
Supporting Fine-Grained Synchronization on a

Simultaneous Multithreading Processor

Dean M. Tullsen Jack L. Lo, Susan J. Eggers, Henry M. Levy

Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering

University of California, San Diego University of Washington

9500 Gilman Drive Box 352350

La Jolla, CA 92093-0114 Seattle, WA 98195-2350

tullsen@cs.ucsd.edu fjlo,eggers,levyg@cs.washington.edu

UCSD CSE Technical Report CS98-587

UW CSE Technical Report UW-CSE-98-06-02

June 1998

1

Supporting Fine-Grained Synchronization on a Simultaneous

Multithreading Processor

Abstract

Existing multiprocessor synchronization mechanisms are relatively heavyweight, due in part

to the level of the memory hierarchy (typically main memory) at which threads must synchro-

nize. Multithreaded processors, on the other hand, have the potential to signi�cantly reduce

synchronization cost, because threads share the processor simultaneously and can synchronize

using processor-internal state.

This paper proposes and evaluates new synchronization schemes for a simultaneous multi-

threaded processor. We present a scalable mechanism that permits threads to cheaply synchro-

nize within the processor, with blocked threads consuming no processor resources. The basic

mechanism, blocking acquire and release, is a hardware implementation of traditional software

synchronization abstractions, implemented with a thread-shared hardware lock box.

This study shows that a multithreading processor with e�cient synchronization enables

parallelization at a granularity an order of magnitude �ner than required on conventional parallel

machines with memory-based synchronization. When combined with lock release prediction,

which reduces the overhead of restarting a blocked thread, acquire-release gains an additional

improvement of 40%. Overall, we show that these substantial improvements in synchronization

cost enable parallelization of code that could not be e�ectively parallelized using traditional

synchronization; performance of these codes showed up to a two-fold improvement over single-

threaded versions of the previously unparallelizable code.

1 Introduction

The performance and style of a multiprocessor's synchronization mechanisms determine to a large

extent the granularity of parallelism that can be exploited on that machine. For this reason,

substantial e�ort has gone into studying synchronization techniques for shared-memory multipro-

cessors [14, 4], with the objective of supporting �ne-grained parallelism. Despite this work, synchro-

nization and communication are still relatively costly on contemporary multiprocessors; this high

cost is inherent in the hardware levels at which inter-thread synchronization and communication

must occur. As a result, compilers and programmers must decompose parallel applications in a

relatively coarse-grained way in order to reduce synchronization overhead.

This paper examines �ne-grained synchronization on a simultaneous multithreaded (SMT) pro-

cessor | a processor in which the CPU can issue instructions from multiple threads in a single

cycle [19, 18]. Multithreaded processors, such as SMT, provide an opportunity to greatly decrease

synchronization cost, because the communicating threads are internal to a single processor. While

previous work has shown the bene�ts of SMT on parallel workloads [6, 13], those studies relied

on traditional synchronization mechanisms, ignoring the potential advantages (and problems) of

synchronizing in an SMT CPU.

A simultaneous multithreaded processor di�ers from a conventional multiprocessor in several

crucial ways that inuence the design of SMT synchronization:

2

� Threads on an SMT processor compete for all fetch and execution resources each cycle.

Synchronization mechanisms (e.g., spin locks) that consume any shared resources without

making progress, even for a few cycles, can impede other threads.

� Data shared by threads is held closer to the processor, e.g., in the L1 cache or perhaps even

in the internal store bu�er; therefore, communication is dramatically faster between threads.

Synchronization must experience a similar increase in performance to avoid becoming the

bottleneck.

� Hardware thread contexts on an SMT processor share physical registers (e.g., renaming reg-

isters) and functional units. This opens the possibility of communicating synchronization

and/or data much more e�ectively than through memory.

An SMT CPU can greatly reduce the cost of synchronization, permitting signi�cantly �ner-

grained parallelism than is possible on conventional MPs. However, inappropriate choice of syn-

chronization mechanisms can cause harmful contention for heavily shared resources on an SMT

processor.

In this paper we present a new mechanism for �ne-grained synchronization in SMT processors

and compare the performance of that mechanism with traditional synchronization techniques. Our

results show an order of magnitude improvement in the granularity of parallelism available, rela-

tive to conventional shared-memory multiprocessors. We also describe and evaluate optimizations

that reduce the synchronization cost even further, such as speculatively restarting blocked threads

through lock-release prediction. The optimizations increase the synchronization e�ciency by an-

other 50%. We demonstrate that this �ne-grained synchronization is su�ciently lightweight that

it permits parallelization of new codes that could not previously be parallelized. Several parallel

codes that slow down (relative to uniprocessor execution time) by a factor of 10 or more on a tra-

ditional parallel processor experience speedups in excess of 2 with an SMT processor and e�cient

synchronization.

The paper is organized as follows. The next section describes existing synchronization mecha-

nisms and presents our new mechanism for synchronizing in an SMT processor. Section 3 describes

the methodology for our simulation-based experimental studies. Section 4 de�nes a metric for

synchronization e�ciency and uses the metric to evaluate several synchronization mechanisms.

Section 5 proposes and evaluates optimizations to the baseline SMT synchronization. Section 6

looks at speci�c examples of loops which only become worthwhile to parallelize with the fast syn-

chronization available on a multithreaded processor. We show that in these cases the speed of the

synchronization mechanism becomes critical to performance. Section 7 discusses related work, and

Section 8 concludes.

3

2 Synchronization Mechanisms

In this section, we begin with a brief description of existing synchronization mechanisms. We then

present our goals for synchronization in SMT processors and describe the new mechanism that we

evaluate in this paper, and how it meets the goals. We also discuss the shortcomings of existing

schemes (as candidates for SMT synchronization) relative to these goals.

2.1 Review of Existing Synchronization Schemes

A number of di�erent synchronization mechanisms exist in commercial or research multiprocessors,

both conventional and multithreaded. Most common are Spin Locks, such as test-and-set. While

logically test-and-setmodi�es memory, optimizations typically allow the spinning to take place in

the local cache to reduce bus tra�c [3, 14]. More recently, Lock-Free synchronization has been widely

studied [9, 11] and is included in modern instruction sets, e.g., the DEC Alpha's load-locked (ldl l)

and store-conditional (stl c) [17] (collectively, LL-SC). Rather than achieve mutual exclusion by

preventing multiple threads from entering the critical section, lock-free synchronization prevents

more than one thread from successfully writing data and exiting the critical section. A store-

conditional only completes successfully (returning a success value in a register) if no store or stl c

to the same address from another thread occurred between the ldl l and the stl c. Otherwise,

software retries the critical section. Lock-free synchronization is e�ective when it succeeds, because

the synchronization is embodied in the memory access itself | the only extra overhead is the check

for failure.

