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Abstract

Both inherently sequential code and limitationsanélysis techniques prevent full parallelization
of many applications by parallelizing compilers. dahl's Law tells us that as parallelization
becomes increasingly effective, any unparallelizedp becomes an increasingly dominant
performance bottleneck.

We present a technique for speeding up the execofiainparallelized loops bgascadingtheir
sequential execution across multiple processolly: asingle processor executes the loop body at
any one time, and each processor executes onlytiampof the loop body before passing control
to another. Cascaded execution allows otherwise pdbcessors to optimize their memory state
for the eventual execution of their next portiontb& loop, resulting in significantly reduced
overall loop body execution times.

We evaluate cascaded execution using loop nesta fkave5, a Spec95f p benchmark
application, and a synthetic benchmark meant tesssthe impact of the increasingly dominant
memory access times of future processors. Runming PC with 4 Pentium Pro processors and
an SGI Power Onyx with 8 R10000 processors, wergbsan overall speedup of 1.35 and 1.7,
respectively, for thevave5 loops we examined, and speedups as high as 4ibdierdual loops.
Our extrapolated results using the synthetic bermckrshow a potential for speedups as large as
16 on future machines

This work was supported in part by the NationakSce Foundation (Grant CCR-9704503), the IntelpOmation,
Microsoft Corporation, and Apple Computer, Inc.



1 Introduction

The focus of most of the work on parallelizing colens has been on finding efficient, legal paraé&kecutions of
loops expressed using sequential semantics [3, TB]is paper addresses a complementary issue, hawost

efficiently execute loops for which the compilenoat find a legal or efficient parallel realizatiofhe importance
of such unparallelized loops is evidenced indisebt the continuing intense interest in parallelma techniques,
and directly by empirical studies of the effectiges of current techniques [8, 11, 17, 23, 25]. Wielbops are left
unparallelized because of inherently sequentialaggics or limitations of the parallelization techués, Amdahl’s
law tells us that these sequential code segmeata dmiting factor to performance. Thus, our gsalo speed up
the execution times of these sequential code segmen

Parallelized applications present a special oppdxtiio speed up the execution of sequential cegenents that we
exploit in our technique. In particular, by defion, these applications are run on multiple preces When a
sequential code segment is reached, it is exedytedsingle processor, with the others goingidi®ur technique
takes advantage of these otherwise idle processadis context of shared-memory multiprocessors.

We focus on reducing the execution times of segaiechde segments by reducing the number of cadhsemthat
occur. In programs that manipulate large in-memsiuctures, a characteristic typical of many cdempi
parallelized applications, memory access costdeag substantial fraction of execution times [26 well known
that cache miss penalties are becoming increasoagily as memory access time fails to keep up imitheasing
processor speed and instruction-level parallelisthus, not only will sequential portions of compifgarallelized
applications become a bottleneck, but specificalig, memory accesses in these sequential segmiintminate
performance.

We call our techniqueascaded executionSpecifically, we propose optimizing the memaipte of a processor (for
example, by pre-loading data values into its cachefore it executes a portion of the sequentiaplo The loop
itself is executed sequentially, but its executisrcascaded across multiple processors: only desimgpcessor
executes the loop body at any one time, and eamtepsor executes only a portion of the loop bodgrbepassing
control to another. Those processors not curreexiycuting the loop body spend their time optingziheir
memory states.

We evaluate the performance of cascaded execusorg uoop nests frommave5, a Spec95f p benchmark
application, and a synthetic benchmark designesirtmilate the increasing future cost of memory asegs We
present results for two different hardware platfeym PC with 4 Pentium Pro processors and an SGePOnyx
with 8 R10000 processors, to illustrate that thefgpemance improvements obtained by cascaded execuatie
independent of a particular hardware configuration.

Our results show overall speedups of 1.35 (on edhd 1.7 (on the Power Onyx) for a number of intgoa loops
in waveb, with speedups as high as 4.5 for individual loop®sults for the synthetic benchmark show a piatien
for speedups of up to 16 on future processors.

