usage and TLBMCPI.

The graphs show that the dynamic policies come close to that ideal point. For comparison

the figures include the performance of fixed-size pages as large as 256 KB. In some cases

the FIXED policies have such high TLBMCPI or memory usage that they do not fit on

these graphs, and in one case (coral) ASAP has TLBMCPI that is too high to fit on the

graph.
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3.7.1 Reality vs. simulation

The experiments described in this chapter assume a TLB that supports all superpage sizes

in power of 2 multiples of the base page size, ranging from 4 KB up to 8 MB. The Alpha,

however, supports only power of 8 multiples of the base page size, ranging from 8 KB up

to 4 MB. The smaller maximum page size on the Alpha could result in slightly lower TLB

coverage for the few applications that benefit from 8 MB pages (of the benchmarks studied

here, only cecil and fft). The smaller number of page sizes will result in later promotions,

since the promotion threshold is proportional to the superpage size. On the other hand,

the space and time required to maintain the policy’s counters will be reduced, since there

will be fewer nodes in the tree of counters.

The simulations also assume that the precise contents of the TLB are known on each

TLB miss. On the Alpha, unfortunately, this information is not readily available. The Al-

pha TLB replacement policy depends on the order of both TLB hits and misses. However,

only TLB misses are visible to the operating system, so it is impossible to emulate the hard-

ware replacement policy accurately in software. Implementing the policies would require a

technique for approximating the contents of the TLB. This would have the effect of mak-

ing the counters maintained by the policies less precise, possibly resulting in less optimal

promotions.

3.7.2 Digital Unix implementation strategy

Implementing superpage support in Digital Unix would require changes to the TLB miss

handler, and to the virtual memory system’s page table and free list data structures.

TLB miss handler modifications

The TLB miss handler must be modified to vector control to the operating system on each

TLB miss. The operating system can then update the counters that drive the promotion

policy described in this chapter, possibly resulting in the construction of a superpage.

As mentioned earlier, the DEC Alpha does not easily allow the operating system to iden-

tify which TLB entry is replaced on a TLB miss, although this would be a simple extension

to the TLB hardware. While it is possible to scan the TLB, this is a time consuming op-

eration, requiring 3 machine instructions per TLB entry – e.g., 96 instructions to scan the

32-entry DTLB on the Alpha 21064. Rather than rescanning the TLB on each miss, it may

be more effective to approximate the TLB contents. For example, the operating system
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could simulate a FIFO replacement policy. This approximation could be refreshed by pe-

riodically flushing the TLB and allowing it to refill. Whether the discrepancy between the

prediction of the simulated FIFO replacement policy and the actual NLU (not-last-used)

replacement policy of the Alpha TLB would result in an inefficient promotion policy is an

open question, but is one that could be answered via simulation.

Virtual memory data structures

The operating system page tables must be extended in order to represent variable page

sizes. A simple solution, suggested by Talluri et al. [Talluri et al. 95], is to simply extend

the page table entry to include a page size field, and to replicate page table entries for each

of the component pages of a superpage. In addition, existing virtual memory operations

must be extended to preserve the illusion of fixed-size pages to higher levels of software.

Whenever the protection or validity of a virtual page component to a superpage changes,

the superpage must be broken into smaller superpages. A disadvantage is that the cost of

protection changes will increase. Another disadvantage is that from the point of view of an

application the cost of such virtual memory operations will be unpredictable.

In addition, the free lists must be modified to efficiently represent multiple page sizes. A

variant on the “buddy system” for free storage management [Knuth 73] would be appropri-

ate, with a set of free lists for each page size, and within each set, a free list per cache color.

(While page color is not considered in this chapter, it will become relevant in subsequent

chapters that consider the interaction of virtual memory and physically indexed caches.)

Promotion

A promotion is triggered by a TLB miss that in turn causes the counter value for some po-

tential superpage to cross the threshold value. If all of the component pages are already

resident or are zero-fill pages that can be easily made resident, the superpage can be con-

structed. A page is taken from the free list for the appropriate superpage size; if the free

list is empty, a larger free page is split into smaller pages. If free physical memory is so

fragmented that there is no free page large enough to satisfy the request, a compaction step

will be necessary. (While standard garbage collectors also compact free storage, the size and

placement constraints of superpages may change the tradeoffs involved in deciding when

and how to compact physical memory.)

Once a free page is found, the component pages are copied to the new page and then

returned to the pool of free pages, where they may be coalesced with their “buddies” to form
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larger free pages. The page table entries for each component page are updated to reflect the

new physical pages backing the virtual pages, as well as the size of the superpage. Any stale

translations for the component pages must be evicted from the TLB, and finally the new

translation can be inserted into the TLB.

Demotion

A demotion occurs because of a change to the attributes of a base page contained within a

superpage. The affected superpage is divided into the largest possible smaller superpages,

and the page size field for each component page is updated appropriately. No copying is

necessary since the physical pages backing the virtual pages have not changed. However,

the now invalid translation for the former superpage must be evicted from the TLB. An

optimization that would allow rapidly reconstructing superpages would be to maintain a

per-base page bit indicating whether a page is “interfering” with the existence of a super-

page. This bit would be set for the page whose status caused the superpage to be demoted. If

the status of the page changed again, the system could attempt to immediately reconstruct

the superpage at low cost.

3.8 Open questions

While this chapter demonstrates the effectiveness of dynamic superpage construction for a

broad range of workloads on a simulated system, there remain a number of open questions.

These questions can be divided into three categories:

1. those that ask whether systems with different (larger, faster) TLB configurations

would also benefit from this technique;

2. those that ask whether further policy refinements are necessary in order to benefit

additional applications and to “do no harm” to applications that do not benefit from

increased TLB coverage; and

3. those that ask whether the ideas that underly online superpage construction could be

extended to provide additional benefits, such as improving I/O performance.
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3.8.1 Alternative TLB Hardware

Since the original measurements for this chapter were made, TLB sizes have been increasing

in response to growing application memory requirements [Dig 97]. Some systems include

set-associative TLBs, allowing larger TLBs to be built with the same access time as a smaller

fully-associative TLB [Uhlig et al. 94]. Others have proposed building a software cache of

the TLB to reduce TLB miss times [Bala et al. 94]. The impact of superpage construction

policies will be diminished as the number and cost of TLB misses decrease, so a reasonable

question would be whether the new larger TLBs are sufficient to map most applications’

working sets. It would be straightforward to simulate these TLBs in order to answer this

question for a given set of applications. However, the policies proposed here allow TLB

coverage to be increased by orders of magnitude without a corresponding increase in hard-

ware resources. Doubling the TLB size will not improve TLB performance if application

working set sizes also double.

The policies in this chapter represent an alternate point in the design space, one that

allows TLB coverage to scale with application memory requirements, while requiring only

modest TLB sizes. Smaller TLBs have the advantages of potentially lowering access time

and occupying less chip real estate. While it is possible that the reduced access time to

a direct-mapped or associative TLB would allow a faster processor cycle time, cycle time

alone does not predict performance. As the importance of memory latency increases, it

becomes increasingly attractive to trade slower cycle time for improved TLB hit rates.

3.8.2 Policy refinements

While the relatively straightforward APPROX-ONLINE policy presented in this chapter

provides significant performance improvements for a variety of applications, further re-

finements might be necessary to provide these benefits across an even broader range of

programs without harming the performance of others. For example, in Chapter 6 I show

that APPROX-ONLINE increases TLBMCPI for some applications unless it is augmented

with a throttling mechanism. As another example, although a fixed promotion threshold

worked well in the experiments in this chapter, in practice it might be necessary to tune the

promotion threshold in response to the measured TLB miss rates and copying rates of each

application.

Another refinement would be to allow the promotion threshold for superpages to vary

according to the cost of constructing the superpage. For example, if many of the component

pages of a superpage are already in place, the copying cost will be much lower, justifying an
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earlier promotion. At the other extreme, if memory is fragmented, it may be necessary to

vacate a region of memory in order to construct the superpage, increasing the copy cost.

(Promotion costs will also increase if the target application is using multiple processors,

since multiple TLBs must be synchronized to reflect the new mappings.) The first issue

to address is whether it would be beneficial to take into account variable promotion costs,

or whether the approximation that construction cost is simply proportional to superpage

size is close enough. It might be sufficient to handle a few special cases, such as the case

of a temporary protection change to a component of a superpage. Generally supporting

variable promotion thresholds would require extending the counter update algorithms to

allow efficiently representing and testing the per-superpage thresholds.

3.8.3 Policy Extensions

Combining superpages and page reservation

The policies introduced in this chapter differ from those proposed by Talluri et al. in that

they do not rely on page reservation. The advantage of page reservation is that for applica-

tions that can be covered by a TLB with 64 KB pages, there will be virtually no TLB over-

head. The primary disadvantage is that applications with very large working sets will still

suffer a large number of TLB misses. A hybrid policy could initially allocate pages in 64 KB

chunks wherever possible, promoting and demoting superpages as needed. This approach

could offer minimal TLB management costs for applications with relatively small working

sets, while still allowing TLB coverage to scale up for applications with very large work-

ing sets. Unfortunately, compaction of physical memory would become more frequent. In

addition, it is not immediately clear how the system should choose which 64 KB pages to

demote when physical memory becomes scarce.

Subpages

Superpages trade away fast fine-grained virtual memory protection operations in return for

improved TLB miss rates. For some applications efficient virtual memory operations are

more important than TLB efficiency. For these applications “subpages”, pages smaller than

the base page size, could be beneficial. For example, Jamrozik et al.’s global memory sys-

tem [Jamrozik et al. 96] simulates subpage protection in order to support bringing partial

pages in from secondary storage. A disadvantage of subpages is that a naive implemen-

tation would require more bits in each TLB and page table entry, and larger page tables.
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(For example, halving the minimum page size would double the page table size.) An area

for research, then, is page table structures that efficiently represent subpages, assuming that

subpages are only used infrequently. The solution used by Jamrozik et al. is to maintain a

separate table containing the subpage-specific bits. In their case, the only bit of interest is

the valid bit, so the space cost is very small: one bit per subpage.

Improved I/O performance

The TLB monitoring system described in this chapter effectively collects information about

the spatial locality of virtual pages. While superpages offer one way of taking advantage of

spatial locality, there are potentially other opportunities to use this information. For exam-

ple, this information could be used to drive prefetching policies when a program is paging.

If a page is brought in from disk that was formerly part of a superpage, it is likely that other

components of the superpage will be referenced soon, and should be prefetched from disk.

Also, information about superpage mappings from past runs of a program could be used to

eagerly allocate superpages for future runs of the same program. This would require addi-

tional infrastructure to maintain a database of profile information, but such infrastructure

is useful in other contexts [Grove et al. 95, Hookway & Herdeg 97, Zhang et al. 97]. Al-

ternatively, it might be effective to simply tune the initial page size on a per-program or

per-segment (stack, heap, static data) basis, rather than attempting to recreate a full set of

superpages at the beginning of a program’s run.

Policy extensions: summary

With the exception of the prefetching and subpage proposals, these extensions are primarily

targeted at eliminating the copy costs associated with superpage construction. Before pur-

suing them further, it would be necessary to show that copying costs are in fact a significant

source of overhead. For the workloads studied in this chapter, though, copying costs did

not make a large contribution to overall TLBMCPI under the APPROX-ONLINE policy –

typically less than 0.1 MCPI. This could change with workloads that make more fragmented

use of the virtual address space and whose use of the address space varies dynamically over

time.
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3.9 Conclusions

This chapter provides the first demonstration of my thesis: that the operating system can ef-

fectively manage hardware memory resources in order to improve application performance.

By making the TLB miss handler slower but smarter, the operating system can dynamically

construct a set of superpages that increase TLB coverage and dramatically reduce TLB miss

rates. The savings from eliminating future TLB misses not only pays for the costs of the

longer TLB miss path and of superpage construction, but improves the end-to-end perfor-

mance of applications with large working sets. While increasing the page size system-wide

would also reduce TLB miss rates, this would come at the price of a significant increase in

memory consumption due to internal fragmentation. The APPROX-ONLINE policy, which

performs a runtime cost-benefit analysis to identify beneficial superpages, obtains the low

TLB miss rates of systems with large fixed page sizes with the low memory requirements

of systems with small pages. APPROX-ONLINE also outperforms policies that promote

superpages obliviously in terms of execution time, memory consumption, or both. This

policy achieves these benefits without requiring exotic hardware, and without requiring

modifications to software beyond the lowest level of the operating system virtual memory

system. By collecting and analyzing the information needed to adjust page sizes dynami-

cally, a superpage construction policy can increase the coverage of a small TLB to meet the

demands of memory-intensive applications.



Chapter 4

Using Virtual Memory to Improve Cache

Performance

4.1 Introduction

In this chapter I describe the design and implementation of an operating system policy that

manages cache resources in order to transparently improve the execution time of applica-

tions running on standard hardware. I show that the operating system can use mechanisms

available on existing systems, namely a cache miss counter and a software-filled TLB, to

detect cache misses. I design a virtual memory policy that uses this information to dynam-

ically change the mapping from virtual addresses to cache offsets, eliminating future cache

misses. I describe how I implemented this policy in Digital Unix on a DEC Alpha worksta-

tion. The measurements of this implementation show that the policy can in fact eliminate

enough cache misses to improve end-to-end application execution time by as much as 21%

compared to a static page coloring mapping policy, without requiring any changes to user-

level programs or to the underlying hardware.

This operating system policy improves application execution times by dynamically

managing cache resources in order to eliminate cache conflict misses. In a direct-mapped

cache, conflict misses occur when two or more active addresses index to the same cache

line. More generally, conflict misses occur when more active addresses index to a cache

set than there are lines in the set. If the cache is large enough to hold the application’s

working set, conflict misses will never occur as long as all the active addresses in the pro-

gram index to distinct cache lines. Conflict misses are a problem because they cause pro-

grams to run slowly and with unpredictable execution time [Hill 87, Chen & Bershad 93,

Hosking & Moss 93, Wahbe et al. 93, Chaiken & Agarwal 94]. Caches also suffer from com-

pulsory and capacity misses. Compulsory misses occur on the first reference to an address,

and do not yet have a large impact on overall performance in current systems. Capacity

misses occur when an application’s working set is too large to fit in the cache. Eliminating

capacity misses requires reducing the working set size of the application, which requires
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reprogramming or recompilation, and may simply be impossible.

While in some cases conflict misses can be eliminated statically by carefully analyz-

ing an application’s memory reference behavior and rearranging data structures and loop

nests in order to minimize conflicts [Lam et al. 91, LaMarca 96, Chilimbi et al. 98], this ap-

proach only benefits applications with relatively predictable reference patterns. An effective

way to eliminate cache conflict misses for arbitrary applications is to use a set-associative

cache, which allows two or more addresses that index to the same set to reside in the cache

simultaneously. However, direct-mapped caches are cheaper, simpler, and faster than as-

sociative caches [Wood 86]. In particular, constructing an associative off-chip cache will

consume one or all of pin-bandwidth, time, or dollars [Hill 88, Przybylski et al. 88]. If the

tag comparison is performed on-chip, then either additional wires must run between the

cache and the chip, (consuming valuable chip pin-bandwidth), or the tag comparison must

be performed serially (slowing down access time on some cache hits). Performing the tag

comparison off-chip requires building an expensive custom cache controller.

In this chapter I show how to provide associativity in software, eliminating conflict

misses in physically indexed caches without incurring any of the costs of an associative

cache. The techniques that I propose take advantage of the flexibility in the mapping from

virtual to physical pages to introduce associativity in a direct-mapped physically indexed

cache. Recall from Chapter 2 that in a physically indexed cache the mapping from virtual

address to cache line is determined in part by the mapping from virtual to physical pages.

Ideally the operating system will arrange that all active virtual pages map to physical pages

that in turn map to distinct cache pages. That is, the virtual pages should map to physi-

cal pages of different colors. If this ideal is met, then no cache conflict misses will occur.

Since the set of active pages in an application cannot generally be predicted statically, in

practice finding and maintaining a virtual-to-physical mapping that results in good cache

performance requires a dynamic mapping policy.

The basic operation of a generic dynamic mapping policy is straightforward, and is

most easily seen by considering a simple example. Suppose an application repeatedly ref-

erences just two virtual pages, and that the operating system initially maps these pages to

physical pages that conflict in the cache. Unless this poor initial mapping is changed, the

application will incur a large number of cache conflict misses and run slowly. But if the

operating system can detect the problem it can eliminate the cache misses by copying one

of the virtual pages to a physical page of a different color, and then updating the virtual

to physical mappings appropriately—that is, the system can recolor one of the pages. Al-
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though recoloring involves a physical memory copy and thus costs thousands of cycles, as

the program runs the improvement in cache miss rates will lead to an overall reduction in

execution time for this application.

While correcting conflicts between virtual pages is straightforward, detecting such con-

flicts is not. In Chapter 3 I considered how to dynamically detect and correct a different

memory resource performance problem, namely the problem of high TLB miss rates. De-

tecting the a TLB performance problem is easy, because in a system with a software-filled

TLB the operating system is notified on every TLB miss. Cache misses, in contrast, are

handled transparently in hardware. Thus dynamically eliminating cache misses requires a

method for detecting those misses at runtime.

In this chapter I develop techniques that infer the location of cache conflict misses using

feedback mechanisms available on modern systems. An ideal source of information about

cache miss behavior would be a mechanism that notified software of every memory refer-

ence with no overhead. In this chapter I consider techniques that approximate this ideal

information source, but that provide incomplete information and do incur some runtime

overhead.

The basic insight behind the techniques I introduce is that even though hardware does

not explicitly reveal conflict misses to the operating system, some memory references are

visible to software. In particular, in systems with software-filled TLBs, memory references

that result in TLB misses are visible to the operating system. Furthermore, in systems with

a cache miss performance counter, the operating system can collect additional data about

the behavior of the memory system, although not about individual cache misses. Software-

filled TLBs and cache miss performance counters are common features on modern sys-

tems [Dig 92, Heinrich 96].

Designing a policy that optimizes cache performance using feedback available on exist-

ing systems presents both a challenge and an opportunity. The challenge lies in determining

how to use incomplete information to analyze and improve cache behavior. Once this chal-

lenge is met, the opportunity is to implement the resulting policy on a live system and

improve the execution time of real applications.

In the first part of this chapter I explore the design space of virtual mapping policies

that use the contents of the TLB to determine the working set of the application, and use

the system cycle counter or cache miss counter to regulate their level of activity. Because

these policies incur additional TLB overhead to examine the state of the system, they must

balance the cost of monitoring against the value of the information collected. Through
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simulation I show that one of these policies, which I call Snapshot-Miss, can detect and

eliminate cache conflicts with low overhead, improving overall application performance.

