
A Constraint-Based Speci�cation for Box Layout in CSS2

Brian Michalowski

Technical Report UW-CSE-98-06-03

Department of Computer Science and Engineering

University of Washington

June 1998

Author's address:

Brian Michalowski

Dept. of Computer Science & Engineering

University of Washington

PO Box 352350

Seattle, Washington 98195 USA

bam@cs.washington.edu

Abstract

Cascading Style Sheets provide a exible mechanism for governing the appearance of Web pages.

Cascading Style Sheets Level 2 (CSS2) are an enhancement to the original CSS1 speci�cation,

giving Web page designers additional control over the appearance of Web pages. However, the CSS2

speci�cation is written in English, leaving open the possibility of ambiguity or inconsistency. We

present a formalization of a subset of the CSS2 speci�cation using constraints hierarchies to help

ensure that potential problems in the speci�cation are caught and corrected. We also comment on

the formalization process.



1 Introduction

1.1 Cascading Style Sheets

Cascading style sheets are a mechanism suggested by the World Wide Web Consortium (W3C) to

�x a fundamental problem with older versions of HTML | their inability to separate content and

appearance. By writing di�erent style sheets, Web users can change the appearance of a document

without ever having to edit the original document. The most recent version of cascading style sheets,

Cascading Style Sheets Level 2 (CSS2), gives both Web page designers and Web page viewers more

control over the font size, colors, and layout of pages than they had before.

The layout of pages in CSS2 is governed by a box model | hierarchical elements of a document are

laid out in nested boxes which govern the elements' sizes and locations. This model is similar to the

model used by T

E

X and many other layout packages. These boxes are subject to various constraints,

some speci�ed by the user and others speci�ed by the default behavior of the style sheets.

The W3C speci�cation for box layout in CSS2 describes the constraints in plain English, which

is useful for communicating the information to humans but can easily be ambiguous or contain

inconsistencies. Several members of W3C suggested that we look at the speci�cations for box layout

in CSS2 and formalize them to help remove any ambiguities or inconsistencies in the speci�cation.

1.2 Constraints

Constraints have long been used to describe properties of user interfaces that should be enforced,

such as ensuring that the left side of a window should always be to the left of the right side. Since

the wording of the CSS2 speci�cation was so constraint-like, constraints seemed like a natural way

of formalize the speci�cation. In particular, a constraint hierarchy seemed appropriate. A constraint

hierarchy is a set of constraints each of which has a strength associated with it indicating how

important it is that that constraint be satis�ed. Constraint strengths are modeled mathematically

as integers, but for convenience are often given symbolic names. For example, in the case of oating

boxes in CSS2, it is required that oating boxes do not appear before oating boxes that were

declared earlier in the document, there is a strong preference for a oating box to be as close as

possible vertically to where it was declared, and there is a weak preference for oating boxes to the

be as far to the left (or right, as the case may be) as possible.

In general, whenever a variable in CSS2 is declared, such as the minimum width of a paragraph

being 100 pixels or the width of a oating box being 200 pixels, we add a constraint indicating this

to the set of constraints in the constraint solver. Every box has constraints associated with it, even

ones that don't explicitly assign any values, since constraints also govern the behavior common to

all boxes. The only declaration that does not generate a constraint is the setting of a �eld to auto.

The CSS2 spec makes frequent use of a value called auto to represent the case when the rendering

engine should compute the value based on other information. It became apparent that having a

�eld set to auto did not involving adding any constraints, merely using the constraints already in

the constraint engine to compute that value.

One issue that comes up in computing the best solution to a set of constraints is determining which

error metric to use to decide between two potential solutions. Intuitively, a solution S is better than

solution T if both solutions match for some number of levels k, but on level k + 1 S has a smaller

error than T . For example, if T and S have the same error for the required and strong constraints,

but S has a smaller error for the weak constraints, then S is a better solution.