The remainder of the paper is organized as follo@sction2 describes cascaded execution in more detail. @ecti
3 describes our experimental setup and presentgetiermance results. In Sectidnwe describe related work on
hiding memory latency and making use of otherwile processors during sequential code segmentstio6&
concludes the paper.

1 While it is possible for the system schedulereallocate the idle processors to other applicatéhiming these intervals [16,
19], this can entail considerable overhead andi€ommonly done.



2 Cascaded Execution

Figure 1(a) shows how an unparallelized loop irmgiler-parallelized application would typically leecuted on
a system with three processors. Note that process@nd 3 are idle while processor 1 executeséogiential
section. Processor 1 must eventually load albtite referenced by this loop into its cache. likisly that this will

cause a high miss rate: the usual compulsory, @gpand conflict misses of any sequential executare

exacerbated by the fact that parallel applicatigpgally process in-memory structures too largéttom the caches
of any single processor, and by the likelihood tinet data was distributed among the other procesdaring a
previous parallel section.
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a) Standard execution model. b) Cascaded execution of the sequential code section

resultsin a shorter execution time overall.
Figure 1:Cascaded Execution

Figure 1(b) shows the application of cascaded di@tto the same loop. The loop is still execuseduentially,
but all processors contribute to the effort. Epabcessor alternates between two phaselgerandexecution For

correctness, only one processor at a time may s ixecution phase, during which it executes diqro of the

loop body. When done, it exits the execution preaseé passes control to another processor, which éhaars its
own execution phase. All other processors arhéir helper phases, during which they optimizerthemory state
by, for example, pre-loading into their cachesdh&a they anticipate will be referenced duringrtineixt execution
phases. The total time required to execute thp indhis way is the sum of the times the processpend in their
execution phases plus the control transfer oveshe@uir goal is that, because of the memory sfatienation, the
sum of the execution times will be significantly alar than the execution time of the loop on a leiqgocessor,
and will more than compensate for the penalty efréquired transfers of control.

The central design questions of cascaded execatiefiWhat functions should be performed during the leelp
phases?”and“How many iterations should be performed during le@xecution phase?” We now address these
guestions.

2.1 What Functions Should Be Performed During the Helper Phases?

We have developed two different cascaded execut@per techniquegorefetchingand sequential buffer data
restructuring



2.1.1 Prefetching

The simplest helper technique is for a process@rédetch needed data into its caches. To do soexecute a
shadow of the original loop body. The shadow laajex runs over the range of iterations that wél geerformed
during the next execution phase, and the shadow boay simply prefetches each operand that wiltdferenced
during execution of the corresponding loop bodsaiiens.

Prefetching has the advantage that it is easy fdemment. In particular, no dependence testingetuired to
determine if it is legal; it is always legal to &pprefetching. If a value is updated after it has been prefeicithe
hardware cache coherence policy will ensure thatthrect value is used in the computation.

C Hel per phase
do i = nystop, nystart, -1
prefetch X(1J(i))
prefetch A(i)
prefetch B(i)
i f (ReadyFl ag(nyProcl D)) goto execute

end do
doi =1, n
X(1J(i)) = X(1J(i))+A(i)+B(i) C Execution phase
end do wait: if (!ReadyFlag(nyProclD)) goto wait
execute:
ReadyFl ag(nmyProcl D) = fal se
do i = nystart, mystop
X(1JI(i)) = X(1J(i))+A(i)+B(i)
end do
ReadyFl ag(myProcl D+1 % P) = true
€Y (b)

Figure 2 (a) An unparallelized loop, anfb) cascaded execution with prefetching

Figure 2(a) shows the code for a simple loop wrifte pseudo-Fortran, while Figure 2(b) shows theesponding
cascaded execution with prefetching code. HerablmyProclDis the index of the processor executing the code,
andP is the total number of processors being used.