The multithreaded processors on the Tera [2] and Alewife [1] machines rely on full/empty (F/E)

bits associated with each memory block. F/E bits allow memory access and lock acquisition with

a single instruction, such as read if full/set empty, where the full/empty bit acts as the lock,

and the data is returned only if the lock succeeds. If it fails, the access stalls at the memory or is

returned to the CPU to be retried.

Another multithreaded processor, the M-Machine [8, 10], attaches full/empty bits to registers.

In the M-Machine, multiple threads execute on each of several clusters. Each cluster has a unique

register �le with full/empty bits attached to all registers. Synchronization among threads on

di�erent clusters or even within the same cluster can be achieved by a cluster-local thread explicitly

setting a register to empty, after which a write to the register by another thread will succeed, setting

it to full. A read of that register by the local thread will not succeed until the register has been �lled.

Keckler et al. [10] provide a good description of these mechanisms in a study with similar goals to

ours. They show that register-based communication mechanisms enable �ner-granularity threading

than memory-based techniques; by exploiting �ne-grain threads, a three-cluster MAP chip uses

parallel procedure calls to achieve speedups up to 1.6 over sequential applications running on a

single cluster.

We evaluate similar register-based communication mechanisms to theirs; however, we do not

consider these to be su�cient in themselves for SMT synchronization. Several di�erences between

4

the M-machine and SMT result in the di�erent directions taken by our two studies: (1) the M-

machine is a message-passing MP, so its synchronization mechanisms do not have to scale to a

shared-memory MP; (2) no single MAP execution unit is shared by all threads, so the M-Machine

cannot use execution-unit-based synchronization (e.g., the lock-box mechanism we will describe);

and (3) the M-machine processor is itself a multiprocessor, so Keckler et al.'s study focuses on

enabling speedup through synchronization between processors (clusters), running applications that

are parallelizable on traditional MPs. In contrast, our focus is on obtaining speedup on an SMT

uniprocessor, running applications traditionally considered to be serial.

2.2 Goals for SMT Synchronization

This section identi�es the desired goals for SMT synchronization. These goals are motivated by

the special properties of an SMT processor, as described in Section 1. Given these properties,

synchronization on an SMT processor should be:

1. High Performance. On an SMT, even traditional synchronization will be faster than on tra-

ditional multiprocessors, because the locks can stay in the lowest levels of the cache hierarchy.

We wish to take full advantage of SMT's thread-shared resources to make it as fast as possible.

High performance implies both high throughput and low latency.

2. Resource-conservative. Most parallel machines have spin locks of some type, which require

repeated reads or writes. Lock-free synchronization also includes a potential repeated retry

of a lock. On SMPs, Anderson, et al. [3] favor queueing locks and test-and-test-and-set

over test-and-set locks; in that situation, it is acceptable for a blocked process to waste

processor-private resources (e.g., local cpu, local cache), but not shared resources (e.g., bus

and memory bandwidth). In SMT the same principle applies, except that virtually everything

in the processor is shared; therefore, to be resource-conservative, stalled threads must use no

processor resources.

3. Deadlock-free. We must avoid introducing new forms of deadlock. SMT shares the instruction

scheduling unit among all executing threads and could deadlock if a blocked thread �lls the

instruction queue, preventing the releasing instruction (from another thread) from entering

the processor.

4. Scalable. We expect that SMT processors will exist in both multiprocessor (multi-SMT) and

uniprocessor con�gurations. To simplify programming, the same primitives should be usable

to synchronize threads on di�erent processors and threads on the same processor. However,

the performance of the mechanisms may not be the same in both cases, because this would

preclude taking advantage of fast intra-SMT synchronization when we can.

5. Easy to build. Work on simultaneous multithreading has been aimed at mainstream pro-

cessors. One implication is that we would prefer to allow standard memory designs and

commodity memory parts.

5

None of the existing synchronization mechanisms presented in Section 2.1 meets all of these goals

when used in the context of SMT. For example, spin locks are not resource-conservative and can

badly degrade the performance of non-spinning threads on an SMT processor (for this reason, we

do not simulate spin locks in our experiments). Similarly, lock-free synchronization is not resource-

conservative if the store-conditional repeatedly fails. However, lock-free synchronization has an

important advantage, namely, that it prevents a thread from being de-scheduled (e.g., due to I/O

or page fault) while holding a critical lock. Mechanisms such as load-locked and store-conditional

are not incompatible with SMT design, and we examine them in our experiments.

Full/empty bits on memory fail our easy-to-build criteria: they require additional bits in mem-

ory and a complex memory controller. F/E memory bits also fail to meet our high-performance

goal: they provide high synchronization throughput but also high latency (because passing a lock

explicitly from one thread to another requires a round-trip to main memory). We consider register

full/empty bits as in the M-Machine for the SMT processor, but only in conjunction with SMT-

based synchronization (described in Section 2.4). Taken alone, register F/E bits are not a su�cient

mechanism for synchronization: they do not meet our scalability criteria and do not handle un-

ordered access, particularly where the producer does not know the identity of the consumer. Finally,

unlike memory-address-based synchronization, register-address-based synchronization severely lim-

its the number of synchronization locations that can be live at once.

2.3 An SMT Mechanism for Blocking Synchronization

As noted above, none of the existing synchronization mechanisms meet all of our criteria. Here

we present a design for SMT synchronization that does. It uses hardware-based blocking locks. A

thread that fails to acquire a lock blocks and frees all resources it is using except the hardware

context itself. A thread that releases a lock upon which another is blocked causes the blocked

thread to be restarted. The actual primitives consist of three instructions:

Acquire(lock) { This instruction acquires a memory-based lock. The instruction does not

complete execution until the lock is successfully acquired; therefore, it appears to software like

a test-and-set that never fails. The result of the acquire never needs to be tested and the

instruction never needs to be retried in software.

