
Decoupling Synchronization from Logic for
Efficient Symbolic Model Checking of Statecharts

William Chan† Richard J. Anderson† Paul Beame† David H. Jones∗

David Notkin† William E. Warner∗

Technical Report UW-CSE-98-09-02
†Department of Computer Science and Engineering, University of Washington

Box 352350, Seattle WA 98195-2350, U.S.A. +1-206-543-1695
{wchan,anderson,beame,notkin}@cs.washington.edu

∗The Boeing Company, Seattle, U.S.A.
{david.h.jones,william.e.warner}@boeing.com

ABSTRACT

Symbolic model checking is a powerful formal-verification
technique for reactive systems. In this paper we address the
problem of symbolic model checking for software specifica-
tions written as statecharts. We concentrate on how the syn-
chronization of statecharts relates to the efficiency of model
checking. We show that statecharts synchronized in an obliv-
ious manner, such that the synchronization and the control
logic are decoupled, tend to be easier for symbolic analysis.
Thanks to this insight, the verification of some non-oblivious
systems can be optimized by a simple, transparent modifica-
tion to the model to separate the synchronization from the
logic. The technique enabled the analysis of the statecharts
model of a fault-tolerant electrical power distribution system
developed by the Boeing Commercial Airplane Group. The
results disclosed subtle modeling and logical flaws not found
by simulation.

Keywords

Formal methods, verification, symbolic model checking, bi-
nary decision diagrams, requirements specification, state-
charts, fault tolerance.

1 INTRODUCTION

Symbolic model checking [4] shows promise as an aid to pro-
ducing industrial-strength software specifications in which
developers have increased confidence [6, 19]. The formal
languages for writing such specifications allow developers to
produce specifications in a number of different styles. Just as
the way that a program is written affects how efficiently one
can analyze it, the style used to describe a specification af-
fects how efficiently one can analyze it using symbolic model
checking.

In this paper, we address how the synchronization in a
statecharts specification—statecharts being one of the most

This work was supported in part by National Science Foundation grant
CCR-970670. W. Chan’s work was supported in part by a Microsoft en-
dowed graduate fellowship.

broadly used languages for specifying reactive systems [9]—
influences the efficiency of symbolic model checking. We
identify certain styles for synchronization that are more ef-
ficient for symbolic analysis. For statecharts not written in
these styles, we give procedures to automatically modify
their internal representations to greatly improve the perfor-
mance of their analysis.

This work started as a case study of applying symbolic model
checking based on binary decision diagrams (BDDs) [3] to a
statecharts specification developed by the Boeing Commer-
cial Airplane Group. Previously, the same technique was ap-
plied to the requirements specification of the airborne colli-
sion avoidance system TCAS II [6,7] written in the Require-
ments State Machine Language (RSML) [13], a language
also based on statecharts. The observations and the optimiza-
tion technique described in this paper result from the com-
bined experience of these two case studies.

To elaborate, in symbolic model checking, the state space of
a formal model is exhaustively explored. Sets of states are
represented implicitly, so the method is not restricted by the
state-space size and is able to analyze many systems much
larger than conventional techniques can handle. The effi-
ciency relies mainly on the succinctness of the symbolic rep-
resentations such as BDDs, but their size is usually hard to
predict. For software specifications, it depends not only on
the functionality of the system but also on the particular way
in which the specification is written.

Our model of statecharts responds to environment inputs by
performing a macrostep, divided into a number of microstep
transitions synchronized by events. We found that statecharts
with events synchronized in an oblivious manner, such as
the TCAS II requirements, tend to be more amenable to our
analysis—the state machines’ synchronization is decoupled
from their logic, resulting in fewer dependencies among the
state variables and smaller BDDs. However, we observe that
the length of a macrostep can often be bounded statically. By
artificially incorporating a microstep counter into the state-

charts, we can decouple synchronization and logic in non-
oblivious systems as well. The modifications are transpar-
ent to the specifier and preserve the model-checking results
for most interesting properties (formally, all stutter-invariant
properties, including all temporal-logic formulas without the
next-time operator, are preserved [12]). The technique is in-
teresting, particularly because it achieved substantial time
and space improvements in our case study even though the
numbers of state variables, reachable states, and search iter-
ations were all increased, exactly the opposite of what most
existing techniques attempt to do.

Another contribution of this work is the case study itself. For-
mal models have been used increasingly in Boeing to specify
and validate functional requirements of airborne computing
systems [15]. One of the modeling languages used is state-
charts, thanks to their intuitive notations, ability to scale, and
the availability of supported tools [16]. Developed for re-
search purposes, the statecharts studied in this work model a
fault-tolerant electrical power distribution (EPD) system de-
signed for use on aircraft. Its purpose is to distribute elec-
trical power from power sources to power busses via a num-
ber of circuit breakers, while tolerating failures in the power
sources and circuit breakers. We were reasonably confident
in the correctness of the model based on simulation results,
but the model-checking analysis disclosed subtle modeling
and logical flaws. Our efforts have been directed to finding
bugs instead of verifying correctness. We give examples to
argue for early use of model checking as a debugging tool
because of the lower costs for analysis and the tendency of
similar errors to recur in various parts of the system.

The rest of the paper is organized as follows. We first review
statecharts and symbolic model checking in the next two sec-
tions. In Section 4 we explain the differences that oblivious
and non-oblivious systems make to the efficiency of model
checking. Our optimization technique is presented in Sec-
tion 5. We describe the model of the EPD system and the
results of the analysis in Section 6. Section 7 concludes the
paper with some lessons learned.

