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Abstract: The emergence of fast, cheap embedded
processors presents the opportunity for processing to
occur on the network adapter. We are investigating how a
system design incorporating such an intelligent network
adapter can be used for applications that benefit from
being tightly integrated with the network subsystem. We
are developing a safe, extensible operating system, called
SPINE, which enables applications to compute directly on
the network adapter. We demonstrate the feasibility of our
approach with two applications: a video client and an
Internet Protocol router. As a result of our system
structure, image data is transferred only once over the I/O
bus and places no load on the host CPU to display video
at aggregate rates exceeding 100 Mbps.  Similarly, the IP
router can forward roughly 10,000 packets per second on
each network adapter, while placing no load on the host
CPU. Based on our experiences, we describe three
hardware features useful for improving performance.
Finally, we conclude that offloading work to the network
adapter can make sense, even using current embedded
processor technology.

1 Introduction
Many I/O intensive applications such as multimedia

clients, file servers, and host based IP routers, move large
amounts of data between devices and, therefore, place
high I/O demands on both the host operating system and
the underlying I/O subsystem. Although technology
trends point to continued increases in link bandwidth,
processor speed, and disk capacity, the lagging
performance improvements and scalability of I/O busses
is creating a performance gap that is increasingly
becoming apparent for I/O intensive applications.

The exponential growth of processor speed relative to
the rest of the I/O system does however present an
opportunity for application processing to occur directly on
intelligent I/O devices. Several network adapters, such as
Myricom’s LANai, Alteon’s ACEnic, and I2O systems,
provide the infrastructure to compute on the device itself.
With cheap, fast embedded processors (e.g., StrongARM,
PowerPC, MIPS) used by intelligent network adapters,
the challenge is not so much in the hardware design as in
a redesign of the software architecture needed to match
the capabilities of the hardware. In particular, there needs
to be a clean framework to move application processing
directly onto the network adapter, and thereby reduce I/O
related data and control transfers to the host system to
improve overall system performance.

This paper explores such a redesign at two levels. At
one level, we are investigating how to migrate application
processing onto the network adapter. Our approach is
empirical: we begin with a monolithic application and
move components of its I/O specific functionality into a
number of device extensions, that are logically part of the
application, but run directly on the network adapter. At
the next level, we are defining the operating system
interfaces that enable applications to compute on an
intelligent network adapter. Our operating system services
uses two technologies previously developed as a
springboard: applications and extensions communicate
via a message-passing model based on Active Messages
[1], and, the extensions run in a safe execution
environment, called SPINE, that is derived from the SPIN
operating system [2].

The SPINE software architecture offers the following
three features that are key to the efficient implementation
of I/O intensive applications:
•  Device-to-device transfers.  Avoiding unnecessary

indirection through host memory reduces memory
bandwidth as well as bandwidth over a shared I/O
bus. Additionally, intelligent devices can avoid
unnecessary control transfers to the host system as
they can process the data before transferring it to a
peer device.

•  Host/Device protocol partitioning. Servicing
messages in the adapter can reduce host overhead and
latency, and increase message pipelining, resulting in
better performance.

•  Device-level memory management.  Transferring data
directly between buffers on the device and the
application's virtual address space reduces data
movement and improves system performance.

There are a number of I/O intensive applications and
system services that benefit from the use of these features.
For example, cluster based storage management [3],
multimedia applications [4, 5], and host based IP routers
[6], benefit from being able to transfer data directly
between devices in an application-specific manner.
Host/Device protocol partitioning has been shown to be
beneficial for application-specific multicast [7] and
quality of service [8], and it may be useful for distributed
memory management systems [9, 10]. Finally, device-
level memory management has been investigated in the
context of cluster-based parallel processing systems [11-
13], which all require application-specific processing on
the network adapter. The goal of SPINE is to provide an
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execution environment to support a multitude of
applications that benefit from being tightly integrated
with the network subsystem.

The rest of this paper is organized as follows. In Section
2 we discuss the technology trends that argue for the
design of smarter I/O devices. In Section 3 we describe
the software architecture of SPINE. In Section 4 we
discuss SPINE’s programming philosophy of splitting
applications between the host and I/O subsystem. In
Section 5 we describe example applications that we have
built using SPINE. In Section 6 we evaluate the
performance of SPINE’s message-driven architecture. In
Section 7 we describe hardware enhancements for
intelligent network adapters that are beneficial for a
variety of applications. In Section 8 we review related
work, and in Section 9 we present some conclusions
drawn from our current experience.

2 Technology Trends Argue for Smarter
I/O Devices

System designers tend to optimize the CPU’s interaction
with the memory subsystem (e.g., deeper, larger caches,
and faster memory busses) while ignoring I/O. Indeed,
I/O is often the “orphan of computer architecture” [14].
For example, Sun Microsystems significantly improved
the memory subsystem for its UltraSparc workstations
over older generation Sparcs, yet neglected to improve its
I/O bus (the SBUS).

Historically, I/O interconnects (primarily busses or
serial lines) have been orders of magnitude faster than the
attached I/O devices. However, existing high-
performance devices such as Gigabit Ethernet and Fibre-
Channel Arbitrated Loop can saturate the bus used in
commodity systems. Consequently, fewer bus cycles are
available for extraneous data movement into and out of
host memory.

The standard speeds and bus widths necessary for open
I/O architectures, such as 33 MHz x 32bits for PCI, often
negate the performance improvements of using a faster
host CPU for I/O intensive applications. The host CPU
stalls for a fixed number of bus cycles when accessing a
PCI device via programmed I/O regardless of its internal
clock rate. As internal processor clock rates increase, the
relative time wasted due to stalls accessing devices over
the bus grows larger. For example, a 400 MHz Pentium
will stall for the same number of PCI bus cycles as a 200
MHz Pentium, but will waste twice as many processor
cycles in the process.