1



For the CSS2 constraints, we chose a locally error better metric, which means that for each constraint

at level k + 1 the error for S is less than or equal to the error for T , and for at least one of those

constraints the error of S is strictly less than the error for T . A locally predicate better metric, which

treats all constraints that are not satis�ed as having the same error, seemed inappropriate for this

domain, since it's better for a oating box to only be pushed down 5 lines instead of 50. It did not

seem necessary to use a global metric, in which the total error at each level is considered instead

the error of for each constraint, since in this domain each constraint should be satis�ed as well as

possible independently of the others, and since generally it is computationally more di�cult to �nd

global solutions to constraint hierarchies.

Refer to [1] for a more complete discussion of constraint hierarchies.

1.3 The Scope of This Document

This document attempts to formalize the part of the CSS2 spec concerned with box layout. In the

most recent version of the speci�cation, this information was contained in sections 8, 9, and 10.

However, not all information in sections 8 through 10 are described here. This document does not

describe border styles, background colors, or other attributes that do not a�ect the layout of boxes.

This document assumes that all information is locally available, and any conversion or inheritance

of values has already taken place. For example, it assumes that all height and width percentages

have been converted into pixel values. It also assumes that shorthands such as margin have been

expanded into their separate margin-top, margin-left, margin-right and margin-bottom declarations.

These sorts of conversions do not a�ect the �nal layout of the boxes; they are just shorthands to

aid the style sheet creator, and as such are not described in this document. For similar reasons, this

document assumes that `compact' and `run-in' boxes have already been resolved into `block' and

`inline' boxes. In addition, left-to-right layout is assumed for the sake of simplicity.

The constraints presented in this document are based on the speci�cation for Cascading Sytle Sheets,

Level 2 as presented in http://www.w3.org/TR/REC-CSS2-19980512, last edited on May 12, 1998 [2].

While this is intended to be the �nal version of the speci�cation, in case the speci�cation has evolved

since then, consult http://www.w3.org/TR for the most recent version of the \Cascading Style Sheets,

level (2) Speci�cation".

2 The Format of the Constraints

The constraints presented in this document contain both attributes, such as the width of a box, and

values, such as auto. For the remainder of this document, attributes that appear in running text will

be display in a monospaced font, while values and constraint strengths will be displayed in italics.

To avoid visual clutter, these items will not be typeset di�erent for constraints listed in tables.

The constraints in the following sections appear in the form:

8.1 req ref.TC - padding-top? = ref.TP

The �rst column indicates which section of the CSS speci�cation contains the English analogue of the

constraint, in this case, section 8.1. The second column indicates the strength of the constraint: req

(required), strong, medium, weak, or vweak (very weak). (An additional pseudo-strength, REMOVE,

indicates that a constraint should be removed from the engine instead of being added.)

2



The remainder of each line lists the actual relationship that should hold. A "?" after a variable

indicates that it is read-only [1]; the value of that variable may not be changed while attempting to

satisfy that constraint.

The constraints in this section make use of several terms to describe each node. Ref (short for

\reference box") describes the box that contains the current node. Actual describes where the box

is ultimately placed. This can be di�erent from ref if the box is positioned relatively. Previous refers

to the ref box of the most recent element in the document tree that is not absolutely positioned,

�xed, or a oat. Enclosing refers to the actual box that establishes the containing block for the

current node. The exact speci�cations are enumerated in section 10.1 of the CSS2 speci�cation,

but roughly speaking, enclosing refers to the viewport or the printed page for �xed boxes and the

current node's parent for other types of boxes.

In addition, the following edges are de�ned:

fT, L, R, Bg M = ftop, left, right, bottomg margin edge

fT, L, R, Bg B = ftop, left, right, bottomg border edge

fT, L, R, Bg P = ftop, left, right, bottomg padding edge

fT, L, R, Bg C = ftop, left, right, bottomg content edge

fT, L, R, Bg O = ftop, left, right, bottomg outer edge

fT, L, R, Bg I = ftop, left, right, bottomg inner edge

content edges and inner edges are synonymous (*C = *I)

border edges have no synonyms

padding edges and containing box edges are synonymous

margin edges and outer edges are synonymous (*M = *O)

3 The Constraints

3.1 Constraints for All Boxes

This section describes constraints that are applicable for all types of boxes.

