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Abstract

Both inherently sequential code and limitations of analysis techniques prevent full parallelization
of many applications by parallelizing compilers. Amdahl’s Law tells us that as parallelization
becomes increasingly effective, any unparallelized loop becomes an increasingly dominant
performance bottleneck.

We present a technique for speeding up the execution of unparallelized loops by cascading their
sequential execution across multiple processors: only a single processor executes the loop body at
any one time, and each processor executes only a portion of the loop body before passing control
to another. Cascaded execution allows otherwise idle processors to optimize their memory state
for the eventual execution of their next portion of the loop, resulting in significantly reduced
overall loop body execution times.

We evaluate cascaded execution using loop nests from wave5, a Spec95fp benchmark
application, and a synthetic benchmark meant to assess the impact of the increasingly dominant
memory access times of future processors.  Running on a PC with 4 Pentium Pro processors and
an SGI Power Onyx with 8 R10000 processors, we observe an overall speedup of 1.35 and 1.7,
respectively, for the wave5 loops we examined, and speedups as high as 4.5 for individual loops.
Our extrapolated results using the synthetic benchmark show a potential for speedups as large as
16 on future machinesÿ.

                                                          
ÿ This work was supported in part by the National Science Foundation (Grant CCR-9704503), the Intel Corporation,
Microsoft Corporation, and Apple Computer, Inc.
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1 Introduction

The focus of most of the work on parallelizing compilers has been on finding efficient, legal parallel executions of
loops expressed using sequential semantics [3, 5].  This paper addresses a complementary issue, how to most
efficiently execute loops for which the compiler cannot find a legal or efficient parallel realization.  The importance
of such unparallelized loops is evidenced indirectly by the continuing intense interest in parallelization techniques,
and directly by empirical studies of the effectiveness of current techniques [8, 11, 17, 23, 25]. Whether loops are left
unparallelized because of inherently sequential semantics or limitations of the parallelization techniques, Amdahl’s
law tells us that these sequential code segments are a limiting factor to performance.  Thus, our goal is to speed up
the execution times of these sequential code segments.

Parallelized applications present a special opportunity to speed up the execution of sequential code segments that we
exploit in our technique.  In particular, by definition, these applications are run on multiple processors.  When a
sequential code segment is reached, it is executed by a single processor, with the others going idle1.  Our technique
takes advantage of these otherwise idle processors, in the context of shared-memory multiprocessors.

We focus on reducing the execution times of sequential code segments by reducing the number of cache misses that
occur.  In programs that manipulate large in-memory structures, a characteristic typical of many compiler-
parallelized applications, memory access costs can be a substantial fraction of execution times [26]. It is well known
that cache miss penalties are becoming increasingly costly as memory access time fails to keep up with increasing
processor speed and instruction-level parallelism.  Thus, not only will sequential portions of compiler-parallelized
applications become a bottleneck, but specifically, the memory accesses in these sequential segments will dominate
performance.

We call our technique cascaded execution.  Specifically, we propose optimizing the memory state of a processor (for
example, by pre-loading data values into its caches) before it executes a portion of the sequential loop.  The loop
itself is executed sequentially, but its execution is cascaded across multiple processors: only a single processor
executes the loop body at any one time, and each processor executes only a portion of the loop body before passing
control to another.  Those processors not currently executing the loop body spend their time optimizing their
memory states.

We evaluate the performance of cascaded execution using loop nests from wave5, a Spec95fp benchmark
application, and a synthetic benchmark designed to simulate the increasing future cost of memory accesses.  We
present results for two different hardware platforms, a PC with 4 Pentium Pro processors and an SGI Power Onyx
with 8 R10000 processors, to illustrate that the performance improvements obtained by cascaded execution are
independent of a particular hardware configuration.

Our results show overall speedups of 1.35 (on the PC) and 1.7 (on the Power Onyx) for a number of important loops
in wave5, with speedups as high as 4.5 for individual loops.  Results for the synthetic benchmark show a potential
for speedups of up to 16 on future processors.

The remainder of the paper is organized as follows.  Section 2 describes cascaded execution in more detail. Section
3 describes our experimental setup and presents the performance results. In Section 4, we describe related work on
hiding memory latency and making use of otherwise idle processors during sequential code segments.  Section 5
concludes the paper.

