
A Framework for Preprocessor-Aware

C Source Code Analyses

Greg J. Badros and David Notkin

Technical Report UW-CSE-98-08-04
Dept. Computer Science & Engineering

University of Washington

Box 352350, Seattle WA 98195-2350 USA

+1-206-543-1695

{gjb,notkin}@cs.washington.edu

ABSTRACT

Analyses of C source code usually ignore the C prepro-
cessor because of its complexity. Instead, these analyses
either define their own approximate parser (or scanner)
or else they require that their input already be prepro-
cessed. Neither approach is entirely satisfactory: the
first gives up accuracy (or incurs large implementation
costs), while the second loses the preprocessor-based ab-
stractions. We describe a framework that permits anal-
yses to be expressed in terms of both preprocessing and
parsing actions, allowing the implementer to focus on
the analysis. We discuss an implementation of such
a framework that embeds a C preprocessor, a parser,
and a Perl interpreter for the action “hooks.” Many
common software engineering analyses can be written
surprisingly easily using our implementation, replacing
numerous ad-hoc tools. The framework’s integration of
the preprocessor and the parser further enables some
analyses that otherwise would be especially difficult.

Keywords

Parsing, preprocessor, cpp, lexical analysis, syntactic
analysis, Perl.

1 INTRODUCTION

More than twenty years ago, Dennis Ritchie designed
the C language [11] to include a textual macro prepro-
cessor called cpp [10, Ch. 3]. Given the simplicity of the
language and the state of the art in compiler technology
in the mid-1970s, his decision to provide some language
features in this extra-linguistic tool was justified. For
the last two decades, C programs have exploited cpp’s
capabilities for everything from manifest constants and
type-less pseudo-inline functions to modularization and
symbol generation. Bjarne Stroustrup, the designer and
original implementor of C++, notes that “without the C
preprocessor, C itself . . . would have been stillborn” [21,
p. 119]. Certainly cpp contributes to C’s expressiveness
and portability, but perhaps at too large a cost. Strous-
trup recognizes this tradeoff:

Occasionally, even the most extreme uses of
cpp are useful, but its facilities are so unstruc-
tured and intrusive that they are a constant
problem to programmers, maintainers, people
porting code, and tool builders [21, p. 424].

Why cpp is good . . . and bad

The intrinsic problem with cpp is also its fundamen-
tal strength: it is a distinct first pass of textual (non-
syntactic) processing over the source code. This intro-
duces significant differences between the code that the
programmer sees and what the compiler proper (i.e., the
C compiler distinct from the preprocessor) ultimately
compiles.1

Experienced and novice C programmers alike are frus-
trated by misunderstandings of source code due to the
arbitrary transformations cpp performs. Such confu-
sions are easily reduced, if not eliminated by allowing
the software engineer to see the code exactly as the com-
piler does. Unfortunately, that view of the program is at
a level of abstraction lower than the unprocessed source.
Well-known identifiers such as stderr may appear as
the far less readable (IO FILE*)(& IO stderr), and
useful encapsulations such as assert degenerate into
sequences of symbols that are less meaningful to a hu-
man programmer. Every non-trivial C program uses
the preprocessor, and an empirical study of numerous
packages written in C documents the extensive use of
cpp constructs [2].

cpp and Software Tools

Because of the preprocessor’s textual foundations, un-
processed C source code cannot be parsed directly.
For example, identifiers which are macro-expanded may
hide braces, parentheses, or other important tokens
from the parser. Only after preprocessing is a C pro-
gram in a grammatically usable form. Since parsing pre-

1To avoid ambiguity, we will use unprocessed to refer to the

original source code, and preprocessed to refer to the view of the

code after running cpp on it.

processed code is relatively easy and well-understood,
most software engineering tools operate on exactly that
view of the source, losing abstractions that are expressed
in cpp.