Release(lock) { This instruction writes a zero to memory if no other thread in the processor

is waiting for the lock; otherwise, the next waiting thread is unblocked and memory is not altered.

Try-Acquire(lock) { This instruction tries to acquire a memory-based lock. Unlike Acquire,

it always completes immediately, but does not always succeed. Try-Acquire allows the program

to prevent blocking in cases where it has alternate work to do. (This paper does not examine any

code that would take advantage of this primitive.)

These primitives look familiar, not because they are common hardware primitives, but because

they are common software interfaces to synchronization, typically implemented with spinning locks.

For the SMT processor, we choose to implement them directly in hardware. We assume no hard-

6

0x30001240
-

0x30001248
-
-
-

0x30001248
-

1
0
1
0
0
0
1
0

vali
d

lock address
23

inst. id

-
13
-
-
-

42
-

Figure 1: The structure of the lock box. In this example, three threads are blocked, two waiting

for the same lock.

ware support for fast barrier synchronization, using software based on these primitives instead.

Extending our hardware implementation for faster barriers would be straightforward.

The synchronization instructions are implemented with a small processor structure associated

with a single functional unit (e.g., one of the load/store FUs is also the synchronization FU). The

structure, which we call a lock-box (Figure 1), has one entry per context (per hardware-supported

thread). Each entry contains: the address of the lock, a pointer to the lock instruction that blocked,

a valid bit, and optionally, bits for maintaining the order of threads blocked on the same lock (not

shown in the �gure).

When a thread fails to acquire a lock (a read-modify-write of memory returns a nonzero value),

the lock address and instruction identi�er are stored in that thread's lock-box entry, the valid

bit is set, and the thread is ushed from the processor after the lock instruction. When another

thread releases the lock, hardware performs an associative comparison of the released lock address

against the lock-box entries. On �nding the blocked thread, the hardware allows the original

lock instruction to complete, allowing the thread to resume, and invalidates the blocked thread's

lock-box entry. A release for which no thread is waiting is written to memory.

The acquire instruction is restartable. Because it never commits if it does not succeed, a

thread that is context-switched out of the processor while blocked for a lock will always be restarted

with the program counter pointing to the acquire or earlier, so the retry of the acquire will be

automatic. The lock-box entry will always be cleared on a context switch.

The three primitives above meet all our synchronization criteria. They are resource-conservative,

because a waiting thread consumes no execution resources. They allow fast transfer of locks when

the consumer is waiting for the lock and even conserve memory bandwidth, because the lock can

be passed in many cases without updating memory.

Flushing the blocked thread from the instruction queue (and pre-queue pipeline stages) is critical

to preventing deadlock. If a blocked thread continues to have access to the fetch unit and the

instruction queue, it would �ll the shared instruction queue, preventing the process that holds

the lock from making progress. The mechanism needed to ush a thread is essentially the same

mechanism used after a branch misprediction on an SMT processor.

7

The entire mechanism is scalable (i.e., it can be used between processors), as long as a release

in one processor is visible to a blocked thread in another. This could be accomplished by a periodic

retry of failed acquires. Any release that leaves a lock free updates memory; therefore, a processor

in a multiprocessor system can retry (in hardware) a blocked acquire at regular or increasingly-long

intervals. Not all threads have equal access to a lock in this scheme, as a very heavily-contended

lock may remain on a single processor for an extended time. More complex schemes might provide

fairer access to locks, but this simple scheme provides the best performance for highly-contended

locks. Given a choice, it gives the lock to the thread that will use it most e�ciently (i.e., the one

that can obtain the lock in the fewest cycles, and which probably has the protected data structures

in its �rst-level cache).

2.4 SMT Blocking Locks With Register Full/Empty Bits

While full/empty registers alone do not meet all of our criteria, we may �nd them useful for

speci�c situations where multiprocessor scalability is not an issue. Full/empty registers have several

performance advantages, improving both communication and synchronization speed. They allow

shared data to be in registers, and thus eliminate memory operations; they save instructions,

because the synchronization and the data transfer coincide; and, unlike acquire, release and the

generic test-and-set, they do not impose ordering constraints on surrounding memory operations.

In this study, we assume that registers are initially empty, and that a full/empty bit is only

accessed for two new instructions:

read full rs, rd

write fill rs, rd(rt)

Read full moves the value in rs to rd only if rs's full/empty bit is set to full. Both rs and rd

belong to the executing thread's own register �le. When the instruction completes, rs's full/empty

bit is set to empty. If read full cannot complete immediately (the register is empty), it and its

thread block in the same manner as a failed acquire. Write fill writes the value in the executing

thread's register rs to register rd in thread rt's register �le, setting that register's full/empty bit

to full. This instruction will block if rd is already full. The value in register rt selects the id of the

destination thread, allowing for 2

64

thread names. The hardware must be able to map a software

thread ID to a hardware context. If the thread ID does not match a running context, the hardware

traps to software. Adding the ability to access other threads' registers adds no new data paths to

the SMT architecture, which already assumes a shared physical register �le.

2.5 Summary of Synchronization Mechanisms

In this section we stated our goals for synchronization and compared a number of synchronization

alternatives in light of those goals. We presented a new mechanism for synchronization in an

SMT processor that relies on a hardware lock-box unit to maintain the state of a blocked thread's

context without consuming processor resources. The rest of the paper focuses on the goal of fast

8

Active list 64 entries/context

Instruction queue 32 integer entries, 32 oating point entries

Functional units 6 integer (of which 4 can perform loads/stores); 4 FP

Architectural registers 32*8 integer, 32*8 oating point

Renaming registers 100 integer, 100 oating point

Processor pipeline 9 stages, 2 each for register reads/writes

Branch prediction 256-entry BTB, 2K x 2-bit PHT, gshare

Function return stack 12-entries

Table 1: Processor parameters used in the simulator

Cache Size Line Size (bytes) Miss latency

to next level

(cycles)

Associativity Fill Latency

(cycles)

onchip L1 I cache 32KB 64 10 DM 2

onchip L1 D cache 32KB 64 10 DM 2

onchip L2 cache 256KB 64 15 4-way 4

o�-chip L3 cache 2MB 64 125 8

Table 2: Cache parameters used in the simulator

synchronization. We will show how the alternative mechanisms compare in performance on an

SMT processor, how synchronization speed changes the way we parallelize code, and how crucial

synchronization speed is to overall performance.