Snapshot-Miss uses a cache miss counter to determine how frequently cache misses are

occurring, and uses the TLB to determine which pages could be responsible for the misses.

Having designed an effective operating system policy for transparently managing cache

resources, in the second part of this chapter I describe the implementation and performance

of the Snapshot-Miss policy on a DEC Alpha workstation running Digital Unix. The im-

plementation is straightforward, requiring only modest extensions to the operating system.

The measurements of the implementation show that a dynamic mapping policy can in fact

reduce cache conflict miss rates, and that this reduction in turn improves the execution

time of applications running on a real system.

Together, the results presented in this chapter demonstrate that the operating system

is an effective vehicle for dynamically managing cache resources in order to improve over-

all application performance. By observing the state of the memory system at runtime, the

operating system can infer the presence of cache conflicts and update virtual-to-physical

mappings in order to remove those conflicts. Despite the incomplete information avail-

able about the cause of cache misses on current hardware, a well-designed policy can still

use this information to eliminate enough cache misses to more than compensate for mon-

itoring and recoloring overheads and hence improve the end-to-end application execution

time. The results also indicate that the policies designed in this chapter do not fully take

advantage of the opportunity to improve performance by eliminating cache conflicts. This

observation motivates the work presented in the next chapter, in which I consider how to

design a hardware feedback mechanism that can provide more accurate information about

cache behavior with low overhead, and how to design an operating system cache manage-

ment policy driven by this information.

The rest of this chapter

In Section 4.2 I explore the design space of policies that use different sources of feed-

back and different levels of intrusiveness in attempting to detect and resolve cache conflict

misses. I explain the evolution of the Snapshot-Miss policy by considering a series of pro-

gressively more sophisticated policies, each correcting a drawback of the previous one. I

then use trace-based simulation of ten applications to predict the effect of each policy on

program performance. In Section 4.3 I describe the tracing system and the experimental

methodology. In Section 4.4 I present the simulation results, quantifying the performance
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of the policies presented in Section 4.2. Motivated by these measurements, I implemented

Snapshot-Miss on a DEC Alpha workstation running Digital Unix. Section 4.5 describes

this implementation and its performance. Finally, I conclude in Section 4.6.

4.2 Policy design

My goal in this chapter is to design and evaluate an effective operating system policy for

dynamically improving cache performance and hence overall application execution time.

My design goals for this policy are as follows.

1. The policy should eliminate cache conflict misses across a range of applications.

2. The policy should rely on mechanisms available on existing hardware, enabling the

benefits of the policy to be realized in an implementation.

3. The policy should not have overhead that overwhelms its benefits—simply put, the

policy should result in a net improvement in application execution time.

I reach two conclusions in this section. First, a policy that meets these goals must balance

the cost and accuracy of information about the cause of cache conflict misses. Second, a

policy that improves overall application performance using mechanisms available on ex-

isting hardware requires information about the frequency of cache misses as well as their

location.

The outcome of this section is a policy that reflects these two conclusions and meets

the design goals. This policy, Snapshot-Miss, uses a cache miss counter to determine when

cache misses are a problem, and uses TLB misses to determine where in the virtual address

space conflicts are a problem. Snapshot-Miss meets the first design goal by monitoring

memory references as revealed by TLB misses to collect a “snapshot” of an application’s

active virtual pages. Virtual pages that cause conflict misses will appear in the snapshot,

and can be recolored. The policy meets the second design goal because cache miss counters

and software-filled TLBs are common features on modern systems. The policy meets the

third design goal by using the cache miss counter to calibrate its level of activity. Detecting

cache conflicts with the TLB and correcting cache conflicts by recoloring are both high-

overhead operations. By monitoring TLB misses and recolor pages only when the cache

miss counter indicates that a performance problem exists, Snapshot-Miss incurs overhead

that is bounded and is proportional to the cache miss rate.
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I developed the Snapshot-Miss policy by beginning with a simple policy that eliminates

cache conflicts but has high overhead, and then refining this policy in order to reduce policy

overhead while still eliminating cache misses. I continued refining the policy until I arrived

at the Snapshot-Miss policy. In this section I will describe the policies that serve as inter-

mediate steps in the design process—not because they have good performance, but because

they illustrate the problems that an operating system policy must solve if it is to improve

overall cache performance using standard hardware.

In the rest of this section I first briefly describe the mechanisms that can provide feed-

back on memory system behavior on modern systems, and then describe the series of poli-

cies that led to the Snapshot-Miss policy. For convenience I divide these policies into two

groups, Active (policies that continuously monitor the TLB) and Periodic (policies that pe-

riodically examine the TLB).

4.2.1 Sources of feedback

The cache management policies I develop in this section collect information about mem-

ory system behavior available on many current systems. In particular, these policies rely

on a software-filled TLB and on hardware performance counters. While most memory ref-

erences are handled transparently in hardware, the TLB reveals information about specific

references to the operating system, and performance counters reveal information about the

aggregate behavior of the system over time. I briefly describe here the interfaces to the TLB

and performance counters assumed by the policies. These interfaces are consistent with

those found on modern CPUs such as the DEC Alpha 21164 and MIPS R10000.

A software-filled TLB

The TLB contains translations from virtual pages to physical pages. The operating system

can read the contents of the TLB and insert new entries into the TLB. (Whether the oper-

ating system can control the TLB replacement policy is not important for the results in this

chapter.) When the CPU refers to a virtual page that is not present in the TLB, the operating

system is notified of the TLB miss so that it can insert the translation for the page into the

TLB.

Since the operating system controls the contents of the TLB, it controls which memory

references to mapped memory result in TLB misses and are therefore visible to the operating

system. As an extreme example, if the TLB is restricted to map just one page at a time,

the operating system can observe every reference to distinct pages, although it will not see
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consecutive references to the same page. This allows the operating system to collect detailed

information on the memory reference stream at the cost of high TLB miss rates. While this

specific example results in high overhead, it illustrates one of the ideas behind the cache

management policies developed in this chapter: the operating system can manipulate the

state of the TLB to collect information about an application’s set of active virtual pages.

Hardware performance counters

Modern systems provide hardware performance counters that allow software to count a va-

riety of events. In this chapter I consider only cycle counters and cache miss counters. These

counters can be configured to deliver an interrupt when they reach a software-controlled

value. The operating system can use these counters, for example, to determine when cache

miss rates are high. The policies I describe here use the counters to tie their level of activity

to the cache miss rate or to program execution time, thus bounding policy overhead.

4.2.2 Active policies

The first set of policies that I introduce actively monitor the TLB to maintain accurate in-

formation about the set of pages in use as an application runs. These active policies use this

information to eagerly recolor any active pages that conflict, maintaining the invariant that

all pages in the TLB are of different colors. To see how eagerly recoloring pages could im-

prove overall performance, consider a hypothetical application whose steady state working

set size fits in n virtual pages, running on a system with a physically indexed cache contain-

ing at least n cache pages. For this application, regardless of the initial virtual-to-physical

mapping, a policy that recolored conflicting pages in order to satisfy the invariant would

eventually reach a state in which the program ran with no cache misses and with no addi-

tional page copying overhead. The only long-term overhead would be the cost of testing

the invariant on each TLB miss.

I designed three active policies that maintain this invariant that all of the pages in the

TLB have different colors. The first, Active-Naive, checks whether the invariant would be

violated on each TLB miss, and if so, recolors one of the offending pages. This policy

can reduce conflicts by distributing memory references over the cache, but it will recolor

excessively. The policy may unnecessarily copy data that are on pages of the same color

but not in long-term competition for cache space: that is, pages that will not incur enough

future cache misses to justify the overhead of recoloring.
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The next policy, Active-Delay, addresses Active-Naive’s flaw of recoloring unnecessarily.

Active-Delay still prevents pages of the same color from appearing in the TLB. But instead

of immediately performing an expensive recolor operation, this policy instead invalidates

the TLB entry for one of the conflicting pages, and increments a counter corresponding to

the color of the page. Only when the counter reaches a threshold value is one of the pages

recolored. Effectively this policy provokes TLB misses in order to count how many times

two pages appear to be in conflict. Although this strategy has the advantage of eliminating

some unnecessary copies, it comes at the price of increasing the number of TLB misses and

reducing the responsiveness of the policy to cache conflicts.

The last of the active policies, Active-Throttle, addresses the high TLB miss rates that oc-

cur when the delay parameter for Active-Delay is set high enough to eliminate wasteful page

copying. Active-Throttle is like Active-Delay, except that it bounds the number of copies in

a given time interval. This reduces TLB overhead, because the monitoring mechanism can

be disabled once the copying limit has been reached. Once the timer expires, TLB mon-

itoring resumes. The Active-Throttle policy increases implementation complexity slightly

and reduces the accuracy of the information collected about the memory reference stream

in exchange for reduced policy overhead. Although capping the recoloring rate can reduce

policy overhead, when it is active this policy still incurs many TLB misses in order to iden-

tify conflicting pages.

Active policies: summary

The top part of Table 4-1 summarizes the active polices and their advantages and disad-

vantages. These policies all collect very accurate information about the cause of conflict

misses, and then eagerly recolor pages in order to map the application’s current working

set to distinct cache pages. While this approach eliminates cache conflict misses, the active

policies can incur one or both of high TLB miss rates and high recoloring rates. The results

in Section 4.4 show that these overheads overwhelm the reduction in cache misses, leading

to the conclusion that eagerly copying pages is not an effective way of improving application

performance.

4.2.3 Periodic policies

The active policies incur high overhead by continually monitoring the TLB. I show in Sec-

tion 4.4 that this overhead causes these policies to harm rather than improve application

performance. The periodic policies are designed to have lower overhead, although in ex-
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Table 4-1 Dynamic mapping policies. This table summarizes the policies introduced in

this chapter for detecting and eliminating cache conflict misses using standard hardware.
Policy Summary Advantages Disadvantages

Active Policies

Active-Naive Recolor on every TLB miss
to conflicting pages.

Detects all cache
conflicts in mapped

memory.

Excessive
recoloring.

Active-Delay Recolor after several TLB
misses to conflicting pages.

Detects most
persistent cache

conflicts.

Excessive TLB
overhead.

Active-Throttle Recolor after several TLB
misses to conflicting pages,

with a cap on the
recoloring rate.

Bounded copy
overhead.

Many conflicts may
not be detected.

Periodic Policies

Periodic-Random Periodically recolor a
randomly selected page

that appears in the TLB.

Repairs poor initial
mappings.

Destroys good
initial mappings.

Periodic-Color Periodically recolor one of
a set of pages that conflict

and appear in the TLB.

Repairs poor initial
mappings.

May recolor
inactive pages.

Snapshot Periodically flush the TLB.

Recolor when two
conflicting pages reappear

in the TLB.

Recolors only active

pages.

Recolors in

response to
short-lived

conflicts.

Snapshot-Delay Recolor when two pages
conflict in two consecutive

snapshots.

Recolors in
response to

persistent conflicts.

Difficult to
determine good

period and delay
values.

Snapshot-Miss Like Snapshot-Delay, but
snapshot interval and

length measured in cache

misses rather than cycles.

Adapts to cache
miss rate.

Requires cache miss
counter.

change they must use slightly less accurate information about application working sets than

the active policies. In particular, the periodic policies bound their overhead by examining

the state of the TLB at a rate that is tied to either the cycle count or the cache miss count.

The periodic policies have the potential to work well because in practice it may not be nec-

essary to respond to conflict misses as soon as they occur. In particular, the conflict misses

that have the greatest impact on performance are those that persist for a long time. The per-

formance benefit of repairing such conflicts will be significant even if recoloring is delayed

somewhat from the onset of the problem.

The periodic policies bound the overhead of detecting cache misses by collecting infor-
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mation less frequently than the active policies, and also bound the overhead of recoloring.

The policies that I introduce here use progressively more sophisticated approaches to iden-

tify appropriate pages to recolor, so that the benefit of a reduced cache miss rate outweighs

the overhead of monitoring TLB misses and copying pages.

The simplest periodic policy is Periodic-Random, which periodically recolors one ran-

domly chosen page that appears in the TLB. Since it may recolor pages that do not conflict,

Periodic-Random could introduce as many conflicts as it removes. The Periodic-Color pol-

icy is more selective, scanning the TLB and recoloring one page from a set of pages that

have the same color.

The Periodic-Random and Periodic-Color policies assume that the contents of the TLB

accurately reflect the current working set. In practice, inactive pages can appear in the TLB,

causing unnecessary recolors. The Snapshot policy is similar to Periodic-Color, but filters

out these inactive pages. The policy periodically takes a “snapshot” of the working set by

flushing the TLB, and observing which pages incur TLB misses over a short interval. By

definition, the working set consists of these pages. The Snapshot policy recolors one page

from the set of pages that appear to conflict with other pages in the snapshot.

The Snapshot policy assumes that conflicting pages will continue to conflict long

enough to justify recoloring. If conflicts are short-lived, the policy will recolor excessively.

To confirm that a conflict is long-lived, the Snapshot-Delay policy takes a second “confir-

mation” snapshot after a specified delay time, and only recolors a page when it is found to

conflict in both the original and confirmation snapshots.

The periodic policies described so far invoke the cache conflict detection mechanisms at

a fixed rate, whether or not cache misses are occurring. This may lead to excessive recoloring

when the cache miss rate is naturally low, or to delayed conflict resolution when the cache

miss rate is high. The Snapshot-Miss policy addresses these problems by using a cache miss

counter to regulate its level of activity. Snapshot-Miss is like Snapshot-Delay, except that the

policy parameters are measured in cache misses rather than in machine cycles. The system

delivers an interrupt when the cache miss counter reaches a given threshold, at which point

the policy takes a snapshot of the working set as described above. In effect, this policy uses

the cache miss counter to determine when excessive cache misses are occurring, and only

then monitors the TLB to determine where the misses are occurring.
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4.2.4 Policy design: summary

Table 4-1 reviews the policies presented in this section, and summarizes some of their ad-

vantages and disadvantages. All of the policies attempt to infer the location of cache conflict

misses based on information about the application memory reference pattern derived from

the TLB. This is challenging because this information may mislead the policy as to the ac-

tual cache behavior. For example, any of the policies may conclude that two pages conflict

even though the pages in fact are not causing cache misses. For example, suppose that phys-

ical pages P1 and P2 have the same color, and that both are in use. Even if no reference to

P1 conflicts with references to P2 (say only the top half of P1 and only the bottom half of

P2 are active), the policies may conclude that P1 and P2 conflict. Snapshot-Miss is the least

likely to exhibit this behavior, because it is active only during periods of high cache miss

activity. Nevertheless, all the software policies may find such “false positives,” because they

do not use information about real cache misses, only potential ones. Another problem with

these policies is that they cannot detect or resolve conflicts between mapped and unmapped

pages, because unmapped pages are not present in the TLB.

In light of these problems, a policy that manages the cache in order to reduce overall

execution time must balance the accuracy and cost of information about application behav-

ior. The results in Section 4.4 will show that of the policies considered here, Snapshot-Miss

comes closest to achieving this balance. This policy

1. regulates its level of activity according to the cache miss rate;

2. defers recoloring until a conflict between pages has persisted; and thereby

3. recolors pages when and where it is likely that the benefit will not be overwhelmed by

the policy overhead.

In Section 4.4 I present measurements that quantify the advantages and disadvantages of

the policies introduced in this section.

4.3 Experimental methodology

I evaluate the effectiveness of the dynamic mapping policies introduced in Section 4.2 using

trace-driven simulation of ten Unix workloads. The traces include user and system refer-

ences, and were collected using epoxie [Wall 92, Borg et al. 89, Chen 93]. In this section I
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describe the tracing system, the simulated memory system, the performance metrics used,

and the benchmark programs.

4.3.1 The tracing system

I used address traces, which include user and system references, that were collected using

epoxie [Wall 92, Borg et al. 89, Chen 93] running on a DECstation 5000/200 running Ultrix

4.2A. Epoxie rewrites MIPS [Kane & Heinrich 92] object files to insert instrumentation in-

structions before each basic block and memory reference. The instrumented binary emits

enough information to reconstruct a complete trace of memory operations made during

execution. During tracing, programs and the kernel fill a large trace buffer with accurately

interleaved user and kernel references. When the buffer is full, the kernel suspends tracing

and notifies a user-level process that consumes the trace.

Generating a faithful trace

The accuracy of trace-driven simulation that includes operating system references can be

influenced by the effects of memory dilation and time dilation.

Memory dilation occurs because a traced program is on average twice as large as its

untraced counterpart and may induce additional load on the virtual memory system (for

example, TLB misses and page faults). The effects of memory dilation were avoided by

collecting traces on a machine with a large physical memory (192 MB, of which 64 MB was

devoted to the trace buffer) to avoid paging, and by simulating rather than tracing TLB

behavior. Each benchmark was run on an otherwise unloaded machine.

Time dilation occurs because a traced program runs more slowly than its untraced

counterpart, causing external events to appear to complete faster than they would in an

untraced system. To avoid time dilation the traced system’s clock was configured to inter-

rupt at one fifteenth the standard rate (traced code runs about fifteen times slower than

untraced code). In addition, tracing was disabled during the operating system’s idle loop,

which executes during all synchronous I/O operations. Eliminating idle loop references

also improves the accuracy of memory system measurements because the idle loop exhibits

good cache behavior (simulated cache miss rates would otherwise approach zero as idle

activity increases).
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4.3.2 The simulated memory system

I use the traces to drive a simulated memory system described in Table 4-2. The mem-

ory system parameters are based on a DEC 3000/500 Alpha workstation [Dutton et al. 92],

which contains a 150 Mhz superscalar Alpha 21064 processor [Dig 92]. To accurately ac-

count for the overhead of the dynamic policies, I wrote and compiled code fragments that

could implement TLB monitoring and page recoloring for each policy. I then modified the

simulator so that the corresponding instruction and data references are injected into the

application reference stream.

The simulations use an initial mapping policy of either page coloring or bin hopping.

Page coloring assigns virtual pages to colors in a round robin fashion, assigning virtual page

0 to the first color, virtual page 1 to the second color, and so on. Bin hopping assigns virtual

pages to colors cyclically in the order in which they are initially mapped. The simulations

assume infinite memory (so that a free page of a given color is always available), and do not

include paging effects.

Table 4-2 The parameters of the simulated memory system, based on a DEC 3000/500

Alpha workstation containing a 150 Mhz Alpha 21064 processor.

