
Assessing Software Libraries by Browsing
Similar Classes, Functions, and Relationships

Technical Report UW-CSE-98-08-05

Amir Michail and David Notkin
Dept. of Computer Science and Engineering

University of Washington, Box 352350
Seattle, WA 98195-2350, USA

famir,notking@cs.washington.edu

ABSTRACT
Comparing and contrasting a set of software libraries is use-
ful for reuse related activities such as selecting a library from
among several candidates or porting an application from one
library to another. The current state of the art in assessing
libraries relies on qualitative methods. In particular, the de-
veloper manually inspects each library, reads the documenta-
tion, examines the architecture, considers subjective scenar-
ios, and other available information.

To reduce costs and/or assess a large collection of libraries,
automation is necessary. Although there are tools that help a
developer examine an individual library in terms of architec-
ture, style, etc., we know of no tools that help the developer
directly compare several libraries. With existing tools, the
user must manually integrate the knowledge learned about
each library.

Automation to help developers directly compare and con-
trast libraries requires matching of similar components (such
as classes and functions) across libraries and various rela-
tionships (such as inheritance and invocation) between them.
This is different than the traditional component retrieval
problem in which components are returned that best match a
user’s query. Rather, we need to find those components and
relationships that are similar across the libraries under con-
sideration. In this paper, we show how this kind of matching
can be done.

Keywords
Software libraries, reuse, assessment, information retrieval

1 INTRODUCTION
Comparing and contrasting a set of software libraries is use-
ful for reuse related activities such as selecting a library from
among several candidates or porting an application from one
library to another. Library selection in particular is difficult
and can be very expensive. Indeed, Sparks, Benner and Faris
give this advice for framework selection:

Budget adequately to support frameworks. Expect
the evaluation and selection of a framework to take
up to six staff-months per new framework. [16, p.
54]

The current state of the art in selecting among library can-
didates relies on qualitative assessment. This may take the
form of informal tips for selecting frameworks [16] or a com-
plete analysis method, such as SAAM [9]. Either way, the de-
veloper manually inspects each library, reads the documenta-
tion, examines the architecture, considers subjective scenar-
ios, and other available information.

To reduce costs and/or assess a large collection of libraries,
automation is necessary. Although there are tools that help
a developer examine an individual library in terms of archi-
tecture, style, etc. [1, 10, 13, 18], we know of no tools that
help the developer directly compare several libraries. With
existing tools, the user must manually integrate the knowl-
edge learned about each library.

Automation to help developers directly compare and con-
trast libraries requires matching of similar components (such
as classes and functions) across libraries and various rela-
tionships (such as inheritance and invocation) between them.
This is different than the traditional component retrieval
problem in which components are returned that best match
a user’s query. In our case, there is no user query per se.
Rather, we need to find those components and relationships
that are similar across the libraries under consideration. In
this paper, we show how this kind of matching can be done.

Specifically, we present two matching techniques, name
matching and similarity matching. The name matching
method matches those components that have the same “stan-
dardized name” in each library. The similarity matching
method uses more conventional information retrieval tech-
niques and is similar to that used in component retrieval tools
based on free-text indexing [5, 8, 11].

In this paper we shall be concerned with components that are
classes or functions. To simplify the exposition, we will just
say “component” whenever the discussion applies to both
classes and functions. To avoid ambiguity, keep in mind that
we will only match classes with classes and functions with

1



functions; we never match a class with a function.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes the components and the re-
lationships between them that we extract from the source.
Section 4 presents the name matching technique. Section 5
shows the similaritymatching method. Section 6 presents ex-
perimental results. Section 7 discusses a tool based on these
techniques and shows, by example, how it can be used to as-
sess libraries. Section 8 summarizes the work, concluding
with a number of open questions.

2 RELATED WORK
As mentioned earlier, we know of no tools that help a devel-
oper directly compare several libraries. With existing tools
[1, 10, 13, 18], the developer must manually integrate the
knowledge learned about each library. Yet, the problem of
finding similar components across libraries appears equiva-
lent to the traditional component retrieval problem in which
components are returned that best match a user’s query. This
is only partially true.

The whole point of component retrieval is that the user needs
a component that performs some function yet does not know
the exact name of that component (or even if it exists in the
library). However, when comparing components across li-
braries in a particular domain, it is likely that the developers
of each library are themselves experts in the domain and have
chosen standard terminology to name components — at least
for those that are fundamental to that domain. For this reason,
it makes sense to match components by name across libraries
(after some initial preprocessing such as stripping the library
prefix, if any), which is exactly what we do in Section 4.

But name matching alone is not enough. It is still possible
that some important concept is represented by components
with completely different names in the libraries. For this
reason, we consider well-known component retrieval tech-
niques such as free-text indexing [5], facets [14], and formal
specifications [2]. However, since we are interested in auto-
mated techniques that do not require domain analysis or for-
mal specifications in the code, we exclude facets and formal
specifications from our discussion.

The free-text indexing method simply uses the text in the li-
braries (and not just the component names) for indexing us-
ing standard information retrieval techniques [4]. No man-
ual domain analysis is required. However, researchers have
observed that this method works well with libraries that in-
clude extensive documentation with the components, such as
Unix man pages [6, 11]. Only then can one rely on regular-
ities in the text such as relative word frequencies or lexical
affinities [11]. However, it has also been suggested that one
can combine library documentation with structural informa-
tion that can be extracted from the source such as inheritance
relationships [8].