3 Methodology

Using a detailed trace-driven simulator, we compare several alternative hardware and software

synchronization mechanisms on an SMT architecture. The simulator executes unmodi�ed Alpha

object code using emulation-based, instruction-level simulation techniques. It models the execution

pipelines, memory hierarchy, TLBs, and branch prediction logic of an SMT processor, including

throughput and latency constraints at all levels of the memory hierarchy and incorrect path ex-

ecution following a branch misprediction. Table 1 provides more details of the processor model;

Table 2 contains memory system parameters.

We simulate the ICOUNT.2.8 instruction fetch scheme from [18], which fetches up to eight

instructions from up to two threads each cycle. ICOUNT.2.8 is the most aggressive fetch scheme

proposed for SMT, and is much more tolerant of synchronization mechanisms that are not resource

conservative than less aggressive schemes.

Our analysis is based on a synthetic synchronization e�ciency benchmark, on the two primary

loops from the espresso benchmark from the SPEC92 suite, and on three Livermore loops (C

version) that are not currently parallelized by the SUIF compiler. We compiled all with gcc with

full optimization, inserting synchronization directly into the source code with macro-de�ned asm()

9

statements. For the espresso loops, the execution times reported are the combined execution times

of the �rst 200 invocations of each loop.

Synchronization instructions constrain the issuing of memory operations. We assume implicit

memory barriers around synchronization instructions, i.e., acquire, release, ldl l and stl c do

not issue until all previous stores have completed, and loads cannot pass an acquire or stl c.

Because synchronization takes place inside the processor, where many instructions reach the

execute stage in a speculative state, we must ensure that synchronization in one thread is not

visible to other threads until it is no longer speculative. In general, we assume that synchronization

operations have no e�ect on machine state until they retire.

We also assume that an acquire access goes into the store bu�er at execution. When the

instruction commits, a read-modify-write is performed to the local cache (for a cache hit). Load

operations are allowed to issue the following cycle if the lock succeeds; because the load will take

two cycles to get to the execute stage, the performance impact will be minimal even if we assume

that the read-modify-write takes more than one cycle. We assume that a value written through a

write fill operation is available for reading the cycle after the write fill retires.

4 Characterizing the E�ciency of Synchronization

In this section we de�ne an e�ciency metric for synchronization and use it to evaluate the speed of

di�erent synchronization schemes. Our vehicle for expressing the metric is a loop containing a mix of

loop-carried dependent (serial) computation and independent (parallel) computation, representing

a wide range of loops or codes with di�erent mixes of serial and parallel work. By modifying the

amount of independent work, we vary the ratio of serial code to parallel code from mostly serial

to mostly parallel. Our e�ciency metric is the ratio of parallel-to-serial computation at which the

parallel version of the loop begins to outperform a single-threaded version.

1

The simple e�ciency benchmark is shown in Figure 2. The amount of independent computation

(work that contains no loop-carried dependences in the i loop) is varied by enclosing it in a loop

that iterates between 1 and 128 times. Each iteration of the independent computation loop does a

load (a cache hit), a oating-point multiply and a oating-point add. The result is then added to

A[i] in the critical section.

We �rst ran this test using mechanisms that synchronize in di�erent levels of the memory hierar-

chy, to con�rm our assertion that tightly-coupled multithreaded processors (like SMT) can exploit

parallelism in a profoundly di�erent way than conventional multiprocessors. The synchronization

schemes we simulated are:

� Single-thread. This is the serial version of the loop. It helps us de�ne the break-even point.

� SMT-block. This is the base SMT synchronization, with blocking acquires.

1

If mechanism S1 requires half as much parallel computation to surpass the serial version as mechanism S2, we

say it is twice as e�cient.

10

single-threaded: parallelized:

for (i = 0; i < N; i++) (for each thread)

A[i+1] = A[i] + independent computation() for (i = threadId; i < N; i += numThreads)

temp = independent computation()

acquire(lock[threadId])

A[i+1] = A[i] + temp

release(lock[nextId])

Figure 2: Serial and parallel version of our synchronization e�ciency test

� SMT-LL-SC. This scheme uses the lock-free synchronization currently supported by the Al-

pha. To implement the ordered access in the benchmark, the acquire primitive is implemented

with load locked and store conditional, as given in [17], and the release is a store instruction.

� SMP-*. These each use the same primitives as SMT-block, but force the synchronization

(and data sharing) to occur at di�erent levels in the memory hierarchy (i.e., the L2 cache,

the L3 cache, or memory). This mimics the performance of systems with contexts less tightly

coupled than on an SMT. SMP-Mem represents the synchronization and communication

performance of a typical shared-memory multiprocessor; SMP-L3 (o�-chip cache) represents

a tightly-coupled cluster of processors sharing an o�-chip cache; and SMP-L2 represents a

single-chip multiprocessor with a shared secondary cache. The execution model for all SMP-*

simulations is SMT.

Figure 3 compares the synchronization speeds of the di�erent schemes. The �gure shows that

synchronization within a processor is more than an order of magnitude more e�cient than synchro-

nization in memory. For example, the break-even point for parallelization is about 5 computations

for SMT-block, and over 80 for memory-based synchronization. Thus, an SMT processor will

be able to exploit opportunities for parallelism that are an order of magnitude �ner than those

needed on a traditional multiprocessor, even if the SMT processor is using existing synchronization

primitives (e.g., LL-SC).

While the single-chip multiprocessor (SMP-L2) is only half as e�cient as SMT-block, it is much

closer to SMT-block than to the memory-based multiprocessor (SMP-MEM). Therefore, many of

our arguments about new opportunities for parallelism extend to the single-chip multiprocessor

model [15] as well.

Figure 3 shows that blocking synchronization outperforms lock-free synchronization; however,

for this benchmark the primary factor is not resource waste due to spinning, but the latency of the

synchronization operation. This is made clear by examining the critical path through successive

iterations of the for loop. This critical path is shown in Figure 4 for LL-SC and acquire-release

primitives, assuming that the next thread is waiting for passed data when the current thread

produces it. When the independent computation is small and performance is dominated by the

loop-carried calculation, the critical path becomes the locked (serial) region of each iteration.