Embedded I/O processors have traditionally been
substantially slower compared to processors used in host
systems. However, with the concession of the PC and
workstation market to x86 processors, many processor
manufactures are aggressively pursuing the embedded
systems market. As a result, inexpensive yet high-
performance processors (e.g., StrongARM, MIPS, and

PowerPC) are finding their way into intelligent I/O
devices. An important technology characteristic of these
embedded processors is that the processor core and I/O
functions are often integrated into a single chip. Programs
running on the resulting I/O processor have much faster
access to I/O hardware, such as DMA engines, FIFOs and
network transmit/receive support, than if they were
running on the main CPU.

Although the placement of additional functionality onto
the I/O device may require more memory to hold
application-specific code and data, technology trends
point to increasing memory capacity per dollar for both
DRAM and SRAM. It is not far fetched to envision I/O
device designs that can incorporate up to 64Mbytes of
device memory for both logic and buffering.

Considering these technology trends we conjecture that
smart I/O devices will rapidly find their way into high
volume server systems and eventually client systems.  In
fact, recent industrial efforts (I2O disk controllers and
LAN devices, Intel's smart Ethernet adapter, and Alteon's
gigabit Ethernet adapter) corroborate our conjecture for
smarter I/O devices.

This motivates us to develop a software architecture that
aims at exploiting the hardware potential of such devices.

3 SPINE Software Architecture
Introducing application-specific code to execute on an

intelligent adapter raises many questions. How is code
loaded onto the adapter? How and when does it execute?
How does one protect against bugs? How does this code
communicate with other modules located on the same
adapter, peer adapters, remote devices, or host-based
applications spread across a network?

We address these questions using technology derived
from the SPIN operating system and communication
technology from the NOW project to design an extensible
runtime environment, called SPINE. SPINE provides a
Safe Programmable and Integrated Network Environment.

SPINE extends the fundamental ideas of the SPIN
extensible operating system -- type-safe code downloaded
into a trusted execution environment -- to the network
adapter. Extensibility is important, as we cannot predict
the types of applications that may want to run directly on
the network adapter. Specifically, SPINE has three
properties that are central to the construction of
application-specific solutions:
•  Performance. SPINE extensions run in the same

address space as the firmware, resulting in low-
overhead access to system services and hardware.
Extensions may directly transfer data using device-
to-device DMA and communicate via peer-to-peer
message queues. Overall system performance can be
improved by eliminating superfluous I/O related
control and data transfers.
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•  Runtime Adaptation and Extensibility. SPINE
extensions may be defined and dynamically loaded
onto an intelligent I/O device by any application.

•  Safety and Fault Isolation. SPINE extensions may
not compromise the safety of other extensions, the
firmware, or the host operating system.  Extensions
are isolated from the system and one another through
the use of a type-safe language, enforced linking, and
defensive interface design.

The following subsections describe the system in
greater detail.

3.1 SPINE System Structure
The SPINE system structure is illustrated in Figure 1.

To program intelligent adapters requires operating system
support both on the host and on the I/O processor.  SPINE
is split across the network adapter and the host into I/O
and OS runtime components, respectively.  An
application defines code to be loaded onto the network
adapter as a SPINE extension.

The SPINE OS runtime interfaces with the host
operating system’s device and virtual memory
subsystems. It provides a consistent interface across
operating system platforms to SPINE’s user-level
communication library as well as SPINE’s dynamic
linker/loader. Applications inject extensions onto the
adapter using SPINE’s dynamic linker, and send messages
directly to extensions via a memory mapped FIFO using
SPINE’s communication library. The OS runtime
currently works in the context of Linux and Windows NT.

The SPINE I/O runtime used on the network adapter is a
small operating system that controls the underlying device
and provides an execution environment to extensions. The
I/O runtime exports a set of internal and external
interfaces. Internal interfaces are used by extensions that
are loaded onto the network adapter, and consist of

support for messaging, safe access to the underlying
hardware (e.g., DMA controllers), and a subset of the
Modula-3 interface. As illustrated by the solid arrows in
Figure 1, the external interface consists of message FIFOs
that enable user-level applications, peer devices, and
kernel modules to communicate with extensions on the
network adapter using an active message style
communication layer.

3.2 A Message-Driven Architecture
The primary purpose of a network adapter is to move

messages efficiently between the system and the network
media. The network adapter’s basic unit of work is thus a
message. To efficiently schedule messages and the
associated message processing, our operating system uses
a message driven scheduling architecture, rather than the
process or thread-oriented scheduling architecture found
in conventional operating systems. The primary goal is to
sustain three forms of concurrent operation: host-to-
adapter message movement, message processing on the
adapter, and adapter-to-network message movement. In
SPINE the message dispatcher manages these concurrent
operations.

An intelligent network adapter not only moves data; it
reacts and applies transformations to it as well. On
message arrival, the adapter may have to operate on the
data in addition to moving it. This style of processing is
captured well by the Active Message [1] programming
model, which we use to program SPINE extensions on the
network adapter. Briefly, an Active Message is a message
that carries data as well as an index to a code sequence to
execute on message arrival. The code sequence is called a
handler. Every message in the system must carry an index
to a handler. SPINE extensions are thus expressed as a
group of active message handlers. On message arrival, the
SPINE dispatcher can route messages to the host, a peer
device, over the network, or invoke an active message
handler of a local SPINE extension.

The two goals of handler execution and rapid message
flow implies that handlers must be short-lived. Thus, the
“contract” between the SPINE runtime and extension
handlers is that the handlers are given a small, but
predictable time to execute. If a handler exceeds the
threshold it is terminated in the interests of the forward
progress of other messages. Long computations are
possible, but must be expressed as a sequence of handlers.
The premature termination of handlers opens a Pandora’s
box of safety issues that we address in the next section.

