Improving the Seaurity, Scdability, Manageabilit y and Performance of System
Services for Network Computing

Emin Giin Sirer, Robert Grimm, Arthur J. Gregory, Nathan Anderson, Brian N. Bershad
{ egs,rgrimm,artjg,nra,bershad} @cs.washington.edu
http://kimera.cs.washington.edu
Dept. of Computer Science & Engineaing
University of Washington
Sedtle, WA 981952350

Abstract

Modern virtual machines, such as Java ad Inferno, are amerging as network computing
platforms. While these virtua madiines provide higher-level abstradions and more
sophisticaed services than their predecessors from twenty yeas ago, their architecure has
esentially remained unchanged. State of the at virtual macdhines are still monolithic, that is,
they are comprised of closely-coupled service mmponents, which are thus replicated over all
computers in an organization. This crude replicaion of services forms one of the weakest
points in today’s networked systems, as it creaes widely adknowledged and well-publicized
problems of seaurity, manageability and performance

We have designed and implemented a new system architedure for network computing based
on distributed virtual madines. In our system, virtual machine services that perform rule
cheding and code transformation are fadored out of clients and are locaed in enterprise-
wide network servers. The services operate by intercepting application code and modifying it
on the fly to provide alditional servicefunctionality. This architedure reduces client resource
demands and the size of the trusted computing base, establishes physicd isolation between
virtual macdhine services and creaes a single point of administration. We demonstrate that
such a distributed virtual machine achitedure can provide substantially better integrity and
manageability than a monolithic architedure, scdes well with increasing numbers of clients,
and dees not entail high overhead.

1. Introduction

Virtual machines (VMs) have evolved significantly in the last two decales and may soon serve @& awidely available
network computing platform [Lindholm& Y ellin96, Inferno, Adl-Tabatabai et al. 96]. They are particularly well
suited for network computing because they offer a uniform programming model, work on a wide range of systems,
and provide avariety of high-level services not suppated by native achitedures and general purpose operating
systems. Modern virtual machines offer services, such as dynamic extensibility, verificaion, just-in-time
compil ation, configurable seaurity policies and garbage wlledion, which are much more sophisticaed compared to
their predecessors [BMVYM86] and not readily found in general purpose operating systems[Custer 93].

In addition to the growth in the complexity of virtual machine services, the scde of deployment for VM systems has
changed as well. Unlike ealy virtual machine systems that were typicdly confined to a few dedicated mainframes
per enterprise, modern virtual machines are deployed in organizaions with hurdreds or thousands of heterogeneous
hosts. Active @mntent is now pervasive on the Internet, where aout 1% of the roughy 125 milli on pages indexed by
AltaVista reference aJava gpplet. More than 90% of the gpproximately 120 milli on deployed web browsers contain
the Java virtual machine, and transparently fetch and exeaute adive mntent from the world wide web.

Even though \irtual madhine services have beaome much more numerous and complex, and even though the scde
of deployment for VM systems has changed drasticdly, the service achitedure of virtua machines has remained
unchanged over the last few decales. Today’s virtual madines gill rely on a monolithic architecure in which all
service @mponents reside locdly on the host intended to run the @gplicaions. Consequently, service
implementations and service state ae replicated acossall virtual machines in an organization.

As a result of this crude placament and replication of functionality, modern virtual machines suffer from seaurity
problems [Dean et a. 97], are difficult to manage, and impose high resource requirements [Madany 96].
Furthermore, colocation of VM services has resulted in non-modular systems that exhibit complex inter-component
interadions, as observed [Accdta € a. 89, Bershad et a. 95, Enger et a. 95] for other monolithic systems. In
particular, networks of monolithhic virtual machines exhibit the foll owing shortcomings:

* Thelad of separation between virtual machine components means that a flaw in a single aomponent of the
virtual madine places the entire machine & risk. Furthermore, since palicy spedfication and seaurity
enforcement are performed on the same host that runs potentially untrusted appli cations, one-time seaurity
holes can lea to long-term seaurity compromises [Thompson 84].

e Since eab virtua machine is a wmpletely independent entity, there is no central point of control in an
enterprise. There ae no transparent and comprehensive techniques for distributing seaurity upgrades,
cgpturing audit trail s, and pruning a network of rogue gplications.

* Virtual machine services, such as just-in-time compilation and verificaion, have substantial processng and
memory requirements. When performed on the dient, they can reduce overall application performance

e Monadlithic systems are not suitable for hosts, such as embedded devices, which ladk the resources to
suppat a wmplete virtual madine.
In the rest of this paper, we describe avirtual madcine achitedure based on distributed service mmponents that
addresses these problems. Our architedure is founded on fadoring virtual madine services into logica components
and pladng these services at appropriate locations in the network. We have designed and implemented a Java virtual
madine based on this architedure. Our VM includes a Java rurtime, a verifier, a seaurity service a generic binary
rewriting service axd a compiler. It differs from existing systems in that these services are fadored into well -defined
components and centrali zed where necessary.
The rest of the paper is gructured as follows. Sedion 2 explains our approach and the goals of our architedure.
Sedion 3 provides an overview of our system, and Sedion 4 describes the individual services in detail. Sedion 5
presents an evaluation of the achitedure. Sedion 6 discusses related work, and Sedion 7 concludes.

