
Colt: A System for Develop ing Software that Suppo rts
Synchronou s Collaborative Activities

Lauren J. Bricker, Marla J. Baker, Emi Fujioka, Steven L. Tanimoto
Department of Computer Science and Engineering

University of Washington, Box 352350
Seattle, Washington 98195-2350 USA

{bricker, marla, emifuji , tanimoto}@cs.washington.edu

ABSTRACT
This paper presents Colt, a system designed to aid in the
development of applications that support close
collaboration between two or more users. The Colt system
is comprised of three parts: a design methodology, a
software toolkit, and visualization and analysis tools. The
software toolkit includes computational objects that
support simultaneous manipulations from multiple users.
This paper defines and gives examples of these
“Cooperatively Controlled Objects” (CCOs) and discusses
design and interface issues for developing them. Finally,
four example collaborative activities that were built using
Colt and CCOs are described: a drawing program, a
jigsaw puzzle, a coordination game and a color matching
activity.

Keywords
Computer supported collaboration, multiple-user
interface, synchronous, cooperatively-controlled objects

INTRODUCTION
Developing applications to support collaboration by two
or more users involves special challenges. An application
designer needs to anticipate the interaction between the
user and the computer as well as the interactions between
the users. Additionally, there is a lack of system support
for development of software that accepts simultaneous
input from multiple users on the same machine. The Colt
system is designed to address both of these issues.

Colt is comprised of three parts, a design methodology, a
software toolkit, and visualization and analysis tools. The
design methodology is based on a series of questions to
aid developers in the creative process of planning a
collaborative activity. The toolkit supports the
implementation of collaborative programs by providing a
shell application, a hierarchy of “cooperatively controlled
objects” (CCOs), and support for input from multiple
users. CCOs are designed to support close collaboration
among the users of a computer program. Each CCO
contains a mechanism to record a history of how users
cooperatively controlled the objects. The visualization and
analysis tools present different views of the object
histories. These tools can be employed after program
testing to determine if the implementation meets the
original design criteria. Colt is unique in its support for

the development of co-present simultaneous computer
based activities.

This paper describes the software toolkit and analysis
tools in the Colt system. We begin by motivating the
support for simultaneous cooperative interactions. Then
we define cooperatively controlled objects with a
discussion of some issues encountered in developing
them. The third section describes the toolkit, including the
objects and the framework in which cooperative
applications may be developed, and the analysis tools.
Finally, we describe four example activities that include
CCOs and were implemented using the Colt system.

MOTIVATION
Examples of non -computer synchronou s coop eration
Many common non-computer activities contain elements
of highly synchronized cooperation, such as a three-
legged race, a music recording session or moving large
objects. In the case of a three-legged race, each runner is
actually hindered by having one leg bound to a leg of the
partner. They must work synchronously and
collaboratively to make it to the finish line. The pair that
collaborates most effectively (and runs the fastest) wins
the race. The purpose of this type of race is not to permit
peole to run faster than they would as individuals, but to
foster entertaining human interactions.

Another example of an entertaining collaborative task is
the recording of a musical symphony. This activity is one,
in principle, that an individual person might be able to do
(using modern technology); it would involve playing each
instrument and recording each part of the piece separately,
and then mixing the tracks to form a recording of the
whole work. However, the complex and subtle changes of
intonation that should result from the real-time
interactions among the musicians would be missing from
the final record. Performance of the piece in a
cooperative setting permits the attainment of a richness
that would otherwise be lacking.

The collaborations in the previous two examples are
motivated either by their entertainment value or by
expected benefits of interations within the group. In the
physical manipulation of large objects, however,
cooperative control is essential. When two or more people
move a piano or a sofa, their highly synchronous

collaboration is facilit ated by voice and gesture
communication. By contrast, a less intensively
collaborative method for accomplishing a task is based on
coarse-grained sharing, as in, for example the cooperative
solution to the problem of moving a dinette set: “You take
out the table, and I’ ll take the chairs.” This affords
distributing the work, but it does not require the careful
coordination required when a group of people must ease a
sofa around a tight bend in a narrow staircase without
damaging the sofa or walls.