2 STATECHARTS

Statecharts are a popular visual language for specifying com-
plex reactive systems [9]. They extend state machine dia-
grams with parallelism, superstates, and broadcast commu-
nications. For simplicity, we will not discuss superstates in
this paper (the techniques to be developed apply equally well
to systems with superstates). Instead, our system model con-
sists of a finite set of parallel local state machines, with a finite
set of events and inputs, all embedded in a nondeterministic
environment.

2.1 Syntax and Semantics

Figure 1(a) gives a simple example with two parallel state
machines A and B, synchronized by events x, y, and z. Ar-
rows without sources indicate the initial local states. Other

A

B

off on

x[¬c]/y

x[c]/z

off on

y/v

z/v

(a) Non-oblivious synchronization

A

B

off onx[¬c]/w

x[¬c]/w

x[c]/w
x[c]/w

off on

w[A in off]/v

w[A in on]/v

w[A in off]/v w[A in on]/v

(b) Oblivious synchronization

Figure 1: Two ways to specify a controller (A) and a plant (B)
in statecharts, with equivalent stable-state behaviors

arrows represent local transitions, which have labels of the
form trig[cond]/acts, where trig is a trigger event, cond a
guarding condition, and acts a (possibly empty) list of action
events. The guarding condition is a predicate on local states
of other state machines and/or inputs to the system. A label
of the form trig[true]/acts is abbreviated as trig/acts. The
transition is enabled whenever the event trig occurs and the
guarding condition cond evaluates to true.

An external event is one that can be generated by the environ-
ment. For simplicity, we assume that an external event cannot
also be an action event of any transition, and call events that
are not external internal. Initially the machines are in their
respective initial local states, and the environment generates
a subset of the external events and arbitrarily changes the in-
puts to the system, enabling transitions as described above.
Different statechart-based languages disagree on which en-
abled transitions are taken and what effects the taken transi-
tions produce. We adopt the semantics of RSML [13] and
STATEMATE [10]: Two transitions are non-conflicting if
they do not share the same source local state, and a maximal
set of enabled transitions that are pairwise non-conflicting,
collectively called a microstep, is simultaneously taken—the
system leaves the source local states of the transitions, enters
the destination local states, and generates the action events
(if any). The generated action events may trigger additional
transitions in the next microstep. Events are instantaneous,
so unless regenerated they disappear after the microstep.

In our example in Figure 1(a), both machines are initially in
off. Event x is assumed to be external. The guarding con-
dition c is assumed to be a Boolean input, but it could have

2

microsteps

macrostep

environmental changeenvironmental change

stable

(no environmental change)

Figure 2: Microstep, macrostep, and synchrony hypothesis

been a predicate on other local machines not shown. When
x occurs and c is true, the transition from off to on in ma-
chine A is enabled and taken, generating z. The event z in
turn triggers the transition from off to on in machine B in the
next microstep, and generates v. In general, whenever x oc-
curs, machine A (the controller) will be in on if and only if c is
currently true; machine B (the plant) follows and lags behind
machine A for one microstep.

The system is stable when no events occur. The sequence of
microsteps between the time when the system is unstable and
the time when it becomes stable again is called a macrostep.
(A microstep and a macrostep are called a step and a super-
step respectively in STATEMATE, whereas in RSML they
are called a microstep and a step respectively.) The syn-
chrony hypothesis says that during a macrostep no external
events can arrive and the environmental inputs remain un-
changed; that is, the system is infinitely faster than the envi-
ronment [1]. Figure 2 depicts these notions. RSML enforces
the synchrony hypothesis, while STATEMATE optionally al-
lows it. We assume the synchrony hypothesis, which is cen-
tral to the issues and techniques discussed in this paper.

2.2 Styles: Oblivious vs. Non-Oblivious

Figure 1(b) shows another way to specify the controller and
plant. Instead of generating events y and z to turn on and off
machine B, machine A now generates event w to signal its
completion and pass the execution to machine B, which reacts
based on the A’s local state. We call such statecharts oblivious
in the sense that the sequence of events generated and thus the
synchronization are independent of the local states or inputs;
in this case, for example, w is generated after x regardless of
the condition c and the local state of A. More explicitly, a
difference between the two systems arises when event x oc-
curs but, say, machine A is off and c is false, in which case in
Figure 1(a) no transitions are enabled and no internal events
generated. In the same situation, w is still generated in Fig-
ure 1(b). Despite the difference, the stable-state behaviors of
the two systems are identical.

A few observations are worth noting. In the non-oblivious
system, the events are used for both synchronization (exe-
cuting machine B after machine A) and logic (directing ma-
chine B to the appropriate local state), and the specifier is
more concerned about the local, microstep-level interaction
between the two machines. In contrast, in the oblivious sys-
tem, events are merely used for synchronization—the logic
is specified in the local states and the guarding conditions,
and the specifier foresees the overall control flow between

the machines in a macrostep and constructs events to syn-
chronize the machines in the desired order. Oblivious sys-
tems thus have fewer dependencies, as an event depends upon
nothing but other events. While virtually all of the STATE-
MATE machines that we have seen are not oblivious, the por-
tion of the RSML specification of TCAS II that we analyzed
(in fact most of the entire specification) is oblivious. This is
consistent with Harel and Naamad’s comment that in RSML
a macrostep appears to be the “basic operation,” while in
STATEMATE a microstep is the basic operation [10, p. 323].
Notice, however, that the differences arise not from the syn-
tax or semantics, but from the distinct mental models of the
system that the specifiers have.

3 SYMBOLIC MODEL CHECKING

We review the model-checking problem and the idea of sym-
bolic model checking in this section.