A few terms used in the constraints of this section are de�ned here. Medium-width is the width in

pixels of a border that is declared `medium', a value that can vary from user agent to user agent.

Since boxes attempt to be big enough to hold whatever their content is, heightOfContent() is a

function that represents the height of whatever a box's contents are. In the case of inline boxes

this can get very complicated, and since this activity is beyond the scope of this paper we simply

represent it as an externally computed function. In essence, heightOfContent() is whatever the

height would be if the height were declared to be auto. WidthOfContent() is analogous, although it

usually only has a speci�c value if the element it describes is a replaced element.

The line `actual.* = ref.*?' indicates a strong preference for each attribute of the actual box to be

the same as the corresponding attribute of the ref box. Only for relatively and absolutely positioned

boxes and �xed boxes are these values di�erent.

8.1 req ref.TC - padding-top? = ref.TP

8.1 req ref.LC - padding-left? = ref.LP

8.1 req ref.RC + padding-right? = ref.RP

3



8.1 req ref.BC + padding-bottom? = ref.BP

8.1 req ref.TP - border-top? = ref.TB

8.1 req ref.LP - border-left? = ref.LB

8.1 req ref.RP + border-right? = ref.RB

8.1 req ref.BP + border-bottom? = ref.BB

8.1 req ref.TB - margin-top? = ref.TM

8.1 req ref.LB - margin-left? = ref.LM

8.1 req ref.RB + margin-right? = ref.RM

8.1 req ref.BB + margin-bottom? = ref.BM

8.1 req LC + width = RC

8.1 req TC + height = BC

8.1 medium height = heightOfContent()

8.1 medium width = widthOfContent()

8.3 vweak margin-top = 0

8.3 vweak margin-right = 0

8.3 vweak margin-bottom = 0

8.3 vweak margin-left = 0

8.4 vweak padding-top = 0

8.4 vweak padding-right = 0

8.4 vweak padding-bottom = 0

8.4 vweak padding-left = 0

8.5 vweak border-top-width = medium-width

8.5 vweak border-right-width = medium-width

8.5 vweak border-bottom-width = medium-width

8.5 vweak border-left-width = medium-width

9.3.1 strong actual.* = ref.*?

9.5 forall oating boxes fb to the left

req ref.LO >= fb.RB?

9.5 forall oating boxes fb to the right

req ref.RO <= fb.LB?

10.2 req width > 0

10.3 vweak left = 0

10.3 vweak right = 0

10.3 vweak top = 0

10.3 vweak bottom = 0

10.2 req height > 0

3.2 Line boxes

This section attempts to describe the behavior of boxes that are laid out horizontally from left-to-

right if possible, and if there is no room on the current row are then laid out on the next row. It

also models the fact that oats increase the margins of line boxes to ensure that the line boxes and

oating boxes do not overlap. These constraints use the external functions leftFloat(), which returns

the rightmost left-oating element on the current line, and rightFloat(), which returns the leftmost

right-oating element on the current line.

4



9.4.2 if (previous.RM + width + margin-left + margin-right

+ border-left + border-right + padding-left

+ padding-right <= enclosing.RP)

strong ref.LM = previous.RM?

strong ref.TM = previous.TM?

else

strong ref.TM = previous.BM?

strong ref.LM = 0

endif

9.5 strong ref.LM? + margin-left >= leftFloat().RM

9.5 strong ref.RM? - margin-right <= rightFloat().LM

3.3 Normally positioned block boxes

Much of this section describes the behavior of margins of normally positioned block boxes when

they collapse. The �rst set of constraints apply when only a set of top margins adjoin (i.e. at the

top of a document,) in which case the outermost top margin is set to the appropriate value and the

others are set to zero. The second set of constraints applies when both top and bottom margins or

only bottom margins adjoin (i.e. at the middle or end of a document.) In this case the outermost

bottom margin is set to the appropriate value, and the others are zeroed out.

In this section, fAMg (\adjoining margins") is the set of all adjoining margins at a location that

do not involve oating or absolutely positioned boxes. The function maxpos returns the positive

element of a set which has the greatest absolute value, and maxneg returns the negative element of

a set with the greatest absolute value.