All handlers are invoked with exactly two arguments: a
context variable that contains information associated with
the handler at installation time; and, a pointer to the
message that contains the data as well as control
information specifying the source and type of the
message.  There are two types of messages: small
messages and bulk messages. Small messages are

user
kernel

host
I/O

Application

SPINE
OS runtime

SPINE
Extension

VM

devices

SPINE
I/O runtime

Peer

M3 DMA

NET

Mem. Sched.Network

Figure 1. Spine System Structure. An Application
dynamically loads SPINE extensions onto an I/O device (see
dashed arrow) to avoid unnecessary control/data transfer
across the host I/O bus boundary. Messages may be sent to
or received from the network, user-level applications, kernel
modules, or peer devices (see solid arrows).
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currently 256 bytes total, of which 240 bytes can be used
to hold arbitrary user arguments.  Bulk messages are
similar to small messages, but contain a reference to a
data buffer managed by the SPINE I/O runtime. The
handler associated with the message is invoked only after
all of the data for the message has arrived.

To increase the amount of pipelining in the system,
message processing is broken up into a series of smaller
events.  These events are internally scheduled as active
messages, which invoke system provided handlers. Thus,
only a single processing loop exists; all work is uniformly
implemented as active messages. We document the
performance of these internal messages, and thus the
throughput and latency of the SPINE I/O runtime, in
Section 6.

3.3 A Controlled Execution Environment
The choice of our execution environment was dictated

by two design goals. First, we wanted to support
programmable network adapters whose processor
architecture does not support multiple address spaces.
Second, we wanted to invoke application-specific code in
response to messages with low overhead. These two goals
led to a single address space design.

To safely run user provided extensions in a single
address space, the system needs to guard against wild
memory references, jumps to arbitrary code, and
excessive execution time. Our approach is to run
extensions in a controlled execution environment that is
enforced using a combination of language, runtime, and
download-time mechanisms, as described in the following
three subsections.

3.3.1 Enforcing Memory Safety
User provided extensions are written in a type-safe

language, which enables extensions and the SPINE I/O
runtime to safely execute in the same address space, as it
provides strong guarantees of protection from imported
code. In particular, a program cannot access or jump to
arbitrary memory locations, and cannot use values in
ways not prescribed by the language.

As our type-safe language we are using a version of
Modula-31 that has been enhanced to support efficient,
low-level, systems code. Hsieh et al. [16, 17] describes
these language enhancements in further detail.

SPINE and its extensions use the following two
Modula-3 language enhancements: type safe casting and
isolation from untrusted code.  The former allows data
created outside of the language to be given a Modula-3

                                                       
1 Although Modula-3 [15] is less popular compared to Java, it
enables us to focus on system design issues using a high-level
language rather than on interpretation efficiency. The two
languages are sufficiently similar that results from our research
may be applicable to Java once a good compiler for it exists.

type, thereby enabling extensions to safely interpret
message data using aggregate types (e.g., a record
describing the layout of a packet header). The latter
allows a caller to isolate itself from runtime exceptions
(e.g., nil dereferences and divide by zero) as well as the
capability to terminate the execution of (potentially
malicious) long running extensions. We have previously
used these mechanisms for similar purposes in the context
of an extensible protocol architecture for application-
specific networking [18].

3.3.2 Guarding Against Excessive
Execution Time

To prevent a misbehaving active message handler from
stalling the system, it is necessary to asynchronously
terminate such a handler. Before invoking an extension
handler, the runtime sets a watchdog timer interrupt. If the
watchdog timer expires, the runtime aborts the currently
running handler and returns control to the system. This
simple timeout mechanism enables the system to make
forward progress even in the presence of malicious
handlers.

It is impossible, though, for the system to determine
whether a handler that exceeds its execution time is
simply faulty or intentionally malicious. One could
imagine maintaining statistics on how often a particular
handler exceeds the system threshold and avoid executing
it for future messages. However, we have not
experimented with such policies. For applications that we
have implemented so far, the timeout value can be safely
set as low as 10 microseconds.  However, for future
applications this timeout value may be too low. We are
still investigating what a reasonable watchdog timeout
value is in general.

Although preventing excessive run time of handlers
guarantees forward progress of the system, obliviously
terminating handlers introduces a new problem:
unchecked handler termination could damage system state
or other extensions. For example, a terminated handler
cannot be allowed to hold locks or insert into system
linked lists. These types of operations may leave the
application or the system in an inconsistent state if
terminated arbitrarily.

Our approach is to explicitly label extension procedures
with a special EPHEMERAL type. The semantics of an
EPHEMERAL procedure is that it may be terminated at
any point in time. An obvious restriction on ephemeral
procedures is that they can only call other ephemeral
procedures.

This type-modifier enables SPINE to rely on compile
checks to ensure that the system can tolerate premature
termination of active message handlers. SPINE carefully
defines a subset of its interfaces as ephemeral and others
as non-ephemeral. In addition, Modula-3’s LOCK
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statement and other non-ephemeral language constructs
are also defined as non-ephemeral.

 Figure 2 illustrates the use of EPHEMERAL in the
context of SPINE.  At the top of the figure is the system
interface to install active message handlers, called
AddHandler. Extensions using this interface must
provide as an argument a procedure whose type is
HandlerProc that is defined as an ephemeral procedure
type. The bottom of Figure 2 shows the use of the
AddHandler interface. Providing a non-ephemeral

procedure as an argument, for example, will result in a
type mismatch and the code will be rejected at compile
time. Also shown in Figure 2 is a compile-time error in
the body of an ephemeral procedure, IllegalHandler.
This procedure will result in a compilation error, because
it is typed as EPHEMERAL, but makes a call to a non-
ephemeral procedure.

Both GoodHandler and InfiniteHandler are valid
ephemeral procedures that can be installed as active
message handlers. InfiniteHandler, though, when
invoked by the system will execute an infinite loop and
not return control. However, since it is defined as an
ephemeral procedure, the system may safely abort such a
procedure at any time.

The use of ephemeral however does not prevent an
application from harming itself.  For example, an
extension may synthesize its own lock, thereby potentially
causing it to deadlock on itself. We do not expect this to
be a problem, as EPHEMERAL serves as a reminder that
little should be done within an ephemeral procedure.
More importantly, EPHEMERAL prevents an application
from harming other extensions or the system, which is our
primary goal.

