Assessing Software Libraries by Browsing
Similar Classes, Functions, and Relationships

Technical Report UW-CSE-98-08-05

Amir Michail and David Notkin
Dept. of Computer Science and Engineering
University of Washington, Box 352350
Seattle, WA 98195-2350, USA
{amir,notkin} @cs.washington.edu

ABSTRACT

Comparing and contrasting a set of software librariesis use-
ful for reuserelated activitiessuch as selecting alibrary from
among severa candidates or porting an application from one
library to another. The current state of the art in assessing
libraries relies on qualitative methods. In particular, the de-
vel oper manually inspects each library, reads the documenta
tion, examines the architecture, considers subjective scenar-
ios, and other available information.

To reduce costs and/or assess a large collection of libraries,
automation is necessary. Although there are toolsthat help a
developer examine an individual library interms of architec-
ture, style, etc., we know of no toolsthat help the devel oper
directly compare severa libraries. With existing tools, the
user must manually integrate the knowledge learned about
each library.

Automation to help developers directly compare and con-
trast librariesrequires matching of similar components (such
as classes and functions) across libraries and various rela
tionships (such as inheritance and invocation) between them.
This is different than the traditional component retrieval
problem in which components are returned that best match a
user’'s query. Rather, we need to find those components and
relationships that are similar across the libraries under con-
sideration. In this paper, we show how thiskind of matching
can be done.

Keywords
Software libraries, reuse, assessment, information retrieval

1 INTRODUCTION

Comparing and contrasting a set of software librariesis use-
ful for reuserelated activities such as selecting alibrary from
among severa candidates or porting an application from one
library to another. Library selection in particular is difficult
and can be very expensive. Indeed, Sparks, Benner and Faris
givethisadvice for framework selection:

Budget adequately to support frameworks. Expect
the evaluation and selection of aframework to take
up to six staff-months per new framework. [16, p.
54]

The current state of the art in selecting among library can-
didates relies on qualitative assessment. This may take the
formof informal tipsfor selecting frameworks[16] or acom-
pleteanalysis method, such as SAAM [9]. Either way, thede-
vel oper manually inspects each library, reads the documenta
tion, examines the architecture, considers subjective scenar-
ios, and other available information.

To reduce costs and/or assess a large collection of libraries,
automation is necessary. Although there are toolsthat help
adeveloper examine an individual library in terms of archi-
tecture, style, etc. [1, 10, 13, 18], we know of no tools that
help the devel oper directly compare severa libraries. With
existing tools, the user must manually integrate the know!-
edge learned about each library.

Automation to help developers directly compare and con-
trast librariesrequires matching of similar components (such
as classes and functions) across libraries and various rela
tionships(such asinheritance and invocation) between them.
This is different than the traditiona component retrieval
problem in which components are returned that best match
auser’s query. In our case, there is no user query per se.
Rather, we need to find those components and relationships
that are similar across the libraries under consideration. In
this paper, we show how thiskind of matching can be done.

Specifically, we present two matching techniques, name
matching and similarity matching. The name matching
method matches those componentsthat have the same “ stan-
dardized name’ in each library. The similarity matching
method uses more conventional information retrieval tech-
niquesand issimilar to that used in component retrieval tools
based on free-text indexing [5, 8, 11].

In this paper we shall be concerned with componentsthat are
classes or functions. To simplify the exposition, we will just
say “component” whenever the discussion applies to both
classes and functions. To avoid ambiguity, keep in mind that
we will only match classes with classes and functions with

functions; we never match aclass with afunction.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes the components and the re-
lationships between them that we extract from the source.
Section 4 presents the name matching technique. Section 5
showsthesimilarity matching method. Section 6 presentsex-
perimental results. Section 7 discusses a tool based on these
techniques and shows, by example, how it can be used to as-
sess libraries. Section 8 summarizes the work, concluding
with a number of open questions.

2 RELATEDWORK

Asmentioned earlier, we know of no toolsthat help a devel-
oper directly compare severa libraries. With existing tools
[1, 10, 13, 18], the developer must manually integrate the
knowledge learned about each library. Yet, the problem of
finding similar components across libraries appears equiva
lent to the traditional component retrieval problem in which
components are returned that best match auser’squery. This
isonly partialy true.

Thewhol e point of component retrieval isthat the user needs
a component that performs some function yet does not know
the exact name of that component (or even if it existsin the
library). However, when comparing components across li-
brariesin a particular domain, it islikely that the devel opers
of each library are themsel ves expertsin the domain and have
chosen standard terminol ogy to name components— at | east
for thosethat are fundamental tothat domain. For thisreason,
it makes sense to match components by name acrosslibraries
(after someinitial preprocessing such as stripping thelibrary
prefix, if any), which is exactly what we do in Section 4.

But name matching alone is not enough. It is till possible
that some important concept is represented by components
with completely different names in the libraries. For this
reason, we consider well-known component retrieval tech-
niques such as free-text indexing [5], facets[14], and formal
specifications [2]. However, since we are interested in auto-
mated techniques that do not require domain analysis or for-
mal specificationsin the code, we exclude facets and formal
specifications from our discussion.

The free-text indexing method simply uses the text in the li-
braries (and not just the component names) for indexing us-
ing standard information retrieval techniques [4]. No man-
ual domain analysisis required. However, researchers have
observed that this method works well with libraries that in-
clude extensive documentation with the components, such as
Unix man pages [6, 11]. Only then can one rely on regular-
ities in the text such as relative word frequencies or lexica
affinities [11]. However, it has aso been suggested that one
can combine library documentation with structural informa-
tion that can be extracted from the source such asinheritance
relationships|[8].