11

0 20 40 60 80 100

E
xe

cu
tio

n
T

im
e

Amount of Independent Computation (No. of iterations)

single-thread

SMT-block

SMT-ll/sc

SMP-L2

SMP-L3

SMP-Mem

Figure 3: The performance of various synchronization con�gurations.

thread n+1

ldl_l lock[n+1]

bne

mov #1, r6

stl_c

beq

load A[i]

FPadd

store A[i+1]

store zero, lock[n+2]

thread n

store zero, lock[n+1]

unknown delay,
but at least 3 cycles,
2 waiting for the store
to retire

1 cycle

6 cycles (misprediction)

1 cycle

3 cycles (2 to retire,
1 from implicit mem barrier)

1 cycle

4 cycles

1 cycle (implicit
mem barrier)

(a) Load locked/Store conditional

thread n+1

acquire lock[n+1]

lda ... (addr calc)

add ... (addr calc)

load A[i]

FPadd

store A[i+1]

release lock[n+2]

thread n

release lock[n+1]

8 cycles, 2 to
retire, 6 to restart
thread n+1 at inst
following acquire

1 cycle

1 cycle

1 cycle

4 cycles

1 cycle (implicit
memory barrier)

(b) Acquire-Release

Figure 4: The critical path through one iteration of the benchmark with (a) load locked and

store conditional, and (b) acquire and release.

For the lock-free synchronization, the critical path is at least 20 cycles per iteration. A key

component is the branch misprediction penalty when the thread �nally acquires the lock. Lock-free

synchronization is less likely to achieve the minimum delay along the critical path, because of (1)

the unknown delay before the waiting thread retries the load, and (2) the inter-thread contention

for resources throughout execution (i.e., no concurrent threads are blocked while this thread is

executing).

For blocking SMT synchronization, the critical path through the loop is 15 cycles. The minimum

time is dominated by the restart penalty (the process of getting a blocked thread's instructions back

into the processor).

4.1 Summary

In this section we used a simple synchronization e�ciency metric to evaluate the limits of the

alternative synchronization schemes. The results show that �ne-grained synchronization, when

12

performed close to the processor, changes the available granularity of parallelism by an order of

magnitude. We will examine this potential in more detail later using common program loops. Our

analysis of the critical path also opens the possibility to further optimization, which we examine

next.

5 Tuning the Performance of Synchronization

The previous section demonstrated that fast synchronization enables a new class of applications to

be parallelized, namely those with cross-iteration loop dependences requiring tight synchronization.

Unlike current parallel programs, these applications put the latency of synchronization squarely on

the critical performance path.

This section examines optimizations to our baseline synchronization mechanism with blocking

acquires. These include (1) speculative restart of blocked threads based on lock-release prediction

and (2) judicious use of full-empty registers, both with and without a similar speculative restart

mechanism. These optimizations cut the critical path through the e�ciency metric loop in half

and decrease the parallelism cross-over point by a factor of �ve.

5.1 Faster Synchronization Through Speculative Restart

The restart penalty for a blocked acquire assumes that the blocked thread is not restarted until the

corresponding release instruction is retired. As previously noted, it then takes several cycles to

reload the blocked thread's instruction state into the processor. While the release cannot perform

until it retires (or is at least guaranteed to retire), it is possible to restart the blocked thread earlier;

the processor could then begin fetching from the thread and even execute instructions that are not

dependent on the acquire. (In any case, all memory operations must wait until the release is

performed.)

It is possible to perform the speculative restart in several places. Restarting in the execute

stage would more accurately select the right thread to restart; restarting in the fetch or decode

stage allows much earlier restarts. In Figure 5, we show the results of speculatively restarting a

blocked thread as soon as the release is seen by the decode unit. We assume that a history based

on thread ID and PC is used to predict which thread will be released by a given instruction.

2

Speculatively restarting a thread before the releasing instruction retires reduces the critical path

to nine cycles (see Figure 6a), lowering the break-even point for parallelization to about 3 iterations

of the independent loop (Figure 5).

2

We abort a speculative restart when the release instruction that caused it is squashed, even if there have been

other release instructions that have since been fetched. Also, since we are performing the speculative restart in the

decode stage, a thread that blocks after the instruction that will release it is in the processor will miss the opportunity

for an speculative restart.

13

0 5 10 15 20 25
E

xe
cu

tio
n

T
im

e

Amount of Independent Computation (No. of iterations)

single-thread

SMT-specRel

SMT-block

SMT-ll/sc

Figure 5: The performance of speculative restart.

thread n+1

acquire lock[n+1]

lda ... (addr calc)

add ... (addr calc)

load A[i]

FPadd

store A[i+1]

release lock[n+2]

thread n

release lock[n+1]

3 cycles, 2 to
retire, 1 for
implicit memory
barrier

not in crit. path

1 cycle

4 cycles

1 cycle (implicit
memory barrier)

(a) Acquire-Release

thread n+1

read_full

FPadd

write_fill

thread n

write_fill

3 cycles (2 to
retire, 1 for
data dependence) 4 cycles

(b) Full/Empty Registers

Figure 6: The critical path through one iteration of the benchmark with speculative restart, for (a)

the acquire-release version of the loop, and (b) full-empty registers.

5.2 Faster Synchronization Through Full/Empty Registers

In this section we consider relaxing our scalability criteria to add M-machine-style full/empty

registers to our proposed SMT synchronization primitives, in an attempt to further reduce the cost

of both synchronization and communication.

The per-thread full/empty-register code for our e�ciency metric is implemented as follows:

r4 = nextId

for (i = threadId; i < N; i += numThreads)

temp = independent computation()

read full r2, r3

r3 = r3 + temp

write �ll r3, r2 (thread r4)

A[i+1] = r3

Notice that (compared to Figure 2) the load is no longer needed and the store is moved out of

the critical section of the loop. This scheme can still su�er the restart penalty, because we must

block a thread when the synchronization operation fails. This happens when the read full �nds

the register empty (as is the common case for this loop when the independent computation is small)

or when the write fill �nds the register full (which never happens for this loop). We can also

apply speculative restart to this loop, and the results for both cases are shown in Figure 7.

14

0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

Amount of Independent Computation (No. of iterations)

single-thread

SMT-FER-specRel

SMT-FER

SMT-block

SMT-specRel

SMT-ll/sc

Figure 7: The execution time performance of the benchmark with full/empty registers.