2. Approach and Goals

Our approac to the problems posed by monolithic virtual machines is based on service decompasition and
distribution. We identify the logicd services in existing VMs, fador them into separate modules with well defined
interfaces, and placerelated services at locations in the network that suit their function [Figure 1]. We identify three
major caegories for related services. First, the runtime provides fundamental virtual machine functionality such as
interpreting byteaodes and implementing core libraries. Second, rule chedking ensures that the ade exeauted by the
runtime respeds a set of requisite cnstraints, such as typesafety and access limits. Third, code transformation
changes the mde to be exeauted, for example by trandating it into a native representation, or by modifying its
runtime behavior.

Platform Seaurity Code Rule
Services - Chedker Transformation Checker
Verifier
Service|
i I N\\
JIT Compiler Colledor
B de Runtime
| nty(;[re? cler Runtime
P Library

Figure 1. Mondithic vesus factored virtual machines. The diagram on the left ill ustrates the arrent state of the
art for modern virtual machines. Services in amondithic VM are often indiscernible and na isolated from each
other. The diagram on the right ill ustrates our approach. We factor the \irtual machine into threemajor service
groups; namely, rule checkng, code transformation andruntime services.

Fadoring a monolithic VM into individual services enables a modular service infrastructure, with clear component
boundaries and explicit interadion. Modularization thus helps define the trusted computing base, enables the
piecevise testing of components, simplifies auditing, and thereby can produce systems of high assurance It also
enables us to migrate functionality out of clients into locations more suitable to their function. This flexibility in
service placement reduces the size of the trusted computing base, deaeases resource requirements in clients, and
physicdly isolates srvices from ead other.

Service granularity and placement are determined by the seaurity, manageability, performance ad scdability
requirements of the overall system. For general-purpose network computing, which forms the gplicaion domain of
our architedure, these requirements can be summarized as foll ows:

e Seaurity: The trusted computing base should be well defined, small, and physicdly isolated from
applicaion code [Saltzer& Schroeder 75]. An organization should have the aility to make network-wide,
mandatory accesscontrol dedsions, and know that they are being enforced on all clients.

* Manageaility: Management of virtual madciines sould be uniform acossplatforms and there should be a
central point of control for administration.

» Performance Services ould place aminimal processng burden on client machines and not require alarge
investment in the serviceinfrastructure.

e Scdability: Virtua machine implementations sould scde over the diverse achitedures and platforms
found in a typicd network. The minimum memory and processng requirements of a virtual machine
should be small, thoughthe system should be le to utili ze dl avail able resources when recessary.

In addition to these goals, a viable achitedure should be badkward compatible with the large base of currently
deployed monolithic virtual machines. Its implementation should preserve the external representations of existing
virtual machines [Lindholm& Y ellin96], as well as their platform APIs [Godling& Yellin 96. This approach enables
an upgrade path from existing monolithic virtual machinesto a distributed service achitecure.

3. Architecture Overview

The cantral tenet of our architedure is to break up monolithic virtual madines into logicd services, ead of which
performs a single function. The result of applying this principle on a modern virtual machine is ill ustrated in Figure
2. The services that perform rule chedking and code transformation are separated from ead other as well as from the
runtime. This eparation between components makes it possble to placeservices on hosts that suit their function. In
particular, we cetraize all functionality that is not inherently part of the dient runtime. The resulting service
infrastructure is uniform acossdifferent platforms and provides a central paoint of control within an organization.

Code Transformation Services Rule Chedker
~ b d
S ~ . . e g
~ o Rewriter Seaurity -
~ b
Compiler -
P Platform Verifier
Services
Runtime 1 Bytemde I Garbage
Library : Interpreter : Colleaor
Runtime

Figure 2. The static service decmposition d the Java virtual machine.

Centralized services in our architedure share the same basic structure. A static component performs most of the
overall service functionality before an application is adually exeauited. Fundamentally, static components insped
incoming code and, if necessary, modify it to refled required service daraderistics. They may also injed dynamic
service operations which are then exeauted by a small component on the dient. For example, our verifier performs
al code inspedion, including data-flow and dependency analysis, in the static component. It defers crossmodule

chedks that can not be resolved to exeaution time. This flow of code through the service infrastructure to the dient
runtime is ill ustrated in Figure 3. The static service mmponents generate aset of desired properties, and feed bah
the code and the properties to the cde transformation services. After transformation, the modified code refleds an
organizdion’s palicies and is thus $lf-managing during exeaution.

A generic binary rewriter and a cmpiler provide cde transformation services. The rewriter instruments binaries
with service-spedfic code snippets. It is dructured around an event-based model. Events are associated with code
abstradions, such as methods, basic blocks and individua instructions. The rewriter invokes registered event-
handlers for ead of the mnstructs it encounters in the

_code. A_n event handler may then add, chan_ge or del_ete Code Properties
instruction sequences in order to provide service
functionality. The use of an event-based interfacereduces

% S

system latency as it enables rewriting to be performed

o
concurrently with the fetching and forwarding of ’3’:-,-'3 ﬁ
application code. % &
The dient runtime exeautes the managed code produced by Code

the mde transformation services. It relies on digital Transformation

signatures to verify that incoming code has been vetted by Sfmces
the requisite services. The runtime can redired incorredly é‘*ﬁ
signed o unsigned code to the centralized services il
[Spyglass 94]. Since the rurntime is dielded by the Managed Code
centralized services, it may implement richer interfaces éﬁ' & ‘?..,\
than those available publicly. As these interfaces may be ~».,§‘ ﬁ_ \
L . : b3 &
unsafe, the verifier ensures that incoming code does not A ¥ x
reference them. For example, our runtime provides a cdl to VA I A Clients
explicitty free agiven objed. A service for reducing VM Native
garbage olledion overhead may then perform liveness L.t Runtime
analysis on incoming code and insert explicit cdls to free
unreadable objeds. Figure 3. Code flow in our system architedure.