Page size 8 KB

Line size 32 bytes

First-level 8 KB instruction, 8 KB data

cache (L1) virtually indexed

direct-mapped

Policy write-through, read-allocate

Write buffer 4 entries

Miss penalty 5 cycles

TLB 16-line ITLB, 32-line DTLB

fully associative

Second-level 512 KB, unified, physically

cache (L2) indexed, direct-mapped, unified

Policy write-back, read/write-allocate

Miss penalty 25 cycles

I will also present measurements of cache management policies running on a DEC Al-

pha workstation running Version 2.0 of the Digital Unix operating system. These mea-

surements sometimes differ from the measurements of the simulated system. There are a

number of significant differences between the simulated and live systems that could account

for these discrepancies:
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� The traced and real programs ran on architectures with different instruction sets, and

hence were compiled with different compilers.

� The traces were collected on a 32-bit MIPS system running the Ultrix operating sys-

tem, while the implementation ran on a 64-bit Alpha system running Digital Unix.

� The simulated memory system makes a number of simplifying assumptions. For

example, the first-level data cache on the Alpha allows execution to continue with

one cache miss outstanding, as long as the result of the memory reference is not

needed. The simulator does not emulate this behavior. The simulator also assumes

a single-issue processor, and does not consider sources of instruction latency other

than memory system delays. The Alpha processor in the real system is a dual-issue

processor with variable-latency instructions.

The simulation results, then, do not precisely predict execution times on a real system.

Instead they provide a quantitative but approximate guide to the advantages and disadvan-

tages of different strategies for cache management.

4.3.3 Metrics

I use the measurements of the simulated memory system to compare the performance of the

dynamic policies. As in Chapter 3, the primary metric for this comparison is memory cycles

per instruction (MCPI), which is the total number of cycles spent servicing cache misses,

write buffer stalls, and memory management (including TLB misses and cycles devoted to

implementing the mapping policy), divided by the number of user and system instructions

(excluding memory management instructions). Page mapping policies primarily affect the

performance of the second-level cache—the first-level caches on the Alpha 21064 are each

the same size as a page of physical memory, and so are largely independent of virtual-to-

physical mappings. A more focused metric, then, is memory cycles per instruction due to

second-level cache misses and memory management overhead (L2 MCPI). Since the poli-

cies considered in this section introduce additional TLB overhead to monitor the memory

system, and additional overhead to recolor pages, I will sometimes separate L2 MCPI into

three more detailed categories:

� TLBMCPI (MCPI due to TLB misses);

� recolor CPI (MCPI due to recoloring); and
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� L2 miss CPI (MCPI due to references that miss in the second-level cache, excluding

references induced by the cache management policy.)

4.3.4 Workloads

I simulated the performance of ten benchmarks, shown in Table 4-3, that are representa-

tive of a range of applications such as compilers, simulators, scientific codes, and graphical

(X11) workloads. One program, strawman, is an artificial workload included to “show off”

the recoloring policies in a worst-case scenario. The others are a mix of SPEC92 bench-

marks and real workloads taken from the University of Washington computing environ-

ment. The traces include references from the applications and the operating system. The

X11 workloads also include references from the X11 server.

This benchmark suite differs from the one I used in Chapter 3. This simply reflects the

fact that I consider different performance problems in each chapter. In the previous chapter

the benchmark suite was skewed towards programs with high TLB miss rates, while in this

chapter it is skewed towards programs that suffer from high cache miss rates.

Baseline memory system behavior

Table 4-4 shows the baseline memory system behavior of these benchmarks using a static

page coloring mapping policy (the policy that ships with Ultrix 4.2A). The table shows only

the performance of the first-level cache and the write buffer between the first- and second-

level caches. These numbers remain nearly constant for all mapping policies because the

behavior of the program and the L1 cache are largely unaffected by the contents of the L2

cache.

4.4 Policy evaluation

In this section I use trace-driven simulation to show that dynamically remapping pages to

eliminate cache misses can improve application performance. I show that of the policies I

developed in Section 4.2, Snapshot-Miss offers the greatest improvement in performance

across a range of benchmarks, reducing MCPI by as much as 0.27. The remaining policies

do not perform as well as Snapshot-Miss, because even though they sometimes eliminate

more cache misses, they also have higher policy overhead.

I divide the simulation results in this section into two parts. First, I measure L2 MCPI—

the contribution of second-level cache misses and policy overhead to MCPI—for each of the
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Table 4-3 Benchmark descriptions. Memory references, MCPI, and L2 miss CPI (MCPI

due to second-level cache misses) were measured on the simulated memory system when

using static page coloring as the mapping policy. Except as noted, the programs are written

in C. With the exception of gcc, program text and input files are brought into the buffer

cache before tracing. Traces of gs and splot include both client and X11 server activity.

Gcc, cecil, doduc, tomcatv, and the nasa benchmarks are all from the SPEC92 suite. Splot

and gs are used in the local computing environment. Strawman is an artificial bench-

mark designed to induce cache conflict misses. All of the traces include operating system

references.
Benchmark Description Memory

References

(millions)

MCPI L2
miss

CPI
strawman a program that repeatedly alternates references to two

conflicting cache-pages.

16 5.79 4.81

gcc-a gcc compiling a 17 KB preprocessed program into
Sun-3 assembly code.

41 0.81 0.17

gcc-b gcc compiling a 149 KB program into Sun-3 assembly
code.

279 0.50 0.13

cecil a 6000-line unoptimized Cecil program, including the
20-queens problem, Towers of Hanoi, the game of

Life, and compiler test code. (Cecil is a pure object
oriented language being developed at the University of

Washington [Chambers 93].)

248 0.56 0.16

doduc Monte-Carlo simulation of the time evolution of a
nuclear reactor component described by an 8K input

file. (Fortran.)

368 0.38 0.12

tomcatv a program that generates a vectorized mesh.
(Fortran.)

278 1.09 0.77

nasa7-2 Fast Fourier transform component of the SPEC Nasa7
floating point benchmark. (Fortran)

255 0.46 0.06

nasa7-3 Cholesky factorization. (Fortran) 128 0.79 0.31

splot the X11 program splot run four times on four
different input files. Total input file size is 94 KB.

259 0.99 0.15

gs an X11 Postscript previewer on a 251 KB input file. 667 1.09 0.22

policies introduced in Section 4.2. These measurements quantify the strengths and weak-

nesses of the policies, and motivate the refinements that result in the design of Snapshot-

Miss. Second, I compare Snapshot-Miss to other approaches to cache management: static

mapping policies and hardware associativity.

These measurements lead to three conclusions:

� Neither of the static mapping policies consistently outperforms the other—there is

no clear “best” static mapping policy.
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Table 4-4 Baseline memory system behavior. All counts are in 1000’s. The columns la-

beled “%s” show the percentage of references and misses that are due to operating system

activity (rounded to the nearest integer). The column “Write Buffer Stalls” shows the

number of cycles spent waiting for writes to the second-level cache to be retired.
Total Uncached Level 1 Instruction Cache Level 1 Data Cache Write Buffer

Benchmark Refs Refs %s Refs %s Misses %s Refs %s Misses %s Writes %s Stalls %s

strawman 16131 3 100 13363 4 25 100 2657 4 2572 0 107 100 36 100
gcc-a 44902 431 100 34178 33 1670 30 6416 29 493 32 3876 30 2011 28
gcc-b 309240 422 100 232728 9 10495 12 45903 7 4104 13 30185 15 12114 13
cecil 273241 671 100 205263 12 6278 23 42127 8 5471 12 25178 9 10922 11
doduc 396803 79 100 287158 1 10209 4 81102 1 4541 4 28461 2 11968 3
tomcatv 305757 74 100 206055 3 346 89 71857 1 12593 2 27770 5 16769 3
nasa7-2 301394 73 100 207742 5 207 90 47318 3 14217 1 46259 1 6176 6
nasa7-3 142526 58 100 95790 4 181 90 32601 2 8716 1 14076 5 6463 5
splot 278812 4091 76 211907 42 10134 60 43473 41 4115 60 19339 44 9493 60
gs 722887 11883 82 538827 23 23414 33 116076 26 9938 38 56099 24 23831 32

� Augmenting either of the static mapping policies with a carefully designed dynamic

mapping policies can improve the performance of a system with a direct-mapped

cache.

� A system with a hypothetical two-way associative cache with the same size and ac-

cess time as a direct-mapped cache generally outperforms a system that relies on a

dynamic mapping policy to eliminate cache misses. This indicates that there remains

additional opportunity to eliminate conflict misses beyond the techniques considered

in this chapter.

4.4.1 Comparison of dynamic policies

I measured the effect of each of the policies from Section 4.2 when using an initial mapping

of page coloring. I empirically selected policy parameter settings that provided a good

balance between reduction in cache misses and policy overhead. That is, I tested different

parameter values to find configurations that provided the lowest MCPI. Table 4-5 shows

the resulting parameter settings.

Figure 4-1 shows the effect of the dynamic mapping policies and a static page coloring

mapping policy on L2 MCPI (that is, the portion of MCPI due to L2 cache misses and cache

management). I use L2 MCPI as a metric because the mapping policy has a negligible effect

on other components of MCPI. Dynamic policies that increase L2 MCPI compared to static

page coloring have policy overhead that overwhelms the improvement in cache miss rates.

To distinguish the effects of policy overhead from the effects of cache misses, Figure 4-1
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Table 4-5 Parameters of simulated dynamic mapping policies.
Policy Max recoloring rate Delay

Active-Naive Unbounded None

Active-Delay Unbounded 100 TLB misses

Active-Throttle 1/(1� 106) cycles 100 TLB misses

Periodic-Random 1/(2� 106) cycles None
Periodic-Color 1/(2� 106) cycles None

Snapshot 1/(2� 106) cycles None

Snapshot-Delay 1/(2� 106) cycles 200� 103 cycles
Snapshot-Miss 1/(10� 103) L2 misses 1� 103 L2 misses

divides L2 MCPI into three components: L2 miss CPI, Recolor CPI, and TLBMCPI.

� L2 miss CPI is the memory penalty due directly to misses in the second-level cache

(excluding misses incurred by the mapping policy). Those policies that have lower

L2 miss CPI than page coloring eliminate cache conflicts.

� Recolor CPI is the cost of copying pages physical memory, including the cache effects

of the copy.

� TLBMCPI reflects the TLB management penalty for the given policy. The dynamic

policies have higher TLBMCPI than page coloring because they use the TLB to collect

information about the current working set, increasing the number or cost of TLB

misses, or both.

The figure illustrates the performance effects of the policy refinements that culminate

in the Snapshot-Miss policy. Considering the policies in sequence:

� Active-Naive has high recolor CPI because it recolors pages even when conflicts will

not persist, increasing L2 MCPI relative to page coloring for all but three programs.

� Active-Delay and Active-Throttle are more cautious in recoloring pages than Active-

Naive, reducing Recolor CPI. The reduced recoloring rate does not have an adverse

effect on L2 miss CPI for most of the applications. However, these two policies have

higher TLBMCPI than Active-Naive because they monitor the TLB continuously. The

net effect is that the increase in TLBMCPI is greater than the reduction in L2 miss

CPI for most of the benchmarks, again increasing overall L2 MCPI relative to page

coloring.
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� Periodic-Random and Periodic-Color bound TLBMCPI by examining the TLB peri-

odically rather than continuously. For example, for tomcatv these two policies have

higher L2 miss CPI but lower TLBMCPI than Active-Delay and Active-Throttle, im-

proving overall L2 MCPI. But for several other applications Periodic-Random and

Periodic-Color have higher L2 MCPI than page coloring because Recolor CPI exceeds

the improvement in L2 Miss CPI.

� Snapshot refines Periodic-Color by flushing the TLB to avoid recoloring pages that

are inactive but are still present in the TLB, effectively collecting a snapshot of the

current working set. This modification improves performance relative to Periodic-

Color for six of the ten programs because conflicts are resolved sooner and with fewer

recolor operations.

� Snapshot-Delay refines Snapshot by only recoloring pages that appear in two consec-

utive snapshots, thus avoiding recoloring pages that conflict only briefly. This change

improves performance relative to Snapshot for eight of the ten programs.

� Finally, Snapshot-Miss refines Snapshot-Delay by tying its rate of activity to the cache

miss counter instead of to the cycle counter. By attempting to resolve cache conflicts

only when the cache miss rate is high, Snapshot-Miss either outperforms or does as

well as all of the other dynamic policies. By taking into account both the frequency

and the location of potential cache misses, Snapshot-Miss detects cache and elimi-

nates cache conflicts with low overhead and improves upon the performance of static

page coloring.

4.4.2 Comparison to associativity and alternate static mapping policies

I now consider the effectiveness of four different strategies for cache management: two

static mapping policies, the Snapshot-Miss dynamic mapping policy, and a hypothetical

two-way set associative cache with the same size and access time as a direct-mapped cache.

Table 4-6 shows L2 MCPI for the benchmark suite when an initial mapping of either page

coloring or bin hopping is combined with (1) a direct-mapped cache; (2) a direct-mapped

cache and the Snapshot-Miss policy; or (3) a two-way set associative cache.

The table shows that:

� When using a direct-mapped cache alone, neither bin hopping nor page coloring

performs best across all applications. For example, page coloring performs better
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Table 4-6 Performance of three cache management strategies. This table shows the total

cost of second-level cache management (L2 MCPI) for each of three strategies (direct-

mapped, Snapshot-Miss, and two-way set associativity), and each of two initial mapping

policies (page coloring and bin hopping).
L2 MCPI

Benchmark Page coloring Bin hopping

Direct- Snapshot- Two-way Direct- Snapshot- Two-way
mapped Miss associative mapped Miss associative

strawman 4.81 0.04 0.02 0.02 0.02 0.02

gcc-a 0.18 0.17 0.12 0.16 0.17 0.12
gcc-b 0.14 0.14 0.10 0.13 0.13 0.10

cecil 0.20 0.17 0.13 0.20 0.17 0.14

doduc 0.12 0.06 0.03 0.04 0.04 0.03
tomcatv 0.77 0.50 0.38 0.39 0.39 0.38

nasa7-2 0.09 0.09 0.10 0.19 0.17 0.24
nasa7-3 0.31 0.32 0.32 0.32 0.32 0.32

splot 0.17 0.18 0.12 0.21 0.20 0.14

gs 0.22 0.22 0.18 0.22 0.22 0.18

for nasa7-2 and splot, while bin hopping performs better for doduc and tomcatv. This

indicates that it is difficult to choose a static mapping policy that will work well across

a range of programs.

� Snapshot-Miss improves upon the performance of the two static policies for the ma-

jority of programs because it can dynamically adjust virtual-to-physical mappings in

response to observed memory reference patterns.

� A two-way associative cache results in a greater reduction in L2 MCPI than Snapshot-

Miss because it can eliminate conflicts immediately with no overhead.

� While most of the programs benefit from added associativity, nasa7-2 and

nasa7-3 do not. For these two programs, L2 miss CPI is dominated by capacity misses

rather than conflict misses. As a result, they can perform worse with dynamic policies

because capacity misses are misidentified as conflict misses, resulting in analysis and

recoloring that only serve to increase overhead.

4.4.3 Policy evaluation: summary

The simulation results in this section show how the quality of information about the cause

of cache misses and the cost of collecting that information affect the design and perfor-
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mance of dynamic mapping policies. While an idealized two-way associative cache can

eliminate conflict misses with no overhead, a virtual memory mapping policy that is aware

of the cache configuration and program behavior can allow a direct-mapped cache to at-

tain some of the benefits of hardware associativity. Even so, this performance improvement

was not possible without supplementing the information provided by a software-filled TLB

with the contents of a cache miss counter, and without carefully dissecting that information

in order to make good recoloring decisions.

4.5 Implementation and performance

The policies that I introduce in this chapter are designed to work using information that

could be collected on existing systems. The simulation results show promise for a pol-

icy that remaps pages to eliminate cache misses based on the information provided by a

software-filled TLB and a cache miss counter. The DEC Alpha provides exactly this hard-

ware support. In this section I describe how I implemented the Snapshot-Miss policy on

the Alpha, and how the policy affects the end-to-end execution time of several applica-

tions. The measurements confirm that no single static mapping policy works well across all

programs, and that a dynamic mapping policy can improve reduce the execution time of

programs that suffer from cache conflict misses.

4.5.1 Implementation

I implemented the Snapshot-Miss policy on a DEC Alpha workstation running Version 2.0

of the Digital Unix operating system. The Alpha cache miss counters can be configured to

deliver an interrupt to the processor after every 4,096 misses to the second-level cache. The

implementation of Snapshot-Miss operates as follows: every 32,768 misses, two snapshots

are collected, separated in time by 4,096 misses. A snapshot is collected by flushing the TLB

and recording the first 16 pages to incur TLB misses. If two or more pages conflict in both

the first and second snapshots, one of the pages is recolored.

The implementation required minimal changes to the vendor’s operating system. The

policy code is contained in a module devoted to analyzing the snapshots and deciding which

page, if any, to recolor. Conflict detection is triggered by a cache miss counter interrupt,

which required writing a simple interrupt handler to initiate a snapshot. A modified TLB

miss handler collects the snapshots during periods of high cache miss rates. Table 4-7 sum-

marizes the dynamic policy’s implementation complexity and overhead.
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Table 4-7 Overhead of dynamic policy operations. The cost of delivering cache miss

counter interrupts was measured by comparing the execution time of programs with cache

miss counter interrupts enabled and then disabled. The other overheads were measured

with the Alpha cycle counter. PAL code is Alpha machine language extended with “privi-

leged architecture library” instructions.

Operation Avg. Cost Code Size

Deliver cache miss

counter interrupt

70 cycles 20 lines of C

Determine whether

to record TLB miss

6.5 cycles 4 PAL

instructions

Record TLB miss 10 cycles 10 PAL

instructions

Analyze TLB miss

information

11,000 cycles 200 lines of

C

Remap page and

update page tables

29,000 cycles 30 lines of C

4.5.2 Performance

For each application I measured the performance of page coloring and bin hopping (the

policy that ships with Digital Unix [Bugnion et al. 96]), and then augmented those basic

policies with the Snapshot-Miss policy. To dramatize the potential of a dynamic mapping

policy to improve performance, I begin by presenting measurements of a synthetic bench-

mark that is poorly served by static mapping policies. I then present measurements of the

end-to-end performance of several applications.