Adding F/E registers reduces the critical path through the computation for the case of the

speculative restart to 7 cycles (Figure 6b). The break-even point is now less than a single iteration

of the independent computation loop (Figure 7).

By reducing the critical path through a simple loop-carried dependence to under ten cycles for

the acquire/release primitives, and to 7 cycles for full/empty registers, SMT has the potential

to parallelize code that requires �ner-grained parallelism than can be supported by a conventional

multiprocessor. This code only becomes parallelizable with fast synchronization. The next section

demonstrates the existence of such code.

6 Case Studies in Parallelization With Fast Synchronization

Any program traditionally regarded as (either implicitly or explicitly) parallel has achieved perfor-

mance in the face of relatively high-cost synchronization. Such applications should run well with

any of the low-latency synchronization mechanisms we have considered. However, we have argued

that e�cient �ne-grain parallelism will create an entirely new class of \parallel" programs. We

claim that both the size of that new class, and the exact performance they see will in large part

be determined by the particular speed of the synchronization mechanism. This section investigates

that claim.

We examine �ve loops that a standard parallel compiler would not parallelize: the two most

important loops in espresso and three of the Livermore loops. These loops are signi�cant exactly

because of the compiler's assumption that parallelizing would not be worthwhile, due to synchro-

nization and communication costs. We attempt to parallelize these loops using our �ne-grained

SMT synchronization mechanism, and report the success stories and one less-than-successful e�ort.

15

Both cases are useful in understanding the impact of very-�ne-grained synchronization on an SMT

processor.

6.1 Espresso

For the SPEC92 benchmark espresso and the input �le ti.in, 22% of the execution time is spent in

the routine massive count. This routine is primarily composed of two loops, both of which contain

heavy cross-iteration dependences. We describe and evaluate the parallelization of those loops.

The �rst loop is a doubly-nested loop with both ordered and un-ordered dependences across

the outer loop. The inner loop is actually completely parallel; however, the inner-loop parallelism

is small (for some of the input �les, the iteration count is always 1) and unbalanced (the iteration

often ends with an initial compare to zero). Thus, we chose to parallelize the outer loop and

synchronize the dependences.

The �rst of two dependences in this loop is a pointer that is incremented and compared against

zero as the exit condition. In parallelizing this loop, the pointer is updated and passed to the next

thread; when it becomes null, it is passed (but not updated) around all the threads an extra time

to allow each to see the exit condition.

The second dependence is a large array of counters which are conditionally incremented based

on individual bits of a series of calculated values. Protecting the entire counter array with a single

lock eliminates parallelism, but protecting individual counters has a high overhead. We achieved

better performance with a scheme in the middle that protects ranges of eight counters with a single

lock. Since incrementing is associative, access to the counters need not preserve the serial ordering.

Figure 8 (Loop 1) shows that all SMT versions perform well. There is only a small gain with

full/empty registers | the counters are not a good match for F/E registers, and so we only use them

to pass the pointer more quickly. For both, there is little performance di�erence with speculative

restart, because collisions on the counters are unpredictable.

With LL-SC, the pointer must use the spinning acquire-release mechanism; however, the

atomic incrementing of counters is tailor-made for lock-free synchronization. Each counter is pro-

tected individually by LL-SC's ability to do lock-free atomic updates, which reduces collisions.

However, there are still enough collisions to create some wasted computation, and to confuse the

branch predictors for the branch on the success-fail result. LL-SC also su�ers from competition

from threads waiting at the barrier at the end of the computation.

Memory-based synchronization clearly cannot overcome the high cost of synchronization and

communication.

The second component of massive count is a single loop primarily composed of many nested if

statements with some independent computation. The loop has four scalar dependences for which

we must preserve original program order (shared variables are read and conditionally changed).

There are two more updates to shared structures that need not be ordered.

16

M
em

S
yn

c

LL
_S

C

S
M

T

S
M

T
.s

r

F
E

R

F
E

R
.s

r

0

1

2
S

pe
ed

up
 O

ve
r

S
in

gl
e-

T
hr

ea
d

E
xe

cu
tio

n

M
em

S
yn

c

LL
_S

C

S
M

T

S
M

T
.s

r

F
E

R

F
E

R
.s

r

0

1

2

S
pe

ed
up

 O
ve

r
S

in
gl

e-
T

hr
ea

d
E

xe
cu

tio
nEspresso Loop 1 Espresso Loop 2

Figure 8: The speedup over single-thread execution on the two loops in massive count from espresso

for various synchronization alternatives.

The most frequent path through the loop updates none of the shared-ordered variables; therefore

a single lock around all shared variables produced better performance than protecting each shared

variable with an individual lock.

The performance of the blocking synchronization was disappointing (Figure 8, loop 2). Further

analysis uncovered several factors that limited performance. First, the single-thread loop already

has signi�cant ILP, close to four instructions per cycle, leaving little room for improvement. Second,

most of the shared variables are in registers in the single-thread version, but must be stored in

memory for blocking synchronization. Third, the blocking locks constrained the e�cient scheduling

of memory accesses in the loop. Fourth, the branches are highly correlated from iteration to

iteration, allowing our default branch predictor to do very well for serial execution; however, much

of this correlation was lost when the iterations went to di�erent threads, resulting in a 3-4X increase

in branch mispredictions.

F/E Registers allowed shared variables to be kept in registers, and eliminated the memory-

access ordering constraints | even the unordered accesses were updated in-order with F/E mech-

anisms. However, performance was still limited by the high ILP and branch mispredictions. The

performance gain over blocking synchronization alone is signi�cant, and moves (but barely) into

positive ground. The speculative-restart results are nearly identical, because the full/empty code

was already blocking much less often.

With LL-SC, the ordered accesses had to be protected in the same manner as the blocking

synchronization, but with software acquire and release. For the unordered variables, they were each

updated atomically using LL-SC. The overall performance was poor due to spinning for contested

locks.

17

M
em

S
yn

c

LL
_S

C

S
M

T

S
M

T
.s

r

M
em

S
yn

c

LL
_S

C

S
M

T

S
M

T
.s

r

M
em

S
yn

c

LL
_S

C

S
M

T

S
M

T
.s

r

0

1

2

S
pe

ed
u

O
ve

r
S

in
gl

e-
T

hr
ea

d
E

xe
cu

tio
n

Synchronization Mechanism

Loop 6 Loop 14Loop 13

Figure 9: The performance of synchronization con�gurations for three of the Livermore loops

executing with 8 threads.