Various tools including source-level debuggers and call
graph extractors either run cpp as the first stage in their
analysis, or use representations derived from a compiler
operating on the preprocessed code. Siff and Reps im-
plement a function-generalization transformation tool
that operates on preprocessed code, but note that fu-
ture versions of their tool must drop that requirement
so that macro abstractions are not lost [19]. Using pre-
processed code for program understanding or transfor-
mation tasks is fraught with difficulties due to changes
in the source artifact from preprocessing.2

Another disadvantage of preprocessing is that it elim-
inates conditional compilation directives that are es-
sential to the portability and versatility of the source
code [12]. Preprocessing forces tools to limit their anal-
ysis to a single configuration of the source code, instead
of permitting global reasoning about the entire artifact.

Some tools instead operate on the unprocessed source
code exactly as the programmer sees it. This technique
improves robustness in handling syntax errors and lan-
guage variants. Because the input is unprocessed, the
extracted information is presented to the human soft-
ware engineer at the same level of abstraction as the
source. Additionally, the unprocessed source still con-
tains the preprocessor directives which are essential to
the portability and flexibility of many C programs.

However, these tools cannot use a straightforward parser
or reliably construct an abstract syntax tree because
the source is not grammatically-correct C code. Lexical
tools such as etags, LSME [15], and font-lock-mode

for Emacs and approximate parsers such as Field [18]
and LCLint [3] use this approach. Unfortunately, dis-
regarding or only partially honoring the cpp directives
leads to an extracted model of the source code that
is only an approximation of the program’s appearance
to a compiler. Certain uses of the preprocessor can
cause substantial problems: the syntax of declarations
or scoping constructs can be customized and arbitrary
code can be hidden in macro expansions. Macro expan-
sion was a major cause of both false positives and false
negatives in call graph extraction [9]. Such approximate
tools are inappropriate for software engineering analyses
that require exact or conservative information.

2In contrast, this approach is exactly right for the compiler,

which has no need to preserve high level abstractions while gen-

erating object code.

We introduce a new approach that integrates the C pre-
processor and a parser in a flexible framework for stat-
ically analyzing C source code. The framework makes
it easy for tool builders to produce analysis tools for
C source code that are capable of reasoning about the
preprocessor. Section 2 describes that framework and
illustrates a sample analysis (a call-graph extraction)
using the framework. Section 3 details a pair of macro-
expansion understanding analyses, and section 4 de-
scribes our prototype tool, PCp3. Finally, section 5 dis-
cusses related work, and sections 6 and 7 review the
limitations of our approach and conclude.

2 THE FRAMEWORK

The idea behind our framework is simple: provide an
integrated parser and preprocessor which controls the
scanning of the source code while executing user-defined
callbacks when specified “interesting” actions occur.
Though similar to the way the yacc parser [13] asso-
ciates actions with parse rule invocation, our framework
provides callbacks on both parser and preprocessor ac-
tions. Additionally, instead of C as the language for
the actions, we use the Perl scripting language for writ-
ing the hook subroutines. Griswold, Atkinson and Mc-
Curdy note that various software tools benefited from
using a special-purpose action language [9], and inter-
preted languages can often significantly speed develop-
ment time [17].

Callbacks can be installed on actions such as the scan-
ning of preprocessor directives, the creation of a macro
definition, the expansion (i.e., use) of a macro name,
and the parsing of a variable declaration. Each action
callback is passed arguments relevant to the event for
which it was invoked. For example, the TYPEDEF action
receives the name of the declared type as its first argu-
ment. See Appendix A for a more complete list of the
hooks in our current implementation of the framework.

To supplement the directly-passed arguments, action
subroutines may also invoke “backcalls” to access in-
ternal parser and preprocessor data structures. Exam-
ple backcalls include getting the name of the currently-
processed file, looking up a symbol in the parser’s sym-
bol table, inserting arbitrary code for the preprocessor
to process, and instructing the parser to enter a new
scope. See Appendix B for a more complete list of the
backcalls in our current implementation of the frame-
work.

The callback and backcall interfaces combined with a
general purpose scripting language provide a concise
and flexible means for easily writing static analyses of
C source code.

2

use pcp3;

my %func_calls = (); # the dictionary of callees for the current function

maps called function name to number of times in appears

in the definition of the calling function

AddHook("FUNC_SPEC", sub { %func_calls = (); });

AddHook("FUNC_CALL", sub { # $_[0] argument is the name of function invoked

$func_calls{$_[0]}++; });

AddHook("FUNCTION",

sub { # $_[0] argument is the name of function just defined

if (scalar (keys %func_calls) > 0) {

print "$_[0] calls ", join(", ", sort keys %func_calls), "\n";

}

});

Figure 1: A complete static analysis to extract a call graph.