During the helper phase, each processor loads dheew that will be required to execute its next aetoop

iterations. Prefetching of data is donera@averseaccess order whenever possible, so that the dgtared first
during the execution phase will have been mostntcdetched. This minimizes misses during the segjuent
execution phase in the case that the prefetched atmiflicts with itself significantly. Additional] the processor
abandons the helper phase in favor of its execyilmase, even if not all prefetching has been dasesoon as
execution is legal. When sufficient processorsaaalable, such “jumping out” of the helper phaseaot required.
However, its implementation serves as a safeguarkbéps that have a high prefetch to executiore tiatio.

2.1.2 Sequential Buffer Data Restructuring

A more aggressive use of the helper phase tharyspngfetching is taestructurethe data in a way that optimizes
the execution phase memory reference pattern.

Many techniques have been proposed for data résting [2, 14]. While any of these could be applleste, we
adopt thesequential buffetechnique In particular, instead of simply loading the alétto the caches during the
helper phase, we copy all data that is read-onkjpénexecution loop into a sequential buffer in aiyic reference

2 We assume a sequentially consistent memory system.



ordeP. During the execution phase, these operandsmamysfetched in sequential order out of the buff®acking
the data in this way improves cache utilizationgcsieach line of the sequential buffer is full wikeful data. As
importantly, the sequential buffer eliminates cmtflmisses in the data it contains, since it isdrgarely
sequentially during the execution phase.

Figure 3 shows the application of the sequentidlebudata restructuring technique to the loop frBigure 2(a).
During the helper phase, the processor refereratasiil the (reverse) order of the execution loap treams it into
the arraytemp During the execution phase, the processor kagusnter intdempand simply fetches operands as
they are needed, incrementing the pointer as gresses. Since it is possible for the processdetsignaled to
begin execution before it has finished executirighalper loop iterations, we must provide two caep@ the
execution loop. One copy reads operands fiempand the other from the original arrays.

c Hel per phase

cntr = (mystop-nystart)*3+1

do preidx = nystop, nystart, -1
i f (ReadyFl ag(nyProcl D)) goto execute
temp(cntr) = A(preidx)
temp(cntr+1) = B(preidx)
temp(cntr+2) = | J(preidx)
prefetch X(1J(preidx))
cntr = cntr - 3

end do

¢ Execution phase

wait: if (!ReadyFl ag(nmyProcl D)) goto wait
execut e:

ReadyFl ag(nyProcl D) = fal se

do i = nystart, preidx
X(1JI(i)) = X(1I(i))+A(i)+B(i)

end do

do i = preidx+1l, nystop
regtenp = tenp(cntr+2)
X(regtenp) = X(regtenp)+tenp(cntr) +tenp(cntr+1)
cntr = cntr + 3

end do

ReadyFl ag(nyProcl D+t1 % P) = true

Figure 3:Sequential buffer data restructuring applied to khep in Figure 2(a).

While the primary goal of the sequential bufferhieique is to reduce misses during the executiorsg@ha side
benefit in many cases is a reduction in the amofimtork required during that phase. In particulais common
that some index function evaluation overhead ofdhginal loop is eliminated. For example, in FHiguB, if the
operandA(i) were insteadA(IDX(i)-1), the index functiodDX(i)-1 would be evaluated in the helper loop and the
value A(IDX(i)-1) stored intemp Thus, we would have removed one memory referdtwaDX(i)) and the
subtraction from the execution loop.

The example in Figure 3 presents another oppoytfimitspeeding up the loop body execution. If asrAyand B are

available for copying into the sequential bufféren the helper loop could instead add them togethdrstore the

result into the sequential buffer. This removesaldition, as well as the extra load instructind eache space for
accessing both operands from the execute loops fohin ofloop distribution[29], while possible in general, fits
naturally in the cascaded execution framework.