Our service achitedure differs from the state of the at in

two fundamental ways. First, the centralized services are mandatory for all clients in an organization. For example,
seaurity chedks injeaed into incoming code ae inseparable from applicaions at the time of their exeaution. They
are thus binding throughout the network. Second, there is a single paint of control for all virtual machines within an
organizdion. For example, the seaurity padlicy is gedfied and controlled at a single locaion. In addition, use of
binary rewriting preserves compatibility with existing monolithic virtual madines. It thus provides a gradual
conversion path to distributed virtual machines. A monolithic virtual maciine may subjed the rewritten code to
redundant chedks or services, but it also benefits from the added functionality.

4. Services

We have built a Java virtual machine using our distributed service achitedure. Decompaosing the servicesfound in a
modern Java VM, and distributing them within a network whil e retaining and improving their functionality posed a
number of challenges. In the sedions below, we discussead of the services in detail, and report on our experience
with their design and implementation using our architecure.

4.1. Verificaion

Java's apped for network computing stems principally from its grong safety guarantees. A comprehensive set of
safety constraints allows the VM to integrate potentially mali cious code into a privileged base system [Stata& Abadi
98, Freund&Mitchell 98]. The enforcement of these type and system safety constraints is performed by the Java
verifier.

A Java verifier neals to chedk four different classes of constraints. The first set of safety axioms ensures that the
classfile is well formed. For instance, indices and dff set references that appea in various constructs in the dassfile
must be within particular bounds to be valid. The second set of safety constraints makes sure that the code within a
classis well structured. For example, al instructions must contain valid operands, methods must properly return
control on all exeaution paths and control flow instructions sould not branch into the midde of an instruction. The
most complex part of verificaion involves the third set of safety axioms related to typesafety. To ensure that code is

typesafe, the verifier relies on type-inference and data flow analysis to make sure that no path of exeaution can result
in atype eror at runtime. Finaly, afourth set of safety axioms ensures that assumptions made in one dassabout the
public interfaces of other classes are mnsistent with their implementation. Whereas the first three sets of constraints
apply to asingle dassinisolation, the fourth set appliesto the cmposition of classes.

Commercial verifiers found in monolithic virtual madines have had dfficulty in imposing these constraints. First,
since the Java spedficaion is not formal in its description of the safety axioms, there ae differences between
verifier implementations. Verifiers from Sun and Microsoft disagreeon urderspedfied isaues sich as constraints on
uninitialized ohjeds, subroutine cals, and crossvalidation of redundant datain a dassfile. Furthermore, in response
to discoveries of seaurity flaws, monolithic VM vendors have difficulty propagating seaurity patches to all of their
clients in atimely manner. Finaly, the data-flow analysis sage of verificaion is memory and processng intensive,
and renders monolit hic systems unsuitable for resourcelimited systems such as snart cards.

To addressthese shortcomings, we cantrali ze the bulk of the verificaion servicein acmrdance with our architecure.
In our implementation, the first three phases of verificaion are performed staticdly in a network server. The static
verifier component examines ead classas it is fetched, and chedks to make sure that it is sfe in isolation. The
fourth phase of verification requires accessto dynamic dient state describing the compasition of classesin different
namespaces. While it is posdble to tradk and mirror this date in a network server, or to devise aprotocol for
guerying client state remotely from the server, both techniques require modifications to existing clients. In order to
remain compatible with existing virtual machines, we defer the link phase deds to a small client component.
During the processng of the first three phases, the verificaion service @lleds all of the esauumptions that a dass
makes about its environment and computes the scope of these asaumptions. For example, fundamental assumptions,
such as inheritance relationships, affed the validity of the eitire dass whereas a field reference dfeds only the
instructions that rely on the reference. Having determined the assumptions and their scope, the verificaion service
modifies the mde to perform the chedks at runtime by invoking a simple service mmponent [Figure 4]. Since most
safety axioms have been resolved by this time, the functionality in the dynamic component is limited to a descriptor
lookup and string comparison. The dynamic component itself resides on a central server and is provided to clients on
demand. This lazy scheme for deferring link phase dedks as late & passble has the property that the dasses which
make up a component are not fetched from a remote, and pdentially slow, server unless they are nealed for
exeaution.

class Hello {

static boolean _mainchecked = 0; // Inserted by the verifier
public static void main() {
if(__mainChecked == false) { // Begin automatically generated code

RTVerifier.CheckField(“java.lang.System”, “out”,"”java.io.0utputStream™);
RTverifier.Checkmethod(“java.io.outputstream”, “printin”,“(Ljava/lang/string)v");
__mainchecked = true;

} // End automatically generated code

System.out.printin(“hello world”);

Figure 4. The hello world example after it has been processed by our verification service The \ast majority of
safety axioms are checkal statically. Remaining checls are deferred to exeaition time as siown. The first checl
ensures that the System classexports a field named “ out” of type OutputStream, and the second check veifi es that
the dassOutputStream implements a methodto print a string.