3.1 The Model-Checking Problem

To analyze statecharts using state-exploration techniques, we
view the system as a global structure 〈Q,R, I〉, where Q is a
finite set of (global) states, R ⊆ Q×Q a total transition re-
lation, and I ⊆ Q a set of initial (global) states. A state in Q
is a tuple of the current local state of each state machine, the
set of events occurring, and the values of the environmental
inputs. A path is an infinite sequence of states in which each
consecutive pair of states is in R, and a trace is a path that
starts with some initial state in I. A state is reachable if it ap-
pears on some trace.

We symbolically encode the state space Q by declaring a setV
of state variables as follows. For each state machine, declare
a state variable whose range is the local states of the machine.
For each event, declare a Boolean state variable, which is true
if and only if the event occurs. For each input, declare a state
variable with the same range (assumed finite). Clearly, this
mapping from Q to the valuations of the state variables in V is
one-to-one. We will not distinguish between a state variable
and its encoded statecharts entity (local state, event, or input)
because of their simple correspondence.

Given this encoding, the set of initial states I is represented
as
V

m∈M m= m0 ∧
V

e∈Ei
¬e, where M is the set of state ma-

chines, m0 is the initial local state of m, and Ei is the set of
internal events. This simply says that initially, each machine
is in its initial local state, all the internal events do not oc-
cur, but the external events and inputs are not constrained.
More interesting is the encoding of the transition relation R
[6]. It suffices here to point out that our encoding has the form
(¬stable → micro) ∧ (stable → env), where micro encodes
microsteps, env encodes the environmental transitions across
macrosteps, and stable indicates when the system is stable,
namely¬

W

e∈E e where E is the set of all events. Note that un-
der this encoding a macrostep is represented as a sequence of
global transitions. An alternative is to represent a macrostep

3

as a global transition, but this would prevent us from analyz-
ing behaviors within a macrostep, which is often useful for
debugging purposes.

Many system properties can be expressed in the Computation
Tree Logic (CTL) [8], a common temporal logic for model
checking. Its formulas are built from propositions (predi-
cates over the state variables in V), the usual Boolean opera-
tors, path quantifiers A (for all paths) and E (for some path),
and modalities X (next-time), F (eventually), G (always), U
(strong until), and W (weak until), with every modality im-
mediately preceded by a path quantifier. Intuitively, each
modality is evaluated over a path, and Xφ means that φ
holds on the path starting at the next state, Fφ means that
φ holds somewhere on the path, Gφ means that φ holds ev-
erywhere on the path, φ U ψ means that ψ holds somewhere
on the path and φ holds everywhere before that, and φ W ψ
means that φ holds everywhere before ψ holds, but if ψ never
holds, then φ must hold forever. For example, the formula
AGsafe asserts that the proposition safe holds in all reachable
states, AG(request → AFresponse) asserts that a request al-
ways results in a response in the future, and AG(request →
A(requestWresponse)) asserts that once issued, a request will
persist unless a response is given.

Given a global structure and a temporal-logic formula, the
model-checking problem asks whether the structure satisfies
the formula. If not, to provide valuable diagnostic informa-
tion, a model checker usually gives a counterexample, a trace
that falsifies the property.

3.2 Symbolic Search

The truth value of a formula can be found by searching the
state space. We define Pred and Succ : 2Q → 2Q to com-
pute respectively the predecessors (also called pre-image)
and successors (also called image) of a set of states under the
transition relation R:

Pred(S) = {q ∈ Q | ∃q′ ∈ S. (q,q′) ∈ R}

Succ(S) = {q′ ∈ Q | ∃q ∈ S. (q,q′) ∈ R}.

Consider the formula AGp, which is true if and only if the
proposition p holds in every reachable state. Let P ⊆ Q be
the set of states that satisfies p. As shown in Figure 3, we can
evaluate the formula by performing either a forward breadth-
first search from the initial states I to find the set Z of reach-
able states, or a backward breadth-first search from the set Y0

Forward:
Z0 := I; Z := Z0; i := 0
repeat

i := i+1
Zi := Succ(Zi−1)−Z
Z := Z∪Zi

until Zi = /0

AGp iff Z ⊆ P.

Backward:
Y0 := Q−P; Y := Y0; i := 0
repeat

i := i+1
Yi := Pred(Yi−1)−Y
Y := Y ∪Yi

until Yi = /0

AGp iff Y ∩ I = /0.

Figure 3: Forward and backward searches for AGp

of states that immediately violate p to find the set Y of states
that may eventually violate p. The loops, guaranteed to ter-
minate for finite state spaces, are said to compute fixed points.
In conventional “explicit” search, Z and Y are implemented
as hash tables, while the search frontiers Zi and Yi are im-
plemented as queues. More complicated temporal-logic for-
mulas can be evaluated in similar ways by computing one or
more fixed points [8].

The method is impractical for many large systems because
of the sheer number of states that must be explored. More
efficient for large state spaces are symbolic searches [4]. A
state set (e.g., Zi) can be symbolically encoded as a predi-
cate over the state variables, just as we encoded the initial
states I in Section 3.1. The idea then is to manipulate this
predicate directly to explore the whole set without enumer-
ating its elements. Because we are dealing with finite state
spaces, we can assume without loss of generality that each
state variable is Boolean, so each such predicate is a Boolean
function, which can be represented as reduced ordered binary
decision diagrams (BDDs) [3]. Boolean operations, satisfia-
bility checking, and successor and predecessor computations
can be performed efficiently using BDDs, which therefore
can be used to implement the forward and backward searches
described above. BDDs are canonical, meaning that each
Boolean function has a unique BDD representation up to a
chosen variable order. In addition, a variable never appears
in the BDD if the function does not depend on the variable.