Example: Call-Graph Extraction

One common software engineering analysis is to extract
a call graph from a body of C source code. Our frame-
work permits this analysis to be written in about ten
lines of code, as shown in Figure 1.

To perform the analysis, we attach subroutines to three
parsing callbacks. When a function specifier (the sig-
nature specification of a function definition) is parsed,
the FUNC SPEC hook is activated. That callback resets
the set of functions invoked by the current function.
For each function call parsed, the FUNC CALL hook is
activated, and we add the name (passed to the sub-
routine as the zeroth argument) of the called function
to the set. Finally, when the entire function definition
has been parsed, the FUNCTION reduction occurs and we
output the set of called functions we accumulated while
scanning the body of the function definition.

The script does not implement the main control flow of
the analysis. Also, it need not handle any preprocessor
directives. Since this simple analysis deals only with
parser actions, the view the analysis sees is exactly the
same as if we had analyzed the preprocessed code.

Revising the Extractor

The simple call-graph extractor used as an example in
the preceding section suffers from many of the same
shortcomings as tools which operate on preprocessed
code: it reasons about only a single configuration of the
source and eliminates all macro abstractions from the
extracted model. As Murphy et al. discuss, there are
many degrees of freedom for call-graph extractors [16].
A strength of our framework is that it lets a tool-builder
easily fine-tune the extraction to derive the desired view.

For example, often macros are used to express inline
functions. If we choose, we can have macro expansions
included in the extracted call-graph:

$_[2] is the macro name being expanded

AddHook("EXPAND_MACRO",

sub { $func_calls{$_[2]}++; }

Given this revised extractor, a macro that expands into
code that includes function calls will expose those func-
tion calls as callees from the function definition in which
the macro was expanded. For some tasks, this may be
exactly what we want. If instead we prefer to hide those
nested calls, our framework supports that behaviour as
well. We simply ignore function calls that we parse while
expanding macros (see Figure 2).

Another possible extension of the analysis is to query
the symbol table for the type of the identifier being
called. If the variable is a pointer to a function, the
enclosing function could conservatively be marked as
“possibly calling all functions” (i.e., ⊥).3

Because the activations of the preprocessor and parser
hooks are intermingled, the analysis can reason about
the preprocessed version of the source within the context
of how it was preprocessed.

Preprocessor and Parser Interactions

Given a straightforward preprocessor and parser front
end, some analyses are impossible. For example, since
the preprocessor will skip code as instructed by con-

3A more aggressive analysis could maintain data on which

functions are ever assigned to the variable throughout the pro-

gram.

3

use pcp3;

my %func_calls = (); # the set of callees for the current function

my $expanding = 0; # are we expanding a macro?

AddHook("FUNC_SPEC", sub { %func_calls = (); });

AddHook("FUNC_CALL", sub { # $_[0] argument is the name of function invoked

$func_calls{$_[0]}++ if !$expanding; });

AddHook("EXPAND_MACRO", sub { # $_[2] argument is macro name being expanded

$func_calls{$_[2]}++ if !$expanding;

++$expanding});

AddHook("MACRO_CLEANUP", sub { --$expanding; });

AddHook("FUNCTION",

sub { # $_[0] argument is the name of function just defined

if (scalar (keys %func_calls) > 0) {

print "$_[0] calls ", join(", ", sort keys %func_calls), "\n";

}

});

Figure 2: A revised call graph extractor that treats macros as functions.

ditional compilation directives, that source will be left
unprocessed.

To permit handling the otherwise-skipped code hidden
by conditional compilation directions such as #ifdef

and #if, our framework provides a general mechanism
for inserting arbitrary source text to be processed. Ac-
tion subroutines can pass a string to the PushBuffer

backcall. A hook, DO XIFDEF, is called for all condi-
tional compilation directives and provides an argument
that is the text that would not be included. The action
routine for that hook may then use PushBuffer to ask
the preprocessor and parser to use that string as input
and process it normally.