3 For this to be legal, it must be certain that ¥h&ie of the restructured data is up-to-date attithe the helper function is
executed. In the worst case, this requires therties of a barrier synchronization just before dascaded loop, although
dependence testing may reveal that the barriestisequired.



2.2 How Many Iterations Should Be Performed During Each Execution Phase?

Because we must execute the loop iterations inrpech execution phase must involve a contigudusic of
iterations. The question How many iterations should be in each chunk?

Note that because we do not want to spend timeefgtehg when execution is possible, the first chohkoop

iterations must be executed without benefit of aregponding helper phase. This initial executidrage is
unoptimized, and so each iteration in it will tdkager than iterations in later execution phasEsr this reason,
“ramping up” the chunk sizes at the beginning & tascaded execution of a loop may be necessanhtin

optimum performance [28]. However, thus far weénawnsidered only constant chunk sizes.

We choose the chunk size based on an estimates afumber of bytes of data that each iteration efakecution
loop will touch. Expressed this way, the two natuwhoices for the chunk size correspond to fillthg L1 cache
and filling the L2 cache.

We are motivated to fetch only enough data tati#l L1 cache in order to minimize the cycles pstrirction (CPI)
experienced during the execution phase. Largenichare guaranteed to miss in the L1 cache andredilire
accesses to at least the L2 cache. The extenthiohwhese misses affect performance depends dm thet
architecture-dependent miss penalties and thecpioin-dependent instruction stream.

On the other hand, because the execution of eaalikadnds with a transfer of control, we would ltkeminimize
the number of chunks (to minimize the total transfiecontrol overhead). To do so, we must usedaofunk sizes.
Thus, we are motivated to consider chunks thathfdlL2 cache, rather than just the L1.

The effect of chunk size on performance in examiragirically in the next section.

3 Performance Evaluation

3.1 Software Environment

We evaluate the performance of cascaded executibmo scenarios. First, using measurements obgram from

the Spec95f p benchmark suite running on two current multipreces, we assess the benefits of cascaded
execution on today’s multiprocessors. For this weekselected theave5 application from the benchmark suite.
In profiling the sequential execution alve5, we found that one subroutineARMVR, dominates the execution
time, consuming roughly 50%PARMVR is called approximately 5000 times and consistd®ioops. Previous
examination of these loops, including our own eigrere, showed difficulty with parallelization and effective
speedup in this application [11].

The original reference data set provided widwve5 is sized inappropriately for the caches on todayachines:
the data set processed by each calPARMVR is less than 300 KB. Larger problem sizes pravidgéth the
benchmark grow along the time dimension but ndh@space dimension [24]. Since the original datawas too
small to be representative of problems likely torbe on today’s parallel machines, we enlargedpitoblem by
increasing the amount of data accessed in each lobpthe enlarged problem, the amount of datessed by each
loop ranges from 256 KB to 17 MB.

Our second set of measurements is intended to astithe benefits of cascaded execution on futuoegssors,
where memory access time will become an increasidgiminant factor in performance. Because we dohage
access to tomorrow's multiprocessors, for this eatidn, we use a synthetic loop nest charactetiyeal larger ratio
of memory access to computation than is exhibiteddnchmark applications running on current machine



3.2 Hardware Environment

We evaluate cascaded execution on two sequentiafigistent shared-memory multi-processors: a 4gzsmr PC
server and an 8-processor SGI Power Onyx. ThedPgishas 4 200 MHz Pentium Pro processors runNing
Server 4.0. The SGI Power Onyx has 8 194 MHz IME5S R10000 processors running IRIX 6.2.

The Pentium Pro and the R10000 are both advangeer sicalar processors with out-of-order executianch
prediction, register renaming, and speculative ettec. All caches on both machines are non-blogkadlowing
up to four outstanding requests to the L2 cachet@maain memory.

Table 1 presents the memory hierarchy sizes aresadiomes for the two machines.