6.2 Livermore Loops

Livermore loops 6, 13, and 14 all have cross-iteration dependencies, and consequently the SUIF

compiler [7] chose not to parallelize them. These loops have a reasonable amount of code that is

independent, however, and should be amenable to parallelization, if �ne-grained parallelism (and

synchronization) were available.

Loop 6 is a doubly-nested loop that reads a triangular region of a matrix. The inner loop

accumulates a sum in w[i]. Since i is invariant within the inner loop, we can privatize w[i],

parallelize the inner loop, and sum the values at the end through a reduction. However, the next

iteration of the outer loop reads all previously calculated w[i]'s, so we require a barrier following

each inner loop to prevent read-after-write violations on w. Because of the triangular nature of the

loop, some of the inner loops do very few iterations, making the cost of a reduction and barrier

critical to loop performance. We assume no hardware support for barriers in this example, but

combine the barrier and the reduction in software.

Figure 9 (Loop 6) shows the result for eight threads. While parallelization of this loop does not

make sense on a conventional multiprocessor, it becomes pro�table with standard SMT synchro-

nization, and more so with speculative restart support. LL-SC performs poorly due to the high

overhead of threads spinning at the barrier.

Loop 13 has only one potential cross-iteration dependence, the incrementing of an indexed array,

which thus happens in an unpredictable, data-dependent order. Although it is not necessary to

preserve the order of these updates, we chose to do so (using a mechanism very similar to the code

18

in Section 4), because (1) these loops are very uniform, so the performance cost of ordering was

small, and (2) the performance of the speculative restart prediction is better with a forced ordering.

The results of parallelizing Loop 13 are shown in Figure 9. Loop 13 achieves more than double

the throughput of single-thread execution with SMT synchronization and the speculative restart

optimization. Here LL-SC also performs well, since the only dependence is a single unordered

atomic update. This can be done with a single ldl l, stl c pair and a check for success (although

conversion from integer to oating point complicates it slightly). Collisions are few because each

address is protected individually.

Loop 14 actually contains three loops, which appear to be a single loop that is split to decrease

ILP-reducing dependencies within a single iteration. (In fact, for the single-thread version, perfor-

mance is slightly better than with the three loops fused.) Our parallel version fuses these loops,

which maximizes the amount of parallel code available to execute concurrently with the �nal serial

portion. The serial portion is two updates to another indexed array, so once we have fused the

loops of Loop 14, it looks much like Loop 13, and the performance results con�rm this.

Since the dependences in these loops are all either barrier-based or unordered updates, we did

not apply any full-empty register optimizations.

We made no heroic e�orts to get better memory-based synchronization performance on these

loops. Slightly better performance could have been achieved with very large, padded arrays of locks

(much larger than the data they were protecting) on two of the loops; but performance would still

have been extremely poor, due to sharing (both true and false) on the data. Consequently, the

point remains that traditional multiprocessors cannot achieve the performance of multithreaded

processors on loops with cross-iteration dependences.

One aspect of parallelization that is not simpli�ed on an SMT machine is the choice of the

number of threads to use; however, the freedom to make this choice provides a new opportunity for

both performance optimization and conservation of resources (so that they can be used by other

executing programs).

6.3 The Right Number of Threads

In a multiprocessor that is otherwise idle, the decision of how many threads to create is rarely a

di�cult one. In an SMT processor, however, the tradeo�s are more complex. On one hand, there is

little bene�t in creating more threads after a shared execution resource is saturated; and there is a

greater probability of su�ering a restart penalty as the number of threads increases. On the other

hand, more threads contribute more independent instructions to hide latencies. In this section,

we examine the implications of varying the number of threads used for the same Livermore loop

computations.

Figure 10 shows that di�erent numbers of threads were appropriate for di�erent loops and

di�erent SMT synchronization mechanisms. Loop 6, which only achieved a small speedup with

8 threads, had linear speedup with two. Performance on Loops 13 and 14 without speculative

restart was equivalent (but higher) with all numbers of threads beyond 2. With speculative restart,

19

∆

∆

∆
∆

♦

♦ ♦

♦

2 4 6 8

0

0.5

1

1.5

2

2.5

S
pe

ed
up

 O
ve

r
S

in
gl

e-
th

re
ad

 E
xe

cu
tio

n

Number of Threads

∆ SMT

♦ SMT.sr

∆

∆ ∆ ∆

♦

♦

♦ ♦

2 4 6 8
Number of Threads

∆ SMT

♦ SMT.sr

∆

∆ ∆ ∆

♦

♦

♦ ♦

2 4 6 8

0

0.5

1

1.5

2

2.5

Number of Threads

∆ SMT

♦ SMT.sr

Loop 6 Loop 14Loop 13

Figure 10: Synchronization performance with varying number of threads and blocking synchroniza-

tion (with and without speculative restart).

speedups increased with the numbers of threads. Overall, the results indicate that (1) it is important

to choose the level of parallelism carefully, rather than simply use the maximum available, because

the best choice can signi�cantly improve over serial performance (double in the best cases of these

loops); and (2) the optimal choice is dependent on the loop and the underlying synchronization

mechanism. Thus, optimal performance requires the decision to be made separately for each loop

in the program.

6.4 Summary

For the �ve loops examined, none of which could be parallelized on a conventional multiprocessor,

fast synchronization enabled signi�cant parallel speedups on four and marginal speedup on one.

In each case, parallelization created execution paths that made the speed of the synchronization

critical to the performance of the code, as all were sensitive to the exact mechanism used.

Of the �ve loops considered, two had unordered single-item atomic updates as their only de-

pendence. Not surprising, LL-SC handled those well, but in both cases, SMT synchronization was

within 5%. However, if there was at least one access to data that had a forced ordering (the other

three loops), SMT synchronization outperformed LL-SC by an average of 67%.

7 Related Work

Section 2.1 described other multithreaded architectures and multithreaded synchronization mech-

anisms. Other work which has impacted or is related to this study follows.