However, since such program text can include arbitrary
preprocessor directives and C code, we may want to
ensure that the state of neither the preprocessor nor
the parser is permanently changed after the “for anal-
ysis only” parsing of the skipped code. Three data
structures must be preserved to avoid side-effects to
the main processing (i.e., the version selected by the
#definedness of macro names): the preprocessor’s hash
table of macros, the C symbol table, and the parser’s
current stack of states.

The backcalls PushHashTab and PopHashTab save and
restore the preprocessor’s table of definitions so that
preprocessor directives in skipped code will not affect
cpp when normal processing resumes. For the symbol
table, the backcalls EnterScope and ExitScope provide
similar functionality. Finally, YYPushStackState and

YYPopStackState save and restore the stack of parser
states. In under fifty lines of boiler-plate code, an anal-
ysis tool can manage these complexities and expose the
full source to the analysis.

Other related backcalls provide additional sup-
port for querying and interacting with the parser.
ParseStateStack returns the list of states in the
parser’s stack; this exposes information about what con-
structs might be legal at the current location (for ex-
ample, determining whether declarations may be per-
mitted). SetStateStack permits explicitly changing
the parser’s stack of states, perhaps to prepare for
handling a top level construct or to re-parse text us-
ing a different configuration of the parser. Using
YYFCompareTopStackState, an action hook can effi-
ciently check whether a previously saved parser state
matches the current configuration. For example, an
analysis can easily provide a warning whenever the “if”
block and the “else” block of an #ifdef directive leave
the parser in different states.

3 FURTHER EXAMPLES

Preprocessor-specific analyses are generally especially
difficult to write. The complexities and subtleties of
cpp must be duplicated in each tool. Not surprisingly,
our framework is ideal for analyzing preprocessor con-
structs.

Marking Macro Expansions

For an empirical study of C preprocessor use [2], we
wanted to identify macro expansions in the unprocessed

4

source code. Recognizing identifiers that are macro-
expanded is exceedingly useful as suggested by the
nearly universal convention of using all-uppercase iden-
tifiers for macro names. Previous tools have difficulty
even just counting macro expansions [9]. For the empir-
ical study, our first approximation of identifying macro
expansions did not use our framework. That analysis
was overly conservative: we marked all occurrences of
any identifier that was ever (in any source file of the
program) #defined to be a macro as an expansion. To
gain more accurate information, we used our framework
for the subsequent version of the analysis.

Since the marking of expansions should cover the en-
tire unprocessed source code, we use the boiler-plate
code mentioned in the previous section to expose all
the code to the tool. Because we wanted a conservative
analysis (i.e., it should over-mark when imprecise), we
treat an identifier as a macro at a program point if it
has been #defined on any path and not yet definitely
#undefined. In particular, the improved analysis prop-
erly limits the effects of macros that are defined for a
segment of code and subsequently undefined.

Our improved analysis using the framework is written in
under 90 lines of code, most of which is the boiler-plate
for handling all conditionally-included code.

cpp Transformation Understanding

When debugging preprocessor difficulties, experienced
C programmers have learned the hackish usefulness
of directly viewing the output of cpp. A more pre-
cise character-by-character mapping between the unpro-
cessed and preprocessed source proves even more ben-
eficial to understanding the transformation performed
by cpp. Our framework permits deriving such a fine-
grained mapping with relative ease (about 300 lines of
Perl callbacks and code).

Since the analysis is meant to be used as an interactive
program-understanding tool, we needed a useful way to
present the extensive information about the mapping.
To achieve this, the tool outputs Emacs Lisp code [14]
which marks up the unprocessed source using text prop-
erties. A custom Emacs mode then permits viewing of
those annotations (see Figure 3).

Other Possibilities

Our framework has proven useful for several soft-
ware engineering analyses. Other ad-hoc tools could
benefit from our framework, as well. For example,
Emacs’s etags [14] creates a database of function defini-
tions in unprocessed source but can be easily confused
by package-specific macros used in function definition

Figure 3: An interactive view of the mapping between
unprocessed and preprocessed views of an example C
program fragment. The outlined box in the top frame
indicates the user’s cursor position and the lower frame
describes the macro-expansion information at that char-
acter location. The bottom frame potentially changes
after each cursor movement.

headers.4 Also, searching for uses of global variables
could be enhanced using our framework since it will not
omit references to globals hidden by macros.