A synthetic workload

To illustrate the potential benefit of the Snapshot-Miss policy, I wrote a synthetic sym-

bol table lookup benchmark, stab. The code for stab is drawn from the Cecil com-

piler [Chambers 93], and uses a standard shared library routine to compute a hash func-

tion. When the shared library code and the calling routine are mapped to the same cache

page and are linked at overlapping page offsets, performance will suffer. In this case, with a

static policy, the program executes in 18.3 seconds, whereas with Snapshot-Miss, execution

time drops to 9.0 seconds. The conflict between the caller and the callee occurs on every

iteration of the loop in the benchmark program, so the Snapshot-Miss policy is able to take

advantage of the locality of the cache misses to detect the conflict and recolor one of the

pages. With a non-conflicting initial mapping, execution time is 8.6 seconds with either a
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static policy or Snapshot-Miss. This synthetic benchmark represents a worst-case scenario,

with conflicts that static policies cannot avoid. Bin hopping’s heuristic of temporal locality

is unlikely to hold because the shared library will likely be mapped long before it is called

by the client routine. Page coloring’s heuristic of spatial locality is unlikely to hold since

the caller and the callee reside in separate parts of the virtual address space. As a result, the

mappings produced by a static policy are effectively random. The dynamic policy serves

to correct such poor mappings created by static policies that cannot accurately predict ap-

plication reference patterns. However, realistic programs will rarely benefit so dramatically

from a dynamic mapping policy.

Application workloads

While the synthetic benchmark described above illustrates that a dynamic mapping policy

can in fact eliminate conflict misses on a real system, more interesting is the policy’s effect

on real applications. I measured the end-to-end performance of a subset of the applica-

tions described in the Section 4.3, as well as some new workloads for which I did not have

address traces. The workloads, together with elapsed execution times under different map-

ping policies, are described in Table 4-8 along with relative improvements and overheads.

The differences between the policies are due to differences in the virtual-to-physical map-

pings and, in the case of the dynamic policies, the overhead of monitoring the TLB and

recoloring pages. The first only affects the performance of the L2 cache, while the second

only increases execution time. Thus any improvement in execution time with the dynamic

policies is due to a reduction in conflict misses in the L2 cache.

The table shows that no one static policy performs best for all the benchmarks. Bin

hopping does better than page coloring for four of the eight benchmarks (gcc1, tomcatv, gs,

and mpeg), but page coloring outperforms bin hopping for doduc, nasa7-3, and nasa7-6.

Both policies perform about the same for nasa7-2.

The table also shows that Snapshot-Miss policy succeeds in significantly reducing exe-

cution time for doduc and nasa7-6 with bin hopping, and tomcatv with page coloring. The

dynamic policy has only a small effect on overall performance for mpeg, gs, and gcc1. Fi-

nally, two applications, nasa7-2 and nasa7-3, are slowed down by the dynamic policy. These

programs have working sets much larger than the second-level cache, causing the dynamic

policy to recolor in response to capacity misses that it cannot eliminate, degrading perfor-

mance. For all of the workloads the overhead of the Snapshot-Miss policy was negligible in

comparison to the total running time.
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Table 4-8 Static vs. dynamic policies. This table shows performance for page coloring

and for the native Digital Unix mapping policy (bin hopping), each with and without a

dynamic mapping policy (Snapshot-Miss). All of the programs except mpeg and gs are

drawn from the SPEC92 benchmark suite. The programs mpeg and gs displays images

through the X11 server. The columns labeled mean and � show the mean and standard

deviation of the execution time for five runs in milliseconds. The improvement column

shows the percentage improvement in execution time of the dynamic policy over the static

policy. The overhead column shows the time attributed to dynamic policy overhead in

milliseconds. The recolors column shows the total number of pages recolored.
Bench-
mark

Description Page coloring Bin hopping

Static Snapshot-Miss Static Snapshot-Miss
exec. time exec. time improve- over- recolors exec. time exec. time improve- over- recolors
mean � mean � ment head mean � mean � ment head

gcc1 The full gcc1
SPEC
benchmark.

112,079 128 112,388 319 -0.3% 135 143 111,548 75 111,335 158 0.2% 103 60

doduc Nuclear
reactor
simulation.

23,160 210 23,077 119 0.4% 8 9 23,986 1 23,093 157 3.7% 8 7

tomcatv The full

tomcatv
SPEC
benchmark.

33,339 6 26,380 53 20.9% 220 345 25,071 24 25,368 32 -1.2% 185 111

nasa7-2 Fast Fourier
transform.

26,913 3 27,457 344 -2.0% 33 15 26,912 5 28,296 853 -5.1% 63 35

nasa7-3 Cholesky
factorization.

31,571 49 32,540 125 -3.1% 142 55 31,651 3 32,748 162 -3.5% 139 34

nasa7-6 Matrix ma-
nipulation.

6,900 11 6,906 21 -0.1% 4 2 7,301 4 6,954 36 4.7% 5 6

gs ghostscript
with a 363
KB input file.

23,236 173 23,109 60 0.5% 20 11 23,188 139 23,017 127 0.7% 19 10

mpeg mpeg play
with a 217
KB input file.

18,958 591 18,698 409 1.4% 27 19 17,990 117 17,929 114 0.3% 18 5

4.5.3 Implementation and performance: summary

The implementation of Snapshot-Miss on the DEC Alpha shows that it is in fact practical

to infer the location of cache conflict misses at runtime, using a cache miss conflict counter

to determine when cache misses are a performance problem and using the TLB to collect

a snapshot of the application working set during periods of high cache miss activity. The

policy can then recolor conflicting pages to eliminate cache misses. The implementation is

straightforward, requiring only a few hundred lines of code, and is transparent to the major-

ity of the operating system and to applications. The policy also has low run time overhead,

since in the common case it only adds a few instructions to each TLB miss. Although for

two applications the policy does recolor in response to capacity misses, slowing execution
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time, for several applications performance improves significantly. In summary, the im-

plementation results show that even when using incomplete information, a well-designed

policy can use careful analysis to identify pages that will benefit from recoloring.

4.6 Conclusions

This chapter provides the second demonstration of my thesis: that by observing mem-

ory reference behavior at runtime, the operating system can dynamically match application

memory resource requirements to the underlying hardware memory resources. In this case,

the resource of interest is a physically indexed direct-mapped cache, and the resource man-

agement problem is to map active virtual pages to disjoint cache pages. The key insight is

that when virtual pages conflict in the cache, the offending pages can be found using the

TLB, and cache miss counts will be high. This motivates the development and implemen-

tation of an operating system virtual memory mapping policy, Snapshot-Miss, that detects

when cache conflicts are occurring by examining a hardware cache miss counter, and dis-

covers where cache conflict miss are occurring by flushing the TLB and observing the sub-

sequent stream of TLB misses. The policy can then recolor one of the conflicting pages,

bringing the system closer to the ideal state in which all active virtual pages are mapped to

physical pages of different colors.

This chapter explored how to detect and eliminate cache conflict misses using mecha-

nisms available on current systems. The next chapter builds on these results by considering

the question of whether low-cost, low-overhead hardware can provide more detailed infor-

mation about the cause of conflict misses, and thus enable the design of a simpler and more

effective operating system cache management policy.



Chapter 5

Using Virtual Memory and Low-Cost

Hardware to Improve Cache Performance

5.1 Introduction

In this chapter I consider how to improve upon the virtual memory policies for cache man-

agement introduced in Chapter 4 by adding a low-cost hardware cache miss monitor. To

review, cache conflict misses occur in a physically indexed cache when two virtual pages are

mapped to physical pages of the same color, that is, to physical pages that map to the same

offset in the cache. In Chapter 4 I designed an operating system cache management policy,

Snapshot-Miss, that detects cache conflict misses using mechanisms available on existing

hardware, namely a software-filled TLB and a cache miss count register. When the operat-

ing system detects that two virtual pages conflict, it can eliminate the conflict by recoloring,

that is, by mapping one of the pages to a physical page of a different color. This policy suffers

from the weakness that it cannot detect cache misses with both precision and low overhead.

Precision is only possible at the cost of high monitoring overhead — so high that the benefit

of reduced cache miss rates is negated. Reducing overhead results in imprecision, which in

turn results in delays in resolving conflicts. In this chapter I introduce a simple hardware

device, the Cache Miss Lookaside (CML) buffer, that detects cache misses accurately and

has low overhead. The CML buffer is an off-chip device that monitors the memory refer-

ence stream, and provides per-page cache miss counts to the operating system. Because it is

implemented off-chip, it requires no changes to existing CPU implementations. Because it

provides precise information about the pages responsible for cache misses, it enables the de-

sign of a straightforward operating system mapping policy that responds quickly to cache

conflicts with low overhead. The results of trace-driven simulation in this chapter show

that a system augmented with a CML buffer can eliminate cache conflict misses more effi-

ciently than Snapshot-Miss, resulting in an overall improvement in simulated application

execution time.

The techniques I introduce to obtain these performance improvements rely on virtual
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memory policies that dynamically manage the mapping from virtual pages to physical pages

and hence from virtual pages to cache pages. An ideal virtual memory policy for cache

management would arrange that the set of active virtual pages always be mapped to physical

pages of different colors, so that they do not cause conflict misses in a physically indexed

cache. Realistic policies can approach this ideal by observing memory reference patterns as

programs run and remapping virtual pages when cache conflicts are detected. The result

is improved cache performance without reprogramming, recompilation, or the collection

of profile data. Because these policies are concealed entirely within the operating system,

they can benefit both legacy code and new code without requiring any effort on the part

of the user, programmer, or compiler. In essence these policies expand the set of resources

managed by the operating system to include the cache.

Using the operating system to manage cache resources does carry a cost. When the

operating system identifies two virtual pages as causing conflict misses, it recolors one of

the pages to eliminate future conflicts. Recoloring requires allocating a physical page of

a different color, copying one of the conflicting pages to the new page, and updating the

virtual to physical mappings. Altogether this operation costs thousands of cycles. Since a

cache miss costs only 10–100 cycles, recoloring must prevent a large number of future cache

misses or else it will result in a net increase in execution time.

The ability of the operating system to make good recoloring decisions – that is, recol-

oring decisions that reduce execution time – depends on the information available about

the state of the memory system. Ideally the operating system would have future knowledge

of the entire memory reference stream, and could analyze this information offline to deter-

mine an optimal initial color for each virtual page as well as optimal times to recolor. This

approach, though, relies on a separate profiling run, requires extensive offline analysis, and

applies only to programs for which behavior in past runs predicts behavior in future runs.

Considering instead information that can be collected at runtime, ideally the operating sys-

tem could examine a complete history of the memory reference stream. The system could

then analyze this history to predict which virtual pages would conflict in the future. Collect-

ing this information is impractical, though, since it would require new on-chip hardware

to record the address of every memory reference.

In this chapter I consider how to design a low-cost, low-overhead memory system mon-

itor that approximates these ideal sources of information while still allowing the operating

system to make good recoloring decisions. In Chapter 4 I also considered this problem,

but with the additional requirement that the monitoring mechanism have no new hard-
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ware implementation cost – that is, that it could be implemented on an existing system.

To summarize the results of Chapter 4, I found that although it is possible to use feedback

from existing hardware to make good recoloring decisions, the resulting operating system

policy has some shortcomings. That policy, Snapshot-Miss, uses a cache miss counter to

determine when cache misses are a problem, and then examines the stream of TLB misses

to determine virtual pages could be responsible for the problem. Because the policy mon-

itors memory references at the granularity of pages, not cache lines, it can over- or under-

estimate the importance of an apparent conflict between virtual pages. Because monitoring

the TLB has high overhead, the policy is sometimes suspended, resulting in delays between

the onset of a conflict and its resolution. The net result is that although the Snapshot-Miss

policy can eliminate enough cache misses to reduce application execution time, it leaves

some misses unresolved.

In this chapter I revisit the question of how best to provide feedback to the operating

system to eliminate cache conflicts between virtual pages, this time allowing the introduc-

tion of new hardware. The specific problem I solve here is how to design low-cost hardware

that enables the operating system to quickly eliminate cache conflict misses with low over-

head. I introduce a new hardware device, the Cache Miss Lookaside (CML) buffer, that

meets the following four design criteria: (1) it has low implementation cost; (2) it imposes

low runtime overhead; (3) it requires no modification to existing CPU implementations;

and (4) it provides information that enables a straightforward operating system policy to

improve end-to-end execution time by quickly and precisely identifying cache conflicts.

The CML buffer maintains a table that summarizes per-page cache miss counts. It col-

lects this information by snooping on the memory bus and observing the address of every

reference to physical memory. The CML buffer will see every instruction and load reference

that results in a cache miss, and in a write-allocate cache will see every store reference that

results in a cache miss. The device meets the design criteria as follows. First, it has low

implementation cost because, as I will show, it can be small and can be implemented in

low-speed hardware. Second, it has low runtime overhead because it updates cache miss

information without software intervention. Third, since it is located off-chip it requires no

changes to on-chip structures. Fourth, the simulation results in this chapter show that an

operating system policy that uses the information provided by the CML buffer can improve

overall application performance by eliminating cache conflict misses.

Because the CML buffer provides better information with lower overhead about the

cause of cache conflict misses than is possible with existing hardware, it enables an operat-
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ing system policy that is simpler and has better performance than the Snapshot-Miss policy.

The new policy works for a wide range of system configurations, and for some applications

allows a system with a direct-mapped cache to perform nearly as well as a system with an

associative cache without incurring the complexity or cost of hardware associativity.

The rest of this chapter

In Sections 5.2 and 5.3 I describe the design of the CML buffer hardware and the soft-

ware policy that interprets that hardware to decide when and where to recolor pages. I

then quantify the benefits of the CML buffer through trace-driven simulation. In Sec-

tion 5.4 I show that a policy based on the information provided CML buffer outperforms

the Snapshot-Miss policy. In Section 5.5 I show that a CML buffer allows a virtual memory

policy for cache optimization to improve performance when compared to alternative hard-

ware techniques for eliminating conflict misses, including a realistic two-way set associative

cache, a victim cache, and a column-associative cache. In Section 5.6 I present the results

of experiments varying the CML buffer hardware and software parameters, as well as the

parameters of the simulated memory system, showing that the policy design is largely in-

sensitive to these changes. In Section 5.7 I discuss some open questions. Finally, I conclude

in Section 5.8.

5.2 The Cache Miss Lookaside Buffer

The Cache Miss Lookaside (CML) buffer is a hardware device that provides feedback to

the operating system about the cause of off-chip cache conflict misses. For the purpose

of detecting cache conflicts, the ideal memory system monitor would provide miss counts

at arbitrary granularity for all of memory, would incur no runtime monitoring overhead,

could be queried by software at no cost, would have low implementation cost, and would

interface with an arbitrary memory system and CPU.

The CML buffer design that I describe here approximates this ideal. It maintains miss

counts for blocks of memory at a configurable but fixed granularity. It maintains these miss

counts for only those blocks that have missed frequently or often. It updates the counts in

parallel with the operation of the rest of the system, incurring no runtime overhead. It al-

lows software to query the device with low cost in two ways: by scanning the contents of the

buffer through memory-mapped I/O operations, and by arranging to have the device de-

liver an interrupt when the cache miss count on any page reaches a configurable threshold.
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It interfaces to existing systems by monitoring the memory bus, observing every memory

reference and hence every cache miss. It does not make any assumptions about the CPU

or memory system implementation, other than to assume that the memory bus interface

allows the addition of a simple device. The measurements presented later in this chapter

show that this design allows the implementation of an operating system policy that detects

and eliminates cache conflict misses with low overhead.

5.2.1 The CML Buffer hardware

A block diagram of the CML buffer appears in Figure 5-1. The device is placed between

the off-chip cache and main memory and consists of a small array of (page number tag,

counter) tuples that are associatively indexed by page number. The tuples are broken into

three segments: LRU, HOT, and FIXED. On a cache miss to physical page p, an associative

lookup into the CML buffer is performed using p as the lookup tag. If there is a tag match

(p is already in the CML buffer), then the counter for the matching tuple is incremented. If

no match occurs, then the least-recently used tuple in the LRU segment is assigned to p and

the tuple’s counter is initialized to one.

CPU
Off-chip
cache Memory

address

data

address

data

Cache Miss Lookaside Buffer

LRU

HOT

FIXED

countertag

interrupt

Figure 5-1 The Cache Miss Lookaside Buffer.
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The LRU segment reflects information about recent cache misses. To prevent pages

with low cache miss counts from displacing heavily conflicting pages from the buffer, pages

with high miss counts are automatically promoted from the LRU segment into the HOT

segment, as follows. Whenever the count of a tuple in the LRU segment exceeds that of

a tuple in the HOT segment, the tuples are swapped. This prevents potentially valuable

information about “hot” pages (those suffering many misses) from being evicted by the

LRU policy.

The replacement policy for FIXED tuples is managed entirely by software. Applications

or the operating system could use these tuples to monitor the cache behavior of specific

pages. The FIXED tuples also allow the dynamic detection mechanism implemented in the

CML buffer hardware to be refined by future improvements in the operating system cache

management policy. This thesis considers only the behavior and use of the LRU and HOT

segments.

The size of the LRU and HOT segments are important parameters for CML buffer per-

formance. If these segments are too small, then conflicts can be missed. If they are too

large, then the CML buffer cost and complexity increases unnecessarily. The measurements

in this chapter are generally based on a simulated CML buffer with LRU and HOT sizes of

16. In Section 5.6.1 I consider the effect of varying the CML buffer size on system perfor-

mance, and show that this configuration is sufficient for the workloads considered here.

CML Buffer implementation cost

An implementation of the CML buffer would have low implementation cost because the

device can be both small and slow. It can be small because it only requires a small num-

ber of table entries. It can be slow because the only constraint on the time to update the

CML buffer is that it be less than the time to access memory, and because the LRU and

HOT replacement policies are simple. As a result the CML buffer should not require cus-

tom logic, but could instead be implemented using commodity hardware such as a field

programmable gate array (FPGA).

5.2.2 The CML Buffer software interface

The CML buffer is controlled by and provides feedback to the operating system through a

simple memory-mapped I/O interface. This interface is intended to allow some flexibility

in the operating system policy that uses the CML buffer. The interface allows the operating

system to:
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� set the CML buffer page size, controlling the granularity at which the CML buffer

maintains cache miss counts;

� scan the contents of the CML buffer;

� clear the CML buffer, setting the cache miss counters to zero; and

� set the CML buffer interrupt threshold – when a counter in the CML buffer reaches

this threshold, the device interrupts the operating system.

Section 5.3 describes the operating system policy that uses this interface.

5.2.3 The Cache Miss Lookaside Buffer: summary

The design of the CML buffer achieves four goals: efficiency, low cost, integrability, and

flexibility. First, the device does not increase the cycle time of the main processor or cache.