There have been several papers that describe the design of simultaneous multithreading pro-

cessors [18] and analyze their performance on parallel [12, 6, 13] and multiprogrammed [18, 6]

workloads. The �rst group [12, 6, 13], which examined simultaneous multithreading with a more

traditional multiprocessor workload, and in light of more traditional parallel compiler transforma-

tions is the most relevant to this work. These studies showed that an SMT processor achieves

20

signi�cant speedups on code that is parallelized for multiprocessors, but that assumptions about

certain compiler transformations appropriate for a multiprocessor are not necessarily appropriate

for SMT.

The Tera MTA architecture [2] supports �ne-grain parallelism via multithreading and full-empty

memory synchronization. Despite having a higher-latency synchronization mechanism than what

we propose, the Tera processor and compilation system exploit �ne-grain synchronization among

cooperating threads, con�rming our thesis that a di�erent style of code generation is required for

multithreaded processors.

Keckler, et al., [10] describe mechanisms for e�cient synchronization, communication, and

thread creation in the Multi-ALU Processor (MAP). There are several key di�erences between

their mechanisms and ours, and between the target applications of the two studies. These result

from the two di�erent machine models, as discussed in Section 2.1. Their mechanism does not scale

in our environment, and our acquire-release is not possible in theirs. Our focus is on uniprocessor

speedup on traditionally serial applications.

Pai, et al. [16] describe a synchronization bu�er for multiprocessors of single-threaded processors.

The synchronization bu�er is an o�-chip structure which holds lock addresses from executing lock

instructions. It takes responsibility for retrying the lock so that software does not have to loop.

They do not otherwise block the thread, nor do they associate releases with locks in their structure.

Bradford and Abraham [5] propose hardware-implemented semaphores which block a thread

waiting for a semaphore. They compare this scheme with spin-waiting and OS-implemented block-

ing synchronization, running SPLASH applications on a �ne-grain multithreaded processor with

perfect caches.

8 Summary

For existing traditional parallel programs, any reasonably-fast synchronization mechanism on a

simultaneous multithreading processor is likely to be su�cient. However, that approach misses the

tremendous opportunity of hardware multithreading, which is to enable a style of parallelism not

available on other architectures | very-�ne-grain parallelism.

We have shown that very-�ne-grain parallelism greatly expands our de�nition of what is \par-

allelizable." The speed and e�ciency of synchronization is critical to this goal. We have proposed

a new synchronization mechanism, tailored speci�cally for an SMT processor, that (1) maximizes

synchronization e�ciency by ensuring that threads waiting on synchronization release all shared

resources quickly to other threads, and (2) minimizes synchronization latency by using lock-release

prediction to resume blocked threads with no fetch or restart delay.

The �ne-grain acquire-release mechanism enables signi�cant speedups (in excess of 2.0) on

applications that cause signi�cant slowdowns when parallelized on traditional parallel machines.

The lock-release prediction speeds application performance by as much as 29%.

21

References

[1] A. Agarwal, J. Kubiatowicz, D. Kranz, B-H. Lim, D. Yeung, G. D'Souza, and M. Parkin. Sparcle: An evolutionary

processor design for large-scale multiprocessors. IEEE Micro, June 1993.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld, and B. Smith. The Tera computer system. In

International Conference on Supercomputing, pages 1{6, June 1990.

[3] T.E. Anderson. The performance of spin lock alternatives for shared memory multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 1(1):1{16, January 1990.

[4] T.E. Anderson, E. Lazowska, and H.M. Levy. The performance implications of thread management alternatives for shared-

memory multiprocessors. IEEE Transactions on Computers, 38(12), December 1989.

[5] J.P. Bradford and S. Abraham. E�cient synchronizatin for multithreaded processors. In Proceedings of the Workshop on

Multithreaded Execution Architecture and Compilation in conjunction with HPCA-4, January 1998.

[6] S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, R.L. Stamm, and D.M. Tullsen. Simultaneous multithreading: A foundation

for next-generation processors. IEEE Micro, September 1997.

[7] M.W. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer, 29(12), December

1996.

[8] M. Fillo, S.W. Keckler, W.J. Dally, N.P. Carter, A. Chang, Y. Gurevich, and W.S. Lee. The M-Machine multicomputer.

In 28th Annual International Symposium on Microarchitecture, November 1995.

[9] M. Herlihy. A methodology for implementing highly concurrent data objects. In 2nd ACM Symposium on Principles and

Practices of Parallel Programming, pages 197{206, March 1990.

[10] S.W. Keckler, W.J. Dally, D. Maskit, N.P. Carter, A. Chang, and W.S. Lee. Exploiting �ne-grain thread level parallelism

on the MIT multi-alu processor. In 25th Annual International Symposium on Computer Architecture, June 1998.

[11] L. Lamport. Concurrent reading and writing. Communications of the ACM, 11(1):806{811, November 1977.

[12] J.L. Lo, S.J. Eggers, J.S. Emer, H.M. Levy, S.S. Parekh, R.L. Stamm, and D.M. Tullsen. Converting thread-level parallelism

into instruction-level parallelism via simultaneous multithreading. ACM Transactions on Computer Systems, pages 322{

354, August 1997.

[13] J.L. Lo, S.J. Eggers, H.M. Levy, S.S. Parekh, and D.M. Tullsen. Tuning compiler optimizations for simultaneous multi-

threading. In 30th Annual International Symposium on Microarchitecture, December 1997.

[14] J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-memory multiprocessors. ACM

Transactions on Computer Systems, 9(1), February 1991.

[15] B.A. Nayfeh, L. Hammond, and K. Olukotun. Evaluation of design alternatives for a multiprocessor microprocessor. In

23nd Annual International Symposium on Computer Architecture, pages 67{77, May 1996.

[16] V.S. Pai, P. Ranganathan, S.V. Adve, and T. Harton. An evaluation of memory consistency models for shared-memory

systems with ilp processors. In Seventh International Conference on Architectural Support for Programming Languages

and Operating Systems. ACM, 1996.

[17] R.L. Sites and R.T. Witek. Alpha AXP Architecture Reference Manual, Second Edition. Digital Press, 1995.

[18] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, and R.L. Stamm. Exploiting choice: Instruction fetch and issue

on an implementable simultaneous multithreading processor. In 23nd Annual International Symposium on Computer

Architecture, pages 191{202, May 1996.

[19] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading: Maximizing on-chip parallelism. In 22nd Annual

International Symposium on Computer Architecture, pages 392{403, June 1995.

22