The size of the BDDs is a major bottleneck in BDD-based al-
gorithms. In the worst case it can be exponential in the num-
ber of variables. In practice though, it is often small even
when the set represented is large, but this depends on the cho-
sen variable order and the dependencies among the variables.

4 SOME INTUITIONS ON BDD SIZE

In this section, we examine how the BDD size can be af-
fected by the style of synchronization. Intuitively, the decou-
pled synchronization and logic of oblivious systems induces
fewer dependencies among the state variables, often keeping
the BDDs smaller. For instance, non-oblivious systems have
many more ways to finish a macrostep than oblivious ones,
and a backward search from the stable states needs to cap-
ture all these possibilities, resulting in larger BDDs. The dif-
ference for forward searches, however, is less apparent. For-
ward searches from the initial states maintain all system in-
variants, which are determined mostly by the functionality
of the system. Whether or not the synchronization is obliv-
ious, there may be many such invariants relating local states,
events, and inputs in nontrivial ways, and these may result in
very large BDDs [11]. As a consequence, we have not found
forward searches efficient in our experiments, so we focus on
backward searches in this paper.

For an example that illustrates the intuition on backward
searches, consider the non-oblivious system in Figure 1(a).
We encode the state space with Boolean state variables x, y,

4

z, v, a, b, and c, where a (resp. b) is true if and only if ma-
chine A (resp. B) is in on. Refer to the backward search in
Figure 3. Assuming that we want to know whether machine A
can be in on in a stable state, that is, Y0 = stable ∧ a =
¬(x∨ y∨ z∨ v)∧ a, what are its predecessors in Y1? Such a
state must be unstable, so one of the events must occur. In
addition, in order for the next state to be stable, none of the
transitions should be enabled. So to be in on in the next state,
machine A must be in on already. Combining all these con-
ditions, symbolically we have

Y1 = (x∨ y∨ z∨ v)∧a

∧ (x → c)∧ (y →¬b)∧ (z → b),

quite complicated for even this simple example. The com-
plexity stems from the numerous ways in which a macrostep
may terminate; some of them are in fact not possible (for ex-
ample, the conjunct y→¬b could have been simplified to¬y,
because y∧¬b is not reachable).

Now consider the oblivious system in Figure 1(b). We have
Y0 = stable∧ a = ¬(x ∨w∨ v)∧ a. Unlike the situation
above, however, a predecessor ofY0 cannot have events x or w
occurring, because otherwise w or v respectively will be gen-
erated, leading to an unstable state. So we have Y1 = v∧a,
much simpler than the previous case. In the subsequent iter-
ations, we have Y2 = w∧a, and Y3 = x∧ c, etc., all simple
expressions. In addition, unlike the non-oblivious case, the
local states of B never appear in the expressions and there-
fore the BDDs. This is appealing because the property being
checked indeed does not depend on B. Ultimately, the fixed
points computed in both cases are the same, but the BDDs for
the search frontiers are smaller for the oblivious system.

The example was designed to be simple just to give us some
intuition. The BDDs that occur in actual analysis are more
complex, but our experimental results so far are consistent
with our reasoning that backward searches tend to be much
more efficient for oblivious than non-oblivious systems.

5 OPTIMIZATION

In the previous section, we saw some reasons why non-
oblivious machines can be hard for symbolic backward
searches. Armed with that intuition, we systematically mod-
ify the global structure to decouple the synchronization from
the logic of the system while preserving most system prop-
erties: Often, the maximum length of a macrostep can be
statically bounded by analyzing the dependencies among the
events. In this case, we can make every macrostep equal in
length, and incorporate a microstep counter into the system.
This counter is oblivious in that its behaviors do not depend
on the internal events or the state machines, and is used to
guard every local transition.

5.1 Microstep counter

We need several definitions. For each e1 and e2 in the finite
set E of events, we say that e1 precedes e2, written e1 ≺ e2, if

there exists a transition labeled with e1[c]/e2 for some guard-
ing condition c. This precedence relation ≺ is assumed to be
acyclic, that is, (e,e) /∈≺∗ for each e, where ≺∗ is the transi-
tive closure of≺. Many systems have this property because it
prevents the nontermination of macrosteps, a design flaw that
is potentially hard to locate. (This assumption is not essential
for our technique, but it makes bounding the maximum length
of a macrostep easy, as we now show.)

For each event e, let λ(e) be the smallest set of integers such
that

1. λ(e) = {1} if e is an external event,
2. i ∈ λ(e) implies i+ 1 ∈ λ(e′) for all e′ with e ≺ e′.

Intuitively, i is in λ(e) if e can occur just before the ith mi-
crostep of some macrostep. Since ≺ is acyclic, the integers
in λ(e) are bounded, and the values of λ(e) for all e can
be computed in O(|E|3) total time by traversing the event-
precedence graph. The maximum length d of a macrostep is
then the largest integer in λ(e) for any e. For Figure 1(a),
we have x ≺ y, x ≺ z, y ≺ v, z ≺ v, and thus λ(x) = {1},
λ(y) = λ(z) = {2}, λ(v) = {3}, and d = 3. Note that some
macrosteps may have fewer than d microsteps.

To symbolically encode a statecharts model as a global struc-
ture, in addition to the usual state variables, we define a mi-
crostep counter mc to range from 0 to d. The behavior of
the microstep counter depends only on the set Ex of external
events (the primed variables below encode the next state):

Modification 1 (Microstep counter). Let s denote
W

e∈Ex
e

(some external event occurs in the current state) and s′ de-
note

W

e∈Ex
e′ (some external event occurs in the next state).