If any violations are found during the static phase of verification, the service propagates the eror to the dient by
forwarding a replacament classthat raises a verificaion exception during its initi ali zation. Hence, verificaion errors
are handled through the regular Java exception mechanisms. Since the Java VM spedfication intentionally leaves
the time and manner of verification urdefined except to say that the dedks should be performed before any affeaed
code is exeauted, our approach conforms to the spedfication.

We found that the decompasition of the verifier was instrumental in developing a high assurance implementation.
The modular structure simplified manual audits, fadlit ated automated testing and prevented certain classes of errors.

In contrast, we found that it was hard to charaderize the boundaries, configuration, and internal state of the
monolithic verifiers found in commercial systems. For example, the predse set of cheds performed by the Sun
verifier depend on the aguments to the VM, the dassloader used, and the existence of a just-in-time compiler. In
one instance, we found that spedfying an incorred length for exception descriptors caused the JVM to crash, even
though the verifier contained an explicit chedk for this case. The aash stemmed from the cmpil er using the length
field before the verifier chedks were performed. While afadored architedure does not necessrily result in a
modular system, it reduces the likelihood d such errors resulting from inter-component interadions.

4.2. Seaurity

Seaurity for state-of-the-art Java virtual macines [Wallach et al.97] builds on Java's sadk-based exeaution model
to express gaurity palicies and requires explicit cdls from code modules. Accessrights are granted by annotating a
virtual machine's exeaution stadk. And, they are dhedked by seaching the stad for these anotations. As a result,
seaurity for current Java VMsiis closely coupled to the virtual macdine implementation and to the code exeauting on
it. The seaurity padlicy is embedded in the ade, has no external spedfication, and, to change agiven seaurity padlicy,
all affeded code modules have to be rewritten.

Our seaurity services are designed around three principles [Grimm& Bershad97] that addressthese problems. First,
code should be separated from the spedficaion of the crresponding seaurity palicy. This sparation ensures that a
code module's aurity requirements are dealy documented, can be changed independently of the wde, and can be
centrally managed. Furthermore, a distinct seaurity palicy spedficaion can be medhanicdly processd, thus
permitting hgh-level reasoning about a system's saurity behavior. Seand, the interpretation of a given palicy
should be separated from the adual enforcement of that palicy. This sparation enables the fadoring and consequent
distribution of system seaurity, and acounts for changing seaurity models and pdicies. Third, system seaurity
should be transparent to an adual code module in the @sence of seaurity violations. This transparency simplifies the
development of new code modules, and provides a means for impasing seaurity constraints on legacy code.

Consistent with these principles and our overall architedure, we provide system seaurity in a cedtralized seaurity
policy service ad a per-machine enforcement manager. The palicy service interprets an organizaion's faurity
palicy and, using the binary rewriter, modifies incoming code acordingly. The palicy is gedfied in an XML-based
[W3C 98] languege, is distinct from code, and refleds an organizaion’'s gedfic seaurity requirements. While XML
is smewhat verbose and complex to parse, it is emerging as the lingua francafor Internet-based data representation.
Consequently, we exped wide-spread suppat for XML in editors, browsers and programming environments,
making an XML-based pdicy language asolid foundation for building pdlicy editors and automated analysis toals.
The enforcement manager resolves access chedks on a dient’s resources and maintains the arresponding seaurity
state. To perform a dedk, the enforcement manager dynamicaly queries the policy service for the aurrent seaurity
constraints on aresource, thus ensuring that it always ses an up-to-date view of the palicy.

Our seaurity spedfication language is based on two abstradions. It uses faurity identifiers to represent principals
and resources, and permissons to represent the right to perform an operation. Both abstradions also form the basis
for the communication protocol between the enforcement manager, which treas them as opaque tokens, and the
seaurity policy manager, which interprets them to perform adua pdicy dedsions. The spedficaion language
supparts three major constructs. The first construct, <namespace>, maps named resources to seaurity identifiers,
similar to the name-based seaurity attributes in domain and type enforcement [Badger et al. 95a, Badger et a. 954].
The second construct, <accessmatrix>, spedfies legal permisgons for pairs of seaurity identifiers [Lampson 71]. It
also spedfies how to perform transfers between protedion domains. The third construct, <class>, spedfies where
and how to insert cdl s to the enforcement manager in a mde module.

In order to fadlit ate the exchange of code and seaurity spedfications between organizaions, our seaurity services
use the same data types and representations as the Simple Public Key Infrastructure (SPKI) [Elli son et al. 98]. SPKI
is being developed within the Internet Engineeing Task Force & a standard for remote aithenticaion and access
control based on public keys. Its main contributions are anction of key-based principals and a simple, yet effedive
naming system. In our seaurity services, al pertinent representations, such as saurity identifiers and permissons,
are based on SPKI. Furthermore, like SPKI, we use caionicd s-expressons [Rivest 97] as the on-the-wire format
between the enforcement manager and the seaurity palicy service

Example

To ill ustrate our seaurity spedfication language and the operation of our seaurity services, consider the example of
restricting file accesby applets to only read files under the /public diredory of the file system. First, we need to

define the gpropriate seaurity identifiers (SIDs) and permissons. We use the applet SID to represent applet
threads, and the public-file SID to represent files under the /public directory. Furthermore, we use the fs.read
permisson to represent the right to read fil es.