Another possible use of the framework is in identifying
“tricky” uses of the preprocessor as an aid to determin-
ing, for example, which #defines can be replaced with
language-proper features such as constant variables or
C++ inline functions.

4 THE PCp3 TOOL

Our framework combines a Parser, a C preprocessor,
and a Perl action language. Thus, we have named the
tool that implements the framework PCppP or PCp3.

Parser

Choosing a parser was difficult as there are many freely
available parsers, often tightly coupled to a functional
back-end, thus complicating reuse. We chose the parser
from CTree [4], a freely available ANSI C front end,
to embed in PCp3 largely because of its simple imple-
mentation and fully-scoped symbol table. Its lexical an-
alyzer and parser are mechanically generated by flex

and bison [5, 13] (freely available implementations of
lex and yacc, respectively). As CTree parses, it builds a

4To circumvent this limitation, etags permits the programmer

to manually specify an arbitrary regular expression which it uses

to find definitions to mark.

5

complete abstract syntax tree of the preprocessed code.

The implementation of the CTree parser component of
PCp3 is about 5,000 lines of C code and bison and flex

specifications. Most of the changes to the parser were
to eliminate name conflicts and to call the Perl hooks
as part of various reduction rules.

Preprocessor

Since PCp3 must mimic cpp exactly, the C preprocessing
library from the GNU C compiler’s (gcc) well-tested
(and slightly extended) cpp [6] is embedded in PCp3.

The implementation of cpplib grew from about 7,000
lines of code as distributed with gcc to almost 8,000
lines. Most of the changes involved modifying data
structures and function calls to maintain the extra
macro expansion information to support the character-
by-character correspondence between the source and
output.

Action Language

We chose Perl as the action language for PCp3 because
it interfaces easily with C and is used widely. Addi-
tionally, Perl’s built-in data structures, closures, and
higher-order functions make it especially well-suited for
use with the framework.

The Perl subroutine hooks are written in a user-
specifiable script file that registers a subroutine for each
action it wants to process. That script is free to man-
age its local data structures arbitrarily, and may import
reusable modules as an ordinary Perl program would.
However, the C data structures of the preprocessor and
parser are hidden behind the hooks and backcalls inter-
faces. All command line options accepted by cpp are
also accepted by PCp3 (this often makes it easier to use
the tool in place of a compiler for analyzing complete
packages as described by Murphy et al. [16]). Addition-
ally, PCp3 accepts a --noparse option that turns off
its parser and the calls to related hooks. PCp3 provides
over currently over forty action hooks (see Appendix A).

The implementation of the main PCp3 program, the
(roughly thirty) backcalls (see Appendix B), and the
glue connecting the components totals about 1,800 lines
of C code. About 60% of this code deals directly with
passing arguments between C and Perl.

Performance

The performance of PCp3 depends on the complexity of
the analysis. For comparison, for gcc to compile and op-
timize the 5,000 lines of the bc package [7] (an arbitrary
precision arithmetic language interpreter) required 38
seconds on a Pentium Pro 200 Linux machine. Run-

ning PCp3 with its test analysis consisting of 600 lines
of hooks that exercise every event required 4 minutes for
the bc source. Removing hooks for CPP OUT and TOKEN5

reduced the running time to 50 seconds. With all ac-
tion code turned off, the running time is less than 10
seconds. The useful analyses described in this paper in-
volve only a handful of callbacks, and thus execute very
quickly.

5 RELATED WORK

Numerous tools exist for assisting the software engineer
in understanding and manipulating source code. Gris-
wold, Atkinson and McCurdy review a number of them
while motivating their TAWK tool [9]. TAWK uses C as its
action language and matches patterns in the abstract
syntax tree. TAWK, like PCp3, operates on unprocessed
source code. Instead of embedding a preprocessor, TAWK
tries to parse each macro definition as an expression,
allowing macro arguments to be types, as well. If that
succeeds, the macro is left unexpanded in the code and
becomes a node resembling a function call in their AST.
About 92% of macro definitions in the two packages they
studied parsed acceptably. For the remaining 8%, TAWK
expands the macro uses before feeding the resulting to-
kens to their parser.