We conjoin the symbolic encoding of the initial states I with

(¬s → mc=0) ∧ (s → mc=1),

and conjoin the transition relation R with

((mc=0 ∧ ¬s′) → mc′ =0)

∧ ((mc=0 ∧ s′) → mc′ =1)

∧ (0 <mc<d → mc′ =mc+ 1)

∧ (mc=d → mc′ =0).

Stability now depends only on the microstep counter:

Modification 2 (Stability). The proposition stable is now
defined as mc=0.

The rules intuitively say the following: If no external event
occurs in the initial state, the system is stable and mc is initial-
ized to 0. Whenever some external event occurs, mc becomes
1 in the same state and a macrostep begins. The value of mc is
then incremented by one in every subsequent microstep un-
til the value reaches d. At that point, it is reset to 0 in the
next state and the system is considered stable. Note that the
internal events do not come into the picture, and that every
macrostep has exactly d microsteps.

5

old macrostep

new macrostep

stable
used to be stable here

stuttering

mc = 0 01 2 3 dd−1

Figure 4: Effects of microstep counter on system behaviors

Clearly, the local transitions in the statecharts are unaffected
by the changes, but the stable state may be delayed as illus-
trated in Figure 4—when the original system is stable, the
modified system may still be incrementing mc. However, be-
cause the microstep counter is not visible to the user, the mod-
ified system will not produce any visible change until stable.
Formally, the system stutters in the interim [12], and every
CTL formula without the next-time X operator is preserved
by stuttering [2]. (Intuitively, formulas with the X operator
can count the number of microsteps and thus may not be pre-
served.)

Our final modification uses the microstep counter to guard
transitions.

Modification 3 (Guards). Each transition labeled with
e1[cond]/e2 is encoded in the global structure as if it were
labeled with e1[cond ∧ mc∈λ(e1)]/e2.

One can intuitively think of the new label as

mc∈λ(e1) [e1 ∧ cond]/e2.

In other words, the transition is triggered by the microstep
counter, and the event e1 becomes part of the logic of the
guarding condition. Notice, however, that this modification
cannot affect the system’s behavior, because in any reachable
state, the occurrence of e1 implies mc∈ λ(e1). This can be
proved by induction on the definition of λ. So the inclusion
of mc∈λ(e1) is redundant as far as forward behavior is con-
cerned. We make the following claim:

Claim (Correctness). If the event-precedence relation ≺ is
acyclic, then Modifications 1–3 preserve every CTL formula
that does not contain the X operator and does not refer to the
value of the microstep counter (except in indirectly compar-
ing it with zero by referencing stable).

To see how these modifications help backward searches, con-
sider again the example in Section 4: We want to search
backward in the non-oblivious system from Y0 = stable ∧
a. Figure 5 shows the modified machines with transitions
guarded by the microstep counter. Recall that stable means
mc = 0, and by the construction of mc, an unstable predeces-
sor of a stable state must have mc = d = 3, implying that the
transitions in A cannot be enabled. So to be in on in the next
state, A must be in on already. That is, Y1 is mc=3 ∧ a, a lot
simpler than the search for the non-oblivious system in Sec-
tion 4. In the subsequent iterations, Y2 will be mc = 2 ∧ a,
and Y3 will be mc=1 ∧ c. In fact, in this example, the search
looks a lot like the one for the oblivious system.

A

B

off on

x[¬c ∧ mc=1]/y

x[c ∧ mc=1]/z

off on

y[mc=2]/v

z[mc=2]/v

Figure 5: Guard the machine in Figure 1(a) with mc.

In fact, the modifications improve the efficiency in another
way, which also helps analyze oblivious systems. Not evi-
dent in our simple examples, a source of inefficiency com-
mon to both types of systems is the exploration of unreach-
able simultaneous transitions, because a backward search
does not know that, for instance, in Figure 1(a) the transi-
tions in machine A can never be enabled simultaneously with
any transition in machine B in any reachable state. The mi-
crostep counter in Figure 5, however, makes this fact explicit
and helps prune such simultaneous transitions in the search.
Previously, this problem was tackled by identifying a set of
events that are always mutually exclusive [7]. The method
presented here is more general and more effective.

Recall that our construction of the microstep counter makes
certain macrosteps longer so as to make every macrostep
equal in length. This generally results in an increased num-
ber of iterations to reach the fixed point in the search, affect-
ing the performance in a negative way. Nevertheless, in our
case study reported in Section 6, this impact was negligible
compared with the benefits of reducing the BDD size. The
lengthened macrosteps also introduce extra states in a coun-
terexample, but these states are easy to detect and can be re-
moved to recover the actual counterexample.

5.2 Condition-Driven Transitions

Some variants of statecharts, such as STATEMATE, allow
transitions not guarded by events. That is, a transition can
have labels of the form [cond]/acts, where cond is a guarding
condition and acts is a list of action events. Such transitions
are enabled when the machine is in the source local state and
cond is true. We call these transitions condition-driven. Intu-
itively, instead of checking the guarding condition only when
being triggered by an event, condition-driven transitions con-
tinuously poll the guarding condition.

Extending our techniques to handle condition-driven transi-
tions requires a more general framework, and we omit the de-
tails in this paper. The basic idea, though, remains the same.
Specifically, when we encode a transition t, we want to con-
join its guarding condition with a new proposition mc ∈ ρ(t)
where ρ(t) is a set that includes an integer i if transition t can
be taken in the ith microstep. For systems with every transi-
tion triggered by some event, the set ρ(t) is simply λ(e) with
e being the trigger event of t, as we saw in Modification 3. In
the presence of condition-driven transitions, we can still com-

6

pute ρ statically in many common cases, although the proce-
dures are more involved.