Next, we need to creae apalicy spedfication in our padlicy spedficaion language. As part of this palicy, we neel to
define amapping from the fil e system name spaceto seaurity identifiers:

<namespace name="fs"” direction="left-to-right” separator="/">
<node path="/public” map="incl”>
<name> public-file </name>
</nhode>
</namespace>

This gedficaion defines a new namespace cdled fs, whose names are interpreted from the left to the right and
which uses the dash charader / to separate path components. The namespacehas one node with path /public. As
indicated by the map attribute, all names in the namespacethat have this path as a prefix, including the path /public
itself, map to the public-file SID.

Next, we nedl to grant applets read accessto public files. We thus add the fs.. read tag to the accesmatrix entry for
the SIDs applet and public-file (not shown). Next, we need to define how and when the enforcement manager is
invoked from applets and from the dasses that provide file system access Due to space onstraints, we only show
this gedfication for a stripped version of classjava.io.FileInputstream, which provides real accessto files. We
omit the spedficaion for other relevant classes, such as java.io.Fileoutputstream Or java.applet.Applet. The
spedficaion for classjava.io.FileInputstream and the acordingly rewritten code ae & follows:

<class name="java.io.FileInputStream”>
<constructor name="FileInputStream(String)”>
<register for="object” from="param” index="0" namespace="fs” />
</constructor>
<method name="int read()”>
<check on="object”>
<tag> fs.read </tag>

</check>
</method> public class java.io.FileInputStream {

</class> public FileInputStream(String name) {
EnforcementManager.register(this, name, “fs”);

}
public int read() {
EnforcementManager.check(this, “fs.read”);

}

The spedfication requires that two cdls to the eforcement manager be injeded into class
java.io.FileInputstream. First, a register operation has to be injeded into the cnstructor. This operation
associates the new file input stream objed with the SID corresponding to the string parameter in the fs namespace
Semnd, an accessched has to be inserted into the read method. This operation verifies that the aurrent thread has
the fs.read permisson on the aurrent file input strean objed.

Now, whenever a new file input stream objed is creded in a virtual macdine, the register operation is exeauted. The
enforcement manager for that VM queries the seaurity padlicy service for the corresponding SID, providing the name
argument and the fs namespace and establishes a mapping from the objed to the resulting SID. If the file input
strean objed represents a file under the /public diredory, it will be sssciated with the public-file SID; if not, it

will be awciated with the nul SID. On invocaion of the read method, the accss ched is exeauted. The
enforcement manager retrieves the SID for the cdling thread, which is established at thread creaion time and
changed on protedion domain transfers, and the SID for the file input strean from its aurity state. It then queries
the seaurity palicy service for the legal permisdons for this pair of SIDs and compares the result with the required
permisson fs.read. If the cdling thread is an applet thread and the file input stream objed is asciated with the
public-file SID, the legal permisdons include the required permisson and the operation is complete. If the legal
permissons do not include the required permisgon, the enforcement manager throws a seaurity exception in the
form of ajava.lang.SecurityException objed and thus terminates the cdl to the read method.

4.3. Compil ation

We ae aurrently in the process of implementing a Java compiler within this architecure. We will report on its
design and implementation in the final version of the paper.

4.4, Client Runtime

We have built our own Java runtime to fadlit ate reseach with service placement. The runtime implements core
services, such as threading, memory management, 1/0 and synchronizaion that applicaions require & exeadution
time. Our implementation provides these services for the PC and Alpha platforms, and relies on the Sun class
libraries for the platform APIs. It is dructured to permit the integration of virtual machine services when desired.
This flexibility allows us to use the same service mmponents under monolithic and dstributed configurations. For
example, the first three phases of verification can be integrated into the runtime or fadored aut to a network server.
Since the implementation of the fourth phase is varies between architedures, we have two separate implementations.
Overdl, this gructure dlows us to evaluate cmparable service implementations under different system
architedures.

4.5. Performance Monitoring Services

In order to enable virtual macines to monitor their performance and for users to observe gplication behavior, we
implemented a profiling and tradng service The profiler instruments code to generate a dynamic cdl-graph
[Graham et al. 82]. The trace instruments applicaions to generate atimestamped log of all cdls to the system
libraries [Jones 93]. Whil e we have been using these services extensively for debuggng our system, they can also be
used for remote monitoring and administration.

4.6. Servicelnfrastructure

A distributed architedure requires an infrastructure that ties clients together with the services they need. In our
current implementation, we alopted an event based filter model for our services. An extended web proxy serves as
the 1/0O substrate for service implementations. The proxy intercepts and processes requests from the dients. An
internal filtering API allows logicdly separate services to be cmposed together on the same host. The proxy
permits a cating filter to be used to avoid fetching and rewriting overhead for shared components. There isalso a
trace filter which colleds datistics and generates an audit trail from ead proxy, and forwards the results to a
remote alministration console.

The proxy is aso responsible for housing the static and dynamic components of VM services. The static components
appea to the proxy as rewriting filters which are gplied to code passng through the proxy. The dynamic
components, which are in esence dass libraries that perform additional service functionality, are provided to the
clients on demand. Centralization of service state simplifies srvice upgrades for organizaions.