8.3.1 if (TM is part of adjoining margin && previous == null)

req ref.TM = maxpos(AM) + maxneg(AM)

else if (TM is part of adjoining margin)

req ref.TM = 0

endif

8.3.1 if (BM is part of adjoining margin && BM is outermost)

req ref.BM = maxpos(AM) + maxneg(AM)

else if (BM is part of adjoining margin)

req ref.BM = 0

endif

9.4.1 strong ref.TM = previous.BM?

9.4.1 strong ref.LM = enclosing.LC?

10.3.3 strong margin-left + border-left-width + padding-left + width +

padding-right + border-right-width + margin-right = enclosing.width

10.3.3 weak margin-left = margin-right

10.6.3 strong margin-top + border-top-width + padding-top + height +

padding-bottom + border-bottom-width + margin-bottom = enclosing.height

10.6.3 weak margin-top = margin-bottom

5



3.4 Position-based constraints

These constraints describe the various e�ects that positioning a box has on its layout.

position: relative

9.3.2 req actual.TO = ref.TO? + top?

9.3.2 req actual.LO = ref.LO? + left?

9.3.2 req actual.RO = ref.RO? - right?

9.3.2 req actual.BO = ref.BO? - bottom?

position: absolute jj position:�xed

9.3.2 req actual.TO = enclosing.TO? + top?

9.3.2 req actual.LO = enclosing.LO? + left?

9.3.2 req actual.RO = enclosing.RO? - right?

9.3.2 req actual.BO = enclosing.BO? - bottom?

10.3.7 strong left + margin-left + border-left-width + padding-left +

width + padding-right + border-right-width + margin-right + right = enclosing.width?

10.3.7 weak margin-left = margin-right

10.6.4 strong top + margin-top + border-top-width + padding-top +

height + padding-bottom + border-bottom-width + margin-bottom + bottom = enclosing.height?

10.6.4 weak margin-top = margin-bottom

3.5 Floats

This section describes the constraints that govern the placement of oats. The constraints for both

left- and right-oating boxes are enumerated for the sake of completeness, although the constraints

for both are very similar. The nine constraints for each type of box follow exactly the nine rules

listed in section 9.5.1 for oating box layout.

oat:left

9.5.1 req ref.LO >= enclosing.LP?

9.5.1 req ref.LO >= lf.RO? or

ref.TO >= lf.BO?

9.5.1 for all right-oating boxes rf to the right,

req ref.RO <= rf.LO?

9.5.1 ref.TO >= enclosing.TI?

9.5.1 for all previous block-level or oated box elements pb,

req ref.TO >= pb.TO?

9.5.1 for all previous line box elements pl,

req ref.TO >= pl.TO?

9.5.1 if (ref.LO > enclosing.LI)

req ref.RO <= enclosing.RI?

9.5.1 medium ref.TO = 0

9.5.1 weak ref.LO = 0

oat: right

6



9.5.1 req ref.RO <= enclosing.RP?

9.5.1 req ref.RO<=rf.LO or

ref.TO >= lf.BO?

9.5.1 for all left-oating boxes lf to the left,

req ref.LO >= lf.RO?

9.5.1 ref.TO >= enclosing.TI?

9.5.1 for all previous block-level or oated box elements pb,

req ref.TO >= pb.TO?

9.5.1 for all previous line box elements pl,

req ref.TO >= pl.TO?

9.5.1 if (ref.RO < enclosing.RI)

req ref.LO >= enclosing.LI?

9.5.1 medium ref.TO = 0

9.5.1 weak ref.LO = 0

3.6 Clear

Any box can be declared to clear left, right, or both, meaning that oating boxes cannot appear to

the left, right, or either side of that box, respectively. This section lists the constraints enforcing

this property.

clear: left jj clear: both

9.5.2 forall previous left-oating boxes lb

req ref.TO >= lb.BO?

clear: right jj clear: both

9.5.2 forall previous right-oating boxes rb

req ref.TO >= rb.BO?

3.7 Other constraints

This section describes miscellaneous, usually simple-to-describe constraints not covered elsewhere.