The Intentional Programming group at Microsoft Re-
search [20], headed by Charles Simonyi, is interested
in preserving preprocessor abstractions as they import
legacy C code into their system. They developed a novel
technique for handling preprocessor directives.6 Before
preprocessing, conditional compilation directives are
converted to stylized variable declarations. Then, the
source text is preprocessed and all macros are expanded
while marking each token with its textual derivation
by the preprocessor. These declarations and the other
source are then run through a C++ parser to create an
AST. The annotations decorate the tree, and “enzymes”
privy to the meaning of the stylized declarations process
the tree in an attempt to identify abstractions. When
macro expansions vary from use to use (e.g., LINE),
the non-constant text is considered an extra argument
to the macro, and the different expansions are explicitly
passed at the invocation sites. Especially unusual uses
of conditional compilation directives cause problems be-
cause of constraints on where C++ declarations may go,
but generally the group is optimistic about the possibil-
ities for their approach. Some of their techniques might

5These hooks are invoked on every string that cpp outputs

and on every token it inputs, respectively. They are the most

frequently invoked hooks.
6Charles Simonyi and Rammoorthy Sridharan, personal con-

versation.

6

be applicable to a future version of PCp3, especially as
the AST-related backcalls mature.

LCLint [3] attempts to analyze macro definitions for
dangerous or error-prone constructs. It allows the pro-
grammer to add annotations to the code in comments.
These annotations give the LCLint checker extra infor-
mation that it then verifies. For example, a macro argu-
ment can be marked that it needs to be side-effect free
at an invocation site, and LCLint will generate a warn-
ing message if that constraint is violated. Evans’s focus
is on finding errors, and dealing with macro expansions
is largely ignored [3, Ch. 8]. Unlike PCp3, LCLint is not
designed to be a general framework for analyses

Krone and Snelting analyze conditional compilation di-
rectives in the context of a lattice-theoretic framework
for inferring configuration structures from the source
code. They study how #if guards depend on and relate
to each other, and provide a means of visualizing the
relationships with the goal of improving the program-
mer’s understanding of the structure and properties of
the configurations [12].

6 LIMITATIONS

Our framework provides a concise and flexible infras-
tructure for analyzing unprocessed C code. It permits
reasoning about the entire source artifact and eliminates
the need of individual analyses to mimic the preproces-
sor. Nevertheless there are several weaknesses of the
framework and our implementation in PCp3.

First, some sophisticated preprocessor analyses (e.g.,
the second analysis in section 3) are dependent on the
order that action hooks are called. This in turn requires
an intimate understanding of the implementation’s pre-
processing and (to a lesser extent) parsing peculiarities.
Fortunately, the fast development time provided by the
scripting language permits easy exploration and testing
of analyses.

Because PCp3 works like a compiler, it handles only a
single translation unit at a time, complicating whole-
program analysis. The analyses discussed in section 3
output character-indexed annotations of the input that
a separate tool later applies to the source code to per-
form the final transformation or to permit interactive
exploration. These extra tools can also combine in-
formation derived from various translation units (e.g.,
marking expansions in a header file that is included
by multiple source files). To better support reason-
ing about an entire source code artifact, a database
approach similar to CIA++ [8] could be used. Atkin-
son and Griswold mention the importance of flexibility

in allowing the user to select the appropriate balance
between precision and performance of a whole-program
analysis [1]. One could provide this flexibility by using
one of Perl’s data-persistency modules to permit speci-
fied data structures to be shared among invocations on
separate translation units.

Better support for multiple conditional compilation ver-
sions would be useful. PCp3’s mechanisms for handling
multiple source configurations are primitive—a single
distinguished path (a version) through the source code
is treated specially. Ideally, multiple versions could be
considered with more uniform handling of the various
paths. This would permit future blocks of code that are
hidden via an #ifdef to be properly influenced by prior
blocks of code using the same guard. Krone and Snelt-
ing suggest that the number of distinct paths through
the source is reasonably bounded [12]. A generalized
symbol table could track which configurations contain
each symbol, and how the type of a variable depends
on conditional compilation guards. A similar general-
ization could be made for the preprocessor name table.