6 CASE STUDY

The techniques presented in the previous section were mo-
tivated by the analysis of a statecharts model of the elec-
trical power distribution (EPD) system on the Boeing 777
aircraft. We briefly describe the model, discuss some re-
sults of the analysis, and report the benefits of the optimiza-
tion techniques given in the previous section. We also dis-
cuss how model checking could potentially be used to benefit
the model-based development processes used at Boeing. We
stress that the statecharts model was developed for research
purposes and does not represent the actual requirements used
to develop the on-board system. As such the model by intent
did not include all the logic necessary for a complete speci-
fication. The model was intended as a high-level abstraction
of the electrical system, which included only the logic neces-
sary to accomplish the goals of a wider airplane system anal-
ysis [16].

6.1 The EPD Model

The purpose of the EPD system is to distribute AC and
DC power to other airplane systems. It comprises sepa-
rate interconnected distribution systems including main AC
power, backup AC power, DC power, standby power and
flight controls power. Electrical power is distributed from
power sources to power busses via a number of relayed cir-
cuit breakers. Failures of the power sources or circuit break-
ers are automatically detected and isolated. We focus on the
portion of the statecharts that models the main and backup
AC distribution subsystems. There are 33 two-state ma-
chines, 23 Boolean inputs, and 34 events, for a total of 90
Boolean state variables, or about 1027 global states, of which
at least 1015 are reachable.

Figure 6(a) depicts part of the system configuration in nor-
mal operations. The power busses l main and r main belong
to the main AC power subsystem, and are normally powered
by the generators l gen and r gen respectively. When l gen
loses its power because of either manual shutdown or failure,
the circuit breakers will be reconfigured automatically to use
r gen to power both l main and r main, as illustrated in Fig-
ure 6(b). The same configuration may also result from fail-
ures in the circuit breakers that connect l gen and l main. The

l gen r gen

l main r main

power sources:

circuit breakers:

power busses:

· · ·

· · ·

(a) Normal operations

l gen r gen

l main r main · · ·

· · ·

(b) l gen fails

Figure 6: Handling a power-source failure in the EPD model

CTRL

CB

open closed

[¬c]/y

[c]/z

open closed

y[¬ f]/

z[¬ f]/

Figure 7: A circuit breaker (CB) and its controller (CTRL)

system is supposed to satisfy a number of stringent require-
ments, such as the resilience of the power busses against sin-
gle or multiple failures in the power sources and/or the circuit
breakers.

A circuit breaker, either open or closed at any time, is
modeled as a two-state machine and is managed by a con-
troller. Figure 7 shows a generic circuit breaker and its con-
troller. The transitions in the circuit-breaker state machine
are guarded by the complement of a Boolean input f that in-
dicates a failure, so a failed circuit breaker does not respond
to the controller. The guarding condition c of the controller is
usually a nontrivial predicate relating inputs, the local states
of other circuit breakers, as well as the power sources.

6.2 Analysis

We analyzed the main and backup AC power subsystems by
translating the statecharts to the input language of the CTL
model checker SMV [14]; other subsystems were abstracted
away manually. The analysis can be divided into analysis on
normal behaviors (i.e., no component failures) and fault tol-
erance (single and multiple failures). We report some of the
more interesting results here. Although the model had been
exercised extensively in simulation, several flaws were dis-
covered using model checking. We were able to obtain these
results only after using our optimization technique presented
in Section 5. Performance data will be given later.

Normal Operations

In normal operations, all busses in the main and backup
AC subsystems should be powered in the stable states. We
checked the formula

AG((stable∧no-failures) → (main∧backup)) (1)

where no-failures is a proposition indicating the absence of
failures, and main and backup assert respectively that the
main busses (l main and r main) and backup busses are pow-
ered. Note that the formula does not simply ignore failures;
it takes into account scenarios in which failures occur but are
subsequently recovered. The formula was evaluated true by
the model checker.

Not only should the busses be powered when there are no
failures, they should be powered by different sources. We
checked the formula

AG((stable∧no-failures) → separate-sources) (2)

7

where the proposition separate-sources asserts that a power
source is connected to at most one bus. This time, however,
the model checker gave a counterexample revealing a bug
in the model of the circuit breakers. In the counterexample,
r gen initially powers both l main and r main because of a
failure in the circuit breakers. Now assume the failed circuit
breaker is modeled by the machine CB in Figure 7. The re-
covery of CB corresponds to the Boolean input f changing
to false. This change alone, however, cannot trigger any lo-
cal transition, as the transitions in CB are guarded by events.
So when CB recovers, the system ends up in a situation in
which there are no failures, but r gen is still powering both
main busses, violating the property. We refer to this bug as
B1, which we fixed by making CB go to the local state indi-
cated by its controller upon recovery. With this bug fix, the
formula was successfully verified.

Fault Tolerance

The main busses should in fact tolerate one failure in the
power sources or circuit breakers. We checked the formula

AG((stable∧at-most-1-failure) → main) (3)

where the proposition at-most-1-failure has the obvious
meaning. The model checker gave a counterexample that
again reveals the bug B1, although the scenario is more com-
plex. It involves a failure in a circuit breaker, a change in
inputs to induce a state change in its controller, the circuit
breaker’s recovery, and a subsequent failure in one of the
power sources. After we fixed the bug and rechecked the
property, the model checker gave another counterexample
that discloses a logical flaw—one of the circuit breakers does
not respond to a failure in another circuit breaker that it is sup-
posed to handle, resulting in power loss to both main busses.
We refer this bug as B2. (We have not attempted to fix this
bug in this study.)