Rather than restrict the kinds of libraries that can be com-

pared and contrasted, we have decided not to rely on compo-
nent documentation. Conseguently, we do not look for regu-
laritiesin the text; rather, we define a similarity measure that
makes heavy use of structural information (and in amore ex-
tensive manner than [8]). We describe our similarity measure
in Section 5.

3 INFORMATION EXTRACTION

In thissection, we describe the components and rel ationships
that we extract from the library source code. This extrac-
tion process isthe only language dependent aspect of our ap-
proach. (Our tool currently handles C, C++, and Java.)

Components

Asmentioned earlier, acomponent iseither aclassor afunc-
tion. We extract any type as a class, whether it appearsinthe
source as a struct, class, interface, or union. We also extract
all functionsfrom the source, whether they are members of a
class or not. Moreover, we consider class member variables
asfunctions. (In essence, amember variableisafunctionthat
takes one argument contai ning a pointer to theinstance of the
class.)

Relationships

We also extract various relationships between components.
These may occur between two classes, as with inheritance
and composition, between two functions, as with invocation,
or between a class and a function, as with association. We
extract these relationships from the source not only for the
purpose of matching across libraries but aso because they
are used in computing the similarity measure for similarity
matching.

Inheritance and Composition

The two most common techniques for reuse in object-
oriented librariesare classinheritance and composition[7, p.
18]. When using inheritance, aclass A “inherits’ from some
class B. When using composition, a class A has B as one
of itsmember variables. (However, not all member variables
indicate composition; some only express acquaintance rela
tionshipswith other objectsin the system.)

Now it may bethat onelibrary usesinheritancewhile another
uses composition to express areuse of B in A. To capture a
similarity even in this case, we view inheritance and compo-
sition as forms of areuse relationship; thus, in both libraries,
A reuses B.

Finally, to further increase the likelihood that some relation-
shipsmatch acrosslibraries, we not only consider direct reuse
relationships but also indirect ones. For example, it may be
the case that PushButton doesn't directly inherit from Wid-
getinevery library but that it doesinherit directly/indirectly
in each of thelibraries.

Asapractica note, observe that compositionis not a syntac-
tic construct in many languages, so we need to distinguish
it from the weaker acquaintance relationship. In alanguage
such as C++, devel opers may use member variables that are

real instances rather than pointersor references to instances.
We consider all such uses as composition.

However, pointers or references to instances may aso be
used toindicate composition (and indeed, itistheonly way in
some languages such as Java). In such cases, we use thefol-
lowing heuristic: we consider a pointer/reference to class B
in A to be compositionif we can find code in the class mem-
bersof A that allocates new instances of B.

Invocation

Theinvocationrelationshipindicatesacall from onefunction
to another. Aswith the inheritance, composition, and reuse
rel ationships, we not only look for direct relationshipsbut in-
direct onesas well.

However, the indirect invocation is problematic in the fol-
lowing sense: doesfunction f indirectlyinvoke ~ when f in-
vokes g and g invokesh? It may bethe case that no sequence
of callsfrom f to ¢ aso ends up invoking ¢ even though in
other situations, ¢ does cal h.

To avoid this (undecidable) problem, we simply say that f
indirectly invokes h if thereis some sequence of direct invo-
cations f, g1, - -, gx, h. (It may bethat no call sequence ac-
tually occurs that goesfrom f to h; thisdepends on thelogic
of the code.)

Association

In object-oriented languages, classes contain member func-
tions. If class C' contains a member function f, then we say
that f isan associated function of C', or equivaently, that C
isan associated classof f. Therelationshipawaysgoesboth
ways.

Inlanguagesthat are not object-oriented, thereisno notion of
aclasswith member functions. However, recall that we make
no distinction between member variables and member func-
tions so any variables declared in a structure are associated
with that structure.

Moreover, it is common practice for developersto associate
afunction with a structure by supplying (a pointer to) thein-
stance of that structure as thefirst parameter to the function.
By looking at thetype of thefirst parameter, we can infer as-
soci ations between functions and the structuresthat they op-
erate upon.

4 NAME MATCHING

A component with the same name in different libraries is
likely to serve a similar purpose in each of those libraries.
Yet, it is unlikely that one would find a component with ex-
actly thesame namein several librariesdueto different nam-
ing conventions.

For example, wordsin a component name may be separated
by underscores, changesin case, or some combination of the
two. Moreover, developers often prefix component names
with a digtinct library prefix to prevent name clashes with
other libraries and the application code.

In this section, we show how to standardize component
names in each library, and then we show how to match
classes and functions across libraries based on the standard-
ized names.

Standardizing Names

There are two basic steps in standardizing names. (1) we
identify the words in each name; and (2) we remove non-
essential words. The words are then appended to form anew
name where each word starts with an uppercase | etter.

| dentifying Words

Thefirst step in standardizing a component name isto split it
up into a sequence of words. We infer word boundariesfrom
underscores and/or changes in case. While inferring word
boundaries from underscores is straightforward, identifying
words from case change is more involved.

In particular, a transition from a lower case letter to an up-
per case letter signals the start of a new word. Moreover,
a sequence of uppercase letters ending the name or fol-
lowed by an underscore congtitute a single word. For ex-
ample, JX_window is separated into “jx”, “window”. If a
sequence of uppercase letters is followed by a lower case
letter, then this is split into a (possibly empty) word that
includes al the uppercase letters except the last and an-
other word that starts with the last uppercase letter and any
subsequent lowercase letters. For example, CScrollBar is
separated into the sequence of words “c”, “scroll”, “bar”,
whileJX_ScrollbarClass is separated into “jx”, “scrollbar”,
“class’.