Processor Memory | Access Time Size | Associativity | Line Size Other info
Level (Cycles)
Pentium L1 3 8 KB 2 32 bytes On-chip, write-back 3
Pro L2 7 512 KB 4 32 bytes | On package, write-back, unifigd
Memory ~58 1.5GB - - -
L1 3 32 KB 2 32 bytes On-chip, write-back
R10000 L2 6 2 MB 2 128 bytes| External, write-back, unified
Memory 100-200 1GB - - -

Table 1:Pentium Pro [12, 13] and R10000 [18] memory chaesistics

On the Pentium Pro, we use the Microsoft Power@iakortran compiler and NT threads to support cieta
execution. On the R10000, we used the MIPSprd-@rfan compiler and the f or k command used by the SGI
parallelizing compiler to spawn lightweight process Timing and cache miss measurements on théuReRto
were obtained using hardware counters that cancbesaed in about 60 cycles with tRBTSC and RDPMC
instructions. We measuredCU LI NES I N and L2_LINES I N for L1 data cache and L2 cache misses,
respectively [6]. Timings on the R10000 were afedi using a 21 ns. resolution counter that cancbesaed in
about 100 cycles. Cache misses were obtainedHerydware counters via a more expensive systenfid&jll

3.3 Current Performance

Figure 4 shows the overall speediop the PARMVR subroutine of theave5 benchmark when run under cascaded
execution with 64KB chunks (which was found to pem best on both platforms among the chunk sizes we
evaluated). Figure 5 gives execution times in e&ydbr the fifteen individual loops in that routin€igure 6 and
Figure 7 show the L2 cache and L1 data cache missgsectively. In these figures, “Prefetched” esponds to the
version of cascaded execution where the helpertitmenerely prefetches operand data, while “Restmec”
corresponds to the version where read-only dagrésmed into a sequential buffer.

These results lead us to the following conclusions:

« Cascaded execution can provide good speedups: hievecan overall speedup of 1.35 on the Pentium Pro
and 1.7 on the R10000.

In Figure 4, we see that for all numbers of prosessa version of cascaded execution achieveseaaitie
speedup over sequential execution of the origindecon a single processor. Figure 5 shows thattsefsu
individual loops vary, from a maximum slowdown 0®@o a maximum speedup of 4.5.

* We arbitrarily present the timings for the™eall (out of 5000 calls) to PARMVR - other callsrform similarly.



Our results are somewhat limited by the numberro€@ssors available to us. Recall that a procgesgrs

out of the helper phase as soon as it is signaldokegin execution.

complete helper iterations, and thus better perdmca.

More processors allow more time
In simulations of an unbounded number of

processors, some loops were shown to have potspgaldups as high as 30.
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 Data restructuring is significantly more effectitten prefetching alone.

Figure 4 and Figure 5 show that data restructupiryides a much greater speedup than prefetchongal
We believe that this benefit arises primarily frdine elimination of conflict misses that restruatgrican
provide. In fact, on the R10000, where the L2 eabhs less associativity, we see little improvenfiarh
prefetching alone. Figure 6 and Figure 7 show pihatetching does not reduce cache misses on the(R1
We hypothesize that since the MIPSpro compilerrisgerefetch instructions in its optimized codendy be
able to hide much of the latency of memory accessiesr than those required for conflict misses.usth
cascaded execution with prefetching alone prowneadditional benefit.



» Cascaded execution is successful at improving egitin memory behavior.

Figure 6 shows that, cascaded execution elimir22e34% of the L2 cache misses on the Pentium P, a
cascaded execution with restructuring eliminate%43f the L2 cache misses on the R10000. Figure 7
illustrates that, on both platforms, data restrtingueliminates L1 data cache misses in severghefoops.

In these cases, we believe that restructuring eéites conflicts in the L1 cache.