The backup busses should also tolerate one failure. We
fixed B1 in all the circuit breakers and successfully veri-
fied the analog of Formula 3 for the backup busses. We ini-
tially thought that the backup busses should survive two fail-
ures. We checked this stronger property to which the model
checker gave a counterexample with only one of the backup
busses operating in the presence of two failures. After care-
fully examining the trace and studying the requirements doc-
ument, we realized that the property actually is not supposed
to hold—either one, but not necessarily both, of the backup
busses should operate in that situation. We modified the for-
mula accordingly:

AG((stable∧at-most-2-failures) → at-least-1-backup).
(4)

The model checker responded with a counterexample expos-
ing a logical flaw similar to B2 above. The counterexample
involves simultaneous failures of two power sources, their
subsequent recovery, and then simultaneous failures of two
circuit breakers.

Miscellaneous

The formulas above are only concerned about stable states.
One might expect certain causality to be maintained even in
the unstable states. For example, the formulas do not pre-
vent, within a macrostep, the power from going off before
failures occur, as long as the right thing happens at the end
of the macrostep. So, we evaluated formulas such as

AG(main → A(main W¬no-failures)) (5)
which asserts that, even in the unstable states, if the main
busses are powered, then the power should persist unless a
failure occurs. Interestingly, the model checker showed vari-
ous scenarios violating such properties—some situations that
we do not regard as failures can cause transient power loss
to the busses. Although this does not reflect any flaw in the
system, it is still an interesting find as the scenarios were not
obvious to us before the analysis. Such results can provide
insights into the design of the model and can reveal design
flaws in some cases.

Other properties that we verified include the impossibility of
having certain circuit breakers closed simultaneously (which
would indicate some illegal system configuration), and other
sanity checks, such as the property that if no power sources
are operating, then no busses should be powered.

6.3 Performance

Despite the results we finally obtained, the initial experi-
ence of the analysis was daunting—the BDDs generated were
enormous and the fixed-point computations could not go be-
yond two or three iterations before we ran out of memory.
As a result, even trivial properties could not be analyzed, let
alone the formulas given above. We attacked the problem
by focussing on a small part of the system, trying alternative
ways of modeling, and looking for specific reasons for the
BDD blowup. Hand-simulation of the symbolic search was
sometimes used to build up intuition. The optimization tech-
nique given in Section 5 results from the insights gained in
the process.

Table 1 shows, for each property, the number of search iter-
ations, the time (in seconds), and the number of BDD nodes
(in thousands) needed to compute the fixed point. (Formula 5
requires computing four separate fixed points to evaluate,
and its number of iterations in the table is the sum of the
four numbers.) All these searches were performed on the
model without fixing the bugs B1 or B2. The results were ob-
tained on a Sun Ultra-2 workstation using SMV version 2.4.4
(augmented with a conjunctive partitioning heuristic [17]).
The data suggest dramatic improvements made by our opti-
mization technique, without which the evaluation of each of
the properites was not feasible. The rightmost column gives
the data for computing the reachable states using a forward
search, and shows the superiority of backward searches for
our system.

We add that fixing B1 in the optimized model dramatically re-
duces the time taken to evaluate each property to less than ten

8

Table 1 Resources used in the analysis when the optimization
in Section 5 was used. (Without optimization, every prop-
erty could not be checked in two hours of CPU time.)

Properties forward
1 2 3 4 5 search

iteration 40 40 30 40 69 49
time (sec.) 85 54 49 462 55 3806
nodes (K) 837 402 464 2965 253 3865

seconds. This confirms the general wisdom that design errors
often introduce “irregular” behaviors to the system, resulting
in large BDDs. The observation suggests early use of model
checking to discover bugs as soon as possible to reduce the
costs of analyzing the larger and more mature model.

6.4 Discussion

As mentioned, the successful completion of the analysis re-
lied critically on our optimization technique, which aims at
reducing the size of the BDDs representing state sets. In
hardware verification, techniques with the same goal exist
and usually work by altering these BDDs dynamically dur-
ing the search [5, 11, 18]. They are quite general and work
for large classes of circuits. We applied some of these tech-
niques to the EPD model, but the results were not satisfac-
tory. In contrast, the technique we developed concentrates on
statecharts and statically changes the underlying global struc-
ture. Intuitively, the technique uses information from for-
ward analysis on event precedence to realign the search fron-
tiers and to prune backward searches. This strategy of com-
bining forward syntactic analysis and backward searches ap-
pears to be a promising approach to improving the efficiency
of symbolic model checking.

A major goal of the case study was to evaluate the use of
model checking as a debugger in support of requirements val-
idation at Boeing by providing an additional debugging tool
over and above the existing use of simulation. The use of
modeling and simulation to support requirements validation
at Boeing is described in [15]. In this process, the written
specification is developed first, and then a model is created to
assist in validation of the requirements. Typically the model
is simulated and executed by providing user-oriented inputs
to the model and monitoring responses through panel graph-
ics that represent actual system interfaces. Model check-
ing could potentially help to ensure that the model reflects
other key design goals in that many of the system properties
checked in this case study are not revealed in the operator in-
terface.

Some flaws found during model checking might have been
found if simulation runs had been explicitly defined to test
conformance. However, the simulations would have had to
include an extensive test suite, which included cases of in-
termittent failures of components to find the class of errors
found during our model checking. Model checking appears

to be particularly beneficial in helping find these “corner
cases” with a minimum of additional effort.