Rather than restrict the kinds of libraries that can be com-

pared and contrasted, we have decided not to rely on compo-
nent documentation. Consequently, we do not look for regu-
larities in the text; rather, we define a similarity measure that
makes heavy use of structural information (and in a more ex-
tensive manner than [8]). We describe our similarity measure
in Section 5.

3 INFORMATION EXTRACTION
In this section, we describe the components and relationships
that we extract from the library source code. This extrac-
tion process is the only language dependent aspect of our ap-
proach. (Our tool currently handles C, C++, and Java.)

Components
As mentioned earlier, a component is either a class or a func-
tion. We extract any type as a class, whether it appears in the
source as a struct, class, interface, or union. We also extract
all functions from the source, whether they are members of a
class or not. Moreover, we consider class member variables
as functions. (In essence, a member variable is a function that
takes one argument containing a pointer to the instance of the
class.)

Relationships
We also extract various relationships between components.
These may occur between two classes, as with inheritance
and composition, between two functions, as with invocation,
or between a class and a function, as with association. We
extract these relationships from the source not only for the
purpose of matching across libraries but also because they
are used in computing the similarity measure for similarity
matching.

Inheritance and Composition
The two most common techniques for reuse in object-
oriented libraries are class inheritance and composition [7, p.
18]. When using inheritance, a class A “inherits” from some
class B. When using composition, a class A has B as one
of its member variables. (However, not all member variables
indicate composition; some only express acquaintance rela-
tionships with other objects in the system.)

Now it may be that one library uses inheritance while another
uses composition to express a reuse of B in A. To capture a
similarity even in this case, we view inheritance and compo-
sition as forms of a reuse relationship; thus, in both libraries,
A reuses B.

Finally, to further increase the likelihood that some relation-
ships match across libraries, we not only consider direct reuse
relationships but also indirect ones. For example, it may be
the case that PushButton doesn’t directly inherit from Wid-

get in every library but that it does inherit directly/indirectly
in each of the libraries.

As a practical note, observe that composition is not a syntac-
tic construct in many languages, so we need to distinguish
it from the weaker acquaintance relationship. In a language
such as C++, developers may use member variables that are

2



real instances rather than pointers or references to instances.
We consider all such uses as composition.

However, pointers or references to instances may also be
used to indicate composition (and indeed, it is the only way in
some languages such as Java). In such cases, we use the fol-
lowing heuristic: we consider a pointer/reference to class B
in A to be composition if we can find code in the class mem-
bers of A that allocates new instances of B.

Invocation
The invocation relationship indicates a call from one function
to another. As with the inheritance, composition, and reuse
relationships, we not only look for direct relationships but in-
direct ones as well.

However, the indirect invocation is problematic in the fol-
lowing sense: does function f indirectly invoke hwhen f in-
vokes g and g invokes h? It may be the case that no sequence
of calls from f to g also ends up invoking g even though in
other situations, g does call h.

To avoid this (undecidable) problem, we simply say that f
indirectly invokes h if there is some sequence of direct invo-
cations f; g

1

; � � � ; g

k

; h. (It may be that no call sequence ac-
tually occurs that goes from f to h; this depends on the logic
of the code.)

Association
In object-oriented languages, classes contain member func-
tions. If class C contains a member function f , then we say
that f is an associated function of C, or equivalently, that C
is an associated class of f . The relationshipalways goes both
ways.

In languages that are not object-oriented, there is no notion of
a class with member functions. However, recall that we make
no distinction between member variables and member func-
tions so any variables declared in a structure are associated
with that structure.

Moreover, it is common practice for developers to associate
a function with a structure by supplying (a pointer to) the in-
stance of that structure as the first parameter to the function.
By looking at the type of the first parameter, we can infer as-
sociations between functions and the structures that they op-
erate upon.

4 NAME MATCHING
A component with the same name in different libraries is
likely to serve a similar purpose in each of those libraries.
Yet, it is unlikely that one would find a component with ex-
actly the same name in several libraries due to different nam-
ing conventions.

For example, words in a component name may be separated
by underscores, changes in case, or some combination of the
two. Moreover, developers often prefix component names
with a distinct library prefix to prevent name clashes with
other libraries and the application code.

In this section, we show how to standardize component
names in each library, and then we show how to match
classes and functions across libraries based on the standard-
ized names.

Standardizing Names
There are two basic steps in standardizing names: (1) we
identify the words in each name; and (2) we remove non-
essential words. The words are then appended to form a new
name where each word starts with an uppercase letter.

Identifying Words
The first step in standardizing a component name is to split it
up into a sequence of words. We infer word boundaries from
underscores and/or changes in case. While inferring word
boundaries from underscores is straightforward, identifying
words from case change is more involved.

In particular, a transition from a lower case letter to an up-
per case letter signals the start of a new word. Moreover,
a sequence of uppercase letters ending the name or fol-
lowed by an underscore constitute a single word. For ex-
ample, JX window is separated into “jx”, “window”. If a
sequence of uppercase letters is followed by a lower case
letter, then this is split into a (possibly empty) word that
includes all the uppercase letters except the last and an-
other word that starts with the last uppercase letter and any
subsequent lowercase letters. For example, CScrollBar is
separated into the sequence of words “c”, “scroll”, “bar”,
while JX ScrollbarClass is separated into “jx”, “scrollbar”,
“class”.