3.3.3 Safe Code Installation
Code installation is solved by SPINE’s dynamic linker,

which accepts extensions implemented as partially
resolved object files. The linker resolves any unresolved
symbols in the extension against logical protection
domains [2] with which the extension is being linked. A
logical protection domain (henceforth referred to simply
as a domain) defines a set of visible interfaces that
provide access to procedures and variables. This is similar
to a Java class name space. The I/O runtime and
extensions exist within their own domains and export
interfaces that may be used by other extensions. If an
extension imports an interface not contained within the set
of domains that it has access to, then the extension will be
rejected by the system at download-time. This mechanism
prevents extension code from accessing low-level system
functionality or state that it could use to violate system
safety. Sirer et al. [19] describes the name space
management provided by domains and safe dynamic
linking in further detail.

To economize network adapter resources, the dynamic
linker implementation as well as domain and symbol table
information is left on the host system.  Only code/data
sections are downloaded onto the adapter. As a result, the
network adapter has more resources for the application, as
memory is not consumed by the linker or by a potentially
large symbol table. This approach is not new; Linux and
various embedded systems use similar technology.

Finally, the SPINE linker assumes that digital signatures
can be used to ensure that a trusted compiler created the
object code for an extension, as in the Inferno system

(** Interface to install AM handlers **)
TYPE HandlerProc = EPHEMERAL
 PROCEDURE (message: Msg;
            context: Context);

PROCEDURE AddHandler(
            handler: HandlerProc;
            hNumber: HandlerNum;
            context: Contex):BOOLEAN;

(**** User Provided Extension Code ****)
EPHEMERAL PROCEDURE
  GoodHandler(m:Msg; c:Context)=
 BEGIN
  (* Process message and return. *)
 END GoodHandler;

(* This procedure will be terminated *)
EPHEMERAL PROCEDURE
 InfiniteHandler(m:Msg; c:Context)=
 BEGIN
  WHILE TRUE DO (* infinite loop *) END;
 END InfiniteHandler;

(* This procedure is not EPHEMERAL *)
PROCEDURE NonEphemeral(m:Msg) =
 BEGIN
  LOCK myExtensionMutex DO ... END;
END NonEphemeral;

(* This procedure will not compile as *)
(* it calls a non-ephemeral procedure *)
EPHEMERAL PROCEDURE
  IllegalHandler(m:Msg; c:Context)=
 BEGIN
  NonEphemeral(m);
 END IllegalHandler;

PROCEDURE Init() = BEGIN
 AddHandler(IllegalHandler, 5, NIL);
 AddHandler(GoodHandler, 6, NIL);
 AddHandler(InfiniteHandler, 7, NIL);
END Init;

Figure 2. Example uses of EPHEMERAL.  Active
message handlers in SPINE are defined as ephemeral and
installed using the systems AddHandler interface. The
compiler will generate an error when compiling
Illegalhandler since it calls a procedure that is not
ephemeral.
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[20]. In the future, it may be possible to use Proof
Carrying Code [21] generated by a Certifying Compiler
[22] to ensure that extensions are type-safe.  In either
case, a dynamic check is necessary by the SPINE linker to
ensure that compile-time restrictions (such as type safety)
are obeyed by the submitted object code.

3.4 Memory Management
To simplify resource management, extensions may not

allocate memory dynamically.  Instead, at initialization
time an application defined memory region is allocated by
SPINE, which may be used by the extension as a scratch
area to hold application-specific information. However,
there are two resources (data buffers and messages) that
require dynamic resource management. Data buffers and
messages are created for extensions on message arrival,
and careful management is required to reclaim these
resources safely from extensions.

Data buffers are used as the source/sink of data transfers
operations (such as DMA and programmed I/O) and may
refer to local memory, peer device memory, or host
memory. Messages provide the means to communicate
between extensions on peer adapters, remote devices, or
host-based applications spread across a network, and may
contain references to data buffers.  These two resources
are named by type-safe references that cannot be forged
by an extension (e.g., an extension cannot create an
arbitrary memory address and either DMA to or from it).
Extensions gain access to messages and data buffers
through system interfaces. For example, an active
message handler is passed a message as an argument,
which may contain a reference to a data buffer.

We are still investigating how to properly manage these
resources in an extensible system.  At one level, the
system cannot depend on extensions to correctly release
messages or data buffers for reuse (e.g., a buggy
implementation may simply fail to do so). Our approach
for this is to use a reference counting garbage collector
that returns unused messages and data buffers to the
system pool as soon as possible. At another level, the
system may need to forcefully reclaim resources from
extensions. We are investigating language level support,
similar to ephemeral procedures, in order to
asynchronously reclaim resources safely from extensions.

3.5 Summary
Enabling application-specific processing to occur on the

network adapter places unique requirements on the
operating system in terms of performance and safety. We
address these requirements by combining technology
from two independent projects. From the NOW project,
the Active Message programming model defines how
applications may process messages on the adapter. From
the SPIN project, the use of a type-safe language and

enforced linking ensures that applications cannot violate
system safety on the adapter.

The key idea in SPINE is to partition an application into
a host-resident component and an adapter-resident
component. When and how this should be done is the
topic of the next section.

4 SPINE Programming Philosophy
In an asymmetric multiprocessing system such as

SPINE, the development of applications raises several
serious questions. When does it make sense for the
programmer to spend the effort to break up the
application into a mainline program and extensions? How
can a small set of helpers residing on I/O devices be of
any use? What functions should be offloaded to the I/O
processor, and which are best left on the host?