Second, the device is inexpensive to implement enabling its use on a wide range of systems.

Third, the device is independent of the CPU and cache, making it easy to apply to both

existing and future systems. Finally, the device is flexible, enabling conflicts to be detected

under a wide range of memory reference patterns.

5.3 Policy design

An operating system policy that dynamically manages virtual-to-physical mappings to

eliminate cache conflicts must answer two fundamental questions. First, when does it iden-

tify a page as causing cache conflicts and therefore recolor the page? Second, how does the

policy choose the target page of a recolor operation? In this section I describe how an op-

erating system policy based on the information provided by a CML buffer answers these

questions. I will refer to this policy simply as “CML”.

5.3.1 Identifying conflicting pages

While the CML buffer maintains counts of cache misses to pages, the operating system is

responsible for setting CML buffer parameters, and for interpreting the counts and recol-

oring conflicting pages. The operating system identifies a page as conflicting when it has a

large number of cache misses, and has the same color as another page with a large number

of cache misses.
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To find pages that are conflicting and hence have high miss counts, the operating system

relies on the information provided by the CML buffer. The operating system sets the CML

buffer interrupt threshold, so that it is notified when some page is suffering from many

cache misses. On receiving the interrupt, the operating system scans the CML buffer to

find pages that are conflicting. The policy identifies any two or more pages of the same

color above a recolor threshold as conflicting. It then recolors all but one of the conflicting

pages of the same color. To ensure that the CML buffer does not become filled with miss

counts for pages that are no longer active, the policy clears the CML buffer once every five

million cycles.

Both the interrupt and recolor thresholds should be slightly greater than the number

of cache lines per page. If lower, then the small number of compulsory misses that occur

when locality changes will result in the operating system incorrectly identifying a page as

conflicting. The interrupt threshold should be slightly higher than the recolor threshold to

ensure that two or more conflicting pages can be found when an interrupt occurs. Specifi-

cally, the experiments in this chapter use a recolor threshold that is equal to the number of

cache lines in a page plus 4, and an interrupt threshold that is equal to the recolor threshold

plus 60. For a system with 32 byte cache lines and 8 KB pages (256 lines per page), this will

result in a recolor threshold of 260 and an interrupt threshold of 320. In Section 5.6.2 I

show that this policy works well for a wide range of settings of the two thresholds.

5.3.2 Target page selection

When the operating system selects a page of a new color in order to recolor a conflicting

page, it is important to avoid introducing new conflicts in the process. A simple and effec-

tive page selection policy, sequential-target, is to select a page of a color not recently selected

and of a different color than the conflicting pages. In Section 5.6.3 I compare this policy to

several others, including one that has complete information about the frequency of refer-

ences as well as hits to cache pages, and finds that it performs well. In particular, I find that

only rarely is the same virtual page recolored more than once, indicating that this policy

generally does not result in new cache conflicts when recoloring.

5.3.3 Policy design: summary

The information provided by the CML buffer allows the design of a straightforward oper-

ating system policy for cache management. The operating system can quickly (as soon as

the cache miss count on a page reaches the interrupt threshold) and easily (by searching the
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CML buffer for pages with miss counts above the recolor threshold) identify those pages

that are suffering from cache conflicts. In contrast, the Snapshot-Miss policy must infer

which pages are causing cache conflicts, because it does not have access to per-page miss

counts.

5.4 Policy evaluation

In this section I use trace-driven simulation to evaluate the performance of an operating

system cache management policy based on a CML buffer. The methodology, metrics, and

workloads are the same as used in the previous chapter, and are described in Section 4.3.

To review, the primary metric I use for comparison is MCPI. MCPI is the total number of

cycles spent servicing cache misses, write buffer stalls, and memory management (including

any overhead incurred by the mapping policy), divided by the number of user and system

instructions (excluding memory management instructions). Since these mapping policies

primarily affect second-level cache performance, I will often make comparisons based on

L2 MCPI, which is defined as memory cycles per instruction due to second-level cache

misses and memory management overhead.

I consider the performance of the CML policy and alternative strategies for cache con-

flict management. I performed experiments with two different initial mapping policies,

page coloring and bin hopping. Given these initial mappings, I then simulated the perfor-

mance of four different systems:

� a traditional direct-mapped cache using a static mapping policy (DM);

� a direct-mapped cache using the Snapshot-Miss page mapping policy (Snapshot-

Miss);

� a direct-mapped mapped cache using a dynamic mapping policy that uses the infor-

mation provided by a CML buffer to detect cache conflict misses (CML); and

� a two-way set associative cache using a static mapping policy (A2).

The comparison between CML and DM shows that CML can improve the MCPI of a sys-

tem with a direct-mapped cache without requiring hardware associativity. The comparison

between Snapshot-Miss and CML shows that an accurate, low-overhead device (the CML

buffer) for monitoring the memory system allows an operating system policy to manage the
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cache more effectively than a policy that uses software monitoring mechanisms. Finally, the

comparison between CML and A2 shows that for some applications CML can approach the

performance of a hypothetical associative cache with the same size and access time as a

direct-mapped cache.

5.4.1 CML policy overhead

I include CML buffer software overhead when computing MCPI. The components of soft-

ware overhead are the time to scan the CML buffer, the time to analyze its contents, and

the time to recolor a conflicting page. The time to scan is proportional to the CML buffer

size. The time to analyze the CML buffer contents is proportional to the number of pages

detected. The time to recolor is determined by the number of pages on which conflicts

have been detected, and includes the time to both copy and remap. Table 5-1 shows the

estimated cost of these operations for a system with 8 KB pages using CML. I simulated

the cache effects induced by recoloring, so the table does not show a fixed cost for that

component.

Table 5-1 CML policy costs for a system with 8 KB pages and a CML buffer with 16 LRU

entries and 16 HOT entries.
Conflict analysis

Scan CML buffer 600 cycles

Analyze CML buffer 300 cycles

Cost to recolor one page

Copy instructions 4800 cycles

Update page table entry 200 cycles

Cache effects of copying variable

5.4.2 The effect of the CML Buffer on MCPI

Figure 5-2 shows the MCPI for each benchmark when using an initial mapping policy of

page coloring and three cache configurations: DM, CML, and A2. MCPI is shown as an

aggregate of various sources, including the CML buffer itself, which reflects the time to

scan the CML buffer and recolor pages. Figure 5-2 reveals that:

� For some of the programs (strawman, doduc and tomcatv) CML performs nearly as

well as A2, indicating the presence and resolution of conflicts.
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� For the programs that suffer primarily from capacity misses (nasa7-2 and nasa7-3),

neither A2 nor CML improves performance.

� For the remaining programs, CML has a larger MCPI than A2 but smaller than DM.

This indicates that A2 is able to resolve conflicts more quickly than CML’s threshold-

based policy.

� The CML buffer and A2 improve MCPI by reducing the number of L2 user misses,

and to a lesser extent by reducing the number of L2 system misses and write buffer

stalls.

� CML buffer overhead is insignificant in nearly all cases.

5.4.3 The effect of initial mappings and conflict detection mechanisms

To gauge the effect of the operating system’s initial mapping policy and to compare the ef-

fectiveness of Snapshot-Miss and CML, I measured the performance of two different map-

ping policies (page coloring and bin hopping) and four different cache management strate-

gies (DM, Snapshot-Miss, CML, and A2). Figure 5-3 shows the impact on L2 MCPI for

each of these configurations. The figure shows that regardless of the initial mapping pol-

icy, CML generally outperforms Snapshot-Miss, except for the two applications that suffer

from capacity misses (nasa7-2 and nasa7-3). The improvement in performance resulting

from using hardware conflict detection rather than software conflict detection is almost en-

tirely due to improvements in L2 miss CPI. This indicates that CML is, as expected, more

effective at detecting and eliminating cache conflicts than Snapshot-Miss. The trend seen

in Figure 5-2, that CML usually outperforms DM but not A2, continues to hold when the

initial mapping policy is bin hopping rather than page coloring.

5.4.4 CML Buffer policy evaluation: summary

The measurements in this section show that the information provided by the CML buffer

enables a simple operating system policy to dynamically allocate cache resources to bet-

ter match the reference patterns of applications. A system that uses simple hardware to

measure memory system behavior, and uses an operating system policy to analyze and act

upon those measurements, can automatically and transparently improve the performance

of a wide range of applications. This section showed that CML, which uses hardware to
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detect conflicts and software to eliminate conflicts of hardware and software, is preferable

to Snapshot-Miss, which relies on software alone to detect and eliminate conflicts. The

next section will show that CML is also preferable to techniques that use hardware alone to

detect and eliminate conflicts.

5.5 Hardware alternatives

The CML buffer enables the operating system to introduce associativity into a direct-

mapped cache, eliminating cache conflict misses. In this section I compare the CML buffer

to three hardware-only techniques for providing associativity: a two-way associative cache,

a column-associative cache [Agarwal & Pudar 93], and a victim cache [Jouppi 90].

The two associative caches require a more complex cache implementation, potentially

increasing cache access time. In contrast, the CML buffer requires no changes to the im-

plementation of a direct-mapped cache and hence has no impact on access time. The mea-

surements in this section show that an associative cache or a column-associative cache can

outperform a system using direct-mapped cache and a CML buffer only if the associative

cache has a small impact on access time.

The effectiveness of a victim cache depends on its size. If the number of conflicting lines

exceeds the size of the victim cache, conflict misses will continue to slow execution time.

The measurements in this section show that for several of the benchmarks, a system with a

direct-mapped cache and a CML buffer outperforms a system with a direct-mapped cache

and an eight-entry victim cache.

The conclusion of this section is that conflicts can be eliminated more efficiently by

using a combination of hardware feedback and a software policy for cache management

than by using hardware alone to provide associativity.

5.5.1 Comparison to a two-way set associative cache

The measurements of A2 in the previous section assume that a large associative cache has

the same access time as a similarly sized direct-mapped cache. In practice the A2 cache

is likely to be slower than the DM cache [Hill 88, Przybylski et al. 88, Wood 86]. Overall

performance then is determined by the cache miss rate and the cache access time. The left

side of table 5-2 shows the access time required by the A2 cache for it to perform no worse

than CML. For all applications, the A2 cache would perform worse than CML if it adds as

little as one cycle to the cache access time.
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Table 5-2 Break-even analysis of A2 and column-associative cache vs. CML. An A2 cache

requires a cache access time less than the break-even point in order to outperform CML,

and a column-associative cache requires that the access time to its slower lines be lower

than the break-even point to outperform CML. The percentages show the relative slow-

down that can be tolerated by the A2 cache and the slower lines of the column-associative

cache. The mean and standard deviation do not include strawman. Nasa7-2 and nasa7-3

are omitted since DM has better performance than both A2 and CML for these bench-

marks.
Break-even point

Benchmark A2 Column-Associative

cycles % over cycles % over

baseline baseline
(5 cycles) (5 cycles)

strawman 5.03 1% 5.01 0%

gcc-a 5.71 14% 9.06 81%
gcc-b 5.40 8% 7.70 54%

cecil 5.49 10% 7.08 42%

doduc 5.22 4% 5.68 14%
tomcatv 5.21 4% 5.17 3%

splot 5.44 9% 8.34 67%
gs 5.41 8% 8.02 60%

mean 5.36 7% 7.72 22%

std.dev. 0.21 1.56

5.5.2 Comparison to a column-associative cache

A column-associative cache [Agarwal & Pudar 93] is a two-way associative cache with fast

access to lines that would normally hit in a direct-mapped cache. For lines that would

conflict in a direct mapped cache, there is fast access to the most recently used line of the

set and slower access to the least recently used line of the set. This scheme reduces the

cost of conflict misses by allowing conflicting lines to remain in the cache. The right side of

Table 5-2 shows the access time required by hits to the slower line for it to perform no worse

than CML. On average, the column-associative cache must access the slower lines in fewer

than eight cycles to outperform CML. That is, if the column-associative cache requires as

few as three additional processor cycles to access the slower cache lines, it will not perform

as well as CML.

5.5.3 Comparison to a victim cache

A victim cache is a small fully associative cache that stores the last few lines evicted from

the main cache. A miss in the main cache that hits in the victim cache is delayed only
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a few cycles, rather than a full memory access time. The requirement of fast associative

lookup constrains the size of the victim cache. The victim cache is therefore effective for

eliminating closely-spaced conflicts, as it simulates the behavior of a set associative cache

for a small number of lines. If the number of cache misses between cache line reuse is larger

than the size of the victim cache, though, the victim cache will be ineffective.

Tomcatv is an example of a program that is poorly served by a victim cache. This

program accesses several large matrices that are allocated contiguously in virtual mem-

ory. When the operating system mapping policy assigns these arrays to physical pages that

overlap in the cache, the conflict misses that occur as the program references the arrays

swamp a victim cache. For programs with reference patterns like tomcatv’s, as the number

of conflicting lines grows, the victim cache must also grow to be able handle the conflict

misses. CML, in contrast, can detect and recolor an arbitrary number of conflicting pages

using a CML buffer with just a small number of entries.

Table 5-3 Performance of DM, an eight entry victim cache, and CML.

Benchmark DM Victim CML

strawman 5.79 5.04 1.00

gcc-a 0.81 0.81 0.80

gcc-b 0.50 0.50 0.48

cecil 0.56 0.55 0.52

doduc 0.38 0.38 0.31

tomcatv 1.09 0.95 0.72

nasa7-2 0.46 0.46 0.50

nasa7-3 0.79 0.79 0.80

splot 0.99 0.99 0.98

gs 1.09 1.08 1.07

Table 5-3 compares the MCPI of DM, an eight-entry victim cache that sits between

the second-level cache and memory, and CML. The measurements assume that there is

a penalty of five processor cycles to access the victim cache on a miss to the second-level

cache [Jouppi 90]. Compared to the victim cache, CML improves performance by 0.03–

0.23 MCPI for three of the programs (cecil, doduc, and tomcatv). For nasa7-2 the victim

cache has better performance than CML by 0.04 MCPI, because CML recolors in response

to capacity misses. For the remaining programs (other than strawman) the performance of

CML and the victim cache differs by at most 0.02 MCPI.

Although CML and the victim cache have similar performance for several of the pro-

grams, the CML buffer has three advantages over the victim cache. First, and most impor-
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tantly, CML improves MCPI by more than the victim cache for three of the benchmarks,

because CML can eliminate conflict misses that are distributed among a large number of

cache lines. Second, the CML buffer is likely to have a lower implementation cost than the

victim cache, because while access time to the CML buffer is not critical for performance,

for the victim cache to be useful its access time must be significantly less than the memory

access time. Third, the number of conflicts that can be eliminated by the CML buffer is not

limited by its size: once a page is assigned to the appropriate color, it will incur no more

conflict misses, and hence will not occupy space in the buffer. In contrast, the victim cache

can only eliminate as many conflicts as it has entries. The primary disadvantage of the CML

buffer compared to the victim cache is that the victim cache eliminates conflict misses im-

mediately, while the CML buffer only eliminates conflict misses after one of the conflicting

pages is recolored. However, the results shown in Table 5-3 indicate that for these programs

this difference does not result in an advantage for the victim cache.

5.5.4 Hardware alternatives: summary

While these alternative hardware techniques for eliminating cache conflicts can improve

application performance, the CML buffer offers several advantages. It has low hardware

implementation cost. It requires minimal redesign of existing CPUs and memory systems.

It enables an operating system policy that is more effective than a victim cache in eliminat-

ing cache conflicts. While it removes fewer conflict misses than an associative cache, it does

so without impacting cache access time, resulting in a net improvement in performance if

the associative cache increases access time by as little as three processor cycles. By relying

on a simple and fast direct-mapped cache implementation, and by relying on operating

system software to manage that cache, CML can outperform hardware-only strategies for

cache conflict management.

5.6 The effect of CML Buffer design and policy parameters

There are a large number of design parameters for a system that uses a CML buffer, includ-

ing the size of the LRU and HOT segments, appropriate values for interrupt and recolor

thresholds, strategies for selecting a new page when recoloring, and the virtual memory

page size. This section shows that nearly any reasonable setting for these parameters results

in roughly the same performance improvement. This reflects the fact that the purpose of

the CML buffer is to accurately identify persistently bad cache behavior. Consequently, the
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operating system only requires that the CML buffer raise a “red flag” when a large number

of misses to a set of conflicting pages occurs. Exactly how large, how quickly, and how often

the red flag is raised matters less than that it is raised at all.

5.6.1 Size of the CML Buffer

The size of the CML buffer reflects a tradeoff between effectiveness and cost. It should be

large enough to record all misses due to conflicting pages, but it should not be so large that

the implementation and software management costs become unnecessarily high. Figure 5-4

shows the impact of varying the LRU and HOT area sizes. I simulated a range of different

CML buffer sizes for four representative applications: gcc-b and cecil (applications for which

CML performs better than DM but not as well as A2), and doduc and tomcatv (applications

for which CML performs as well as A2). For tomcatv, misses are concentrated in only a few

pages, so a small LRU segment captures all relevant miss activity, and the HOT segment is

largely unnecessary. In contrast, cecil, doduc and gcc-b tend to scatter misses over a larger

number of pages, requiring either a much larger LRU segment, or a small number of entries

in the HOT segment. For a given total CML buffer size, then, a combination of HOT and

LRU entries is more effective than HOT or LRU alone. For all workloads, increasing CML

buffer size beyond 16 LRU entries and 8 HOT entries did not improve L2 MCPI by more

than 0.01.

5.6.2 Threshold selection

The CML policy uses interrupt and recolor thresholds slightly greater than the number of

cache lines per page. Lower thresholds will result in compulsory misses being misidentified

as conflict misses, while higher thresholds may result in a large number of conflict misses

occurring before a page is recolored, leading to a large opportunity cost. The opportunity

cost is the cost of conflict misses that accrue before recoloring. Specifically, the experiments

elsewhere in this chapter use a recolor threshold that is equal to the number of cache lines

in a page plus 4, and an interrupt threshold that is equal to the recolor threshold plus 60.

For a system with 32 byte cache lines and 8 KB pages (256 lines per page), this means that

the recolor threshold is 260 and the interrupt threshold is 320. In this section I consider the

effect of varying these thresholds.

The range of reasonable values for both the interrupt threshold and the recolor thresh-

old turns out to be quite large. For recolor thresholds larger than 256 and interrupt thresh-

olds less than 512, there is little increase (less than 0.01) in MCPI relative to the default
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Figure 5-4 Effect of varying CML buffer HOT and LRU sizes for four applications. As

CML size increases, MCPI falls. The shading corresponds to incremental changes in

MCPI. Closely spaced contour lines indicate a high sensitivity to CML buffer size and

configuration.

thresholds. On the other hand, when the recolor threshold is 256 or less, the MCPI of

several applications increases (by more than 0.01) because compulsory misses are misiden-

tified as conflict misses. When the interrupt threshold is 1024 or higher, some applications

suffer because conflicts are never resolved.