Although not good style, some devel opers may not separate
wordsat all inacomponent name. Moreover, itisnot always
clear whether a concept is written as one or two words, as
with* Scrollbar” versus*® ScrolIBar”. Somelibrariesmay use
one variation while others use the other.

For this reason, after having done the steps described above,
we attempt to break the individual word strings even further
into two or three English words using dictionary lookup. For
example, the word string “scrollbar” is broken up into the
words*“scroll” and “bar”. (In cases of ambiguity, we separate
the string into as few words as possible, with shorter words
appearing near the beginning of the sequence.)

We also make use of atable of common abbreviations, which
helps us avoid problems with trying to match an abbreviated
word in one library with an unabbreviated one in another.
(Currently, thisisonly donefor some well-knowndomainin-
dependent abbreviations; it is possible to include domain de-
pendent ones also, but this would require domain analysis.)
Abbreviation expansion is a so used while breaking up word
strings. For example, the string “appcmd” is broken up into
the sequence “application”, “command”.

Removing Non-Essential Words
As mentioned earlier, developers often prefix component
names with a distinct library prefix to prevent name clashes

with other libraries and the application code. Thisis partic-
ularly true with languages without name space management
such as C and early versions of C++. Removing library pre-
fixes is important since we may otherwise miss matching a
class, say JXWindow, in one library, with onein ancther li-
brary, say QWindow, since they have different prefixes.

A library may have one or more prefixes, and a prefix may
contain one or more words. We identify library prefixes ssm-
ply by looking for prefixes that occur frequently. It is not
likely that a prefix contributes meaningfully to a name if it
occurs in many other names. The technique we useisidenti-
cal for classes and functions and is done separately for each
independent of the other.

In particular, performing the steps described above yields a
sequence of words for each component name in the library.
For each such sequence, we remove the maximal prefix of
words, each at most / |etterslong, that occurs at least k times
as a prefix of componentsin thelibrary. In practice, we find
[=3 andk = min(10,0.1N) yieldsgood results, where N
isthe number of componentsin thelibrary.

For example, this procedure would remove the “c” prefix

in“c’, “scroll”, “bar”, and the “jx” prefix in “jx”, “scroll”,
Hbarli’ “Cl&”.

Oncethelibrary prefix(es) are removed, we a so remove any
standard prefixes and suffixes in the remaining words in the
component name. These include such standard function pre-
fixes as “get”, “set”, “is’, and standard class suffices such
as “class’, “info”, “type’. For example, we would remove
the “class’ suffix from the word sequence “scroll”, “bar”,
“class’.

In languages that are not object-oriented, developers may
none-the-less write code in an object-oriented style and in-
dicate that afunctionisamember of class by embedding the
classnamein thefunction name. For example, the name wid-
get_show indicatesthat thisfunction definesthe show mem-
ber of the widget class. It isalso standard practice to supply
apointer to the widget structure as the first parameter in the
widget_show function.

In such cases, we remove the embedded class name for the
purpose of matching across libraries (some of which may be
writtenin obj ect-oriented languageswherethispracticeisnot
required nor used). We do thisby first standardizing the class
names and then checking whether thetypeof thefirst parame-
ter of afunction has a name that is embedded in the function
name. If so, we remove the embedded class nhame from the
function name.

Matching across Libraries

We match all components that have the same standardized
name in each library under consideration. However, observe
that the standardi zati on processmay map two different names
to the same name.

For example, alibrary may have classes JXTextEditor and
JTextEditor, both of whose names get mapped to TextEditor
(sinceJX and Jarebothlibrary prefixes). Similarly, twofunc-
tionsgetTextColor and setTextColor will have their names
both mapped to TextColor.

To address thisissue, we simply make all such components
part of the same component family, whose name is the stan-
dardized name of its members. For example, JXTextEditor
and JTextEditor are both members of the TextEditor class
family. Similarly, getTextColor and setTextColor are mem-
bers of the TextColor function family.

Thus, we actualy match component familiesacrosslibraries.
However, we also remember the members of each family. In
thisway, a devel oper may see which class and function fam-
iliesaset of libraries share, and at the same time, be able to
inspect the members of afamily in each library.

Finally, we al so need to define what we mean by relationships
between families (such as those described in Section 3). A
rel ationship between two families A and B holdsif and only
if that relationship holds for at least two members, with one
member from each of the two families.

For exampl g, classes JTextEditor and JXTextEditor both be-
long to the same class family, TextEditor. Even though only
class JTextEditor contains a member function Paste, we
still have an “association” rel ationship between the TextEd-
itor family and the Paste function family.

To simplify the exposition in the remainder of the paper, we
simply say “class’ and “function” to mean “ class family” and
“function family”, respectively.

5 SIMILARITY MATCHING

It may bethecase that similar classes or functionsin different
librarieshave namesthat are not matched by the name match-
ing technique described in Section 4. In this section, we de-
scribe a complementary technique, similarity matching, that
not only takesinto account the class (function) name, but also
itsassociated functions (associated classes) and related com-
ments.

In what follows, we assume that the name standardization
technique described in Section 4 has been carried out. And
as mentioned earlier, we smply say “class’ and “function”
to mean “class family” and “function family”, respectively.