Often, the relative advantages of the different types of
processors provide a clear path to a logical partitioning.
The processor on the I/O device has inexpensive access to
data from the communications media, while access to data
in main memory, and the host processor’s caches, is
costly. The circumstances are reversed from the host
processor perspective. As a result of this “inverted
memory hierarchy”, code that frequently accesses data
from the media should be placed on the device. However,
the price of this quick access to the bits coming off the
media is limited memory size, processing power and
operating environment. Clearly, if much of the host OS
functionality for an extension must be duplicated on the
device, the potential benefits of using an intelligent
adapter may not be realized.

The asymmetric nature of the SPINE model thus leads
to a methodology where the programmer looks for
portions of the application where data movement into host
memory is unnecessary (e.g., a video client) or control
transfers among devices are frequent (e.g., an IP router) to
become extensions to the network adapter. Complex
portions of the application, such as the routing protocol or
interactions with operating system services (e.g., file
system or the GUI), should remain on the host system.

5 Example Applications
We have implemented a number of SPINE-based

applications on a cluster of Intel Pentium Pro
workstations (200MHz, 64MB memory) each running
Windows NT version 4.0.  Each node has at least one
Myricom network adapter (LANai) on the PCI bus,
containing 1MB SRAM card memory, a 33 MHz
“LANai” processor, with a wire rate of 160MB/s.  The
LANai processor is a general-purpose processor that can
be programmed with specialized control programs and
plays a key role in allowing us to experiment with moving
system functionality onto the network adapter.

We discuss two example applications that showcase
application-specific extensions on an intelligent network
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adapter. The first extension is a video client that transfers
image data from the network directly to the frame buffer.
The second extension implements IP forwarding support
and transfers IP packets from a source adapter to a
destination adapter using peer-to-peer communication.
The next two subsections describe these applications in
more detail.

5.1 Video Client Extension
Using SPINE, we have built a video client application.

The application defines an application-specific video
extension that transfers video data arriving from the
network directly to the frame buffer. The video client runs
as a regular application on Windows NT. It is responsible
for creating the framing window that displays the video
and informing the video extension of the window
coordinates. The video extension on the network adapter
maintains window coordinate and size information, and
DMA transfers video data arriving from the network to
the region of frame buffer memory representing the
application’s window. The video client application
catches window movement events and informs the video
extension of the new window coordinates.

The implementation of the video extension running on
the network adapter is simple.  It is roughly 250 lines of
code, which consists of functions to: a) instantiate per-
window metadata for window coordinates, size, etc., b)
update the metadata after a window event occurs (e.g.,
window movement), and c) DMA transfer data to the
frame buffer. These functions are registered as active
message handlers with the SPINE I/O runtime, and are
invoked when a message arrives either from the host or
the network.

 Figure 3 depicts the overall structure in more detail.
The numbered arrows have the following meaning:
1. The video application loads extensions onto the card.
2. Packets containing video arrive from the network.
3. SPINE dispatches the packet to the video extension.
4. The video extension transfers the data directly to the

frame buffer, and the video image appears on the
user’s screen.

Using this system structure the host processor is not
used during the common case operation of displaying
video to the screen. In our prototype system we’ve been
able to support several video streams on a single host,
each at sustained data rates of up to 40 Mbps, with a host
CPU utilization of zero percent for the user-level video
application. Thus, regardless of the operating systems I/O
services and APIs, we can achieve high-performance
video delivery.

Although the LANai’s DMA engines can move large
quantities of data, its LANai processor is too slow to
decode video data on the fly. The LANai is roughly
equivalent to a SPARC-1 processor (i.e., it represents
roughly 10 year old processor technology). Consequently,
our video server takes on the brunt of the work and
converts MPEG to raw bitmaps that are sent to the video
client. Thus the video extension essentially acts as an
application-specific data pump; taking data from the
network and directly transferring it to the right location of
the frame buffer. We expect fast, embedded processors to
be built into future NICs that will enable on-the-fly video
decoding, or one could use a graphics card that supports
video decoding in hardware to avoid decoding on the
NIC.

A key limitation of SPINE extensions that programmers
must be aware of is that frequent synchronization between
host and device-based components is expensive. In our
original implementation of the video client the movement
of a window on the host was not synchronized with the
transfer of data from the network adapter to the frame
buffer.  Consequently, a few lines of image data would
appear in locations of the screen where the window was
prior to being moved. A work-around was to simply pause
the video updates during window movement. However,
an ideal solution would require the host and video
extension to maintain the same view of new window
coordinates at all times.

5.2 Internet Protocol Routing
We have built an Internet Protocol (IP) router based on

SPINE. Fundamentally, an IP router has two basic
operations.  First, a router participates in some routing
protocol (e.g., OSPF or BGP) with a set of peer routers.
Second, a router forwards IP packets arriving from one
network to another network. A busy router processes
route updates roughly once a second, which is a
computationally expensive operation.  However, in the
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Figure 3. Network Video. The video extension transfers
data from the network directly to the frame buffer, which
reduces I/O channel load, frees host resources, and reduces
latency to display video from the time it arrives from the
network.
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common case a router spends its time forwarding
anywhere from 103 to 106 IP packets per second, which is
an I/O intensive operation.  Therefore it makes sense to
leave the route processing on the host and migrate the
packet forwarding function to the I/O card. This design is
not uncommon, as many high-end routers (e.g., Cisco
7500 series) use specialized line cards that incorporate an
IP forwarding engine and a centralized processor to
handle route updates.

Figure 4 illustrates the overall architecture of the router
that we built using SPINE. The first thing to note is that it
is quite similar to the SPINE video client. The router
application on the host loads the IP routing extensions
onto the network adapters (label 1) and initializes the
forwarding table. IP packets arriving from the network are
dispatched to the router extension, which determines how
to forward packets by looking into the IP forwarding
table.  If the packet should be forwarded to another
network adapter (label 2), then the router extension can
use the peer-to-peer communication support provided by
SPINE. In SPINE peer communication is transparently
sent over the PCI or the Myrinet switch fabric. If the IP
packet is intended for the host, then it is handed to the
operating system’s networking stack (label 3). The router
demonstrates the distributed systems nature of SPINE.
That is, extensions can communicate with the host, peer
devices, or via the network.  