Finally, although PCp3’s CTree-based parser constructs
an abstract syntax tree, there is currently no easy way
to access the AST from action callbacks. More back-
calls and utility subroutines could be written to permit
useful manipulation of the abstract syntax tree to avoid
many of the problems created by the current limitation
of a single pass over the source code. To make the AST
more useful, some generalization of the tree could per-
mit representation of preprocessor-specific annotations.

7 CONCLUSION

Our framework distinguishes itself from other software
engineering tools by providing an accurate parse with-
out disregarding the C preprocessor. By maintaining
a tight mapping between the unprocessed and prepro-
cessed code, analyses requiring expanded code can be
considered in terms of the unprocessed code familiar
to the programmer. This approach empowers and sim-
plifies analyses while relieving the tool builder from the
burden of partially re-implementing cpp for each desired
analysis.

ACKNOWLEDGMENTS

This paper was supported by a National Science Foun-
dation Graduate Fellowship. Any opinions, findings,
conclusions, or recommendations expressed in this pub-
lication are those of the author, and do not necessarily
reflect the views of the National Science Foundation.

Thanks to Michael Ernst, Craig Kaplan, Brian
Michalowski, Gail Murphy, and Douglas Zongker for

7

their thoughtful comments on earlier revisions of this
paper.

A ABRIDGED HOOKS REFERENCE

The below lists action hooks and the conditions under
which the framework invokes the corresponding call-
back. We omit partially redundant and less useful
hooks. Passed parameters generally include source code
character offsets and other relevant details of the invok-
ing action.

STARTUP, STARTPARSE, EXIT

Initialization of cpp, initialization of parser, and
conclusion of processing

HANDLE DIRECTIVE

Reading of a cpp directive

DO XIFDEF, DO IF, DO ELIF, DO ELSE, DO ENDIF

Handling of conditional compilation directives

CREATE PREDEF, CREATE DEF

Predefined (e.g., __GCC__) and user-defined macro
definitions (from #defines)

DELETE DEF

#undef of a macro

SPECIAL SYMBOL

Expansion of a special symbol (e.g., __FILE__)

EXPAND MACRO, MACRO CLEANUP

In-code expansion of a macro, and completed ex-
pansion of a macro (these action hooks nest)

IFDEF MACRO, IFDEF LOOKUP MACRO

Expansion of a macro inside a conditional compi-
lation directive, or test for definedness

COMMENT, STRING CONSTANT

Reading of a comment and string constant

CPP ERROR, CPP WARN, CPP PEDWARN

cpp errors, warnings, and pedantic warnings

CPP OUT, CPP TOKEN

Outputting a sequence of characters written, and
inputting a token

INCLUDE FILE, DONE INCLUDE FILE

Inclusion of a file, and conclusion of reading an in-
cluded file (these action hooks nest)

FUNCTION, FUNC CALL

Parsing of a function definition and function invo-
cation

ASSIGN EXPR, EQUALITY TEST

Parsing of an assignment and equality test

TYPEDEF, VARDECL

Parsing of a typedef and variable declaration
parsed.

POP PERL BUFFER

Completion of processing a Perl-pushed (via the
PushBuffer backcall) buffer

B ABRIDGED BACKCALLS REFERENCE

The below backcalls are grouped by functionality. Pa-
rameters, if any, are indicated.

CbuffersBack, MacroExpansionHistory

Return the number of macro expansions deep in
the current expansion, and the list of the stack of
the current expansion history (the nesting of the
various macro invocations).

FExpandingMacros

Return true if a macro is currently being expanded.

CchOffset, CcchOutput

Return a character position offset into the current
input source file, and the character position offset
into the output file.

InFname, Fname

Return the main filename (e.g., the one given on
the command line), and the filename of the input
currently being processed.

ExpansionLookup, LookupSymbol

Takes a macro or variable name; return the expan-
sion of that macro or the symbol table entry of the
identifier.