                                                          
1 While it is possible for the system scheduler to reallocate the idle processors to other applications during these intervals [16,

19], this can entail considerable overhead and is not commonly done.
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2 Cascaded Execution

Figure 1(a) shows how an unparallelized loop in a compiler-parallelized application would typically be executed on
a system with three processors.  Note that processors 2 and 3 are idle while processor 1 executes the sequential
section.  Processor 1 must eventually load all the data referenced by this loop into its cache.  It is likely that this will
cause a high miss rate: the usual compulsory, capacity, and conflict misses of any sequential execution are
exacerbated by the fact that parallel applications typically process in-memory structures too large to fit in the caches
of any single processor, and by the likelihood that the data was distributed among the other processors during a
previous parallel section.
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    results in a shorter execution time overall.

Figure 1: Cascaded Execution

Figure 1(b) shows the application of cascaded execution to the same loop.  The loop is still executed sequentially,
but all processors contribute to the effort.  Each processor alternates between two phases: helper and execution.  For
correctness, only one processor at a time may be in its execution phase, during which it executes a portion of the
loop body. When done, it exits the execution phase and passes control to another processor, which then enters its
own execution phase.  All other processors are in their helper phases, during which they optimize their memory state
by, for example, pre-loading into their caches the data they anticipate will be referenced during their next execution
phases.  The total time required to execute the loop in this way is the sum of the times the processors spend in their
execution phases plus the control transfer overheads.  Our goal is that, because of the memory state optimization, the
sum of the execution times will be significantly smaller than the execution time of the loop on a single processor,
and will more than compensate for the penalty of the required transfers of control.

The central design questions of cascaded execution are “What functions should be performed during the helper
phases?” and “How many iterations should be performed during each execution phase?”.  We now address these
questions.

2.1 What Functions Should Be Performed During the Helper Phases?

We have developed two different cascaded execution helper techniques: prefetching and sequential buffer data
restructuring.
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2.1.1 Prefetching

The simplest helper technique is for a processor to prefetch needed data into its caches.  To do so, we execute a
shadow of the original loop body.  The shadow loop index runs over the range of iterations that will be performed
during the next execution phase, and the shadow loop body simply prefetches each operand that will be referenced
during execution of the corresponding loop body iterations.

Prefetching has the advantage that it is easy to implement.  In particular, no dependence testing is required to
determine if it is legal; it is always legal to apply prefetching2.  If a value is updated after it has been prefetched, the
hardware cache coherence policy will ensure that the correct value is used in the computation.

do i = 1, n
X(IJ(i)) = X(IJ(i))+A(i)+B(i)

end do

C Helper phase
do i = mystop, mystart, -1

prefetch X(IJ(i))
prefetch A(i)
prefetch B(i)
if (ReadyFlag(myProcID))goto execute

end do

C Execution phase
wait: if (!ReadyFlag(myProcID)) goto wait
execute:

ReadyFlag(myProcID) = false
do i = mystart, mystop

X(IJ(i)) = X(IJ(i))+A(i)+B(i)
end do
ReadyFlag(myProcID+1 % P) = true

(a) (b)
Figure 2: (a) An unparallelized loop, and (b) cascaded execution with prefetching

Figure 2(a) shows the code for a simple loop written in pseudo-Fortran, while Figure 2(b) shows the corresponding
cascaded execution with prefetching code.  Here variable myProcID is the index of the processor executing the code,
and P is the total number of processors being used.

During the helper phase, each processor loads the values that will be required to execute its next set of loop
iterations.  Prefetching of data is done in reverse access order whenever possible, so that the data required first
during the execution phase will have been most recently fetched.  This minimizes misses during the subsequent
execution phase in the case that the prefetched data conflicts with itself significantly.  Additionally, the processor
abandons the helper phase in favor of its execution phase, even if not all prefetching has been done, as soon as
execution is legal.  When sufficient processors are available, such “jumping out” of the helper phase is not required.
However, its implementation serves as a safeguard for loops that have a high prefetch to execution time ratio.

2.1.2 Sequential Buffer Data Restructuring

A more aggressive use of the helper phase than simply prefetching is to restructure the data in a way that optimizes
the execution phase memory reference pattern.

Many techniques have been proposed for data restructuring [2, 14]. While any of these could be applied here, we
adopt the sequential buffer technique.  In particular, instead of simply loading the data into the caches during the
helper phase, we copy all data that is read-only in the execution loop into a sequential buffer in dynamic reference

                                                          
2 We assume a sequentially consistent memory system.
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order3.  During the execution phase, these operands are simply fetched in sequential order out of the buffer.  Packing
the data in this way improves cache utilization, since each line of the sequential buffer is full with useful data.  As
importantly, the sequential buffer eliminates conflict misses in the data it contains, since it is read purely
sequentially during the execution phase.