Although not good style, some developers may not separate
words at all in a component name. Moreover, it is not always
clear whether a concept is written as one or two words, as
with “Scrollbar” versus “ScrollBar”. Some libraries may use
one variation while others use the other.

For this reason, after having done the steps described above,
we attempt to break the individual word strings even further
into two or three English words using dictionary lookup. For
example, the word string “scrollbar” is broken up into the
words “scroll” and “bar”. (In cases of ambiguity, we separate
the string into as few words as possible, with shorter words
appearing near the beginning of the sequence.)

We also make use of a table of common abbreviations, which
helps us avoid problems with trying to match an abbreviated
word in one library with an unabbreviated one in another.
(Currently, this is only done for some well-known domain in-
dependent abbreviations; it is possible to include domain de-
pendent ones also, but this would require domain analysis.)
Abbreviation expansion is also used while breaking up word
strings. For example, the string “appcmd” is broken up into
the sequence “application”, “command”.

Removing Non-Essential Words
As mentioned earlier, developers often prefix component
names with a distinct library prefix to prevent name clashes

3



with other libraries and the application code. This is partic-
ularly true with languages without name space management
such as C and early versions of C++. Removing library pre-
fixes is important since we may otherwise miss matching a
class, say JXWindow, in one library, with one in another li-
brary, say QWindow, since they have different prefixes.

A library may have one or more prefixes, and a prefix may
contain one or more words. We identify library prefixes sim-
ply by looking for prefixes that occur frequently. It is not
likely that a prefix contributes meaningfully to a name if it
occurs in many other names. The technique we use is identi-
cal for classes and functions and is done separately for each
independent of the other.

In particular, performing the steps described above yields a
sequence of words for each component name in the library.
For each such sequence, we remove the maximal prefix of
words, each at most l letters long, that occurs at least k times
as a prefix of components in the library. In practice, we find
l = 3 and k = min(10; 0:1N ) yields good results, where N
is the number of components in the library.

For example, this procedure would remove the “c” prefix
in “c”, “scroll”, “bar”, and the “jx” prefix in “jx”, “scroll”,
“bar”, “class”.

Once the library prefix(es) are removed, we also remove any
standard prefixes and suffixes in the remaining words in the
component name. These include such standard function pre-
fixes as “get”, “set”, “is”, and standard class suffices such
as “class”, “info”, “type”. For example, we would remove
the “class” suffix from the word sequence “scroll”, “bar”,
“class”.

In languages that are not object-oriented, developers may
none-the-less write code in an object-oriented style and in-
dicate that a function is a member of class by embedding the
class name in the function name. For example, the namewid-
get show indicates that this function defines the showmem-
ber of the widget class. It is also standard practice to supply
a pointer to the widget structure as the first parameter in the
widget show function.

In such cases, we remove the embedded class name for the
purpose of matching across libraries (some of which may be
written in object-oriented languages where this practice is not
required nor used). We do this by first standardizing the class
names and then checking whether the type of the first parame-
ter of a function has a name that is embedded in the function
name. If so, we remove the embedded class name from the
function name.

Matching across Libraries
We match all components that have the same standardized
name in each library under consideration. However, observe
that the standardization process may map two different names
to the same name.

For example, a library may have classes JXTextEditor and
JTextEditor, both of whose names get mapped toTextEditor
(since JX and J are both library prefixes). Similarly, two func-
tions getTextColor and setTextColor will have their names
both mapped to TextColor.

To address this issue, we simply make all such components
part of the same component family, whose name is the stan-
dardized name of its members. For example, JXTextEditor
and JTextEditor are both members of the TextEditor class
family. Similarly, getTextColor and setTextColor are mem-
bers of the TextColor function family.

Thus, we actually match component families across libraries.
However, we also remember the members of each family. In
this way, a developer may see which class and function fam-
ilies a set of libraries share, and at the same time, be able to
inspect the members of a family in each library.

Finally, we also need to define what we mean by relationships
between families (such as those described in Section 3). A
relationship between two families A and B holds if and only
if that relationship holds for at least two members, with one
member from each of the two families.

For example, classes JTextEditor and JXTextEditorboth be-
long to the same class family, TextEditor. Even though only
class JTextEditor contains a member function Paste, we
still have an “association” relationship between the TextEd-
itor family and the Paste function family.

To simplify the exposition in the remainder of the paper, we
simply say “class” and “function” to mean “class family” and
“function family”, respectively.

5 SIMILARITY MATCHING
It may be the case that similar classes or functions in different
libraries have names that are not matched by the name match-
ing technique described in Section 4. In this section, we de-
scribe a complementary technique, similarity matching, that
not only takes into account the class (function) name, but also
its associated functions (associated classes) and related com-
ments.

In what follows, we assume that the name standardization
technique described in Section 4 has been carried out. And
as mentioned earlier, we simply say “class” and “function”
to mean “class family” and “function family”, respectively.

We define a similarity measure that indicates how closely
two components are related. The ideas in this section bor-
row heavily from the field of information retrieval [4], where
similarity measures are used to rank documents returned by
a query in order of relevance. In our case, there is no query
per se, but we view components as documents D

i

and com-
pute the similarity between components in one library with
components in another.