While our service infrastructure requires no changes to the dients, and therefore does not control them diredly, a
remote management service provides centralized control. At the time avirtual machine fetches its first application,
the gplicaion’s tartup code is rewritten to invoke the remote management service This srvice then contads the
remote aministration console, and a handshake protocol establishes the aedentials of the user and assgns an
identifier to the sesdon. It is thus possble for a network administrator to remotely examine dl hosts in an
organizaion.

5. Evaluation

In this £dion, we show that our architedure supparts saure, manageale and scdable virtual machine services. We
first demonstrate that our architecure reduces resource requirements in clients. We then examine the performance
overhead of rewriting and conclude that it is negligible cmpared to typicd latencies involved in fetching
applicaions from a wide aea network such as the Internet. We show that the rewriting services do not present

bottlenedks for medium-size networks and scde over large numbers of clients. Finally, we compare amonolithic
implementation of a verifier to adistributed version, and charaderizeits performance

All of the measurements in this sdion were performed on 200 MHz PentiumPro systems runnng Windows NT4.0
with 64 MB of memory, conneded by a 10Mb/sec Ethernet locd area network. Our connedion to the Internet is
through two 100 Mb/sec links. At the time of the experiments, the links were lightly loaded, with less than 40
Mb/secpeak consumed bandwidth.

Code size Data size
Sun JDK 606208 1052072
Netscape JVM 442368 155648
Microsoft JVM 962560 65536
Factored JVM 315392 106496

Table 1. Static code and data sizes. in bvtes, for monolithic and fadored virtual machines.

The static code and data sizes for different VM clients are shown in Table 1. The Sun JDK is the reference Java
virtual machine (version 1.1.5) from Sun Microsystems. The Netscape and Microsoft JVMs are the versions shipped
with the latest browsers by their respedive vendors. The measurements for Sun and Netscagpe exclude the space
required for the native AWT implementation, since our fadored VM does not suppat a windowing system. We
could not fador out the size of the AWT libraries from the Microsoft virtual macdine because they are bundled into
a singe library along with the rest of the VM. The measurements demonstrate that a fadored architedure requires
lessresources than a cmparable monolit hic implementation.

[Comon
B Verifier

N Security
Interpreter

SUNJDK

Runtime

O Rroxy

0O 10000 20000 30000 40000 50000 60000 70000

Fiaure 5. Module lenaths of fadored and monolithic virtual macines.

Figure 5 evaluates the impad of fadoring services on code structure. Services in our fadored implementation share
alarge @mmon code base. Overall, our system consists of 59000lines of code, whereas the monolithic Sun JDK
implementation is comprised of roughly 34000 lines, not counting the native AWT library implementation. We
attribute this difference mostly to functionality in our fadored virtual machine that the monolithic VM does not
provide. For example, there is no equivalent functionality in the Sun JDK to our proxy, rewriting service, or external
seaurity spedfication.

Graph 1 shows the overhead associated with
downloading applets through our service
infrastructure. We olleded a list of all
indexed Java gplets from the AltaVista
seach engne, and randomly seleded a
subset of 75 applets around the Internet. The
scater plot shows the difference between
direaly fetching these dases from the
Internet versus fetching them through our
service proxy. Going through our service
infrastructure entailed an average delay of 71
milli sesaonds. This represents a 5% overheal
compared to our observed average latency of
1536 milli seconds to download an applet.
Given the wide variation, sometimes as high
as 15%, we encountered in successve runs of
this experiment, the rewriting overheal is
small.

We then examine the scding charaderistics
of the system for large numbers of clients

Applet Download Latency

~

[«2]

[62)
(e

o Proxy
x No Proxy

Time (sec)
w IS

N
L

o
o

F

Aoax
2 X Xx
=

DX

O X0 X O

o

XP x>

e}
X

XS X
e Lx o

o
X

T T
15000 20000
Size (bytes)

T
10000

T T
25000 30000 35000

Graph 1. Time to dovnload an applet diredly from the Internet

[Graph 2]. We disabled caciingin the proxy, yerqs throughour serviceinfrastructure.

and smulated up to 250 clients
simultaneously fetching different applets. The graph shows the total proxy throughput as a function of the number of
clients. The measurements represent the sustained throughput in our system. Based on these numbers, we conclude
that the proxy does not pose abottlenedk for small to medium size networks. In larger install ations, the proxy can
simply be replicated to handle the increased load.

Finaly, we compare our fadored verifier to
two monolithic verifier implementations.
The first is the Sun JDK verifier, which is a
highly tuned commercia product. The
seoond is our own verifier integrated into our

Proxy Throughput vs. Number of Clients

200000

150000

runtime in a monolithic configuration. We
found that, for a large gplicaion, namely
the Java web server from Sun, verificdion
took 1.218 seaonds under the Sun JDK 1.1.5
verifier, 4.190 seconds under our monolithic
configuration, and 13195 seaonds in our
fadored implementation. The fadored
verifier spends 42% of its time interpreting
bytecodes that perform the phase four link
chedks in Java. We exped this time to be
reduced significantly when the bytecodes are
compil ed. In addition, our system has not yet
been optimized.