Figure 3 shows the application of the sequential buffer data restructuring technique to the loop from Figure 2(a).
During the helper phase, the processor references data in the (reverse) order of the execution loop and streams it into
the array temp.  During the execution phase, the processor keeps a pointer into temp and simply fetches operands as
they are needed, incrementing the pointer as it progresses.  Since it is possible for the processor to be signaled to
begin execution before it has finished executing all helper loop iterations, we must provide two copies of the
execution loop.  One copy reads operands from temp and the other from the original arrays.

c Helper phase
cntr = (mystop-mystart)*3+1
do preidx = mystop, mystart, -1

if (ReadyFlag(myProcID))goto execute
temp(cntr) = A(preidx)
temp(cntr+1) = B(preidx)
temp(cntr+2) = IJ(preidx)
prefetch X(IJ(preidx))
cntr = cntr - 3

end do
c Execution phase

wait: if (!ReadyFlag(myProcID)) goto wait
execute:

ReadyFlag(myProcID) = false
do i = mystart, preidx

X(IJ(i)) = X(IJ(i))+A(i)+B(i)
end do
do i = preidx+1, mystop

regtemp = temp(cntr+2)
X(regtemp) = X(regtemp)+temp(cntr)+temp(cntr+1)
cntr = cntr + 3

end do
ReadyFlag(myProcID+1 % P) = true

Figure 3: Sequential buffer data restructuring applied to the loop in Figure 2(a).

While the primary goal of the sequential buffer technique is to reduce misses during the execution phase, a side
benefit in many cases is a reduction in the amount of work required during that phase.  In particular, it is common
that some index function evaluation overhead of the original loop is eliminated.  For example, in Figure 3, if the
operand A(i) were instead A(IDX(i)-1), the index function IDX(i)-1 would be evaluated in the helper loop and the
value A(IDX(i)-1) stored in temp.  Thus, we would have removed one memory reference (to IDX(i)) and the
subtraction from the execution loop.

The example in Figure 3 presents another opportunity for speeding up the loop body execution. If arrays A and B are
available for copying into the sequential buffer, then the helper loop could instead add them together and store the
result into the sequential buffer.  This removes the addition, as well as the extra load instruction and cache space for
accessing both operands from the execute loop.  This form of loop distribution [29], while possible in general, fits
naturally in the cascaded execution framework.

                                                          
3 For this to be legal, it must be certain that the value of the restructured data is up-to-date at the time the helper function is

executed.  In the worst case, this requires the insertion of a barrier synchronization just before the cascaded loop, although
dependence testing may reveal that the barrier is not required.
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2.2 How Many Iterations Should Be Performed During Each Execution Phase?

Because we must execute the loop iterations in order, each execution phase must involve a contiguous chunk of
iterations.  The question is How many iterations should be in each chunk?

Note that because we do not want to spend time prefetching when execution is possible, the first chunk of loop
iterations must be executed without benefit of a corresponding helper phase.  This initial execution phase is
unoptimized, and so each iteration in it will take longer than iterations in later execution phases.  For this reason,
“ramping up” the chunk sizes at the beginning of the cascaded execution of a loop may be necessary to obtain
optimum performance [28].  However, thus far we have considered only constant chunk sizes.

We choose the chunk size based on an estimate of the number of bytes of data that each iteration of the execution
loop will touch.  Expressed this way, the two natural choices for the chunk size correspond to filling the L1 cache
and filling the L2 cache.

We are motivated to fetch only enough data to fill the L1 cache in order to minimize the cycles per instruction (CPI)
experienced during the execution phase.  Larger chunks are guaranteed to miss in the L1 cache and will require
accesses to at least the L2 cache.  The extent to which these misses affect performance depends on both the
architecture-dependent miss penalties and the application-dependent instruction stream.

On the other hand, because the execution of each chunk ends with a transfer of control, we would like to minimize
the number of chunks (to minimize the total transfer of control overhead).  To do so, we must use larger chunk sizes.
Thus, we are motivated to consider chunks that fill the L2 cache, rather than just the L1.

The effect of chunk size on performance in examined empirically in the next section.

3 Performance Evaluation

3.1 Software Environment

We evaluate the performance of cascaded execution in two scenarios.  First, using measurements of a program from
the Spec95fp benchmark suite running on two current multiprocessors, we assess the benefits of cascaded
execution on today’s multiprocessors. For this work we selected the wave5 application from the benchmark suite.
In profiling the sequential execution of wave5, we found that one subroutine, PARMVR, dominates the execution
time, consuming roughly 50%.  PARMVR is called approximately 5000 times and consists of 15 loops.  Previous
examination of these loops, including our own experience, showed difficulty with parallelization and no effective
speedup in this application [11].