We define a similarity measure that indicates how closely
two components are related. The ideas in this section bor-
row heavily from thefield of informationretrieval [4], where
similarity measures are used to rank documents returned by
aquery in order of relevance. In our case, thereis no query
per se, but we view components as documents 1; and com-
pute the similarity between componentsin one library with
componentsin another.

We associate with each component D; a set of terms 7; that
are extracted automatically from the source code. Some

terms have more weight than others, and we use w;(?) to
denote the weight of term ¢ in component D;. Given two
components D; and D; in different libraries, we define the
similarity between them, .5; ;, as the “dot product” of the
weights[17]:

Si; = Z w;(t) - wj(t).

tET,ﬂTj

(We do not use a “normalized” similarity function, such as
the cosine coefficient where the expression above is divided

by \/ZtET, wf(t)\/zteTj w3(t) [17), because the compo-
nents usually don’t have enough terms associated with them
for thisto yield better results.)

The remainder of this section shows how to extract terms and
determine the associated weights for each component inali-
brary. Thisisdone independently of any other libraries.

Extracting Terms

Terms for a component are extracted from three sources of
informationin the code: the class (function) name, itsassoci-
ated functions (associated classes), and related comments. In
all three cases, we expand any common abbreviations, such
as “cmd” for “command” and “len” for “length”, and put
words in their base forms, as with “run” for “running” and
“directory” for “directories’.

We aso useastop list to filter out wordsthat tend not to help
in distinguishing a component from another. These include
closed-class words — pronouns, prepositions, conjunctions,
and interjections — as well as commonly used terminology
such as“copy”, “initialize’, and “iterate’.

Name

A component name tends to contain one or more words that
are usualy very good indicators of the purpose of that com-
ponent. Although the component name may not match inits
entirety with one in another library, the word(s) in the name
are extracted astermsfor the purpose of similarity matching.

Associations

Theassociated functionsof aclass provideinformation about
the purpose of that class. Similarly, the associated classes of
afunction provideinformation that may help “narrow down”
the purpose of that function. For these reasons, we extract
terms from certain “inherently” associated components as
discussed in what follows.

Not all associations give us information that is inherent to a
component. In particular, aclass C' may inherit or overridea
member function f from an ancestor in the inheritance hier-
archy. In such a case, we do not expect the information pro-
vided by f to be as inherent to class C as that from another
member ¢ that is defined in C' but not present in any of its
ancestors.

We can make a similar observation concerning delegation.

Delegationisoften used to make composition as powerful for
reuse as inheritance. Thisisdoneby havingaclass C “dele-
gate” acdl to one of itsmember functions f to another func-
tion (usually of the same name) in one of its instance vari-
ables. (Thisisanalogousto a class deferring arequest to one
of its parents using inheritance.) Again, in such acase, f is
not inherent to C'.

We say that f is an inherently associated function of C, or
equivalently, that C' is an inherently associated class of f,
if and only if no ancestor of C defines f and no call to f is
“delegated” to another member function f in one of C’sin-
stance variables. We extract termsfor aclass (function) only
from word(s) in the names of its inherently associated func-
tions (inherently associated classes).

Comments

Finally, we extract terms from component comments. Wetry
to include comments that describe the comment’s function-
ality but not itsimplementation. Thisis done by looking for
comments at the beginning of a component or those that im-
mediately follow its declaration without an intervening new-
line (but we omit those comments buried in the definition of
the component body).

Althoughweinclude the commentsfor all classes, we do not
includethe commentsfor all functions. In particular, if func-
tion f isassociated with class C' but not in an inherent man-
ner, then we ignore any comments concerning f in class C'.

Computing Weights

Now that we have described how terms are extracted from the
source code for components, we show how to compute the
weight w; () for each term ¢ associated with component D;.
Itis standard practice to define each weight as the product of
theinverse document frequency and the within-document fre-

guency [15].

However, as mentioned earlier, we cannot rely on term fre-
guenciessincethe” documents’ in our case are short. For this
reason, we do not use the within-document frequency. In-
stead, we rely on structural information whichis supplied as
the within-document weight.

Thus, we define each weight w;(¢) as the product of the in-
verse document frequency, idf(¢), and the within-document
weight, wdw;(t),

w;(t) = idf (1) - wdw;(t).

Inverse Document Frequency

The inverse document frequency idf(t) indicates how “im-
portant” termt isinthelibrary. If ¢ occursfrequently in many
components, then it is not a good discriminator and should
not be weighed heavily. If ¢ isquiterare, thenit islikey to
yield more information and should have greater weight.

Let NV denote the total number of components in the library,
and let df(t) denote the number of components containing

term ¢. We use the following definition for ¢df(¢), which is
decreasing in df(t), as proposed in[3]:

idf (t) = log, (%(t) - 1) .

Within-Document Weight

The within-document weight wdw;(¢) indicates how “im-
portant” term ¢ isin a particular component. We compute
wdw;(t) by summing direct contributionsde;(¢) from terms
associated with component D; and indirect contributions
ic;(t) obtained by considering closely related components.