Figure 5 shows the actual forwarding rate under high
load. We used algorithms for forwarding table
compression and fast IP lookup described in [23], and
inserted one thousand routes into less than 20Kbytes of
memory on the adapter. The experiment was to forward
two million packets at a maximum rate such that the
percentage of dropped packets was less than 0.5%. In the
first experiment, labeled “PCI”, the packets were
transferred to the egress adapter via the PCI bus. In the
second experiment, labeled “Wire”, packets are instead
“re-sent” to the egress adapter across the Myrinet switch

fabric. Note that the "Wire" experiment serves the sole
purpose of verifying the conjecture that our system could
perform better with hardware support for messaging. We
elaborate on this issue in Section 7.1. Figure 5 shows that
forwarding packets over the switch fabric results in
substantially higher performance than over the PCI bus.

In our experimental setup each network adapter using
the SPINE router extension can forward 11,300 packets
per second over the PCI bus, and 14,100 packets per
second over the Myrinet switch fabric. The router places
zero load on the host CPU and memory subsystem
because neither control nor data needs to be transferred to
the host.  In comparison, a host based IP forwarding
system using identical hardware (i.e., multiple LANai
adapters plugged into a 200MHz Pentium Pro PC) built at
USC/ISI achieves 12,000 packets per second over PCI
while utilizing 100% of the host CPU [6]. The USC/ISI
host based IP router implementation optimizes the data
path and only the IP packet header is copied into the host
system, while the remaining IP packet is transferred
directly using device-to-device DMA between the source
and destination LANai adapters.

The SPINE based implementation transferring IP
packets over the PCI bus is only 6% slower using a slow
33MHz embedded processor compared to the host based
forwarding implementation that uses a 200MHz Pentium
Pro processor. Further, our approach can achieve higher
aggregate throughput as it scales with the number of
network adapters in the system, even when using a slow
embedded processor. This illustrates that the combination
of device-to-device transfers and servicing the IP route
lookup on the adapter leads to better overall performance.
Additionally, as a result of SPINE’s system structure, zero
load is placed on the host CPU, thereby leaving plenty of
processing cycles available to handle routing updates or
more complex protocol processing while the intelligent
adapters independently forward IP packets.

user
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host
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Figure 4. The SPINE IP Router. In the common case the
Router Extension independently forwards IP packets directly
between network adapters. The forwarding path between
interfaces, shown in step 2, can be either over the PCI bus or
across the Myrinet switch fabric.
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6 SPINE Event Processing
In this section, we show how SPINE event processing

translates into overall performance. The current SPINE
runtime optimizes for high throughput of small messages.
Part of this motivation comes from recent work
demonstrating that with low software overhead, many
applications have a high degree of latency tolerance [24].
At the same time however, it must be general enough to
support user extensions. The SPINE I/O runtime is
constructed as a generic event handler.

Recall from Section 3.2 that all SPINE processing is
ultimately decomposed into internal Active Message
handlers. For example, when the IP router calls the
procedure to forward a message to a peer device, the
runtime implements this functionality by issuing a series
of active messages to itself. Thus, event and handler
invocation becomes synonymous. This approach not only
simplifies the dispatcher, but it also exposes the natural
parallelism inherent in the operation.

Figure 6 shows a real snapshot of the event processing
from the SPINE IP router when routing to a peer node
over the PCI bus. The x-axis represents time. The y-axis
is an enumeration of event types. The dark boxes
represent time spent in event processing. The position of
the boxes on the x-axis shows the time a particular event
took place. The position on the y-axis shows what event
was processed at that time. The width of the dark box

shows the length of the event. For example, during the
period between 16 and 20 microseconds, the IP routing
handler was running.

Because SPINE breaks message processing into many
tiny events, the event graph at first appears to be a
jumbled maze with little discernable structure. In reality
however, Figure 6 shows a regular, periodic pattern. The
key to understanding the event graph is to recognize these
high level patterns emerging from the thicket of small
events. From these patterns we can deduce both the rate at
which packets are processed, as well as the latency of a
packet as it passes through the system.

 The dashed rectangles in Figure 6 outline higher-level
packet-processing steps. Recall that to route an IP packet
requires 3 steps: receiving the packet, determining the
destination (routing), and forwarding the packet to an
egress adapter.

The bandwidth, in terms of packets per second, is easily
discernable via the period of new processing steps in the
event graph. The time between receiving packets 1, 2 and
3 in Figure 6 is roughly 55 microseconds. The period for
other kinds of processing, such as routing and DMA, is
similar. Thus, we can conclude that we can route a new IP
packet once every 55 microseconds.

The latency, or time it takes a single packet to move
through the system, is observable by tracing the path of a
single packet. The arrows in Figure 6 trace the processing
path of packet 2 as it is received, routed, and transferred
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Figure 6.  SPINE IP Router Event Graph. The figure plots events as they unfold in the SPINE IP Router. Time is shown on the x-
axis and event types along the y-axis. A box is plotted at the point at the time of each event occurrence. The width of the box
corresponds to the length of the event. The dashed rectangles correspond to higher-level packet semantics: receiving a packet, routing
it, and forwarding it over the PCI bus. The arrows trace the causal relationships of a single packet as it moves through the system.
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to the egress adapter. From the graph we can see that the
latency of a packet through the router is roughly 100
microseconds. Note that the bandwidth and latency are
distinct due to overlap (as shown in the figure).
  A large discrepancy exists between the measured time
from Figure 5 (95 microseconds/packet) and the observed
times in Figure 6 (55 microseconds/packet). The key to
understanding the missing 40 microseconds is that Figure
6 does not show a typical event ordering; rather it is a best
case ordering.
We have discovered by observing many event plots that
the slightly lower priority of PCI events in SPINE results
in oscillations of event processing. Several incoming
packets are serviced before any outgoing packets are sent
over the PCI. These oscillations break an otherwise
smooth packet pipeline. The system oscillates between the
“fast” state of  “one-for-one” receive-and-send, and the
“slow” state of receiving a few packets and draining them
over PCI. The net result is that the average forwarding
time is reduced from 55 to 95 microseconds.  We are
currently investigating ways to improve the priority
system of the SPINE dispatcher to eliminate this effect.