The original reference data set provided with wave5 is sized inappropriately for the caches on today’s machines:
the data set processed by each call to PARMVR is less than 300 KB.  Larger problem sizes provided with the
benchmark grow along the time dimension but not in the space dimension [24].  Since the original data set was too
small to be representative of problems likely to be run on today’s parallel machines, we enlarged the problem by
increasing the amount of data accessed in each loop.    In the enlarged problem, the amount of data accessed by each
loop ranges from 256 KB to 17 MB.

Our second set of measurements is intended to estimate the benefits of cascaded execution on future processors,
where memory access time will become an increasingly dominant factor in performance.  Because we do not have
access to tomorrow’s multiprocessors, for this evaluation, we use a synthetic loop nest characterized by a larger ratio
of memory access to computation than is exhibited by benchmark applications running on current machines.
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3.2 Hardware Environment

We evaluate cascaded execution on two sequentially consistent shared-memory multi-processors: a 4-processor PC
server and an 8-processor SGI Power Onyx.  The PC server has 4 200 MHz Pentium Pro processors running NT
Server 4.0.  The SGI Power Onyx has 8 194 MHz IP25 MIPS R10000 processors running IRIX 6.2.

The Pentium Pro and the R10000 are both advanced super scalar processors with out-of-order execution, branch
prediction, register renaming, and speculative execution.  All caches on both machines are non-blocking, allowing
up to four outstanding requests to the L2 cache and to main memory.

Table 1 presents the memory hierarchy sizes and access times for the two machines.

Processor Memory
Level

Access Time
(Cycles)

Size Associativity Line Size Other info

Pentium
Pro

L1
L2

Memory

3
7

~58

8 KB
512 KB
1.5 GB

2
4
-

32 bytes
32 bytes

-

On-chip, write-back
On package, write-back, unified

-

R10000
L1
L2

Memory

3
6

100-200

32 KB
2 MB
1 GB

2
2
-

32 bytes
128 bytes

-

On-chip, write-back
External, write-back, unified

-

Table 1: Pentium Pro [12, 13] and R10000  [18] memory characteristics

On the Pentium Pro, we use the Microsoft PowerStation Fortran compiler and NT threads to support cascaded
execution.  On the R10000, we used the MIPSpro 7.2 Fortran compiler and the m_fork command used by the SGI
parallelizing compiler to spawn lightweight processes.  Timing and cache miss measurements on the Pentium Pro
were obtained using hardware counters that can be accessed in about 60 cycles with the RDTSC and RDPMC
instructions.  We measured DCU_LINES_IN and L2_LINES_IN for L1 data cache and L2 cache misses,
respectively [6].  Timings on the R10000 were obtained using a 21 ns. resolution counter that can be accessed in
about 100 cycles.  Cache misses were obtained from hardware counters via a more expensive system call [32].

3.3 Current Performance

Figure 4 shows the overall speedup4 of the PARMVR subroutine of the wave5 benchmark when run under cascaded
execution with 64KB chunks (which was found to perform best on both platforms among the chunk sizes we
evaluated).  Figure 5 gives execution times in cycles for the fifteen individual loops in that routine.  Figure 6 and
Figure 7 show the L2 cache and L1 data cache misses, respectively. In these figures, “Prefetched” corresponds to the
version of cascaded execution where the helper function merely prefetches operand data, while “Restructured”
corresponds to the version where read-only data is streamed into a sequential buffer.

These results lead us to the following conclusions:

•  Cascaded execution can provide good speedups: we achieve an overall speedup of 1.35 on the Pentium Pro
and 1.7 on the R10000.

In Figure 4, we see that for all numbers of processors, a version of cascaded execution achieves noticeable
speedup over sequential execution of the original code on a single processor. Figure 5 shows that results for
individual loops vary, from a maximum slowdown of 0.9 to a maximum speedup of 4.5.

                                                          
4 We arbitrarily present the timings for the 12th call (out of 5000 calls) to PARMVR - other calls perform similarly.
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Our results are somewhat limited by the number of processors available to us.  Recall that a processor jumps
out of the helper phase as soon as it is signaled to begin execution.  More processors allow more time to
complete helper iterations, and thus better performance.  In simulations of an unbounded number of
processors, some loops were shown to have potential speedups as high as 30.
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Figure 4: Overall speedup for PARMVR (64KB chunks)
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Figure 5: Execution times of individual loops in PARMVR (four processors, 64KB chunks)

•  Data restructuring is significantly more effective than prefetching alone.