We associate with each component D
i

a set of terms T
i

that
are extracted automatically from the source code. Some

4



terms have more weight than others, and we use w

i

(t) to
denote the weight of term t in component D

i

. Given two
components D

i

and D

j

in different libraries, we define the
similarity between them, S

i;j

, as the “dot product” of the
weights [17]:

S

i;j

=

X

t2T

i

\T

j

w

i

(t) �w

j

(t):

(We do not use a “normalized” similarity function, such as
the cosine coefficient where the expression above is divided

by
q

P

t2T

i

w

2

i

(t)

q

P

t2T

j

w

2

j

(t) [17], because the compo-

nents usually don’t have enough terms associated with them
for this to yield better results.)

The remainder of this section shows how to extract terms and
determine the associated weights for each component in a li-
brary. This is done independently of any other libraries.

Extracting Terms
Terms for a component are extracted from three sources of
information in the code: the class (function) name, its associ-
ated functions (associated classes), and related comments. In
all three cases, we expand any common abbreviations, such
as “cmd” for “command” and “len” for “length”, and put
words in their base forms, as with “run” for “running” and
“directory” for “directories”.

We also use a stop list to filter out words that tend not to help
in distinguishing a component from another. These include
closed-class words — pronouns, prepositions, conjunctions,
and interjections — as well as commonly used terminology
such as “copy”, “initialize”, and “iterate”.

Name
A component name tends to contain one or more words that
are usually very good indicators of the purpose of that com-
ponent. Although the component name may not match in its
entirety with one in another library, the word(s) in the name
are extracted as terms for the purpose of similarity matching.

Associations
The associated functions of a class provide information about
the purpose of that class. Similarly, the associated classes of
a function provide information that may help “narrow down”
the purpose of that function. For these reasons, we extract
terms from certain “inherently” associated components as
discussed in what follows.

Not all associations give us information that is inherent to a
component. In particular, a class C may inherit or override a
member function f from an ancestor in the inheritance hier-
archy. In such a case, we do not expect the information pro-
vided by f to be as inherent to class C as that from another
member g that is defined in C but not present in any of its
ancestors.

We can make a similar observation concerning delegation.

Delegation is often used to make composition as powerful for
reuse as inheritance. This is done by having a class C “dele-
gate” a call to one of its member functions f to another func-
tion (usually of the same name) in one of its instance vari-
ables. (This is analogous to a class deferring a request to one
of its parents using inheritance.) Again, in such a case, f is
not inherent to C.

We say that f is an inherently associated function of C, or
equivalently, that C is an inherently associated class of f ,
if and only if no ancestor of C defines f and no call to f is
“delegated” to another member function f in one of C’s in-
stance variables. We extract terms for a class (function) only
from word(s) in the names of its inherently associated func-
tions (inherently associated classes).

Comments
Finally, we extract terms from component comments. We try
to include comments that describe the comment’s function-
ality but not its implementation. This is done by looking for
comments at the beginning of a component or those that im-
mediately follow its declaration without an intervening new-
line (but we omit those comments buried in the definition of
the component body).

Although we include the comments for all classes, we do not
include the comments for all functions. In particular, if func-
tion f is associated with class C but not in an inherent man-
ner, then we ignore any comments concerning f in class C.

Computing Weights
Now that we have described how terms are extracted from the
source code for components, we show how to compute the
weight w

i

(t) for each term t associated with component D
i

.
It is standard practice to define each weight as the product of
the inverse document frequency and the within-document fre-
quency [15].

However, as mentioned earlier, we cannot rely on term fre-
quencies since the “documents” in our case are short. For this
reason, we do not use the within-document frequency. In-
stead, we rely on structural information which is supplied as
the within-document weight.

Thus, we define each weight w
i

(t) as the product of the in-
verse document frequency, idf(t), and the within-document
weight, wdw

i

(t),

w

i

(t) = idf(t) �wdw

i

(t):

Inverse Document Frequency
The inverse document frequency idf(t) indicates how “im-
portant” term t is in the library. If t occurs frequently in many
components, then it is not a good discriminator and should
not be weighed heavily. If t is quite rare, then it is likely to
yield more information and should have greater weight.

Let N denote the total number of components in the library,
and let df(t) denote the number of components containing

5



term t. We use the following definition for idf(t), which is
decreasing in df(t), as proposed in [3]:

idf(t) = log

2

�

N

df(t)

� 1

�

:

Within-Document Weight
The within-document weight wdw

i

(t) indicates how “im-
portant” term t is in a particular component. We compute
wdw

i

(t) by summing direct contributions dc
i

(t) from terms
associated with component D

i

and indirect contributions
ic

i

(t) obtained by considering closely related components.