Reasons to suppo rt high ly sy nchronou s coop eration
There are two reasons why a designer might want to
support highly synchronous collaboration in a computer-
based learning activity. First, there is evidence of
increased problem solving and enjoyment when users
work closely together on computer-based tasks. For
example, Inkpen [10] found pairs of students were able to
solve more puzzles when working together on a single
computer as compared to solving them alone or on
separate computers side-by-side. Although the students
enjoyed working together, they were hampered by their
contention for a single input resource (the mouse).
Secondly, the preliminary testing of four Multi In-based,
multi -player activities [4] provided anecdotal evidence
that the students tend to communicate effectively about
the problems posed while using highly synchronous co-
present applications. Unlike the system used in Inkpen’s
study, the Multi In activities allowed each user to control a
separate input device to eliminate the contention for input
resources. These activities also contain objects that allow
close synchronous interactions between users working
closely on a task

Increased problem solving, communication and a user’s
level of enjoyment can also be important in a work
context. Although the studies described above were done
with children and educational software, similar results
might be found with adults and in work situations. One
goal of this research is to explore whether or not this is
true. This paper describes the computer support provided
for explorations such as these.

BACK GROUND
Many of the applications written to support collaborative
activities focus on the technological challenges, including
handling input from multiple users, and transmitting
information between the users. We feel that
communication between the participants is a vital
component of collaborative interactions that should not be
overlooked. Furthermore, we feel it is important to
examine how different technologies can effect
communication during a collaborative activity.

Communication du ring collaboration
Communication and trust are key parts of a collaborative
interaction. A person broadcasts a thought by essentially
passing a “message” through one or more of three

different channels: verbal (auditory), physical (gestural),
or graphical (written, symbolic). Another person receives
this message primarily through auditory or visual senses.
The more channels of information that is past between
people, the less likely it will be for them to have a
miscommunication. Conversely, the lower the bandwidth
of the communication channels, the harder it may be for
the users to communicate their thoughts.

Techno log ical suppo rt for communication du ring
collaboration
There are many technologies that support communication,
including telephones, electronic mail or newsgroups,
electronic talk or chat, audioconferencing and
videoconferencing. How useful these systems are in
supporting a collaborative interaction depends heavily on
the type of task that the users are working.

People generally cooperate for one of two reasons: either
they are encouraged or required to cooperate by the nature
of the task or application, or they simply enjoy working
together. However, not every cooperative interaction
requires that participants work at the same time or
communicate often. Some collaborative tasks, such as
designing and implementing a computer program, require
occasional face-to-face meetings enriched with infrequent
text based communication. Other collaborative tasks that
demand more immediate feedback require that the users
communicate in a more real-time manner.

Real-time or synchronous communication can occur using
text-based chat, telephone, or audio or video conferencing
software. Typing (through email or text-chat) has the
drawback that it can take more time than auditory
communication. Audio only communication is quicker and
more natural to most people, but lacks the abilit y to
gesture. Videoconferencing allows participants to see
each other’s expressions and gestures, but the low degree
of apparent presence and the lack of actual contact can
hamper the cooperative interaction. Admittedly, as
technology improves and becomes less costly, the
dichotomy between face-to-face and distance communica-
tion will become less clear. Until that time, nothing will
completely replace face-to-face collaboration for
transmitting non-verbal communication. When users work
in a co-present situation, they can interact directly; they
can see each other's expressions and gestures, and they
may be able to communicate more effectively than they
would without co-presence.

As an interesting note, researchers have found that groups
who conduct a brainstorming session using computer-
mediated communication are more proli fic than groups
that meet face-to-face [15]. Still , present day technology-
based collaboration cannot completely replace some
facets of face-to-face interactions, such as building trust.
For instance, Rocco found that groups that meet face-to-
face prior to doing a virtual task collaborated better than
those who did not meet before [15]. The face-to-face

interactions helped them develop trust and an
understanding of other participants’ communication styles
that then carried over into the technology-based
interactions. Thus, computer-mediated communication
should be used for those times when the participants are
unable to get together physically, and not as a complete
replacement for co-present collaborations.

In addition to the problem of low apparent presence,
current communication technologies do not always
guarantee that all of the users involved in the task have the
same view of visual materials. Having the abilit y to view
the same task materials may be important in reducing the
amount of miscommunication that occurs between the
participants. For example, if the users are communicating
using a telephone or text chat and attempt to find the same
information on the WWW, there is no way to guarantee
they are on the same web page. Some systems, such as
Microsoft NetMeeting [11], do allow a group to share a
communal visual artifact, such as a whiteboard or web
browser. But again, there is no guarantee that all of the
users involved are actively focused on the shared
information. In contrast, participants of a co-present
collaborative effort would notice if a group member lost
focus on the task when he or she looked or walked away.
This natural sense awareness may increase productivity or
aid in the group’s abilit y complete a task.