A closer look at Figure 6 shows a key limitation of the
SPINE architecture. SPINE was constructed to be general
enough so that the natural parallelism of packet
processing would automatically be interleaved with user
extensions. However, precise scheduling is possible if we
a-priori knew what sequence of events need to be
processed, and thereby achieve better overall
performance. Indeed, many other projects (e.g., [25-29])
have exploited this fact and developed firmware with a
fixed event-processing schedule that is specialized for a
specific message abstraction or application. The lack of
an efficient, static processing schedule appears to be an
inherent limitation of any general-purpose system.

From the event graph, we have seen that the periodic
rate as well as the latency of packet processing is limited
in three ways: (1) the number of events dispatched per
message, (2) the speed of each event, and (3) the ordering
of events. Many of these limitations in our
implementation are due to the fact that SPINE has to
emulate various abstractions in software for the LANai
adapter. The next section describes several hardware
structures that reduce the cost of event processing.

7 Hardware Enhancements
In this section, we estimate the potential performance

improvement of three hardware features that our network
adapter lacks: hardware FIFOs as messaging units,
support for chained and strided DMA, and a faster
processor.

7.1 Hardware FIFOs
A hardware FIFO is a memory abstraction that

implements a buffer with two interfaces. One that fills the

buffer and the other that drains it. The drain removes the
oldest entry first.

SPINE incurs a substantial performance penalty, as it
has to emulate these FIFOs in software for the LANai
adapter. Using hardware FIFOs for synchronized
messaging, much like those found in [30, 31], would
substantially reduce communication costs over the shared
bus. It would improve communication performance with
peer devices as well as communication with the host. In
particular, a hardware based implementation of these
FIFOs would reduce the number of events needed in
SPINE to process a message and substantially cut down
on adapter memory resources devoted to enable
unsynchronized messaging among a set of peer devices.

Recall from Figure 5 that the performance of the IP
router was substantially better when using the Myrinet
switch fabric, which uses hardware support similar to
hardware FIFOs for synchronized messaging among
network adapters. We expect that the "PCI"-based IP
forwarding performance, as show in Figure 5, would
approach the "Wire"-based IP forwarding performance if
the LANai adapter had hardware FIFOs to support
messaging over the PCI bus. That is, nearly a 25%
performance improvement could be achieved with a
simple piece of hardware.

7.2 Chained and Strided DMA
A chained DMA controller simply has support to follow

a list of pointer/length pairs in adapter SRAM. (Chained
DMA is also often referred in the literature as
scatter/gather DMA). Unfortunately, current LANai
adapters do not have this type of support. Therefore
SPINE has to emulate chained DMA in software by
scheduling a handler that determines when a particular
DMA operation completed in order to start the next DMA
operation. This type of support would be useful for both
the IP router and the video client in reducing the number
of events to process.

We estimate for the IP router, that chained DMA could
eliminate several events and save twelve microseconds
per packet.  Similarly, chained DMA is useful for the
video client as an image in frame buffer memory is not
contiguous, and therefore each scan line of an image must
be DMA transferred separately.

Strided DMA is a more unusual hardware abstraction.
Such a DMA engine would place each word of data to
addresses with a constant stride, much like a strided
vector unit. In our work with the video client, we have
found several frame buffers that use non-contiguous, but
constant strided addresses for successive pixels. A strided
DMA unit would provide an ideal match for such frame
buffers.



11

7.3 Faster Processor
Another method to shorten the period of the event

processing in SPINE is to shorten the length of each
event. Given that the most commonly executed SPINE
code easily fits in a 32K cache (and thus instruction cache
misses are unlikely), a faster processor would translate
directly into faster event processing. As represented in
Figure 6, this would cut down the width of each box.
With a high-performance embedded processor, such as a
200MHz StrongARM, we conservatively estimate the
average time per event at roughly 0.5 microseconds (or
roughly a 5x performance improvement).

7.4 Hardware Summary
Using hardware FIFOs and chained DMA in the IP

router, the number of events processed per packet would
shrink, thereby reducing processing time to 33
microseconds per packet on the LANai. This kind of
performance would place such a system well ahead of
current host-based routers. Our conservative estimate
shows that, by using all three hardware enhancements,
current embedded processor technology can obtain a
throughput of one packet per ten microseconds, or a rate
of 100,000 packets per second. Although this rate does
not approach specialized forwarding ASICs (such as those
used in Packet Engines routing switches [32]), it is much
faster than a host-based router and would allow routers to
be constructed with cheaper, slower, primary processors.
However, unlike the ASIC-based approach, SPINE gives
the programmer nearly the same flexibility as a traditional
host-based system. For example, it would be
straightforward to add firewall or quality of service
capabilities to the router.

8 Related Work
There has been substantial work in offloading

functionality onto intelligent network adapters. The core
ideas in this area can be traced back to the first super-
computers and high-performance I/O systems. In the
1960s, the CDC 6600 and IBM 360 systems used I/O
processors extensively. However, these processors were
used to manage many low-level details of I/O processing,
rather than application code or network protocols. Today
most of these functions are realized in modern controller
cards.

In the context of network adapters, there has been a
decade long ebb and flow of the amount of network
protocol placed onto the adapter. However, very little has
been discussed about application functionally, as opposed
to protocol support (e.g. a video client vs. placing TCP
into the adapter). Most of the debate centers on how much
protocol to offload, ranging from no support, to placing
pieces of the protocol, to offloading the entire protocol.