In this section, value refers to the numeric value that was used in the attribute declaration. For

example, if the line \margin-left = 10" were declared in a document, value would have the value 10.

Since value is a constant and not an actual variable, it is not explicitly listed as read-only, even its

value would never changes.

margin-ftop,bottomg: value

8.3 strong margin-ftop,bottomg = value

10.6.4 REMOVE margin-top = margin-bottom

margin-fleft,rightg: value

7



8.3 strong margin-fleftg = value or

medium margin-right = value

10.3.3 REMOVE margin-left = margin-right

padding-ftop,right,bottom,leftg: value

8.4 strong padding-ftop,right,bottom,leftg = value

border-ftop,right,bottom,leftg-width: value

8.5 strong border-ftop,right,bottom,leftg-width = value

ftop, left, right, bottomg: right

9.3.2 strong ftop, left, right, bottomg = value

z-index: value

9.9 strong z-index = value

width: value

10.4 strong width = value

max-width: value

10.4 req width <= value

min-width: value

10.4 req width >= value

height: value

10.5 strong height = value

max-height: value

10.5 req height <= value

min-height: value

10.5 req width >= value

4 Conclusions and Future Work

The process of translating the CSS2 speci�cation into constraints was very helpful, and revealed

several ambiguities in the speci�cation and sections where the behavior was underspeci�ed, such as

8



the behavior when left was de�ned to be auto but width and right were not.

These constraints could be made even more useful by by adding them to a constraint solver. This

would create a simulation of the CSS2 speci�cation instead of merely a formalization, and would be

an easy way of checking for errors within the constraints listed in this document and for discrep-

ancies in the original speci�cation. This would be especially useful for future versions of Cascading

Style Sheets, enabling the designers of future versions of the speci�cation to easily test proposed

modi�cations.

Some work needs to be done before this can happen. The constraints in this document currently

rely on several external functions whose behaviors need to be speci�ed before the constraints could

actually be solved. In particular, this document does not address the packing of inline elements into

line boxes, an issue that needs to be addressed in greater detail.

The two short-term additions to this document that would be the most helpful would be completing

the constraints listed herein and adding constraints to describe tables. The CSS2 speci�cation

changed while this document was being created, and some sections, such as 10.3 and 10.6, were

radically changed. As a result, the constraints describing these sections are incomplete. Section 17

of the CSS2 speci�cation, the section describing tables, was also evolving rapidly, and as a result we

did not even attempt to formalize the behavior of tables. This would be a worthwhile project, since

the behavior of tables is very complicated and somewhat confusing.

The treatment of oats in this document is somewhat cumbersome, and there may be more e�cient

ways of structuring the constraints for oating boxes. This touches on the general problems of

determining when constraints are the best formalism and when other formalisms should be used,

and determining how to combine the di�erent formalisms in simulation. While constraints have been

quite helpful in describing the CSS2 speci�cation in many sections, there are other sections where

constraints do not seem appropriate.

Despite the inadequacies of this document, we believe that the constraints listed herein are a useful

�rst step in modeling the behavior of Cascading Style Sheets Level 2, and that a small amount of

additional work could provide those interested in Cascading Style Sheets with an easy mechanism for

simulating changes to the speci�cation. We hope that these constraints will prove useful to designers

of future versions of Cascading Style Sheets, and to anyone who is interested in the issues inherent

in Web page layout.

5 Acknowledgments

The author would like to thank Alan Borning at the University of Washington for providing infor-

mation about constraint hierarchies and for helping to edit this paper. He would also like to thank

H�akon Lie and Ian Jacobs at the World Wide Web Consortium for answering the author's questions

about the Cascading Style Sheet Level 2 speci�cation. This project has been funded in part by the

National Science Foundation under Grant IRI-9302249.

References

[1] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and

Symbolic Computation, 5(3):223{270, September 1992.

9



[2] Bert Bos, H�akon Lie, Chis Lilley, and Ian Jacobs. Cascading style sheets, level 2 speci�cation.

http://www.w3.org/TR/REC-CSS2/.

10