First, we calculate dc

i

(t). Recall that the terms for class
(function) D

i

are extracted from three sources of informa-
tion: the name, inherently associated functions (classes), and
related comments. A term may come from one, two, or all
three sources. Let a

1

(i; t), a
2

(i; t), and a

3

(i; t) denote the
weights for the three sources — name, inherent associations,
and comments, respectively — for a term t in component D

i

.
The direct contribution dc

i

(t) for term t’s weight in compo-
nent D

i

is:

dc

i

(t) = a

1

(i; t) + a

2

(i; t) + a

3

(i; t):

Each a

k

(i; t) is defined as follows:

a

k

(i; t) =

�

A

k

=2

b

k

(i;t)�1 if term t is in source k
0 otherwise

where A
k

is a constant indicating the importance of source
k, and b

k

(i; t) indicates the minimum number of words in an
identifier/word that contains term t in source k. For example,
the term “dialog” is weighed twice as heavily if it is obtained
from Dialog than if it were obtained from FileDialog (and
there is no other identifier/word “Dialog”). In practice, we
find that A

1

= 2, A
2

= 4, A
3

= 1 yield good results for
both class and function matching. (We use these values in the
experiments in Section 6.)

Now that we have shown how to compute the direct contri-
bution dc

i

(t) for the within-document weight wdw
i

(t), we
now consider the indirect contribution ic

i

(t) which consid-
ers terms associated with closely related components in the
same library.

For class matching, consider the graph G whose nodes con-
sist of classes in the library and whose edges denote inher-
itance and/or composition relationships between them. Let
d(D

i

; D

j

) be the length of the shortest path from D

i

to D

j

inG. Then the indirect contribution ic
i

(t) from other classes
to class D

i

is:

ic

i

(t) =

X

D

j

2R

i

dc

j

(t)=2

d(D

i

;D

j

)+1

Domain Library Language Classes Functions
GUI Qt-1.40 C++ 301 1285

JX-1.0.8 C++ 228 740
Kaffe-1.0 Java 128 542

Thread u++-4.7 C++ 105 296
Presto-1.0 C++ 56 108
uSystem-4.4.3 C 90 180

Sim. Awesime-2.0 C++ 171 300
C++SIM-1.7.2 C++ 69 162
CNCL-1.10 C++ 179 369

3d Crystal-0.10 C++ 249 852
Apprentice-0.5 C++ 240 307
VTK-2.1 C++ 599 1074

Table 1: The libraries used in the experiments.

where R
i

is the set of classes reachable from D

i

in G (but
excluding D

i

).

Function matching is done similarly except that the graph G
has an edge for every call from one function to another.

6 EXPERIMENTAL RESULTS
We have performed experiments to determine how well the
name matching and similarity matching techniques work in
practice. Specifically, we have compared libraries in four do-
mains: graphics user interface (GUI), thread, simulation, and
3d graphics. In each domain, we have done pairwise com-
parisons among three libraries (although in general, our ap-
proach can compare more than two libraries at a time). Ta-
ble 1 shows each library, its domain, language, as well as its
class and function family counts.

Name Matching
Tables 2 and 3 show the results for name matching with
classes and functions, respectively. In each table, we present
a mix of quantitative and qualitative information: for each
pairwise comparison between two libraries, we show the
number of name matches as well as a list of some of these
matches.

From the two tables, it is clear that name matching is good at
identifying fundamental classes and functions in the libraries
being compared. For example, in the GUI domain, name
matching identifies classes Widget, Button, Menu, Win-

dow, Dialog and functionsHide, Show, Clip, Drag, Flush,
Focus, Paint, Update, Cut ,and Paste.

However, name matching can also miss some fundamental
domain concepts. For example, in the thread domain, the
most important concept is that of a “thread”, or equivalently,
“task”. Yet this concept is named BaseTask in u++, Thread
in Presto, and Task in uSystem, so there is no corresponding
name match in any of the comparisons. As we shall see, sim-
ilarity matching can help in this regard.

Similarity Matching
Tables 4 and 5 show the results for similarity matching with
classes and functions, respectively. In each table, we present

6



Domain Libraries # Matches Class Name Matches
GUI Qt, JX 20 Button, Cursor, Display, Image, Menu, Painter, Region, Widget, Window, ...

Qt, Kaffe 25 Button, Cursor, Dialog, Font, Event, Menu, PopupMenu, Scrollbar, Window, ...
JX, Kaffe 10 Button, CheckBox, Container, Cursor, Image, Menu, ScrollBar, Window, ...

Thread u++, Presto 4 Caddr, Condition, Lock, SpinLock
u++, uSystem 7 Cluster, Condition, Event, Lock, Message, Processor, Semaphore
Presto, uSystem 5 Condition, Lock, Monitor, Stack, Stderr

Sim. Awesime, C++SIM 4 Histogram, Quantile, Semaphore, Thread
Awesime, CNCL 13 Binomial, Event, Geometric, Histogram, Normal, Poisson, Random, Server, ...
C++SIM, CNCL 4 HashIterator, Histogram, Job, Queue

3d Crystal, Apprentice 15 Base, Camera, Color, Image, Light, Line, Matrix, Plane, Texture, Vector, ...
Crystal, VTK 21 Camera, Component, Image, Light, Line, Matrix, Plane, Polygon, Texture, ...
Apprentice, VTK 20 Camera, Cylinder, Image, Light, Line, Material, Matrix, Plane, Texture, Transform, ...

Table 2: Experimental results for class name matching.

Domain Libraries # Matches Function Name Matches
GUI Qt, JX 130 Activate, Cut, Display, Drag, Flush, Focus, Hide, Paste, Raise, Show, Update, ...

Qt, Kaffe 113 Activate, Align, Clip, Flush, Hide, Paint, ProcessEvent, Show, Update, ...
JX, Kaffe 76 Accept, Activate, Filter, Flush, FontList, Hide, Move, Show, Update, ...