5.6.3 Selecting a new page when recoloring

Recoloring eliminates conflicts by moving the contents of a page of memory from a portion

of the cache which is hot to one which is cool, where temperature refers to the level of cache

reference activity. The recoloring policy should not select a target physical page that maps

to an already hot region of the cache, because if it does so it will merely move conflicts from

one portion of the cache to another.

I simulated four different selection policies. The first, sequential-target, described earlier

and used in the other experiments in this chapter, selects pages by cycling through colors

in sequence. The second, coldest-ref, selects a target page whose color is that of the coldest

(least frequently referenced) cache page. Coldest-ref should accurately identify cold pages,
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but it is unrealistic since it requires that a counter on every cache page be incremented on

each cache reference. The third policy, coldest-miss, attempts to approximate coldest-ref

by selecting a page whose color is that of the least frequently missing page in the CML

buffer. Finally, random-target simply selects pages at random. In no case will any of the

policies select a target page with a color the same as that being recolored, nor that of another

currently conflicting page.

None of the policies performed significantly better or worse than the others. For appli-

cations that fit in the cache, there is always a sizable pool of cool cache pages, so the specifics

of the policy are not critical. For applications that do not fit in the cache, there is no good

color to select, so all the policies perform uniformly poorly. Coldest-miss sometimes per-

forms worse than either sequential-target or coldest-ref because it may select a target page

of the same color as a page on which a conflict was recently resolved (the recently resolved

page will have a low miss count). In the process it reintroduces conflicts in the target page.

Recoloring stability

When the operating system recolors a page, it may introduce new conflicts, resulting in

additional recoloring operations. If this behavior persists, the same virtual page can be

involved in multiple conflicts over the program’s lifetime revealing an instability in the re-

coloring strategy. Instability is much more likely to occur if the program is suffering from

capacity misses.

To determine whether instability is a problem for these workloads, I counted the num-

ber of times each virtual page is involved in a conflict – that is, it contributes to a decision by

the operating system to recolor a page, because it is one of a group of pages that have miss

counts above the recolor threshold. Figure 5-5 shows that few virtual pages are involved

in more than one conflict. This indicates that the CML buffer is usually allows the oper-

ating system to resolve conflicts without introducing new ones. The exception is nasa7-2,

in which pages are copied without improving performance. As noted previously, nasa7-2

suffers primarily from capacity misses, not conflict misses.

5.6.4 The effect of virtual memory system characteristics

The performance of dynamic mapping policies is affected by several basic parameters of the

virtual memory system, including the virtual memory page size and the use of unmapped

memory. I performed additional experiments in order to understand the effect of these

characteristics on the performance of CML.
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Figure 5-5 Stability of CML. The length of each bar shows the total number of distinct

virtual pages involved in conflicts. Each bar is divided into segments showing how many

distinct virtual pages were involved in one conflict, two conflicts, etc.. The figure shows

that most pages are moved only once.

Page size

Dynamically recoloring pages to eliminate cache conflicts relies on collecting cache miss in-

formation on a per-page basis, and on being able to recolor entire pages to remove conflicts.

Small pages are therefore advantageous, since they provide fine-grained information about

cache miss behavior and fine-grained control over recoloring. As the page size shrinks to

approach the cache line size, the operating system can emulate greater cache associativ-

ity. As the page size grows to approach the cache size, manipulating the virtual-to-physical

mapping to provide associativity becomes less effective. Figure 5-6 shows the effect of vary-

ing the page size on L2 MCPI. For each page size, the recolor threshold is set to the number

of cache lines in a page plus a small constant (4). The interrupt threshold is set slightly

larger (60) than the recolor threshold.

The figure shows that the effectiveness of CML is only slightly sensitive to page size.

As page size increases, fewer recolors occur for most applications because of the increased

recolor thresholds that follow from the larger page size. For nasa7-2, the higher threshold

improves MCPI with 16 KB pages because capacity misses are no longer misidentified as

conflict misses. For tomcatv the increased recolor overhead with larger pages is offset by

the reduced cache miss rate. In summary, for this range of page sizes, there is enough

associativity in the mapping from virtual pages to cache pages to allow the operating system

to use the information provided by the CML buffer to detect and eliminate cache misses.
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Figure 5-6 The effect of page size. This figure shows L2 MCPI for CML using three dif-

ferent page sizes, as well as the components due to CML buffer overhead and opportunity

cost. The number of recolors for each benchmark is shown at the top of each bar.

Mapped kernel memory

In the traced and simulated system, system text and much of its data is in unmapped mem-

ory. Unmapped memory preserves TLB entries for user programs, but makes it impossible

to resolve conflicts between two unmapped pages. To determine whether unmapped mem-

ory has a measurable effect on the ability of the CML buffer to improve performance, I used

a version of the simulator in which the kernel’s memory is mapped at the virtual memory

page size. This change enables kernel-internal conflicts to be resolved using the CML buffer.

The result was that overall L2 MCPI improved by at most 0.004 in the best case (for gs).

This indicates that conflicts entirely confined to the kernel’s unmapped memory were rare

for these workloads and the simulated memory system, and that increased associativity is

not generally beneficial for kernel references alone. For these workloads the majority of

conflicts in are either within an application, or between the kernel and an application. In

the first case, any conflicting page can be recolored. In the second case, the application’s

conflicting pages are recolored.
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5.7 Open questions

In this chapter and in Chapter 4 I introduced two techniques for detecting cache conflicts,

and I showed how the operating system can recolor pages in response to improve cache per-

formance. A number of issues regarding modifications and extensions to these techniques

remain, however.

A practical question is how to effectively distinguish capacity misses from conflict

misses. Figure 5-5 shows that for a workload such as nasa7-2 that suffers from capac-

ity misses, the recoloring policies move the same page multiple times during a single run.

This suggests that one promising way to avoid recoloring in the presence of capacity misses

would be to simply throttle the policy when pages are being recolored too often.

Another issue concerns the parameter settings for the various remapping policies. The

policies were tuned to provide a good tradeoff between policy overhead and cache miss

rates for the programs under study, but were not subjected to analysis that would, for ex-

ample, bound the total cost of cache management. While for the systems considered here,

the parameter settings worked well, a more rigorous approach to setting parameter values

might be useful as cache miss cost and page sizes change in future systems. For example, for

very large pages, the high ratio of copying cost to cache miss cost could make the strategy

of recoloring as soon as a conflict is detected counterproductive.

These two chapters use a two-way associative cache as an indicator of the opportunity to

improve performance by eliminating conflict misses. However, dynamic mapping policies

eliminate conflicts in fundamentally different ways from such a cache, because they allow

greater associativity, and because the associativity is at the granularity of virtual memory

pages rather than cache lines. It might be instructive to consider the performance of a

hypothetical fully associative cache with optimal replacement, which would reveal conflict

misses that could be eliminated with higher degrees of associativity. Alternatively, analyzing

an offline dynamic mapping policy could provide some insight into the limits on perfor-

mance improvement possible using an online dynamic policy.

Several questions arise concerning the practicality of implementing a CML buffer. For

instance, as off-chip memory system implementations grow more complex in order to pro-

vide improved latency and bandwidth to the processor, it may well become increasingly

difficult to interface an additional device to the memory bus without exacting a perfor-

mance penalty. Another question is whether the LRU and HOT replacement policies could

be implemented precisely in inexpensive logic. The time to maintain even a small sorted

list in hardware might be longer than the memory access time, requiring an approximation



108

to the replacement policies simulated in this chapter.

Finally, while the focus of these last two chapters has been on the effect of cache misses

on uniprocessor performance, cache misses on multiprocessors due to coherence traffic

can also result in significant performance degradation [Rosenblum et al. 95]. An intrigu-

ing question, then, is whether the information provided by a CML buffer could drive an

application-independent page migration policy in the operating system to reduce coher-

ence traffic. While this question motivated the work by [Sites 95] discussed in Section 2.2,

it has not been studied quantitatively. Similarly, the information in the CML buffer could

be used to provide feedback to the runtime layer of a distributed virtual memory system.

In this case it might be more effective to monitor cache misses at a finer granularity than

the virtual memory page size.

5.8 Conclusions

The CML buffer is a low-cost, low-overhead, self-contained device that unobtrusively mon-

itors the memory system and provides information that enables the operating system to

effectively manage cache resources. The CML buffer provides exactly the information the

operating system needs to determine both when and where the cache is being used ineffec-

tively – that is, when cache misses are occurring and which virtual addresses are responsible

for the conflicts. In contrast, the memory system feedback used to drive an operating sys-

tem policy in Chapter 4 is not always sufficient, because information about the frequency

and location of cache misses are decoupled. The result is that a policy based on the CML

buffer can eliminate cache misses at runtime more effectively than a policy that relies on

standard hardware. While the CML buffer has a small hardware implementation cost, it

requires no changes to the CPU or to other components of the memory system. Despite

this low cost, it can be nearly as effective as more expensive hardware-only techniques for

eliminating cache conflict misses.



Chapter 6

Using Virtual Memory to Improve the

Cache and TLB Performance of Windows

Applications

6.1 Introduction

In the preceding chapters I introduced operating system policies that automatically improve

application performance by dynamically managing either the cache or the TLB to better sat-

isfy application memory system resource requirements. The policies unobtrusively collect

information about the relevant behavior of an application, relying on simple hardware to

track cache and TLB misses. The policies then analyze this information to determine how

to adjust virtual-to-physical mappings to either increase TLB coverage or to eliminate cache

conflict misses. I demonstrated the benefits of the resulting dynamic virtual memory map-

ping policies through a combination of simulation and implementation, using a collection

of Unix programs as benchmarks.

In this chapter I focus on two important open questions. First, how should the operat-

ing system manage virtual memory to transparently optimize both cache and TLB perfor-

mance? Second, do the operating system policies for cache and TLB management proposed

in this thesis improve the performance of Windows applications running on the x86 ar-

chitecture in addition to Unix applications running on RISC architectures? I answer these

questions using trace-driven simulation of the memory system behavior of Windows ap-

plications. I first consider the separate effects of the techniques introduced in the previous

chapters, and find that Windows applications do in fact benefit from dynamic cache and

TLB optimizations. I then measure the effect of a new virtual memory policy that is a sim-

ple composition of the two techniques, and find that this policy outperforms policies that

use only one of the optimizations. For Windows/x86 applications this new policy reduces

application cache miss rates by as much as 77% and TLB miss rates by as much as 99%.
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6.1.1 Combining dynamic cache and TLB management

The first question that I address in this chapter, namely how to combine operating system

policies for cache and TLB management, is challenging because the techniques introduced

in this thesis make conflicting assumptions about page sizes.

� In Chapter 3 I showed how to improve TLB performance by selectively creating large

pages at runtime. This technique is effective because increasing the page size increases

the amount of memory mapped by a single TLB entry. This increase in TLB coverage

in turn reduces TLB miss rates, improving overall application execution time.

� In Chapters 4 and 5 I showed how to improve cache performance through a tech-

nique that relies on relatively small pages. In particular, I showed how to change

the mapping from virtual pages to physical pages in order to eliminate cache conflict

misses. This technique works because in a system with a physically indexed cache,

there is associativity in the mapping from virtual pages to cache pages. The degree

of associativity is exactly the ratio of the cache size to the page size. As the page size

grows, the likelihood that the operating system can find a set of non-conflicting pages

to map the application’s working set diminishes.

The difficulty in choosing a virtual memory page size to optimize both cache and TLB per-

formance is illustrated by the simple example shown in Figure 6-1. The figure shows a

system with a cache that is exactly twice as large as the virtual memory system base page

size, and a TLB that holds just one virtual-to-physical translation. Consider an application

that repeatedly alternates references to two virtual addresses separated by exactly the cache

size. The top half of the figure shows a mapping that will result in good TLB performance:

a single page covers both virtual addresses, so that the single TLB entry can map the entire

working set. However, this large page must be aligned and contiguous in the physical ad-

dress space, forcing the two active virtual addresses to map to the same line in the cache.

The result is that every reference results in a TLB hit and a cache miss. The bottom half of

the figure shows an alternative mapping that will result in good cache performance: sepa-

rate small pages map the two active virtual addresses. The operating system can map the

two virtual pages to physical pages that do not overlap in the cache, so that there will be

no cache conflict misses. But now the single-entry TLB cannot map the entire working set.

With this mapping, every reference results in a TLB miss and a cache hit.

This example is pathological, but it does illustrate the potential for conflict between the

policies proposed thus far in the thesis. To determine whether such conflicts arise for real
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Figure 6-1 The dilemma in choosing page sizes. Each half of the figure shows a possible

virtual to physical mapping for a program that actively uses two virtual base pages (the

shaded regions of the “Virtual Pages” component of the figure). In a system with a single-

entry TLB, the mapping in the top half of the figure (one large page) will optimize TLB

performance but result in cache conflict misses, while the mapping in the bottom half of

the figure (two small pages) will optimize cache performance but result in TLB capacity

misses.

workloads, in this chapter I design a policy that is a simple combination of the policies for

superpage construction and dynamic page mapping developed in Chapters 3 and 5. Each of

the two components of the new policy dynamically adjusts page colors and sizes as though

the other component were not active. The results of simulation show that this approach

works well because in practice there is little contention between the two policy components:

mappings changed by one component are most often not subsequently changed by the

other.

6.1.2 Optimizing cache and TLB performance for Windows/x86 application

The second question that I address in this chapter is whether the optimizations for cache

and TLB performance proposed in this thesis apply to personal computer applications. The

relevance of a given optimization depends not just on the magnitude of performance im-

provement but on the relevance of the programs it benefits. The traces of Unix benchmarks

running on RISC systems used in the previous chapters represent programs that are popu-

lar in the computer science research community, but do not accurately reflect the programs

that are popular in the marketplace. Windows/x86 software, not Unix software, accounts

for the vast majority of dollars spent on computer applications. Optimizations that benefit
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popular Windows applications have the potential to have far greater impact than optimiza-

tions that apply only to Unix workloads. While in many cases performance enhancements

that serve Unix workloads well will also serve Windows workloads well, this is not always

the case. Indeed, recent studies show that there can be significant performance differences

between the traditional benchmarks used in the computer industry such as SPEC and com-

mercial and desktop productivity applications [Perl & Sites 96, Chen et al. 96, Lee et al. 98].

To test whether the claims of my thesis apply to contemporary software, I present sim-

ulation results driven by address traces of Windows/x86 applications. The traces were col-

lected using Etch [Romer et al. 97], a binary rewriting system for arbitrary Windows/x86

executables. The traces include two groups of programs: interactive applications such as

Adobe Photoshop and Netscape Navigator, and traditional benchmarks drawn from the

SPEC95 suite.

Using these traces, I show that the basic techniques developed in this thesis do bene-

fit this new set of workloads. However, there are two differences between the two classes

of programs considered in this chapter (interactive applications and SPEC benchmarks).

First, for these programs, the optimizations result in greater benefit for the SPEC bench-

marks than for the interactive applications. Second, for some of the interactive applications,

the superpage construction policy as described in Chapter 3 has overhead that overwhelms

the benefit due to reduced TLB miss rates. I show that adding a simple throttle that tem-

porarily disables the policy when overhead is too high solves this problem. Despite these

differences, these optimizations can provide significant performance gains for both classes

of applications. For example, I measured reductions in the simulated cache miss rate for

Windows Word of 74%, and reductions in the simulated TLB miss rate of the SPEC bench-

mark go of 92%.

6.1.3 Summary

In this chapter I show that:

� the performance benefits of dynamic operating system cache and TLB resource man-

agement on Unix/RISC workloads also apply to Windows/x86 applications;

� for some interactive Windows applications, the policy for superpage construction

designed in Chapter 3 has high overhead, which can be addressed by modifying the

policy to automatically suspend operation when overhead is above a threshold; and
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� although the two optimization techniques have the potential to make conflicting page

mapping decisions, in practice they rarely interact, so that a policy that both recolors

and promotes pages is superior to policies that only recolor or only promote.

In summary, in this chapter I show that the operating system can dynamically adjust

virtual-to-physical mappings to simultaneously manage cache and TLB resources, improv-

ing the performance of Windows/x86 applications.

The rest of this chapter

In the Section 6.2 I describe the methodology, workloads, and metrics that I use in this

chapter. In Sections 6.3 and 6.4 I present measurements of the effect on Windows appli-

cations of the operating system policies developed earlier in the thesis that optimize cache

and TLB performance separately. These measurements show that the cache and TLB be-

havior of Windows applications is both important to overall performance and amenable

to dynamic optimization. In Section 6.5 I describe the design of a throttling mechanism

that bounds the policy overhead of a dynamic superpage construction policy, which would

otherwise increase execution time in some cases.

In Section 6.6 I introduce a simple policy that combines dynamic cache and TLB man-

agement. I then show how this policy performs for Windows applications, comparing its

performance to the separate techniques as well as to a baseline system that performs neither

optimization. In Section 6.7 I conclude.

6.2 Methodology

The experiments that I present in this chapter differ from those presented earlier in the

thesis in three ways: I consider different applications; I use traces collected on a different

architecture; and I evaluate a different policy for managing virtual memory. While these

changes make direct comparisons with the results in earlier chapters difficult, they allow

memory resource management policies to be evaluated in the context of contemporary and

commodity software. I take three steps to better isolate the effects of these changes to the

experimental framework. First, I use the traces to drive memory system simulations with

the same parameters as those used in Chapters 3 through 5. Second, before designing and

evaluating a combined policy for cache and TLB management, I re-evaluate the policies that

I developed in the earlier chapters in the context of the new workloads. Third, I evaluate

the policies using the same performance metrics as in the preceding chapters.
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In the rest of this section I describe the experimental framework in more detail. I de-

scribe the workloads and how address traces were collected, and I review the simulated

memory system parameters and the metrics used to evaluate performance.

6.2.1 Workloads and trace collection

The measurements in this chapter are based on memory address traces of ten programs

running under Windows NT. The traces were collected for a different study of Windows

application performance [Lee et al. 98]. Five of the programs are representative of personal

computing applications, while five are drawn from the SPEC95 benchmark suite. Table 6-1

describes the programs.

The traces were collected by using Etch to rewrite executables and dynamically linked

libraries with calls to instrumentation routines inserted before each instruction and before

each load and store. As the rewritten program runs, the instrumentation routines are called

and an address trace is written to a file. Details of the trace collection methodology and a

description of its limitations can be found in [Lee et al. 98].