6. Related Work

While virtual madines have evolved extensively since their introduction, their monolithic architecure has remained
unchanged. The first commercia virtual madine was the IBM VM system [IBMVM86], which made its
commercia debut in 1972 The IBM VM system enabled organizaions to run both MVS and CMS on the same
physicd macdine by virtualizing madine resources. As a result of the monolithic structure, all VM services were
exeauted on the same host [Deitel 90]. This dructure has influenced many of the virtual machine implementations
that foll owed.

In the ealy 1970s, virtual machines were dso adopted by the language community as a substrate for distributed
code. These systems used virtual machines both to retain the portability of applicdions in an increasingy
heterogeneous environment, and to provide high-level abstradions for which compilers could generate mde more

100000

50000

Total Throughput (bytes/sec)

0 T T T T

100 150 200
Number of Clients

250

Graph 2. Sustained throughput of our VM services versus
number of clients.

1C

ealy. P-Code [Psystem] is one such intermediate language that was widely used as part of the UCSD Pascd
system. It offered crossplatform portability by targeting a pseudo-machine for compilation, and relying on a
runtime interpreter. Whil e the P-System disappeaed over time & it did not provide safety guaranteses, its portability
did influence modern virtual machine design.

Recent virtual machines auch as Java and Inferno build on thislegacy to provide safety, portability and uniformity in
a network computing setting. They rely on a growing set of complex services [Goding&Yellin 96,
Myers& Liskov97, Wallach et al.97] to provide their functionality. We believe that a fadtored architedure addresses
the problems faced by these systems.

The CAGE system from Digitivity takes an aternative goproach to fadoring services out of clients [Digitivity 97].
CAGE replaces all virtua machines in an organization with a single virtual madine that is physicdly isolated
behind a firewall. All applicaions exeaute on this centralized virtua madine, and communicate with clients only
for user-interfaceoperations. Whil e this approach has the property that clients are not exposed to untrusted code, it
does not address isaues of seaure sharing of client resources. As a result, while it may be gplicable to stateless
applets on the web, it does not suppart applicaions which require seledive accesto locd resources found on
clients.

There ae parall els between our work and the use of firewall s for network seaurity [Cheswick& Bell ovin94, Mogu et
al. 87]. Before the emergence of firewalls, every networked host in an organization had to be proteded against all
bad padets that it might recéve. The rapid acceptance of firewalls demonstrated that it was smpler and more
seaure to concentrate functionality in a single padet-filter rather than to seaure every host in an organizaion.
Modern virtual machines present a similar challenge, except that the services are mnsiderably more complex than
padket filtering.

7. Conclusions

We have designed and implemented a new system architedure for network computing based on distributed virtual
madines. Our system fadors virtual machine services out of clients and locaes them in enterprise-wide network
servers. The services operate by intercepting application code and modifying it on the fly to provide service
functionality. This architedure reduces client resource demands and the size of the trusted computing base,
establi shes physicd isolation between virtual macine services and credes a single point of administration. Such a
distributed virtual machine achitedure can provide substantially better integrity and manageaility than a
monolithic architedure, scaeswell with increasing numbers of clients, and has comparably low overheal.

8. Acknowledgements

We would like to thank Jim Roskind of Netscgoe, Charles Fitzgerald and Kory Srock of Microsoft, and Tim
Lindholm, Sheng Liang, Marianne Mueller and Li Gong of Javasoft for discussng the internals of their systems with
us. Sean McDirmid implemented parts of our verifier. Bibek Pandey colleded the list of applets that were used in
our performance evaluation.

9. References

[Acceta ¢ a. 89] Accsdta, M. J,, Baron, R. V., Bolosky, W., Golub, D. B., Rashid R. F., Tevanian, A. and
Young M. W. “Mach: A New Kernel Foundation for Unix Development.” USENIX 1989

[AdI-Tabatabai et al. 96] Adl-Tabatabai, A., Langdale, G., Lucco, S. and Wahbe, R. “Efficient and Language-
Independent Mobile Programs.” In Conference on Programming Languag Design and
Implementation, May, 1996 p. 127-136.

[Badger et al. 954 L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. Praticd
Domain and Type Enforcement for UNIX. In Procealings of the 1995IEEE Symposium
on Saurity and Privacy, pages 66-77, Oakland, California, May 1995

[Badger et a. 95h] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. A Domain
and Type Enforcement UNIX Prototype. In Proceadings of the Fifth USENIX UNIX
Seaurity Symposium, pages 127-140, Salt Lake City, Utah, June 1995

[Bershad et al. 95] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M., Beder, D., Eggers,
S., Chambers, C. “Extensibility, Safety and Performance in the SPIN Operating System.”
In Procedalings of the Symposium on Operating §stem Principles, 1995

[RFC1157 Case, J.,, Fedor, M., Schoffgtal, M. and J. Davin, "Simple Network Management
Protocol", RFC 1157, May 1990

11

[Cheswick&Bellovin94] Cheswick, W. R. and Bellovin, S. Firewalls and Internet Seaurity: Repelling the Wily

[Custer 93]
[Deanet d. 97]

[Deitel 90]
[Digitivity 97]
[Ellison et &. 98]

[Endler et a. 95]

[Freund& Mitchell 98]

[Godling& Yellin 96]

[Graham et al. 82]

[Grimm& Bershad97]
[1BMVM8E]
[Inferno]

[Jones 93]

[Lampson 71]

[Lindholm& Y elli n96]
[Madany 96]

[Mogul et a. 87]
[Myers& Liskov97]
[Saltzer& Schroeder 75]
[Rivest 97]