First, we caculate de;(t). Recal that the terms for class
(function) D; are extracted from three sources of informa-
tion: the name, inherently associated functions(classes), and
related comments. A term may come from one, two, or al
three sources. Let ay(é,t), az(é,t), and as(7,t) denote the
weightsfor the three sources — name, inherent associations,
and comments, respectively — for aterm¢ in component D;.
The direct contribution de¢;(t) for term ¢’sweight in compo-
nent D; is:

dei(t) = a1(i, t) + aa(i,t) + as(i, 1).
Each ay (¢,) isdefined as follows:

if term¢ isin source k
otherwise

. A Qbk(i,t)—l
ak(z,t):{ e/ 0

where A;, is aconstant indicating the importance of source
k, and by (¢, ¢) indicates the minimum number of wordsinan
identifier/wordthat containsterm¢ in source k. For example,
theterm “dialog” isweighed twice asheavily if it is obtained
from Dialog than if it were obtained from FileDialog (and
there is no other identifier/word “Dialog”). In practice, we
findthat A, = 2, A, = 4, A3 = 1 yield good results for
both classand function matching. (Weusethesevaluesinthe
experimentsin Section 6.)

Now that we have shown how to compute the direct contri-
bution de;(t) for the within-document weight wdw;(t), we
now consider the indirect contribution é¢; () which consid-
ers terms associated with closely related components in the
same library.

For class matching, consider the graph G whose nodes con-
sist of classes in the library and whose edges denote inher-
itance and/or composition relationships between them. Let
d(D;, D;) be the length of the shortest path from D; to D;
inG. Thentheindirect contributionic; (¢) from other classes
toclass D; is:

iei(t) = Y dej(t)/24 0P

D;eR;

[Domain | Library | Language | Classes | Functions |
GUI Qt-1.40 C++ 301 1285
JX-1.0.8 C++ 228 740

Kaffe-1.0 Java 128 542

Thread | u++-4.7 C++ 105 296
Presto-1.0 C++ 56 108
uSystem-4.4.3 | C 90 180

Sim. Awesime-2.0 C++ 171 300
C++SIM-1.7.2 | C++ 69 162
CNCL-1.10 C++ 179 369

3d Crystal-0.10 C++ 249 852
Apprentice-0.5 | C++ 240 307

VTK-2.1 C++ 599 1074

Table 1: The libraries used in the experiments.

where R; isthe set of classes reachable from D; in G (but
excluding D;).

Function matching is done similarly except that the graph ¢
has an edge for every cal from one function to another.

6 EXPERIMENTAL RESULTS

We have performed experiments to determine how well the
name matching and similarity matching techniques work in
practice. Specifically, we have compared librariesin four do-
mains: graphicsuser interface (GUI), thread, simulation, and
3d graphics. In each domain, we have done pairwise com-
parisons among three libraries (although in genera, our ap-
proach can compare more than two libraries a atime). Ta-
ble 1 shows each library, its domain, language, as well asits
class and function family counts.

Name Matching

Tables 2 and 3 show the results for name matching with
classes and functions, respectively. In each table, we present
a mix of quantitative and qualitative information: for each
pairwise comparison between two libraries, we show the
number of name matches as well as alist of some of these
matches.

Fromthetwo tables, itisclear that name matching isgood at
identifying fundamental classes and functionsinthelibraries
being compared. For example, in the GUI domain, name
matching identifies classes Widget, Button, Menu, Win-
dow, Dialog and functionsHide, Show, Clip, Drag, Flush,
Focus, Paint, Update, Cut ,and Paste.

However, name matching can also miss some fundamental
domain concepts. For example, in the thread domain, the
most important concept isthat of a“thread”, or equivalently,
“task”. Yet thisconcept isnamed BaseTask inu++, Thread
in Presto, and Task in uSystem, so thereisno corresponding
name match in any of the comparisons. Aswe shall see, sim-
ilarity matching can help in thisregard.

Similarity Matching
Tables 4 and 5 show the results for similarity matching with
classes and functions, respectively. In each table, we present

[Domain | Libraries

| #Matches | Class Name Maiches

GUI Qt, X 20 | Button, Cursor, Display, Image, Menu, Painter, Region, Widget, Window, ...
Qt, Kaffe 25 | Button, Cursor, Dialog, Font, Event, Menu, PopupMenu, Scrollbar, Window, ...
JX, Kaffe 10 | Button, CheckBox, Container, Cursor, Image, Menu, ScrollBar, Window, ...

Thread u++, Presto 4 1 Caddr, Condition, Lock, SpinLock
u++, uSystem 7 | Cluster, Condition, Event, Lock, Message, Processor, Semaphore
Presto, uSystem 5 | Condition, Lock, Monitor, Stack, Stderr

Sim. Awesime, C++SIM 4 | Histogram, Quantile, Semaphore, Thread
Awesime, CNCL 13 | Binomial, Event, Geometric, Histogram, Normal, Poisson, Random, Server, ...
C++SIM, CNCL 4 | Hashlterator, Histogram, Job, Queue

3d Crystal, Apprentice 15 | Base, Camera, Color, Image, Light, Line, Matrix, Plane, Texture, Vector, ...
Crystal, VTK 21 | Camera, Component, Image, Light, Line, Matrix, Plane, Polygon, Texture, ...
Apprentice, VTK 20 | Camera, Cylinder, Image, Light, Line, Material, Matrix, Plane, Texture, Transform, ...

Table 2: Experimental resultsfor class name matching.

| Domain | Libraries

| #Matches | Function Name Maiches |

GUI Qt, X 130 | Activate, Cut, Display, Drag, Flush, Focus, Hide, Paste, Raise, Show, Update, ...
Qt, Kaffe 113 | Activate, Align, Clip, Flush, Hide, Paint, ProcessEvent, Show, Update, ...
JX, Kaffe 76 | Accept, Activate, Filter, Flush, FontList, Hide, Move, Show, Update, ...