EnterScope, ExitScope

Push and pop new symbol table scopes.

PushHashTab, PopHashTab

Push and pop new macro definition hash table
scopes.

ParseStateStack, SetStateStack

Return and set the stack of states for the parser
(the latter takes a list of parser states).

YYGetState, YYSetState

Return and set the current state for the parser (the
latter takes a parser state).

8

REFERENCES

[1] D. C. Atkinson and W. G. Griswold. The design
of whole-program analysis tools. In Proceedings of

the 18th International Conference on Software En-

gineering, pages 16–27, March 1996.

[2] M. Ernst, G. Badros, and D. Notkin. An empir-
ical study of C preprocessor use. Technical Re-
port UW-CSE-97-04-06, University of Washington,
April 1997.

[3] D. Evans. LCLint User’s Guide. MIT Laboratory
for Computer Science, Cambridge, MA, v2.2 edi-
tion, August 1996.

[4] S. Flisakowski. CTree distribution, v0.5. Freely
available software package, July 1997. ftp://
ftp.kagi.com/flisakow/ctree 05.tar.gz.

[5] F. S. Foundation. Bison v1.25 and flex v2.5 dis-
tributions. Freely available software package, April
1992,1995. ftp://prep.ai.mit.edu/pub/.

[6] F. S. Foundation. GCC distribution, v2.7.2.2.
Freely available software package, January 1997.
ftp://prep.ai.mit.edu/pub/gcc-2.7.2.tar.gz.

[7] F. S. Foundation. bc distribution. Freely
available software package, June 1998. ftp://
prep.ai.mit.edu/pub/bc-1.05a.tar.gz.

[8] J. E. Grass and Y.-F. Chen. The C++ information
abstractor. In Proceedings of the USENIX 1992

C++ Conference, Portland, Oregon, August 1992.

[9] W. G. Griswold, D. C. Atkinson, and C. McCurdy.
Fast, flexible syntactic pattern matching and pro-
cessing. In Proceedings of the IEEE 1996 Workshop

on Program Comprehension, March 1996.

[10] S. P. Harbison. C: A Reference Manual. Prentice-
Hall, Englewood Cliffs, New Jersey, 3rd edition,
1991.

[11] B. W. Kernighan and D. M. Ritchie. The C

Programming Language. Prentice-Hall, Englewood
Cliffs, New Jersey, 2nd edition, 1988.

[12] M. Krone and G. Snelting. On the inference of con-
figuration structures from source code. In Proceed-

ings of the 16th International Conference on Soft-

ware Engineering, pages 49–57. IEEE Computer
Society Press, May 1994.

[13] J. R. Levine. Lex & Yacc. O’Reilly & Associates,
Inc., Sebastopol, California, 2nd edition, 1992.

[14] B. Lewis, D. LaLiberte, R. Stallman, and The GNU
Manual Group. GNU Emacs Lisp Reference Man-

ual. Free Software Foundation, Cambridge, Mas-
sachusetts, 2nd edition, May 1994.

[15] G. C. Murphy and D. Notkin. Lightweight lexical
source model extraction. ACM Transactions on

Software Engineering and Methodology, 5(3):263–
291, July 1996.

[16] G. C. Murphy, D. Notkin, W. G. Griswold, and
E. S. Lan. An empirical study of static call graph
extractors. ACM Transactions on Software Engi-

neering and Methodology, 7(2), April 1998.

[17] J. Ousterhout. Scripting: Higher level pro-
gramming for the 21st century. Web document,
March 1997. http://www.sunlabs.com/people/
john.ousterhout.

[18] S. Reiss. The Field Programming Environment: A

Friendly Integrated Environment for Learning and

Development. Kluwer Academic Publishers, Hing-
ham, MA, 1995.

[19] M. Siff and T. Reps. Program generalization for
software reuse: From C to C++. In Sigsoft 96.
Sigsoft, 1996.

[20] C. Simonyi. The intentional programming
overview. Technical report, Microsoft Corpora-
tion, 1996. http://www.research.microsoft.com/
research/ip/main.htm.

[21] B. Stroustrup. The Design and Evolution of C++.
Addison-Wesley, Reading, Massachusetts, 1994.

9