Interestingly, although cascaded execution is nsaceessful at eliminating L2 cache misses on thrdilie
Pro than on the R10000 percentage wise, it affoedter speedup for the R10000. This is because tre
2.59 times more L2 cache misses in the originalisetial execution oivave5 on the R10000 than on the
Pentium Pro (perhaps because of the more limitedcéivity of the Power Onyx’s L2 cache). In s,
L2 cache misses are more costly for the R10000.
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» Chunk sizes larger than the size of the first l@ashe give the best performance because of timifisant
cost of transferring control between processors.

Figure 8 shows the overall speedupPARWVR for chunk sizes varying from 4 KB to 2048 KB. ®anth
platforms, the cost of transferring control is siigant: ~120 cycles per transfer on the Pentium &rd ~500



cycles on the R10000 The speedups f®®ARMVR indicate an optimum chunk size in the range oKB6to
64 KB for four processors, which is larger than lthecache of either machine.
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TR e——
16 16

~
g 14 \\
12 m 12
N N

—+—Prefetched ——Prefetched

—>Restructured —>Restructured

T T T T T T T T T T T T T T T
4 8 16 32 64 128 256 512 4 8 16 32 64 128 256 512 1024 2,048
KBytes per chunk KBytes per chunk

Figure 8:Effect of chunk size (four processors)

3.4 Future Performance

The previous subsection presented results for ahmeark application running on modern multi-processdn the
future, as processors continue to outpace accéss t@ main memory, we expect that application mgnstall
times will increase relative to instruction exeouttimes.

To simulate this future scenario, we examine théopmance of cascaded execution on a simple, syotlo®p that
has a larger ratio of memory access time to insomexecution than our benchmark program. Thigdarratio is
generated by reducing the computational demandeo$ynthetic loop relative to the benchmark logpsl running
on the same multiprocessors as before (thus keepamgory access times constant). Results for ymthstic loop
are intended only to give a rough indication of bHemefits of cascaded execution on future machiihés;clearly
infeasible to attempt to represent all applicatiamsthe details of all future machines, as wowdneeded to make
more precise claims.

Figure 9 shows the loop used. In this loop, akkrapds are integers, and the index afrdyis simply the vector
1..n.

do i 1, n, k

X(:lJ(’i))’ = X(13(i))+A(i ) +B(i )
end do

Figure 9:Synthetic loop with a high memory access time topzdation time ratio

To examine a range of memory access to instruei@tution ratios, we consider two versions of tbap. In a
“dense” execution, the loop step siZ€ {s set to one, causing the loop to walk sequipnttarough words of
memory. In a “sparse” execution, the step sizetdseight, which corresponds to the number agats that fit in
an L1 cache line on both machines. Thus, in thersgpcase, the original loop body has no spatizdlity
whatsoever, which magnifies the memory costs aus tile memory access to execution ratio.

5 Transferring control requires only that a shareztmory flag be set and that the target processoitseew value. We have
optimized this procedure as much as possible, lriiarge cycle count penalties of accessing maimang lead to these
significant control transfer overheads.

10



To avoid limiting observable speedups to the nundigorocessors on the machines available to ussimelate

cascaded execution by running on a single procesguch alternates between helper and executiosgsha To
calculate overall execution time, we sum the tirpens in the execution phases and add in the cosbuatfrol

transfer (one transfer per chunk) for the numbechefnks required for a given chunk size. To obsgeedup we
compare this sum to the execution of the originaplrunning on a single processor.
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Figure 10:Cascaded execution speedups with increased meanoegs costs

Figure 10 shows observed speedups for chunk sizegng from 1KB to 256KB. From it, we see thatlie likely

future scenario where memory access time becomescagasingly dominant factor in program executtone,

cascaded execution can provide significant benefitsthe dense case, cascaded execution provjipe=igps of
around 4 for both systems. Speedups are even mpressive for the more memory-intensive sparse: daséor

the Pentium Pro and close to 14 for the R10000.

4 Related Work

Numerous hardware [7, 30] and software [9, 10,t80hniques have been proposed to tolerate memiamychain
sequential programs. The approaches most relévantr work are prefetching and multithreading.