Figure 4 and Figure 5 show that data restructuring provides a much greater speedup than prefetching alone.
We believe that this benefit arises primarily from the elimination of conflict misses that restructuring can
provide.  In fact, on the R10000, where the L2 cache has less associativity, we see little improvement from
prefetching alone.  Figure 6 and Figure 7 show that prefetching does not reduce cache misses on the R10000.
We hypothesize that since the MIPSpro compiler inserts prefetch instructions in its optimized code, it may be
able to hide much of the latency of memory accesses other than those required for conflict misses.  Thus,
cascaded execution with prefetching alone provides no additional benefit.
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•  Cascaded execution is successful at improving application memory behavior.

Figure 6 shows that, cascaded execution eliminates 93-94% of the L2 cache misses on the Pentium Pro, and
cascaded execution with restructuring eliminates 47% of the L2 cache misses on the R10000. Figure 7
illustrates that, on both platforms, data restructuring eliminates L1 data cache misses in several of the loops.
In these cases, we believe that restructuring eliminates conflicts in the L1 cache.

Interestingly, although cascaded execution is more successful at eliminating L2 cache misses on the Pentium
Pro than on the R10000 percentage wise, it affords better speedup for the R10000.  This is because there are
2.59 times more L2 cache misses in the original sequential execution of wave5 on the R10000 than on the
Pentium Pro (perhaps because of the more limited associativity of the Power Onyx’s L2 cache).  In addition,
L2 cache misses are more costly for the R10000.
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Figure 6: L2 Cache Misses in PARMVR (four processors)
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Figure 7: L1 Data Cache Misses in PARMVR (four processors)

•  Chunk sizes larger than the size of the first level cache give the best performance because of the significant
cost of transferring control between processors.

Figure 8 shows the overall speedup of PARMVR for chunk sizes varying from 4 KB to 2048 KB.  On both
platforms, the cost of transferring control is significant: ~120 cycles per transfer on the Pentium Pro and ~500
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cycles on the R100005.  The speedups for PARMVR indicate an optimum chunk size in the range of 16 KB to
64 KB for four processors, which is larger than the L1 cache of either machine.
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Figure 8: Effect of chunk size (four processors)

3.4 Future Performance

The previous subsection presented results for a benchmark application running on modern multi-processors.  In the
future, as processors continue to outpace access rates to main memory, we expect that application memory stall
times will increase relative to instruction execution times.

To simulate this future scenario, we examine the performance of cascaded execution on a simple, synthetic loop that
has a larger ratio of memory access time to instruction execution than our benchmark program. This larger ratio is
generated by reducing the computational demand of the synthetic loop relative to the benchmark loops, and running
on the same multiprocessors as before (thus keeping memory access times constant).  Results for this synthetic loop
are intended only to give a rough indication of the benefits of cascaded execution on future machines; it is clearly
infeasible to attempt to represent all applications, or the details of all future machines, as would be needed to make
more precise claims.

Figure 9 shows the loop used.  In this loop, all operands are integers, and the index array IJ is simply the vector
1..n.

do i = 1, n, k
X(IJ(i)) = X(IJ(i))+A(i)+B(i)

end do

Figure 9: Synthetic loop with a high memory access time to computation time ratio

To examine a range of memory access to instruction execution ratios, we consider two versions of this loop.  In a
“dense” execution, the loop step size (k) is set to one, causing the loop to walk sequentially through words of
memory. In a “sparse” execution, the step size is set to eight, which corresponds to the number of integers that fit in
an L1 cache line on both machines.  Thus, in the sparse case, the original loop body has no spatial locality
whatsoever, which magnifies the memory costs and thus the memory access to execution ratio.

                                                          
5 Transferring control requires only that a shared-memory flag be set and that the target processor see its new value.  We have

optimized this procedure as much as possible, but the large cycle count penalties of accessing main memory lead to these
significant control transfer overheads.
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To avoid limiting observable speedups to the number of processors on the machines available to us, we simulate
cascaded execution by running on a single processor, which alternates between helper and execution phases.  To
calculate overall execution time, we sum the time spent in the execution phases and add in the cost of control
transfer (one transfer per chunk) for the number of chunks required for a given chunk size.  To obtain speedup we
compare this sum to the execution of the original loop running on a single processor.
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Figure 10: Cascaded execution speedups with increased memory access costs

Figure 10 shows observed speedups for chunk sizes ranging from 1KB to 256KB.  From it, we see that in the likely
future scenario where memory access time becomes an increasingly dominant factor in program execution time,
cascaded execution can provide significant benefits.  In the dense case, cascaded execution provides speedups of
around 4 for both systems. Speedups are even more impressive for the more memory-intensive sparse case: 16 for
the Pentium Pro and close to 14 for the R10000.