[Sirer et al. 98]

[Spyglass94]

[Stata& Abadi 98]

[Tanenbaum et al. 90

[Thompson 84]

Hadker. Addison-Wedley, 1994

Custer, H. Inside Windows NT. Microsoft Press 1993

Dean, D., Felten, E. W., Wallach, D. S. and Belfanz, D. “Java Seaurity: Web Browers and
Beyond.” In Internet Beseiged: Countering Cyberspace Scofflaws, D. E. Denning and P.
J. Denning, eds. ACM Press October 1997

Deitel, H. M. An introduction to Operating Systems. Addison-Wesley, Reading, MA 199Q
Digitivity, Inc. “Digitivity Introduces the First Internet Applet Management System for the
Seaure Deployment of JAVA.” http://www.digiti vity.com/press 062397html, June 1997.
C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, T. Ylonen. Simple Public
Key Infrastructure. Internet Draft, Internet Engineering Task Force, March 1998

Engler, D. R., Kaashoek, M. F. and OTode, J. "Exokernel: An Operating System
Architedure for Applicaion-Level Resource Management.” In Procealings of the
Symposium on Operating S/stem Principles, 1995

Freund, S. N. and Mitchell, J. C. “A type system for objed initializaion in the Java
Byteaode Language.” To appea in ACM Conference on Objed-Oriented Programning:
Systems, Languagps and Appli cations, 1998

Godling, J. and Yéllin, F. The Java Applicaion Programming Interface Volumes 1 & 2.
Addison-Wesley, 1996

Graham, S.L., Kesder, P.B. and McKusick, M.K. “gprof: A Cal Graph Exeaition
Profiler.” In Procealings of the SIGPLAN '82 Symposium on Compiler Construction,
SIGPLAN Notices, Val. 17, No. 6, pp. 120-126, June 1982

Grimm, R. and Bershad, B. “Providing Policy-Neutral and Transparent AccessControl in
Extensible Systems.” Technicd Report UW-CSE-98-02-02, February 1998

IBM Corporation. Virtual Machine/System Product Applicaion Development Guide,
Release 5. Endicott, New York, 1986

Lucent Technologies. Inferno. http://inferno.bell -labs.com/inferno/

Jones, M. B. "Interpasition Agents: Transparently Interposing User Code & the System
Call." In Procedings of the Symposium on Operating System Principles, Decanber 1993
pp. 80-93.

B. W. Lampson. Protedion. In Procealings of the Fifth Princeon Symposium on
Information Kiences and §stems, pages 437-443, Princeton, New Jersey, March 1971
Reprinted in Operating Systems Review, 8(1):18-24, January 1974

Lindholm, T. and Yéllin, F. The Java Virtua Machine Spedfication. Addison-Wesley, 1996
Madany, P. “JavaOS — Java on the Bare Metal.” JavaOne 1996

Mogul, J. C., Rashid, R. F. and Accdta, M. J. “The Pacet Filter: An Efficient Mechanism
for User-level Network Code." In Proceedings of the Sympasium on Operating S/stem
Principles, November 1987, pp. 39-51.

Myers, A. C. and Liskov, B. “A Decantralized Model for Information Flow Control.” In
Procealings of the Sympasium on Operating System Principles, 1997

Sdtzer, J. H. and Schroeder, M. D. “The Protedion of Information in Computer
Systems.” In Proceadings of the IEEE, 63(9):12781308 September 1975

R. Rivest. S-Expressons. Internet Draft, Internet Engineaing Task Force, May 1997
Sirer, E. G., Grimm, R., Bershad, B. N., Gregory, A. J. and McDirmid, S. “Distributed
Virtual Machines. A System Architecure for Network Computing.” European SIGOPS,
September 1998

Software Development Interface for Dynamic Data Exchange. http://www.spyglasscom/
products/smosai ¢/sdi/sdi_spec.html

Stata, R. and Abadi, M. “A type system for Java bytecode subroutines.” In Procealings of
the 25th Symposium on Principles of Programmming Languages, January 1998 p. 149--160
Tanenbaum, A.S., Reness, R. van, Staveren, H. van., Sharp, G.J., Mullender, S.J., Jansen,
A.J., and Rosaim, G. van: "Experiences with the Amoeba Distributed Operating System,"
Commun. ACM, vol. 33, pp. 46-63, Dec 1990

K. Thompson. Refledions on Trusting Trust. Communicaion of the ACM, Val. 27, No. 8,
August 1984 pp. 761-763

12

[Psystem]
[W3C 98]
[Wallach et a.97]

[Walker et a.83]

University of Cdlifornia, Irvine. p-System: Description, Bacdkground, Utiliti es.
http://www.ics.uci.edu/~archive/d ocumentati on/p-system/p-system.html

World Wide Web Consortium. Extensible Markup Language (XML) 1.0. Edited by T.
Bray, J. Paoli, C. M. Sperberg-McQueen, February 1998

Walladh, D. S, Bafanz, D., Dean, D. and Felten, E. W. “Extensible Seaurity Architectures
for Java.” In Procealings of the Symposium on Operating System Principles, 1997.
Walker, B., Popek, G., Endlish, R., Kline, C. and Thiel, G. “The LOCUS Distributed
Operating System.” In Procealings of the Symposium on Operating System Principles,
1983 p. 49-69.