Thread u++, Presto 17 | Clock, Fork, Fp, Lock, MemoryAlign, PageSize, Pc, Pid, Seep, Stack, Time, ...
u++, uSystem 43 | Acquire, Block, Delay, Fp, Idle, Message, Migrate, P, Pc, Pid, Stack, Yield, ...
Presto, uSystem 12 | Flags, Fp, Monitor, Pc, Pid, Ready, Resume, Stack, StackSize, Time, Wait

Sim. Awesime, C++SIM 28 | ArrivalTime, Await, Confidence, Lock, Release, ServiceTime, Signal, Trigger, ...
Awesime, CNCL 38 | Confidence, Delta, LogMean, LogVariance, Priority, Seed, Time, Variance, ...
C++SIM, CNCL 19 | Buffer, Confidence, Resize, StartTime, Sum, Sync, Time, Uniform, Variance, ...

3d Crystal, Apprentice 48 | Tntersect, Inverse, Normalize, Perspective, Show, Transform, Translate, ...
Crystal, VTK 94 | Draw, Flush, Inverse, Normalize, Shift, Sync, Transform, Translate, ...
Apprentice, VTK 69 | BackBuffer, Cross, Dot, Invert, Normalize, Rotate, Scale, Transform, ...

Table 3: Experimental results for function name matching.

several similarity matches that, in our judgment, are particu-
larly “informative’ or “illuminating”. By this, we mean that
the two components in question either (1) serve essentialy
thesame purposein each library or (2) at |east share someim-
portant role(s). We exclude matches with components of the
same name; this case is aready handled by name matching.

Each similarity matchiswrittenas“ A/ B (n)” where A isthe
component in thefirst library, B isthe component in the sec-
ond library, and » is the rank of the match according to the
similarity measure defined in Section 5. We only show sim-
ilarity matches that rank among the top 25.

First, observe those matches that indicate classes that serve
a similar purpose. For example, note that the important
domain concept thread/task is identified by the following
similarity matches: “BaseTask/Thread (1)" for u++ and
Presto, “BaseTask/Task (11)" for u++ and uSystem, and
“Thread/Task (4)" for Presto and uSystem. Other no-
table matches include “MultiLineEdit/TextEditor (3)” for
Qt and JX, “Condition/Semaphore (2)” for Awesime and
C++SIM, and “Material/MatProp (4)” for Apprentice and
VTK.

Second, observe those matches that indicate classes
with (only) shared role(s). For example, the match
“MachContext/Thread (2)” for u++ and Presto ac-
tualy represents that role which manages a separate

machine context for each thread (which includes a pro-
gram counter, separate stack, etc.). Other role-based
matches include “Widget/Container (8)" for Qt and
JX, “SimpleStatistic/Variance (10)" for Awesime and
C++SIM, and “Dview/Camera (10)" for Crystal and VTK.

Function similarity matching also yields useful matches
such as “PaintEvent/Draw (1)” for Qt and JX,
“PaintEvent/Paint (2)” for Qt and Kaffe, and “ Draw/Paint
(7)" for IX and Kaffe, al of which denote the corresponding
member functionin each library that one overridesto render
new widget types. Other notable matches include “W/Wait
(2)" for u++ and Presto, “Variance/StandardDeviation
(2)" for Awesime and C++SIM, and “Draw/Render (2)”
for Crystal and VTK. As functions are more finely-grained
than classes, most of these matches indicate functions that
perform a similar function, although a few matches, such
as “S/Broadcast (4)” for u++ and Presto, indicate (only)
a shared role (which in this case is “signaling” a condition
variablein the thread domain).

7 TOOL

Our approach issupported by CodeWeb, atool we have built
for assessing C, C++, and Java libraries. Given a set of two
or more libraries, the tool automatically performs the name
and similarity matching described in Section 4 and 5, respec-
tively. Toillustratethe use of CodeWebin ng libraries,

[Domain | Libraries

Class Similarity Matches

GUI Qt, X Widget/Window (), Printer/JpsPrinter (2), MultiLineEdit/TextEditor (3), Widget/Container (8)
Qt, Kaffe Widget/Component (1), Color/IndexColorModel (3), Painter/Graphics (20)
JX, Kaffe Container/Component (2), Window/Component (7), Widget/Component (11), Window/Frame (13)
Thread | u++, Presto BaseTask/Thread (1), MachContext/Thread (2), Processor/Process (3), MachContext/Stack (4)
u++, uSystem MachContext/Stack (1), MachContext/Task (6), BaseTask/Task (11)
Presto, uSystem Thread/Stack (1), Thread/Task (4), Process/Processor (5)
Sim. Awesime, C++SIM | Condition/Semaphore (2), SimMux/Process (4), SimpleStatistic/Variance (10)
Awesime, CNCL DiscreteUniform/DiscUniform (4), BatchStatistic/BatchMeans (11), SimpleStatistic/Confidence (12)
C++SIM, CNCL Variance/Confidence (2), RandomStream/Gen (14), Variance/Statistics (18), Variance/Normal (18)
3d Crystal, Apprentice | PolyPlane/Plane (4), Timer/ElapsedTime (13), CLights/Light (21), Dview/Camera (24)
Crystal, VTK Matrix/Transform (1), Dview/Camera (10), RgBPixel/Colour (18), RgBcolor/Colour (18)
Apprentice, VTK Matrix/Transform (1), Vecf/Math (2), Material/MatProp (4), Materiallndex/MatProp (5)

Table 4: Experimenta resultsfor class similarity matching. The rank of each match is shown in paranetheses.