In the early 1980’s many commercial network adapter
designs incorporated the entire protocol stack into the
adapter. There were two reasons for such an approach,
which, due to its complexity, required an I/O processor.
First, many host operating systems did not support the
range of protocols that existed at the time (e.g., TCP/IP,
telnet, and rlogin) [33]. Writing these protocols once for
an intelligent network adapter was an effective method of
quickly incorporating protocols into a variety of operating
systems. Second, the host processors of the time were not
powerful enough to run both multi-tasking jobs and
network protocol stacks efficiently [34-36].

The logical apex of the greater and greater inclusion of
protocol into the adapter is best exemplified by the
Auspex NFS server [37].  Each component of the Auspex
server (disk, network, NFS cache) has an I/O processor
that is specialized for NFS services.  A lightweight kernel
running on each I/O processor controls the
communication among the functional I/O components of
the NFS server. This separation of NFS services from the
host operating system enables higher performance,
scalability, and resilience to host failure [38].

 By the late 1980’s however, the tide had turned, with
only support for very common protocol operations
included in the adapter. The migration of common
protocols into commodity operating systems and the
exponential growth of processor speed eliminated the
original motivations for intelligent network adapters at the
time. There has been a great deal of work, however, in
offloading pieces of network protocols. For example,
there has been work to offload Internet checksum
calculations [30, 39, 40], link layer processing [41-45],
and packet filtering [8, 46]. Interestingly, the tide might
be turning again: recently published results show that
offloading TCP/IP to intelligent network adapters yields
better performance for an enterprise-wide server system
running Windows NT [47].

In recent years, researchers from the parallel processing
community have taken a different strategy all together:
eliminate protocols as much as possible. The motivation
behind this work was an attempt to replicate the
communication performance of Massively Parallel
Processors (MPPs) on stock hardware. A common method
of eliminating the operating system protocols was to use a
programmable network adapter. This strategy allows the
networking layers to expose the adapter directly to
applications [26, 27, 48]. The elimination of the operating
system yields a factor of 10 improvement in software
overhead over conventional protocol stacks, and peak
bandwidths thus become achievable with small packets
[49]. Our work was originally motivated by these results
of offloading overhead from the host system.

I2O is a recent technology providing a general
architecture for coupling host systems with I/O devices
[31]. The primary goals of the I2O work are the
elimination of multitudes of device drivers and improved
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performance by reducing device related processing and
resource requirements from the host. Although I2O
provides a message-passing protocol between the host and
devices, its focus and approach are fundamentally
different from SPINE. SPINE provides a trusted
execution environment for applications that need to be
tightly integrated with the underlying device, while I2O
provides an execution environment for trusted device
drivers.

Several research projects are investing the applicability
and system structure of intelligent I/O. These projects
range from restructuring the main operating system, to
embedded execution environments, to investigating
intelligent disks.

The Piglet OS project suggests an alternative approach
to intelligent I/O from SPINE. Piglet partitions the
processors of a symmetric multiprocessor (SMP) system
into functional groups with the goal of improving system
performance for I/O intensive applications [50]. However,
such processors are unavailable for user-applications. We
believe, for the architectural reasons outlined in Section 2,
that using an integrated I/O processor will yield similar or
better performance at a much lower cost.

Perhaps the closest work to SPINE is the U-net/SLE
(safe language environment) project [51]. U-net/SLE
implemented a subset of the Java Virtual Machine (JVM)
for the LANai; thereby allowing customized packet
processing to occur on the network adapter.  Because the
LANai processor is slow, the primary focus of their work
was on the performance of the JVM. Their preliminary
results indicated that the LANai processor lacked
sufficient power to support the JVM interpretation
efficiently.  We used Modula-3, although less popular
than Java, because of the availability and portability of
open, efficient compilers. In addition, we are able to take
advantage of much of the SPIN work. The use of machine
binaries enables us to focus on system design issues using
a high-level language rather than on interpreter efficiency.
The two languages are sufficiently similar that many of
our results may be applicable to the Java language as
well.

The IDISK [52] and Active Disks [53] projects are
investigating how to add application processing to the
disk subsystems. Although our work does not address
disks directly, the operating system requirements for
placing application processing onto an intelligent disk
may be quite similar to an intelligent network adapter.

9 Conclusions
Using SPINE, we have demonstrated that intelligent

devices make it possible to implement application-
specific functionality inside the network adapter.
Although hardware designs using “front-end” I/O
processors are not new, they traditionally have been
relegated to special purpose machines (e.g., Auspex NFS

server), mainframes (e.g., IBM 390 with channel
controllers), or supercomputer designs (e.g., Cray Y-MP).

We believe that current trends will continue to favor the
split style of design reflected in SPINE. Two technologies
though could challenge the soundness of the SPINE
approach. First, I/O functions could become integrated
into the core of mainstream CPUs --- an unlikely event
given pressures for cache capacity. Second, a very low
latency standard interconnect could become available.
However, I/O interconnects by their very nature must be
both open and enduring. These two non-technical forces
alone will hinder the growth of I/O performance more
than anything else will.

Our two example applications show that many
extensions are viable even with an incredibly slow I/O
processor. A faster CPU, for example, would allow the
use of a virtual machine interpreter (e.g., Java), enabling
transparent execution of extensions regardless of the
instruction set. Using a vector processor, as suggested in
[54] of the IRAM project, would enable data touching
intensive applications, such as encryption, compression,
video decoding, and data filtering, to be implemented on
the network adapter.

Based on our experience with the LANai, we believe
that more aggressive processor and hardware structures
would have a large positive impact on performance. For
example, hardware FIFOs could eliminate much of the
coordination overhead in our current system. A faster
clock rate alone would significantly improve the active
message event dispatch rate as well. We expect that a
system using a current high-end I/O processor (clocked at
roughly 200 MHz and with a cache size of 32KB) could
improve performance by a factor of five over our current
system.

We hope to explore applications using more powerful
network adapters. For example, Alteon’s ACEnic [55],
which is equipped with two 100MHz MIPS processors,
would make an excellent candidate for future research in
placing application-specific functionality onto an adapter.
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