Thread u++, Presto 17 Clock, Fork, Fp, Lock, MemoryAlign, PageSize, Pc, Pid, Sleep, Stack, Time, ...
u++, uSystem 43 Acquire, Block, Delay, Fp, Idle, Message, Migrate, P, Pc, Pid, Stack, Yield, ...
Presto, uSystem 12 Flags, Fp, Monitor, Pc, Pid, Ready, Resume, Stack, StackSize, Time, Wait

Sim. Awesime, C++SIM 28 ArrivalTime, Await, Confidence, Lock, Release, ServiceTime, Signal, Trigger, ...
Awesime, CNCL 38 Confidence, Delta, LogMean, LogVariance, Priority, Seed, Time, Variance, ...
C++SIM, CNCL 19 Buffer, Confidence, Resize, StartTime, Sum, Sync, Time, Uniform, Variance, ...

3d Crystal, Apprentice 48 Intersect, Inverse, Normalize, Perspective, Show, Transform, Translate, ...
Crystal, VTK 94 Draw, Flush, Inverse, Normalize, Shift, Sync, Transform, Translate, ...
Apprentice, VTK 69 BackBuffer, Cross, Dot, Invert, Normalize, Rotate, Scale, Transform, ...

Table 3: Experimental results for function name matching.

several similarity matches that, in our judgment, are particu-
larly “informative” or “illuminating”. By this, we mean that
the two components in question either (1) serve essentially
the same purpose in each library or (2) at least share some im-
portant role(s). We exclude matches with components of the
same name; this case is already handled by name matching.

Each similarity match is written as “A=B (n)” whereA is the
component in the first library, B is the component in the sec-
ond library, and n is the rank of the match according to the
similarity measure defined in Section 5. We only show sim-
ilarity matches that rank among the top 25.

First, observe those matches that indicate classes that serve
a similar purpose. For example, note that the important
domain concept thread/task is identified by the following
similarity matches: “BaseTask/Thread (1)” for u++ and
Presto, “BaseTask/Task (11)” for u++ and uSystem, and
“Thread/Task (4)” for Presto and uSystem. Other no-
table matches include “MultiLineEdit/TextEditor (3)” for
Qt and JX, “Condition/Semaphore (2)” for Awesime and
C++SIM, and “Material/MatProp (4)” for Apprentice and
VTK.

Second, observe those matches that indicate classes
with (only) shared role(s). For example, the match
“MachContext/Thread (2)” for u++ and Presto ac-
tually represents that role which manages a separate

machine context for each thread (which includes a pro-
gram counter, separate stack, etc.). Other role-based
matches include “Widget/Container (8)” for Qt and
JX, “SimpleStatistic/Variance (10)” for Awesime and
C++SIM, and “Dview/Camera (10)” for Crystal and VTK.

Function similarity matching also yields useful matches
such as “PaintEvent/Draw (1)” for Qt and JX,
“PaintEvent/Paint (2)” for Qt and Kaffe, and “Draw/Paint
(7)” for JX and Kaffe, all of which denote the corresponding
member function in each library that one overrides to render
new widget types. Other notable matches include “W/Wait

(2)” for u++ and Presto, “Variance/StandardDeviation
(2)” for Awesime and C++SIM, and “Draw/Render (2)”
for Crystal and VTK. As functions are more finely-grained
than classes, most of these matches indicate functions that
perform a similar function, although a few matches, such
as “S/Broadcast (4)” for u++ and Presto, indicate (only)
a shared role (which in this case is “signaling” a condition
variable in the thread domain).

7 TOOL
Our approach is supported by CodeWeb, a tool we have built
for assessing C, C++, and Java libraries. Given a set of two
or more libraries, the tool automatically performs the name
and similarity matching described in Section 4 and 5, respec-
tively. To illustrate the use of CodeWeb in assessing libraries,

7



Domain Libraries Class Similarity Matches
GUI Qt, JX Widget/Window (1), Printer/JpsPrinter (2), MultiLineEdit/TextEditor (3), Widget/Container (8)

Qt, Kaffe Widget/Component (1), Color/IndexColorModel (3), Painter/Graphics (20)
JX, Kaffe Container/Component (2), Window/Component (7), Widget/Component (11), Window/Frame (13)

Thread u++, Presto BaseTask/Thread (1), MachContext/Thread (2), Processor/Process (3), MachContext/Stack (4)
u++, uSystem MachContext/Stack (1), MachContext/Task (6), BaseTask/Task (11)
Presto, uSystem Thread/Stack (1), Thread/Task (4), Process/Processor (5)

Sim. Awesime, C++SIM Condition/Semaphore (2), SimMux/Process (4), SimpleStatistic/Variance (10)
Awesime, CNCL DiscreteUniform/DiscUniform (4), BatchStatistic/BatchMeans (11), SimpleStatistic/Confidence (12)
C++SIM, CNCL Variance/Confidence (2), RandomStream/Gen (14), Variance/Statistics (18), Variance/Normal (18)

3d Crystal, Apprentice PolyPlane/Plane (4), Timer/ElapsedTime (13), CLights/Light (21), Dview/Camera (24)
Crystal, VTK Matrix/Transform (1), Dview/Camera (10), RgBPixel/Colour (18), RgBcolor/Colour (18)
Apprentice, VTK Matrix/Transform (1), Vecf/Math (2), Material/MatProp (4), MaterialIndex/MatProp (5)

Table 4: Experimental results for class similarity matching. The rank of each match is shown in paranetheses.