[Domain | Libraries | Function Similarity Matches |
GUI Qt, X PaintEvent/Draw (1)
Qt, Kaffe PaintEvent/Paint (2), PaintEvent/Repaint (10)
JX, Kaffe Draw/Paint (7)
Thread u++, Presto W/Wait (2), SBlock/Broadcast (4), S/Broadcast (4), Acquire/Lock (8), S/'Signal (14)
u++, uSystem
Presto, uSystem StBase/Base (8)
Simulation | Awesime, C++SIM | Variance/StandardDeviation (2)
Awesime, CNCL Beta/CnBeta (5)
C++SIM, CNCL StandardDeviation/Variance (3), Confidence/RelativeVariance (5), Gen/Uniform (19)
3d Crystal, Apprentice | Draw/GIRender (1), Unit/Units (2), IntersectSphere/Tntersect (3)
Crystal, VTK Draw/Render (2), Draw()/Update (5), Execute/Perform (23)
Apprentice, VTK GlRender/Render (2), GIRender/Draw (5), GIRender/Update (6)

Table 5: Experimental results for function similarity matching. The rank of each match is shown in parentheses.

we demonstratethetool ontwo C++ GUI libraries, Qt 1.4 and
JX 1.0.8. (These were among the libraries compared in Sec-
tion 6.) Refer to Figure 1 for the remainder of this section.

CodeWeb uses the more precise name matching to generate
class and function views, which not only show classes and
functionsbut al so rel ationshi psbetween them that are shared
across libraries. Although not shown in the Figure 1, there-
sults from the similarity matching are included as comple-
mentary information al ong with each view.

In both class and functionviews, CodeWeb representsclasses
in shaded rectangles while functions appear, witha“()” suf-
fix, in unshaded rectangles. The association relationship be-
tween a class and a function isindicated by a black bidirec-
tional arrow. Other relationships (such asinheritance and in-
vocation) are represented by unidirectiona arrowsand can be
direct or indirect; CodeWeb uses dark and light shading for
direct and indirect rel ationships, respectively.

Class View

The class view, much like a class diagram, is primarily con-
cerned with classes and rel ationships between. Specificaly,
given a set of two or more libraries, the class view contains
all classes that match by name across the libraries and only
those functions, if any, that are associated with these classes
and that match by namein all thelibraries.

The class view shows important functional concepts in the
domain. In our example, the diagram includes such impor-
tant classes as Widget, Button, MenuBar, ScrollBar, Im-
age, Window, Painter, and Printer. We also see key func-
tionsthat are associated with these classes. For example, we
seethat AdjustSize, Focus, Move, and Scroll are associated
with Widget.

Moreover, we see fundamental rel ationships between classes
such as the fact that Button and ScrollBar directly in-
herit from Widget (as indicated by the black double-edged
arrows), while CheckBox, MenuBar, RadioButton, and
Slider aso inherit from Widget but in an indirect manner
(asindicated by the gray double-edged arrows). Other rela
tionshipsaso shown include direct composition, with Wid-
get containing Rect and Painter containing Point, and an
indirect reuse relationship, with Window reusing Rect.

Function View

The function view, much like a call graph, is primarily con-
cerned with functions and invocation rel ationships between
them. The function view includes al functions that match
by name across a set of libraries and only those classes, if
any, that are associated with these functions and that match
by nameindl thelibraries.

The function view is useful for identifying the roles being
played by classes in the libraries — even if those roles are

Class View

Height(] | | Window

PageSize]]

[Sider] [Checked])]

Callection

Function View

|Jpdate()

|IpdateRow)

{
LineT o]

Sender)
Displ
DefaulFort]) iplay]

T

Checked])

Figure 1: Class and function views for the Qt and JX libraries.

played by different classes. In our example, it is clear from
the class view that Widget plays the “adjust size”, “focus”’,
“move’, and “scroll” roles (as indicated by functions of the
same name). However, it isonly in the function view where
we find roles such as “hide’, “show”, and “raisg’. In Qt, al
threeroles are played by Widget, whereasin JX, “hide” and
“show” are played by Container while “raisg’ is played by
Window. As another example, the roles “cut” and “paste’
are played by MultiLineEdit in Qt but by TextEditor in JX.

Also observe some of thefunctioninvocationspresent in both
libraries. For example, Font directly calls DefaultFont and
indirectly cals Display, Sender, and Window. Functions
with self-loops, such as Show and Hide, usually indicate
code that defers arequest to a parent class or that delegates
acall to one of theinstance variables. (Of course, self-loops
may also indicate recursion.)

Linksto the Source

Weview thelinksto the sourceasacritical part of the system.
Indeed, one can view the component and rel ationship match-
ing as providing a starting point for exploration of the source
code in the collection of libraries under consideration.

By clicking on any component in the class or function views,
one can browse the members of itsfamily in each library and
access the corresponding source code fragment(s). And as
mentioned earlier, we also present the results of similarity
matching along with each view. The user can also click on
similarity matches to see the corresponding family members
and source.

For example, by clicking on the Painter class, one can eas-

ily compare the drawing primitives (which are members of
Painter) that are supported by each library. One might de-
termine, for instance, that whileboth Qt and JX supportlines,
rectangles, ellipses, and arcs, only Qt supportsBezier curves.

As another example, by clicking on the MultiLineEdit and
TextEditor similarity match (shownin Table 4), the user can
compare and contrast the editing capabilities of the MultiLi-
neEdit class family (whichisfound in Qt and has one mem-
ber QMultiLineEdit) and the TextEditor class family (which
isfound in JX and has two members, JTextEdtor and JX-
TextEditor).