The analysis described was done several years after the de-
velopment of the model. However, it is clear to us that use of
model checking during the initial development of the model
would have detected subtle flaws in logic before they were
repeated throughout a much larger model. For example, the
bug B1 repeats in every state machine that models a circuit
breaker, and bugs similar to B2 appear in several parts of the
model. In fact, some of these flaws could be found by fo-
cussing on the main AC subsystem and ignoring the backup
AC subsystem.

7 CONCLUSION

We have made several contributions in this work. We carried
out a case study of applying BDD-based model checking to a
statecharts specification developed at Boeing and discovered
subtle flaws in the model. The experience enabled us to iden-
tify oblivious synchronization as a feature of statecharts that
facilitates model checking—the decoupled synchronization
and control logic tend to make the BDDs representing state
sets smaller when backward symbolic search is used. We
devised an innovative technique of introducing a microstep
counter into the model to achieve a similar effect in systems
with non-oblivious synchronization. The technique works by
statically bounding the length of a macrostep and using the
microstep counter to synchronize local transitions. The im-
provements were crucial for the case study, as they allowed
analysis that used to be infeasible to complete in just several
minutes of CPU time.

Getting intuition on BDD size in general is notoriously hard,
because the size does not directly correlate to simple mea-
sures such as the number of variables or the number of reach-
able states. However, formal software specifications are of-
ten written in a few common styles or using a few popular
idioms, and it may be possible to gain enough insights to op-
timize for these common cases. This work follows this direc-
tion and contributes to a better understanding of the tradeoffs
between specification and verification. We hope that the re-
sults will be valuable for designing specifications or specifi-
cation languages that are more amenable to symbolic model
checking.

ACKNOWLEDGEMENTS

We thank Kurt Partridge for helpful comments on an earlier
version of the paper and Greg Taleck for his initial work on
translating and analyzing the EPD model.

REFERENCES

[1] G. Berry and G. Gonthier. The ESTEREL synchronous
programming language: Design, semantics, implemen-
tation. Science of Computer Programming, 19(2):87–
152, November 1992.

9

[2] M. C. Browne, E. M. Clarke, and O. Grümberg. Charac-
terizing finite Kripke structures in propositional tempo-
ral logic. Theoretical Computer Science, 59(1/2):115–
131, July 1988.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers,
35(6):677–691, August 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98(2):142–
170, June 1992.

[5] G. Cabodi, P. Camurati, and S. Quer. Improved reacha-
bility analysis of large finite state machines. In 1996
IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, pages 10–
14, San Jose, California, USA, November 1996.

[6] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Mod-
ugno, D. Notkin, and J. D. Reese. Model checking large
software specifications. IEEE Transactions on Software
Engineering, 24(7):498–520, July 1998.

[7] W. Chan, R. J. Anderson, P. Beame, and D. Notkin.
Improving efficiency of symbolic model checking
for state-based system requirements. In M. Young,
editor, ISSTA 98: Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and
Analysis, pages 102–112, Clearwater Beach, Florida,
USA, March 1998. Published as Software Engineering
Notes, 23(2), http://www.cs.washington.edu/
homes/wchan/work/ISSTA98.ps.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Auto-
matic verification of finite-state concurrent systems us-
ing temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244–263,
April 1986.

[9] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–
274, June 1987.

[10] D. Harel and A. Naamad. The STATEMATE seman-
tics of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, October
1996.

[11] A. J. Hu and D. L. Dill. Efficient verification with BDDs
using implicitly conjoined invariants. In C. Courcou-
betis, editor, Computer Aided Verification, 5th Interna-
tional Conference, CAV’93 Proceedings, volume 697
of Lecture Notes in Computer Science, pages 3–14,
Elounda, Greece, June/July 1993. Springer-Verlag.

[12] L. Lamport. What good is temporal logic? In R. E. A.
Mason, editor, Information Processing 83: Proceed-
ings of the IFIP 9th World Computer Congress, pages

657–668, Paris, France, September 1983. North Hol-
land.

[13] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and
J. D. Reese. Requirements specification for process-
control systems. IEEE Transactions on Software En-
gineering, 20(9), September 1994.

[14] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[15] C. R. Nobe and M. G. Bingle. Model-based develop-
ment: Five processes used at Boeing. In Proceedings of
the IEEE International Conference and Workshop: En-
gineering of Computer-Based Systems, Jerusalem, Is-
rael, March/April 1998.

[16] C. R. Nobe and W. E. Warner. Lessons learned from a
trial application of requirements modeling using state-
charts. In Proceedings of the 2nd International Confer-
ence on Requirements Engineering, pages 86–93, Col-
orado Springs, CO, USA, April 1996. IEEE.

[17] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and
C. Pixley. Efficient BDD algorithms for FSM synthesis
and verification. In Proceedings of IEEE/ACM Interna-
tional Workshop on Logic Synthesis, Lake Tahoe, USA,
May 1995.

[18] K. Ravi and F. Somenzi. High-density reachability anal-
ysis. In 1995 IEEE/ACM International Conference on
Computer-Aided Design, Digest of Technical Papers,
pages 154–158, San Jose, California, USA, November
1995.

[19] T. Sreemani and J. M. Atlee. Feasibility of model
checking software requirements: A case study. In
COMPASS’96, Proceedings of the 11th Annual Confer-
ence on Computer Assurance, pages 77–88, Gaithers-
burg, Maryland, USA, June 1996. IEEE.

10