Domain Libraries Function Similarity Matches
GUI Qt, JX PaintEvent/Draw (1)

Qt, Kaffe PaintEvent/Paint (2), PaintEvent/Repaint (10)
JX, Kaffe Draw/Paint (7)

Thread u++, Presto W/Wait (2), SBlock/Broadcast (4), S/Broadcast (4), Acquire/Lock (8), S/Signal (14)
u++, uSystem
Presto, uSystem StBase/Base (8)

Simulation Awesime, C++SIM Variance/StandardDeviation (2)
Awesime, CNCL Beta/CnBeta (5)
C++SIM, CNCL StandardDeviation/Variance (3), Confidence/RelativeVariance (5), Gen/Uniform (19)

3d Crystal, Apprentice Draw/GlRender (1), Unit/Units (2), IntersectSphere/Intersect (3)
Crystal, VTK Draw/Render (2), Draw()/Update (5), Execute/Perform (23)
Apprentice, VTK GlRender/Render (2), GlRender/Draw (5), GlRender/Update (6)

Table 5: Experimental results for function similarity matching. The rank of each match is shown in parentheses.

we demonstrate the tool on two C++ GUI libraries, Qt 1.4 and
JX 1.0.8. (These were among the libraries compared in Sec-
tion 6.) Refer to Figure 1 for the remainder of this section.

CodeWeb uses the more precise name matching to generate
class and function views, which not only show classes and
functions but also relationships between them that are shared
across libraries. Although not shown in the Figure 1, the re-
sults from the similarity matching are included as comple-
mentary information along with each view.

In both class and functionviews, CodeWeb represents classes
in shaded rectangles while functions appear, with a “()” suf-
fix, in unshaded rectangles. The association relationship be-
tween a class and a function is indicated by a black bidirec-
tional arrow. Other relationships (such as inheritance and in-
vocation) are represented by unidirectional arrows and can be
direct or indirect; CodeWeb uses dark and light shading for
direct and indirect relationships, respectively.

Class View
The class view, much like a class diagram, is primarily con-
cerned with classes and relationships between. Specifically,
given a set of two or more libraries, the class view contains
all classes that match by name across the libraries and only
those functions, if any, that are associated with these classes
and that match by name in all the libraries.

The class view shows important functional concepts in the
domain. In our example, the diagram includes such impor-
tant classes as Widget, Button, MenuBar, ScrollBar, Im-

age, Window, Painter, and Printer. We also see key func-
tions that are associated with these classes. For example, we
see thatAdjustSize,Focus,Move, andScroll are associated
with Widget.

Moreover, we see fundamental relationships between classes
such as the fact that Button and ScrollBar directly in-
herit from Widget (as indicated by the black double-edged
arrows), while CheckBox, MenuBar, RadioButton, and
Slider also inherit from Widget but in an indirect manner
(as indicated by the gray double-edged arrows). Other rela-
tionships also shown include direct composition, with Wid-

get containing Rect and Painter containing Point, and an
indirect reuse relationship, with Window reusing Rect.

Function View
The function view, much like a call graph, is primarily con-
cerned with functions and invocation relationships between
them. The function view includes all functions that match
by name across a set of libraries and only those classes, if
any, that are associated with these functions and that match
by name in all the libraries.

The function view is useful for identifying the roles being
played by classes in the libraries — even if those roles are

8



Class View Function View

Figure 1: Class and function views for the Qt and JX libraries.

played by different classes. In our example, it is clear from
the class view that Widget plays the “adjust size”, “focus”,
“move”, and “scroll” roles (as indicated by functions of the
same name). However, it is only in the function view where
we find roles such as “hide”, “show”, and “raise”. In Qt, all
three roles are played by Widget, whereas in JX, “hide” and
“show” are played by Container while “raise” is played by
Window. As another example, the roles “cut” and “paste”
are played by MultiLineEdit in Qt but by TextEditor in JX.

Also observe some of the function invocationspresent in both
libraries. For example, Font directly calls DefaultFont and
indirectly calls Display, Sender, and Window. Functions
with self-loops, such as Show and Hide, usually indicate
code that defers a request to a parent class or that delegates
a call to one of the instance variables. (Of course, self-loops
may also indicate recursion.)

Links to the Source
We view the links to the source as a critical part of the system.
Indeed, one can view the component and relationship match-
ing as providing a starting point for exploration of the source
code in the collection of libraries under consideration.

By clicking on any component in the class or function views,
one can browse the members of its family in each library and
access the corresponding source code fragment(s). And as
mentioned earlier, we also present the results of similarity
matching along with each view. The user can also click on
similarity matches to see the corresponding family members
and source.

For example, by clicking on the Painter class, one can eas-

ily compare the drawing primitives (which are members of
Painter) that are supported by each library. One might de-
termine, for instance, that while both Qt and JX support lines,
rectangles, ellipses, and arcs, only Qt supports Bezier curves.