Prefetching may be done in hardware or in softwaregl may involve prefetching values into cache o ia
separate prefetch buffer. Cascaded execution & similar to software-controlled prefetching [9]2 In this
approach, the compiler analyzes the program amtsprefetch instructions for accesses that walsttikely result
in cache misses. Accurate analysis is crucial imearefetching can displace useful values in #uhe, increase
memory traffic, and increase the total number sfrirctions that must be executed.

Hardware prefetching [4] is able to make use ofagyit information not available at compile time, anbids the
instruction overhead that software technigues inddowever, hardware prefetching is usually limiteddetecting
only constant stride access patterns and can eeguiontrivial amount of hardware support bothatedt memory
accesses that can be prefetched and to retrievedadhe prefetched values.

Multithreading [1, 27] tolerates latency by switehithreads when a cache miss occurs. This techmigiuénandle
arbitrarily complex access patterns, but must bplemented in hardware to be effective. Furtheffigent
parallelism must be available in the applicatioriully mask memory latency; this amount of paradiel may not
always exist.

Cascaded execution is applicable in only a muchemestricted domain than the techniques listed ebdlowever,

in that domain it is complimentary to them. Eachynbe used to reduce the time required to execstxjaential
loop on a single processor. Cascaded executiobe@ombined with any of them to help mask any mgraocess
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latency that remains. At the same time, cascadeduwtion may enhance the performance of these itpobs by
simplifying and improving the memory reference baba

Several speculative and run-time parallelizatiorthods have been proposed to attempt parallel eecaf loops
that cannot be analyzed sufficiently accuratelganpile time [15, 21, 22, 31]. Like cascaded exeou these
technigues make use of processors that would oiberbe idle if the compiler resorted to simple, usgial
execution. The two approaches involve differeatiéoffs, however. Speculative and run-time pdizédigton both
require what can often be considerable criticahpptocessing to either construct a parallel schedbht is
guaranteed to be valid or to check that the sptsiilschedule used was in fact valid. Cascaded @zaccritical-
path overhead is limited to control transfers. $iEove and run-time parallelization require memowerheads that
are proportional to the data set sizes touchedhbyldop, whereas even the restructuring versioasicaded
execution has memory overheads bounded by the tBecsize. Additionally, cascaded execution is iapple
even to loops that are inherently sequential,w@sgdn in which the alternatives perform poorlyn e other hand,
speedup under speculative and run-time parall@izas limited by the number of processors avaéabthile that
of cascaded execution is limited by the fractiompplication execution time resulting from mematalls. For this
reason, the maximum benefit obtainable from spéigeland run-time parallelization is likely to barder than that
for cascaded execution.

5 Conclusions

We have identified a previously unexamined problnfronting parallelizing compilers, how to maximithe
performance of portions of the code for which noafial execution can be found. We have introduaedew
technique cascaded executipio speed up sequential loop execution. Cascadedution uses processors that
would otherwise be idle during sequential loop exien to optimize memory state in a way that ledsnproved
cache behavior, and so improved performance.

Experiments run on a Pentium Pro multiprocessoraan8GI Power Onyx show that cascaded executiablésto
speed up sequential execution of otherwise ungdizatl loops from &pec95f p benchmark application by up to
a factor of 4.5, with no significant slowdown inyacase. Experiments using a synthetic loop intédridemimic the
increased memory access penalties of future procesglicate that the benefits of cascaded exatuatio likely to
be even larger in the future; we observe speedsipggh as 16 in this case.

In a theoretical sense, cascaded execution comptsmerk on parallelization techniques in thatffoeds a useful
mechanism to improve performance of inherently satjal code, code to which no future parallelizatiechniques
can apply. In a practical sense, it provides ahaeism that can be used as a fallback whenevetimpile-time or
run-time techniques actually implemented in a palér compiler fail to find useful parallelizatians
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