Exploration of the source can aso be useful in identifying
“non-functional properties’ such as extensihility, adaptabil-
ity, modularity, flexibility, understandability, maintainability,
etc. For example, we may want to know how easy itistocre-
ate new widgetsin each library. One can do this by simply
inspecting the source code of classes Button and ScrollBar
which directly inherit from Widget in both Qt and JX.

Moreover, if one clicks on the Button class to explore its
source in each library, one would notice that both libraries
use implicit invocation to provide loose coupling between
objects. It is well known that this improves adaptability,
understandability, and maintainability. Further investigation
would show that Qt allows one to connect a member that
“emits’ asigna to other members that will receive it, while
JX only allows one to connect objects rather than object
members.

8 CONCLUSIONSAND FUTURE WORK
Inthispaper, we have described how tool support can be used

to help devel opersdirectly compare and contrast libraries. A
key part of thisapproach involvesmatching of similar classes
andfunctionsacrosslibraries, aswell asvariousrel ationships
between them.

We have presented two matching techniques. name matching
and similarity matching. Whilethename matching technique
ismore precise (and istherefore used to match rel ationships),
the similarity matching is aso important in identifying simi-
lar components with entirely different names that would not
be found otherwise. We have performed comparisons on li-
brariesin four domains and have found that name and simi-
larity matching yield useful and complementary information.

Moreover, we have demonstrated our tool, CodeWeb, to
show how our approach can be appliedin practice. In partic-
ular, we have discussed the class and function views and the
linking of components to the corresponding source in each
library. We have a so shown how one might assess two GUI
libraries, Qt and JX, using our tool. For future research, we
plan to conduct extensive user testing to see how useful our
approach isin practice.

It is possible to match components and rel ationships across
software systemsin completely different ways than those de-
scribed inthispaper. Moreover, thiscan be donefor purposes
other than ng acollection of libraries. For example, in
[12], we describe away to help devel opers reuse a particu-
lar software library by identifying components and rel ation-
ships that are relevant across several user-selected example
applications. It would be of interest to consider other ways
to match components across different software systems for
reuse related activities.

ACKNOWLEDGMENTS
We would like to thank Will Tracz and Michagl Ernst for
vauable feedback on thisresearch.

REFERENCES

[1] T.J.Biggerstaff. Design Recovery for Maintenanceand
Reuse. Computer, 22(7):36-49, 1989.

P. Chen, R. Hennicker, and M. Jarke. On the Retrieva
of Reusable Software Components. In 2nd Interna-
tional Workshop on Software Reusability), pages 99—
108. |EEE, 1993.

(2]

[3] W.B. Croftand D. J. Harper. Using Probabilistic Mod-
elsof Document Retrieval Without Rel evance Informa-
tion. Documentation, 35(4):285-295, 1979.

[4] W.B. Frakes and R. S. Baeza-Yates, editors. Informa-
tion Retrieval: Data Sructures and Algorithms. Pren-
ticeHall, 1992.

[5] W. B. Frakes and B. A. Ngmeh. Software Reuse
through Information Retrieval. In 20th Hawaii I nterna-
tional Conference on System Sciences, pages 530-535.
|EEE, 1987.

10

[6] W. B. Frakes and T. Pole. An Empirica Study of
Representation Methods for Reusable Software Com-
ponents. |EEE Transactions on Software Engineering,
20(8):617-630, 1994.

E. Gamma, R. H&lm, R. Johnson, and J. Vlissides. De-
sign Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[7]

[8] R.Helmand Y. S. Maarek. Integrating Information Re-
trieval and Domain Specific Approaches for Browsing
and Retrieval in Object-Oriented Class Libraries. In

OOPSLA, pages 47-61, 1991.

R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM:
A Method for Anayzing the Properties of Software Ar-
chitectures. In 16th International Conference on Soft-
ware Engineering, pages 81-90. |[EEE, 1994.

(9]

[10] R. Kazman and S. J. Carriere. View Extraction and
View Fusionin Architectural Understanding. In5th In-

ternational Conference on Software Reuse. | EEE, 1998.

[11] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An In-
formation Retrieval Approach for Automatically Con-
structing Software Libraries. |EEE Transactions on

Software Engineering, 17(8):800-813, 1991.

[12] A. Michail and D. Notkin. Illustrating Object-Oriented
Library Reuse by Example: A Tool-Based Approach.
In 13th IEEE International Conference on Automated

Software Engineering, 1998.

[13] G.C.Murphy, D.Notkin,andK. Sullivan. SoftwareRe-
flexion Models: Bridging the Gap between Source and
High-Level Models. In 3rd ACM SIGSOFT Symposium
on the Foundationsof Software Engineering, pages 18—

28, 1995.

[14] R. Prieto-Diaz and P. Freeman. Classifying Software

for Reusability. |EEE Software, 4(1):6-16, 1987.

[15] G. Sdton and C. S. Yang. On the Specification of
Term Values in Automatic Indexing. Documentation,
29(4):351-372, 1973.

[16] S. Sparks, K. Benner, and C. Faris. Managing Object-
Oriented Framework Reuse. Computer, 29(9):52-61,
1996.

[17] C. J. van Rijsbergen. Information Retrieval. Butter-
worths, 1979.

[18] A.S. Yeh, D.R. Harris, and M. P. Chase. Manipulating
Recovered Software Architecture Views. In Proceed-
ings of the International Conference on Software Engi-
neering, pages 184-194, 1997.