6.2.2 The simulated memory system

To predict the effect of TLB and cache optimizations on overall performance, I use the

address traces to drive a memory system simulator. The simulator combines the cache and

TLB simulators used in Chapters 3 through 5. The memory system parameters are based on

those of a DEC 3000/500 Alpha workstation [Dutton et al. 92] with a 150 Mhz Alpha 21064

processor [Dig 92]. Except for the page size and TLB parameters, this is the same memory

system that was simulated to collect cache performance data in Chapters 4 and 5. The

simulated TLB is the same as that used to collect the TLB performance data in Chapter 3.

Table 6-2 summarizes the memory system parameters.

6.2.3 Metrics

The metrics that I use to evaluate performance are the same as those used in Chapters 3

through 5. In particular, I measure memory cycles per instruction (MCPI), as well as several

contributors to MCPI, and memory usage overhead. To review, these metrics are defined

as follows.

� MCPI (Memory cycles per instruction): The total number of cycles spent servicing

cache misses, write buffer stalls, TLB misses, and implementing the cache and/or
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Table 6-1 Windows/x86 benchmarks. The SPEC95 applications were compiled with Mi-

crosoft Visual C++ (MSVC) 5.0 using the makefiles from the distribution. The bench-

marks ran on a Dual Pentium Pro 200 system running Windows NT Workstation 4.0

operating system, service pack 3. This table is taken from [Lee et al. 98]

Application, Description

Instructions (x106)

Interactive applications

acrord32, 420 Adobe Acrobat Reader 3.0: Reader for portable document format (PDF) files. The

benchmark loads acrobat.pdf (a 277 KB file) from the standard acrobat reader dis-

tribution, and navigates through the document three different ways: through the
hyperlinks in the document itself, through the forward and back button provided

by acrobat reader, and through a view of the document outline provided by acrobat
reader. Finally, the benchmark searches for the word “buy” in the document before

closing the program.

netscape, 97 Netscape Navigator 3.1 web browser. The benchmark opens four web

pages: www.cs.washington.edu, www.cnn.com, www.mtv.com, and
www.washington.edu. These pages were viewed on November 12, 1997.

The java module for netscape was turned off because Etch does not handle the

dynamically generated code generated by the java just-in-time compiler.

photoshp, 1,543 Adobe Photoshop 4.0 image editing package. The benchmark loads fruit.jpg (a
591 KB still-life photograph of fruit) from the standard distribution and applies the

color pencil, accented edges, diffuse glow, and add noise photo filters to the image.

powerpnt, 121 Microsoft PowerPoint 7.0b slide preparation package. The benchmark loads in a
311 KB 18-page presentation (the presentation included five pages of graphs and six

pages of figures in addition to text) in slide mode, scrolls through 3 pages, edits a fig-

ure, and continues scrolling through until the end of the document. The benchmark
then goes into the outline mode and creates a new page and goes back into the slide

mode to move text around. Finally, the benchmark goes into slide sorter mode and
moves some slides around.

winword, 368 Microsoft Word 7.0 word processor. The benchmark simulates a user typing in seven

paragraphs in an eight page document (document size is 29K). The benchmark then

performs four search and replace commands on the document before saving a text
version of the file. The interactive spell checker was turned on.

SPEC95 benchmarks

compress, 403 SPEC95 version of the UNIX compress utility. The benchmark generates a file of a
given size using a random number generator then compresses and decompresses the

file. The measurements were for a file of size 136K.

gcc, 1,158 SPEC95 version of the GNU C compiler (version 2.5.3) which takes a preprocessed

source file and converts these into Sparc assembly. The input to gcc was cccp.i from
the test directory in the SPEC95 distribution.

go, 315 SPEC95 version of the game of go. The benchmark was run with a play level of 40

and a 10x10 board size.

perl, 2,013 SPEC95 version of the popular Perl interpreter (version 4.0.1.8). The benchmark was
run with jumble.pl and jumble.in from the test directory in the SPEC95 distribution.

vortex, 2,147 SPEC95 version of a single-user object-oriented database transaction benchmark.

The input to vortex was the database and schema provided in the test directory in

the SPEC95 distribution.
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Table 6-2 The parameters of the simulated memory system, based on a DEC 3000/500

Alpha workstation containing a 150 Mhz Alpha 21064 processor.
Page size 4 KB, . . . , 8 MB,

in power of two multiples of 4 KB

Line size 32 bytes

First-level 8 KB instruction, 8 KB data

cache (L1) virtually indexed
direct-mapped

Policy write-through, read-allocate
Write buffer 4 entries

Miss penalty 5 cycles

TLB 32-line ITLB, 32-line DTLB

fully associative

Second-level 512 KB, unified, physically
cache (L2) indexed, direct-mapped, unified

Policy write-back, read/write-allocate
Miss penalty 25 cycles

TLB management policy, divided by the number of traced instructions executed (ex-

cluding policy instructions).

� Memory usage overhead: The increase in memory consumed under a given TLB man-

agement policy relative to a policy that uses fixed-size 4 KB pages.

� TLBMCPI (TLB management cycles per instruction): Cycles per instruction spent in

service of the TLB misses and in implementing the TLB management policy.

� L2 MCPI (Second-level cache cycles per instruction): Cycles per instruction due to sec-

ond level cache misses and the cache management policy.

� L2 Miss CPI (Second-level cache miss cycles per instruction): Cycles per instruction due

to references that miss in the second-level cache, excluding references induced by the

cache and/or TLB management policy.

6.3 The effect of dynamic virtual memory optimizations for cache per-

formance on Windows applications

In this section I reconsider the effect of the CML policy introduced in Chapter 5 on cache

performance in the context of Windows applications. I show that this policy improves
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the performance of almost all of these programs, including both interactive applications

and SPEC benchmarks. As in Chapter 5, by dynamically remapping pages in response to

observed cache miss behavior, CML can eliminate cache misses that occur when using a

static mapping policy such as page coloring or bin hopping.

To review, CML relies on a simple hardware device, the CML buffer, which maintains a

summary of per-page miss counts. When one of the counters reaches the interrupt thresh-

old, the device interrupts the CPU. On receiving the interrupt, the operating system scans

the CML buffer to find pages that may be suffering from conflicts. The operating system

policy identifies any two or more pages of the same color (sharing the same cache page)

with miss counts above a recolor threshold as conflicting. The system then recolors all but

one of the conflicting pages of the same color.

Figures 6-2 and 6-3 show the effect of CML on the second-level cache performance of

Windows applications. To focus attention on the effect of the mapping policy on second-

level cache performance, the figures only show L2 MCPI. In the first figure the initial map-

ping policy is page coloring, while in the second it is bin hopping. For each application

the figures show L2 CPI under three different strategies for cache conflict management: a

direct-mapped cache with a static mapping policy (DM), a direct-mapped cache with the

dynamic mapping policy (CML), and a hypothetical two-way associative cache with the

same size and access time as a direct-mapped cache (A2). The figures include “CML CPI”,

which reflects the overhead introduced by the CML policy

These two figures lead to the following observations, which are consistent with those of

Chapter 5:

� The performance of CML is generally better than that of DM, but not as good as A2.

� Neither static mapping policy is effective in avoiding conflict misses across a range of

applications. Compared to DM, CML improves the L2 miss CPI of winword, gcc, go,

and vortex by at least 0.04 with either initial mapping policy, and by as much as 0.38.

This indicates that it is difficult to predict in advance which pages will result in cache

conflicts at runtime.

� The overhead of CML is very small, contributing at most 0.005 CPI to application

execution time. This overhead is less than the improvement in L2 miss CPI for all but

one of the workloads (compress with bin hopping), resulting in a net improvement in

overall performance. CML overhead is primarily due to the cost of copying pages.
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� For the benchmarks considered in this chapter, CML almost never harms perfor-

mance. While performance in L2 MCPI improved by as much as 0.38 with an initial

mapping of page coloring (for go) and 0.09 with bin hopping (for winword), only in

one case did performance suffer, with an increase in L2 MCPI of 0.001 (for compress

with bin hopping). On a single issue machine with no sources of delay other than the

L2 cache, these results would translate into improvements in execution time of 27%

and 7.3% respectively, with no more than a 0.1% slowdown.

In addition, the measurements of go with an initial mapping of bin hopping reveal an

effect not seen in Chapters 4 and 5: the high degree of associativity in the mapping from

virtual pages to cache pages can allow performance improvements beyond what is possi-

ble with a two-way associative cache. In this one example CML actually eliminates more

conflict misses than A2.

In summary, these measurements show that the conclusions of Chapter 5 apply to Win-

dows programs as well as to Unix workloads. Dynamically remapping pages to eliminate

cache conflicts improves performance relative to a static mapping policy across a broad

range of applications, including interactive applications such as photoshp and winword, and

SPEC benchmarks such gcc and vortex.

6.4 The effect of dynamic superpage construction on Windows applica-

tion TLB performance

In this section I re-evaluate the APPROX-ONLINE policy that I developed in Chapter 3 in

the context of Windows applications. I show that this policy still significantly reduces TLB

miss rates, resulting in a net reduction in TLBMCPI of as much as 0.35 when compared to

a system that uses fixed-size 4 KB pages. However, for three benchmarks the overhead of

analyzing TLB misses and copying pages exceeds the benefit from reduced TLB miss rates,

resulting in a net increase in TLBMCPI of as much as 0.10. In Section 6.5 I show how to

modify the policy in order to bound this overhead.

Reviewing Chapter 3, the APPROX-ONLINE policy selectively constructs superpages at

runtime where they are most likely to eliminate TLB misses, improving TLBMCPI while

bounding the overhead due to copying pages. APPROX-ONLINE maintains a counter for

each potential superpage in the system, reflecting the missed opportunity to avoid TLB

misses had the superpage already existed. The counter is incremented on each TLB miss

for any superpage that covers both the page that missed and a page already in the TLB.
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Figure 6-2 Effect of the CML buffer on Windows application performance with an initial

mapping of page coloring. On a single-issue machine with no sources of delay other than

the second-level cache, execution time is proportional to (1+L2 MCPI).
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Figure 6-3 Effect of the CML buffer on Windows application performance with an initial

mapping of bin hopping.
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When the counter for a superpage reaches a threshold value (a parameter of the policy), the

superpage is constructed. In the experiments in this chapter, the page placement policy

used by APPROX-ONLINE when creating a superpage is to choose the cache offset of the

target page by cycling through the available cache offsets for the given superpage size.
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Figure 6-4 Effect of superpage promotion on Windows application TLB performance. For

each benchmark two bars are shown, one for the baseline system with fixed size 4 KB pages,

and one for the APPROX-ONLINE policy. TLBMCPI worsens (increases) for acrord32,

netscape, and powerpnt due to the overhead of the online policy, but improves (decreases)

for the remaining seven benchmarks.

Figure 6-4 compares the effect of APPROX-ONLINE on performance to a policy that

uses fixed size 4 KB pages. The figure shows that APPROX-ONLINE reduces the number of

TLB misses (reflected by the height of the “TLB Miss Handler CPI” component of the bars)

for all of the programs. For seven of the ten programs this results in a net improvement in

TLBMCPI. For the remaining three applications (acrord32, netscape, and powerpnt), how-

ever, APPROX-ONLINE results in a net increase in TLBMCPI. The cause of this increase

is that the policy does not reduce TLB miss rates enough to balance the increased cost of

each miss. In particular, the policy bookkeeping code increases the cost of a single TLB

miss from 30 cycles to 130 cycles (a factor of 4.3), but decreases the TLB miss rate by only

a factor of 2.6–3.8 for these three applications. In summary, APPROX-ONLINE is effective
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in eliminating TLB misses for Windows applications, but at the cost of increasing overall

TLBMCPI for three benchmarks.

6.5 Bounding TLB management overhead by throttling

In the previous section I showed that the APPROX-ONLINE superpage management policy

actually increases MCPI for three of the benchmarks used in this chapter. In this section

I design and evaluate a refinement of APPROX-ONLINE that allows reductions in TLBM-

CPI of as much as 0.35 for these programs, while in the limit bounding the net increase in

TLBMCPI to at most 0.02. (The maximum net increase in TLBMCPI is a configurable pa-

rameter of the policy.) My approach is to add a throttle to the policy that selectively disables

the bookkeeping code in the TLB miss handler. I call the resulting policy THROTTLE.

6.5.1 Throttle design

An ideal throttle would enable bookkeeping code only for those TLB misses that will con-

tribute to making good promotion decisions. In practice this is not possible – if the policy

knew a priori which superpages would benefit TLB performance, it could construct them

immediately. Instead, I sought to design a throttle that meets three practical goals:

1. the throttle should be simple, with just a few parameter settings;

2. when the promotion policy can detect and eliminate TLB misses with acceptable

overhead, the throttle should be inactive; and

3. when the promotion policy does not result in improved performance, the throttle

should place a bound on policy overhead.

I designed the throttle by focusing on the performance problem, namely high book-

keeping overhead. APPROX-ONLINE incurs high bookkeeping overhead when (1) the

application has a high TLB miss rate, and (2) the policy does not eliminate enough TLB

misses to justify the cost of bookkeeping. This suggests that a measurable symptom of poor

performance is a persistently high TLB miss rate. To confirm this, I graphed the TLB miss

frequency (TLB misses per instruction) as a function of time. I found that for the three ap-

plications that are served poorly by APPROX-ONLINE, the miss frequency exceeded 0.001

MPI for much of the programs’ execution. For the remaining applications, though, the

miss frequency was initially high but dropped below 0.001 MPI as superpages were created.
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This observation motivates using a throttle that activates when the TLB miss frequency

stays above 0.001 MPI. In particular, I introduce a new policy that I call THROTTLE

which is like APPROX-ONLINE except as follows. Every w (window) instructions, the

policy checks the TLB miss frequency for the window. If the miss frequency exceeds f

(frequency), the throttle activates, suspending bookkeeping and promotion. The throt-

tle remains active until enough instructions have executed to guarantee that TLB policy

overhead is less than t (target) CPI. This strategy for bounding overhead is analogous

to the page fault frequency approach for controlling thrashing in a virtual memory sys-

tem [Wulf 69, Silberschatz & Galvin 97].

The throttle has just three parameters, so it meets the first of the design goals. The

parameter t can be set to bound the overhead as desired so it meets the third goal. I show

through simulation that the policy meets the second design goal.

6.5.2 Parameter selection and sensitivity

The results in this chapter are based on a throttle that bounds policy overhead to no more

than t = 0. 02 CPI. The throttle enforces this target by checking the miss frequency ev-

ery w = 10, 000, 000 instructions, and suspends bookkeeping if the miss frequency exceeds

f = 0. 001 MPI. I explain here how I arrived at these parameter settings. I also describe how

varying the parameters affects the performance of THROTTLE for a subset of the bench-

marks: netscape, powerpnt, winword, go, and vortex.

The value of the target (t) parameter is setting is essentially arbitrary, depending how

much overhead is deemed tolerable. I chose to set the maximal overhead to 0.02 CPI, so

that in the limit the THROTTLE policy will not increase execution time by more than 2%

on a single-issue machine when compared to a policy that does not promote. For netscape,

powerpnt, and go, varying t between 0.005 and 0.03 CPI has little effect, changing TLBMCPI

by less than 0.01. Winword and vortex, though, are more sensitive the setting of t. These two

programs benefit from promotion, and so have the best performance when the throttle is

inactive. A high setting of t effectively disables the throttle: for t � 0. 04 winword and vortex

had TLBMCPI within 0.02 of APPROX-ONLINE. A low setting of t results in the throttle

activating prematurely: for example, setting t = 0. 005 for winword results in almost the

same performance as a policy that never promotes. For 0. 015 � t � 0. 025, though,

TLBMCPI varied by less than 0.02 for these two programs.

As I described earlier, I found that when APPROX-ONLINE is effective in reducing

overall TLBMCPI, the TLB miss frequency eventually falls below 0.001 MPI, but otherwise
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the TLB miss frequency remains above 0.001 MPI. This motivated setting f = 0. 001. I

found that varying f between 0.00025 and 0.0015 resulted in a change in TLBMCPI of at

most 0.02. When f is too high, though, the throttle never activates: for example, this occurs

when f � 0. 003 for netscape or f � 0. 002 for the other four programs.

Finally, the window size w should be neither too small nor too large. If it is too small,

the policy will be suspended before it can take action. If it is too large, the benefits of

throttling may never be realized; or the policy may be suspended long after the behavior that

resulted in high overhead has ceased. For example, with a window size of one, the policy

may be suspended as soon as the program incurs its first TLB miss. At the other extreme,

with a window size equal to the length of an independent phase of program execution, by

the time the policy is suspended the cause of the problem will no longer be relevant. I

found that setting w = 10, 000, 000 gave the policy an opportunity to construct beneficial

superpages without allowing overhead to grow too large. I found that performance was

relatively insensitive to the window size: varying w between 1, 000, 000 and 20, 000, 000

resulted in a change in TLBMCPI of at most 0.02.

6.5.3 Online superpage construction with throttling: performance

Figure 6-5 shows the effect on TLBMCPI of three strategies for TLB management: a policy

that uses fixed-size 4 KB pages, the APPROX-ONLINE policy, and the THROTTLE policy

described above. The figure simply adds the measurements of the THROTTLE policy to the

results shown in Figure 6-4.

The figure shows that:

� Comparing THROTTLE to FIXED 4 KB, the superpage construction policy reduces

TLBMCPI for seven of the ten applications, and increases TLBMCPI by less than 0.01

for two of the remaining three, indicating that the throttle is successful in bounding

policy overhead.

� For acrord32, however, THROTTLE increases TLBMCPI by more than the target of

0.02. This is an artifact of the relatively short address trace, which covers only a few

seconds of execution time. If acrord32 ran longer, the throttle would remain active

longer, reducing policy overhead.

� Comparing THROTTLE to APPROX-ONLINE, the addition of the throttle allows

nearly the same improvement in performance for photoshp, compress, gcc, go, and
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Figure 6-5 Effect of superpage promotion with and without throttling on TLB perfor-

mance. For each application the effect of three policies on TLBMCPI is shown: a baseline

policy that never promotes (FIXED 4KB), a superpage construction policy with no throttle

(APPROX-ONLINE), and a superpage construction policy with a throttle (THROTTLE).

perl. For winword and vortex the throttle does prevent some beneficial superpages

from being constructed, although there is still an overall reduction in TLBMCPI.

� Comparing the interactive applications to the SPEC benchmarks, the SPEC bench-

marks typically have higher TLBMCPI and benefit more from superpage construc-

tion than the interactive applications.