4 Related Work

Numerous hardware [7, 30] and software [9, 10, 20] techniques have been proposed to tolerate memory latency in
sequential programs.  The approaches most relevant to our work are prefetching and multithreading.

Prefetching may be done in hardware or in software, and may involve prefetching values into cache or into a
separate prefetch buffer.  Cascaded execution is most similar to software-controlled prefetching [9, 20].  In this
approach, the compiler analyzes the program and inserts prefetch instructions for accesses that will most likely result
in cache misses.  Accurate analysis is crucial because prefetching can displace useful values in the cache, increase
memory traffic, and increase the total number of instructions that must be executed.

Hardware prefetching [4] is able to make use of dynamic information not available at compile time, and avoids the
instruction overhead that software techniques incur.  However, hardware prefetching is usually limited to detecting
only constant stride access patterns and can require a nontrivial amount of hardware support both to detect memory
accesses that can be prefetched and to retrieve and hold the prefetched values.

Multithreading [1, 27] tolerates latency by switching threads when a cache miss occurs. This technique can handle
arbitrarily complex access patterns, but must be implemented in hardware to be effective.  Further, sufficient
parallelism must be available in the application to fully mask memory latency; this amount of parallelism may not
always exist.

Cascaded execution is applicable in only a much more restricted domain than the techniques listed above.  However,
in that domain it is complimentary to them.  Each may be used to reduce the time required to execute a sequential
loop on a single processor.  Cascaded execution can be combined with any of them to help mask any memory access
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latency that remains.  At the same time, cascaded execution may enhance the performance of these techniques by
simplifying and improving the memory reference behavior.

Several speculative and run-time parallelization methods have been proposed to attempt parallel execution of loops
that cannot be analyzed sufficiently accurately at compile time [15, 21, 22, 31].  Like cascaded execution, these
techniques make use of processors that would otherwise be idle if the compiler resorted to simple, sequential
execution.  The two approaches involve different tradeoffs, however.  Speculative and run-time parallelization both
require what can often be considerable critical-path processing to either construct a parallel schedule that is
guaranteed to be valid or to check that the speculated schedule used was in fact valid. Cascaded execution critical-
path overhead is limited to control transfers. Speculative and run-time parallelization require memory overheads that
are proportional to the data set sizes touched by the loop, whereas even the restructuring version of cascaded
execution has memory overheads bounded by the L2 cache size.  Additionally, cascaded execution is applicable
even to loops that are inherently sequential, a situation in which the alternatives perform poorly.  On the other hand,
speedup under speculative and run-time parallelization is limited by the number of processors available, while that
of cascaded execution is limited by the fraction of application execution time resulting from memory stalls.  For this
reason, the maximum benefit obtainable from speculative and run-time parallelization is likely to be larger than that
for cascaded execution.

5 Conclusions

We have identified a previously unexamined problem confronting parallelizing compilers, how to maximize the
performance of portions of the code for which no parallel execution can be found.  We have introduced a new
technique, cascaded execution, to speed up sequential loop execution.  Cascaded execution uses processors that
would otherwise be idle during sequential loop execution to optimize memory state in a way that leads to improved
cache behavior, and so improved performance.

Experiments run on a Pentium Pro multiprocessor and an SGI Power Onyx show that cascaded execution is able to
speed up sequential execution of otherwise unparallelized loops from a Spec95fp benchmark application by up to
a factor of 4.5, with no significant slowdown in any case.  Experiments using a synthetic loop intended to mimic the
increased memory access penalties of future processors indicate that the benefits of cascaded execution are likely to
be even larger in the future;  we observe speedups as high as 16 in this case.

In a theoretical sense, cascaded execution complements work on parallelization techniques in that it affords a useful
mechanism to improve performance of inherently sequential code, code to which no future parallelization techniques
can apply.  In a practical sense, it provides a mechanism that can be used as a fallback whenever the compile-time or
run-time techniques actually implemented in a particular compiler fail to find useful parallelizations.
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