As another example, by clicking on the MultiLineEdit and
TextEditor similarity match (shown in Table 4), the user can
compare and contrast the editing capabilities of the MultiLi-

neEdit class family (which is found in Qt and has one mem-
ber QMultiLineEdit) and the TextEditor class family (which
is found in JX and has two members, JTextEdtor and JX-

TextEditor).

Exploration of the source can also be useful in identifying
“non-functional properties” such as extensibility, adaptabil-
ity, modularity, flexibility, understandability, maintainability,
etc. For example, we may want to know how easy it is to cre-
ate new widgets in each library. One can do this by simply
inspecting the source code of classes Button and ScrollBar

which directly inherit from Widget in both Qt and JX.

Moreover, if one clicks on the Button class to explore its
source in each library, one would notice that both libraries
use implicit invocation to provide loose coupling between
objects. It is well known that this improves adaptability,
understandability, and maintainability. Further investigation
would show that Qt allows one to connect a member that
“emits” a signal to other members that will receive it, while
JX only allows one to connect objects rather than object
members.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we have described how tool support can be used

9



to help developers directly compare and contrast libraries. A
key part of this approach involves matching of similar classes
and functions across libraries, as well as various relationships
between them.

We have presented two matching techniques: name matching
and similaritymatching. While the name matching technique
is more precise (and is therefore used to match relationships),
the similarity matching is also important in identifying simi-
lar components with entirely different names that would not
be found otherwise. We have performed comparisons on li-
braries in four domains and have found that name and simi-
larity matching yield useful and complementary information.

Moreover, we have demonstrated our tool, CodeWeb, to
show how our approach can be applied in practice. In partic-
ular, we have discussed the class and function views and the
linking of components to the corresponding source in each
library. We have also shown how one might assess two GUI
libraries, Qt and JX, using our tool. For future research, we
plan to conduct extensive user testing to see how useful our
approach is in practice.

It is possible to match components and relationships across
software systems in completely different ways than those de-
scribed in this paper. Moreover, this can be done for purposes
other than assessing a collection of libraries. For example, in
[12], we describe a way to help developers reuse a particu-
lar software library by identifying components and relation-
ships that are relevant across several user-selected example
applications. It would be of interest to consider other ways
to match components across different software systems for
reuse related activities.

ACKNOWLEDGMENTS
We would like to thank Will Tracz and Michael Ernst for
valuable feedback on this research.

REFERENCES

[1] T. J. Biggerstaff. Design Recovery for Maintenance and
Reuse. Computer, 22(7):36–49, 1989.

[2] P. Chen, R. Hennicker, and M. Jarke. On the Retrieval
of Reusable Software Components. In 2nd Interna-
tional Workshop on Software Reusability), pages 99–
108. IEEE, 1993.

[3] W. B. Croft and D. J. Harper. Using Probabilistic Mod-
els of Document Retrieval Without Relevance Informa-
tion. Documentation, 35(4):285–295, 1979.

[4] W. B. Frakes and R. S. Baeza-Yates, editors. Informa-
tion Retrieval: Data Structures and Algorithms. Pren-
tice Hall, 1992.

[5] W. B. Frakes and B. A. Nejmeh. Software Reuse
through Information Retrieval. In 20th Hawaii Interna-
tional Conference on System Sciences, pages 530–535.
IEEE, 1987.

[6] W. B. Frakes and T. Pole. An Empirical Study of
Representation Methods for Reusable Software Com-
ponents. IEEE Transactions on Software Engineering,
20(8):617–630, 1994.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[8] R. Helm and Y. S. Maarek. Integrating Information Re-
trieval and Domain Specific Approaches for Browsing
and Retrieval in Object-Oriented Class Libraries. In
OOPSLA, pages 47–61, 1991.

[9] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM:
A Method for Analyzing the Properties of Software Ar-
chitectures. In 16th International Conference on Soft-
ware Engineering, pages 81–90. IEEE, 1994.

[10] R. Kazman and S. J. Carriere. View Extraction and
View Fusion in Architectural Understanding. In 5th In-
ternational Conference on Software Reuse. IEEE, 1998.

[11] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An In-
formation Retrieval Approach for Automatically Con-
structing Software Libraries. IEEE Transactions on
Software Engineering, 17(8):800–813, 1991.

[12] A. Michail and D. Notkin. Illustrating Object-Oriented
Library Reuse by Example: A Tool-Based Approach.
In 13th IEEE International Conference on Automated
Software Engineering, 1998.

[13] G. C. Murphy, D. Notkin, and K. Sullivan. Software Re-
flexion Models: Bridging the Gap between Source and
High-Level Models. In 3rd ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 18–
28, 1995.

[14] R. Prieto-Diaz and P. Freeman. Classifying Software
for Reusability. IEEE Software, 4(1):6–16, 1987.

[15] G. Salton and C. S. Yang. On the Specification of
Term Values in Automatic Indexing. Documentation,
29(4):351–372, 1973.

[16] S. Sparks, K. Benner, and C. Faris. Managing Object-
Oriented Framework Reuse. Computer, 29(9):52–61,
1996.

[17] C. J. van Rijsbergen. Information Retrieval. Butter-
worths, 1979.

[18] A. S. Yeh, D. R. Harris, and M. P. Chase. Manipulating
Recovered Software Architecture Views. In Proceed-
ings of the International Conference on Software Engi-
neering, pages 184–194, 1997.

10