6.5.4 THROTTLE: summary

While APPROX-ONLINE improves application performance by observing application be-

havior and dynamically creating superpages, the THROTTLE policy further improves per-

formance by observing and modifying the behavior of the superpage promotion policy

itself. By selectively disabling TLB monitoring and page copying, THROTTLE continues to

improve the performance of applications that benefit from dynamic superpage construc-

tion, while bounding policy overhead for applications that do not. Compared to DM, the

net effect is a reduction in TLBMCPI of up to 0.35 for seven of the ten applications, with
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an increase in TLBMCPI in the limit of at most 0.02.

6.6 Combined TLB and cache optimization

In this section I address the second main subject of this chapter: how to combine dynamic

policies for managing cache and TLB resources. As I described in the introduction, the two

policies have the potential to conflict: the superpage construction policy will tend to coa-

lesce pages in physical memory in order to optimize TLB performance, while the dynamic

mapping policy will tend to scatter pages in physical memory in order to optimize cache

performance. Despite this potential for conflict, I show in this section that for the bench-

mark suite considered here conflicts are rare. This motivates the design of a new virtual

memory mapping policy, COMBINED, that combines THROTTLE and CML as though

they were independent. I use simulation to show that this policy is more effective in reduc-

ing MCPI than either of the separate policies.

6.6.1 COMBINED: A simple combined policy

The policy that I introduce here combines dynamic mapping policies that optimize cache

and TLB performance without taking into account their interaction. The reason I use such

a simple approach is that the policies are unlikely to collide in practice. This is illustrated

by the data shown in Table 6-3. For those virtual pages copied by either CML or THROT-

TLE, the table shows the percentage of pages copied by CML alone, by THROTTLE alone,

and by both. For all of the applications fewer than 5% of the pages are copied by both

policies, suggesting that if the policies are both active simultaneously there will be little

contention. The performance measurements below confirm that the policies rarely interact

for the workloads studied in this chapter.

The COMBINED policy, then, creates superpages as THROTTLE would, and recolors

pages as CML would. COMBINED chooses the cache offset of a target page when recoloring

or promoting by cycling through the possible cache offsets for the target page size. When

CML recolors a page that is a component of a superpage, the superpage is demoted, and

only the base page is copied. Although this policy uses simple heuristics to choose when

and where to copy pages, it should be able to adapt dynamically in case of a poor decision.

For example, if a superpage is created on a physical page that results in cache conflicts, the

CML buffer-based component of the policy should detect and correct the conflict.
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Table 6-3 Percentage of virtual pages copied by CML alone, THROTTLE alone, or both

policies, using an initial mapping of page coloring. Pages copied by neither policy are not

included, so the percentages add to 100.

Benchmark Percentage of pages copied by

THROTTLE CML Both

acrord32 80 19 1

netscape 95 3 1

photoshp 72 26 2

powerpnt 94 2 3

winword 86 12 3

compress 72 27 0

gcc 26 73 1

go 42 53 5

perl 86 13 1

vortex 49 51 0

6.6.2 Combined cache and TLB optimization: evaluation

To evaluate the performance of COMBINED, I measured the simulated effect of the policy

on TLBMCPI and L2 MCPI, including the overheads of cache management (CML CPI)

and TLB management (Bookkeeping CPI and Copy CPI). Figures 6-6 and 6-7 show the re-

sults of these measurements, using initial mappings of page coloring and bin hopping. For

comparison, the figures also show the effect on TLBMCPI and L2 MCPI of three alterna-

tive policies: a baseline system that neither recolors nor promotes pages (DM), CML, and

THROTTLE. Policies that have lower MCPI will result in reduced execution time.

The figures show that

� COMBINED reduces MCPI relative to THROTTLE for all of the benchmarks except

one (compress with bin hopping, for which MCPI increases by less than 0.01).

� The improvement of COMBINED over THROTTLE occurs because THROTTLE

introduces cache conflicts (e.g. winword and perl with bin hopping), or because

THROTTLE ignores existing cache conflicts (e.g. perl and powerpnt with page col-

oring), or both (e.g. go with page coloring). Adding a dynamic remapping policy to

THROTTLE allows COMBINED to eliminate these cache conflicts.

� COMBINED improves performance relative to CML for all of the programs except

the three that do not benefit from the THROTTLE superpage construction policy
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Figure 6-6 Effect of COMBINED on cache and TLB performance with an initial mapping

of page coloring. This figure shows the sum of L2 MCPI and TLBMCPI for each of four

virtual memory mapping policies: DM, which neither recolors nor promotes pages; CML,

which only recolors pages; THROTTLE, which only promotes pages; and COMBINED,

which both recolors and promotes pages.
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Figure 6-7 Effect of COMBINED on cache and TLB performance with an initial mapping

of bin hopping. This figure shows the sum of L2 MCPI and TLBMCPI for each of four

virtual memory mapping policies: DM, CML, THROTTLE, and COMBINED.



128

(acrord32, netscape, and powerpnt). The improvement of COMBINED over CML

occurs simply because CML does not reduce TLB miss rates.

� CML CPI and Copy CPI do not increase perceptibly when CML and THROTTLE are

combined, except for go with page coloring, compress with bin hopping, and gcc with

either initial mapping. Despite the increase in overhead, COMBINED still has the

best performance of the four policies for these benchmarks.

The increase in copying cost for go with page coloring suggests that some pages are

being copied by both the TLB management and cache management components of COM-

BINED. To measure the extent of this interaction, I counted the number of times each page

was recolored multiple times by CML and by COMBINED when using an initial mapping

of page coloring. Tables 6-4 and 6-5 show for each application the percentage of recolor

operations due to virtual pages that were recolored once, twice, etc. by COMBINED and

by CML. The tables show that for most of the programs any given page is generally copied

Table 6-4 Percentage of recolor operations due to virtual pages that were copied once,

twice, etc. by COMBINED with an initial mapping of page coloring.

Benchmark Number of Percentage of pages copied n times

pages recolored n = 1 n = 2 n = 3 n = 4 n � 5

acrord32 114 50 21 13 7 9

netscape 29 83 7 10 0 0

photoshp 150 78 9 4 5 3

powerpnt 99 47 26 6 4 16

winword 208 34 20 17 4 25

compress 10 70 0 30 0 0

gcc 441 24 23 12 10 32

go 364 7 3 2 2 87

perl 225 57 10 3 4 27

vortex 121 26 10 17 17 31

at most twice. However, for go with COMBINED, 87% of the pages are copied 5 or more

times, indicating that some pages are being alternately promoted and recolored. The result

is that for go the MCPI due to page copying is 0.03 higher with COMBINED than with

THROTTLE. Although COMBINED improves the overall performance of go by 0.48 MCPI,

it should be possible to improve performance slightly further by restricting the copying rate

of the policy.
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Table 6-5 Percentage of recolor operations due to virtual pages that were copied once,

twice, etc. by CML with an initial mapping of page coloring.

Benchmark Number of Percentage of pages copied n times

pages recolored n = 1 n = 2 n = 3 n = 4 n � 5

acrord32 90 60 18 13 9 0

netscape 32 78 13 9 0 0

photoshp 131 88 5 5 3 0

powerpnt 83 49 22 4 19 6

winword 115 68 21 8 3 0

compress 10 80 20 0 0 0

gcc 265 49 36 10 5 0

go 51 75 20 6 0 0

perl 134 80 9 0 0 11

vortex 50 66 20 6 8 0

6.6.3 The effect of increasing memory latency

The simulation results presented here assume that a second-level cache miss costs 25 proces-

sor cycles. As memory access time increases relative to processor cycle time, the number of

cycles per cache miss will increase. The effect of increased memory latency can be roughly

estimated by scaling the bars in Figures 6-6 and 6-7. For example, to gauge the effect of

a four-fold increase in cache miss cost on the cache performance of COMBINED, the L2

Miss CPI, CML CPI, and Copy CPI components of each bar should be stretched by a factor

of four. (This makes the slightly pessimistic assumption that CML CPI and Copy CPI are

dominated by the memory system effects of page copying.) For example, for a program that

benefits only slightly from recoloring with low miss costs, such as gcc with an initial map-

ping of page coloring, higher miss costs would have the net effect of increasing the benefit of

COMBINED relative to DM from 0.05 to 0.08 MCPI. For a program that has a large benefit

even with low miss costs, such as winword with page coloring, the effect of increasing the

simulated miss penalty is even higher: the benefit of COMBINED compared to DM would

increase from 0.22 to 0.75 MCPI.

6.6.4 Combined TLB and cache optimization: summary

The simulation results in this section focus on the performance improvement possible with

the policy COMBINED. My conclusion is that COMBINED improves upon the perfor-

mance of a baseline system that neither promotes nor recolors, and also improves upon
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the performance of systems that only promote or only recolor. Figures 6-8 and 6-9 sup-

port this conclusion, showing the improvement in MCPI of CML, THROTTLE, and COM-

BINED relative to DM. The figures divide the effect on MCPI into improvement of cache

performance and improvement of TLB performance.

The figures show three bars for each application, corresponding to improvements in L2

MCPI, TLBMCPI, and total MCPI. For each bar, the top of the bar reflects the improvement

in MCPI for an “ideal” policy that attains the combined benefit of CML and THROTTLE

as though the two policies did not interact. The top of the dark portion of each bar shows

the actual improvement in MCPI achieved by COMBINED. Thus the ideal improvement in

TLBMCPI is that of THROTTLE; the ideal improvement in L2 MCPI is that of CML; and

the ideal improvement in total MCPI is the sum of the two. For example, Figure 6-8 shows

that with an initial mapping of page coloring, COMBINED improves the performance of

go by 0.47 MCPI, short of the ideal improvement of 0.62 MCPI. More of the improvement

came from cache optimization (0.31 MCPI) than from TLB optimization (0.16 MCPI).

The two figures reveal essentially the same trends. I limit the discussion here to Fig-

ure 6-8, which shows:

� COMBINED results in a reduction in MCPI of as much as 0.62 for eight of the ten

benchmarks, and for the remaining two benchmarks (acrord32 and netscape) in-

creases MCPI by less than 0.01.

� Both the cache and TLB optimizations contribute to this improvement in perfor-

mance.

� As a result, for all but these two benchmarks, COMBINED improves performance by

more than CML or THROTTLE alone.

� For six of the benchmarks the total improvement in MCPI is within 0.03 of the im-

provement possible with an ideal policy that can combine the optimizations imple-

mented by CML and THROTTLE at no cost.

In summary, these measurements show that the memory system optimization tech-

niques developed in this thesis can be combined in a straightforward way to benefit a wide

class of applications. Both programs that have improved TLB performance with THROT-

TLE (e.g. winword, compress, go, and vortex) and programs that have improved cache per-

formance with CML (e.g. powerpnt, winword, go, and vortex) have lower MCPI with COM-

BINED than with DM. Despite the potential for contention illustrated by the pathological
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Figure 6-8 The effect of combined cache and TLB optimization on MCPI for Windows

applications, with an initial mapping of page coloring. For each bar, the top of the bar

reflects the improvement in MCPI of an ideal policy that can improve cache and TLB

performance independently, while the top of the dark portion of the bar shows the actual

improvement in MCPI achieved by COMBINED.
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Figure 6-9 The effect of combined cache and TLB optimization on MCPI for Windows

applications, with an initial mapping of bin hopping. For each bar, the top of the bar

reflects the improvement in MCPI of an ideal policy that can improve cache and TLB

performance independently, while the top of the dark portion of the bar shows the actual

improvement in MCPI achieved by COMBINED.
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example given in the introduction to this chapter, the two techniques in fact complement

one another.

6.7 Conclusions

In this chapter I provide the final demonstration of my thesis that the operating system

can dynamically observe and optimize application memory system behavior. I extend the

results of the thesis in two ways. First, I show that the cache and TLB optimizations de-

veloped and evaluated in the preceding chapters also apply to memory reference streams

characteristic of Windows applications. Second, I show that the two optimizations can

be combined to create a new policy, COMBINED, that outperforms either of the separate

policies.

Although the simulation results in this chapter show that COMBINED has the potential

to significantly improve the performance of commodity software, there are two significant

obstacles to attaining these benefits on commodity hardware. First, the policy has a greater

impact on programs drawn from from the SPEC benchmark suite than on widely-used in-

teractive applications. Second, the policies developed in this thesis rely on hardware that is

not available on current implementations of the x86 architecture. The first of these limita-

tions may reflect small working sets of the interactive benchmarks as tested, or may require

additional refinements to the policy design. The second limitation, though, suggests a mis-

match between the requirements of these operating system memory resource management

policies and the mechanisms available on the most popular commodity processor.

In summary, then, the results in this chapter reveal an opportunity to significantly im-

prove the performance of programs compiled for the popular Windows/x86 platform. For

example, the policy developed in this chapter reduces the simulated MCPI of Microsoft

Word by as much as 0.22 MCPI. On a idealized single-issue machine with no sources of

delay other than the TLB and the second-level cache, this would translate into an improve-

ment in execution time of 15%. However, realizing such gains in practice will require either

new implementations of the x86 architecture or additional research to map these techniques

onto existing x86 implementations.
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Conclusions

In this thesis I show how to transparently improve the memory system performance of

commodity software running on commodity hardware. Because the techniques that I de-

velop improve the performance of the memory hierarchy, their impact on execution time

will grow as the gap between memory access time and CPU cycle time grows. Because the

techniques do not change the program’s interface to the memory system, they can poten-

tially improve the performance of any program without imposing any software develop-

ment cost on application vendors. Because the techniques do not constrain the architect’s

implementation of the CPU or the memory system, they can improve the performance

of programs running on any hardware platform that provides appropriate mechanisms to

allow the operating system to observe and control memory system behavior.

The memory system optimizations that I introduce in this thesis manage cache and

TLB resources automatically, without relying on user-level hints or profile-based feedback.

As a result they make no imposition on users or on application developers. In contrast to

profile-based optimizations, which require a separate profiling run of a program before per-

forming optimization, dynamic operating system optimizations perform both steps while

a program runs, improving program performance immediately. This approach also allows

the optimizations to benefit programs whose memory system behavior changes as they run

or changes depending on the programs’ inputs.

The contributions of this thesis are the design and evaluation of three specific operating

system policies that dynamically observe memory system behavior and manipulate virtual-

to-physical mappings to manage application cache and TLB resource usage. Specifically:

� I introduce an operating system policy that dynamically and selectively creates su-

perpages, increasing TLB coverage and hence reducing TLB miss rates and execution

time. This example illustrates the value of good policy design: by carefully balanc-

ing the overhead of copying pages with the benefit of reduced TLB misses, the policy

can reduce overall execution time despite increasing the cost of each individual TLB

miss by more than a factor of four. This example also illustrates the value of good

hardware feedback and control mechanisms: the policy relies on precise information
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about the cause of each TLB miss, and on precise control of the virtual memory page

size.

� I introduce operating system policies that dynamically remap pages to eliminate

cache conflicts in a direct-mapped physically indexed cache, reducing cache miss

rates and again reducing execution time. I develop both a policy that detects con-

flicts using information available on current systems (Snapshot-Miss), and a policy

that detects conflicts using a proposed simple hardware monitor (CML). Snapshot-

Miss illustrates the value of relying on stock hardware: I implemented Snapshot-Miss

and demonstrated that it speeds the execution of real, not simulated, programs. CML

illustrates the value of good feedback: simulations show that by using the additional

information provided by a hardware monitor, CML is more effective in improving

application performance than Snapshot-Miss.

� I show that these two techniques – dynamic operating system cache and TLB opti-

mizations – can be combined effectively to provide improvements that exceed the

performance of either technique alone. I further show that these techniques can im-

prove the performance of programs compiled for the popular Windows/x86 personal

computer platform. This example provides a reminder of the importance of focusing

on commodity applications: the impact of even small performance enhancements

for a installed base of popular software is potentially much higher than performance

enhancements for traditional benchmarks that are rarely used in practice.

Together, these contributions show that the operating system can in fact effectively man-

age the memory hierarchy to improve the performance of existing programs running on

existing processors. This is by no means a new idea: for example, the operating system

already transparently manages physical memory as a cache of virtual memory. The high

cost of page faults justifies careful operating system policies designed to minimize the num-

ber of page faults. Similarly, as the cost of cache and TLB misses grows, the opportunity

to use software to better manage the use of cache and TLB resources will also grow. This

thesis shows that the performance penalty for poor memory resource management is al-

ready high enough to justify operating system intervention, and that some existing systems

already provide enough hardware support to implement these policies.

The results in this thesis suggest that hardware and operating system designers should

co-operate in the design and use of mechanisms that allow software to observe and control
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the behavior of the memory system. Some recent system design trends are encouraging in

this regard:

� Researchers at Digital have proposed hardware support for collecting detailed and ac-

curate samples of program behavior at run-time with low-overhead [Dean et al. 97].

While this support is intended to drive off-line optimizations [Anderson et al. 97],

the same mechanisms could be used to drive dynamic optimizations.

� Operating system designers at Hewlett-Packard [Subramanian et al. 98] and

SGI [Ganapathy & Schimmel 98] have implemented the virtual memory extensions

needed to support multiple page sizes. These mechanisms would enable implemen-

tation of the policy for superpage management introduced in this thesis.

� Numerous architectures provide flexible support for a wide range of page

sizes [Hunt 95, Heinrich 96, Dig 97, Sun 97].

� Finally, modern CPUs include increasingly detailed hardware performance counters.

For example, the Intel Pentium and Pentium Pro allow software to count a wide va-

riety of hardware events [Int 97].

However, further examination of current implementations of the Intel x86 architecture

shows that it would be difficult to apply the ideas in this thesis to this popular platform:

� The AMD K6 includes no hardware performance counters.

� The Intel Pentium, despite its wide array of counters, does not allow software to count

data TLB misses.

� The x86 handles TLB misses in hardware, preventing software from analyzing the

cause of these misses.

� The x86 supports just two page sizes (4 KB and 4 MB), limiting the ability of software

to influence TLB performance.

This thesis indicates that the absence of flexible hardware support for software observation

and optimization of memory system behavior can result in suboptimal memory system

performance. I believe that this support is lacking in current x86 implementation because
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of the misperception that memory system performance problems can only be solved with

specialized, costly revisions to hardware, applications, or compilers. In this thesis I show

that in fact hardware feedback can provide information that allows the operating system to

resolve memory system performance problems immediately and at low cost. My hope is

that in the future computer architects and operating system designers will work together to

define memory system interfaces that allow the operating system not just to measure, but

to fix, memory system performance problems.
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