Thus there are tasks or instances where there is currently
no replacement for the ease of communication and natural
sense of awareness in co-present collaboration.
Unfortunately, most desktop computers today are
designed to accommodate input from one user at a time.
Groups who wish to collaborate using one computer are
forced to share control awkwardly through a single mouse
and keyboard. Social and physical conflicts over these
input devices, such as shown in Figure 1, may arise since
current operating systems and application software only
support a single input stream. One solution to the conflict
problem is to provide a separate physical device for each
user. Many video game systems, such as the Super
Nintendo Entertainment System (SNES), do support
multiple joysticks. However, the multi -user games for
these systems often employ either a turn-taking
mechanism, or simultaneous competitive play. The risk
in enforcing turn-taking is that inactive users will l ose
focus on the task, as shown in Figure 2. The risk in
supporting simultaneous competetive play is that it does
not appeal to many people, particularly young girls. Colt
was developed to support simultaneous collaborative
interactions in order to address these issues.

Figure 1. Conflict over a single mouse often occurs
when two children attempt to use a single desktop PC.

Figure 2. Even with multiple input devices, one user
may lose focus on the task if he does not have some
control on the screen.

Domains for collaboration
There are two primary domains that have been studied in
context of computer support for collaboration. Computer
Supported Cooperative Work (CSCW) and Computer
Supported Collaborative Learning (CSCL). CSCW is the
study of software and systems designed to support
activities that are coordinated between two or more
people. CSCW is generally focused on how to make a
group work more eff iciently or productively together.

Similarly, CSCL is the study of systems and software

designed to support collaborative learning. Collaborative
learning is designed to encourage communication of
concepts, discussion of solutions, resolution of social and
cognitive conflicts, and promote problem solving and
higher-order thinking skill s. In order to work successfully
on a collaborative task, students must be able to
communicate their thoughts. This requires that they
understand and clearly formulate ideas in their own minds
before they can describe them to others in the group. The
goal of a collaboratively learning task may not be to make
the users work more productively together, but rather to
increase the amount and quality of communication
between students. Collaboration also may add an
enjoyable aspect to a task.

Collaboration is also an important issue in entertainment.
Some tasks may be more diff icult for the users in a forced
collaborative environment than they would be for a single
person, and yet this may be desired. Just as in running a
race, where an individual runner could easily beat a pair
of runners who each have one leg bound to one of the
other’s (as in a three-legged race), a computer-based
collaborative activity may have social, team-building, and
entertainment value of its own. Many people, especially
children, enjoy themselves more when they can play
computer games together. Unfortunately, many of the
multi -user games on the market today are fundamentally
competitive in nature. For example, the goal of first-
person perspective worlds, such as Doom or Quake, is to
traverse the levels of the world, collecting ammunition,
food and medical supplies, while killi ng the opponents
that get in the way. These games allow users to play
together across a network. The users compete against one
another, or form cooperative teams that fight against other
teams of cooperating players. We use the phrase
Computer Supported Collaborative Entertainment
(CSCE) to describe software and systems designed to
support collaborative interactions while not specifically
encouraging productive work or learning.

This research explores the design and development of
collaborative activities in all three domains, CSCW,
CSCL and CSCE. Rather than concentrating on a specific
domain of collaboration, our focus is on cooperation
where the users are simultaneously working together.
Although simultaneous interactions can occur in either a
face-to-face or distance situation, we are primarily
interested in the examining co-present collaborations. This
type of interactions may increase the amount of
communication between the users, a feature that may be
best suited for learning and entertainment activities, but
can be useful in a work context.

THE COOPERATIVELY CONTROLLED OBJECT
Many common non-computer activities contain elements
of highly synchronized cooperation. Some activities are
done collaboratively purely for the social enjoyment.
Some are done because they are easier to complete with

additional help. One of the goals of this research is to
define a class of interesting objects that helps to keep the
users focused during collaborative activities. One can
expect that there will be an increase in total or certain
types of communication between the users if the users
become more focused on a task.

Coop eratively Controlled Objects Defined
In object-oriented terminology, an object contains state
and has behavior. A controlled object is an object
containing methods that allow one or more users to
manipulate properties of that object. Typically these
properties are manipulated directly through input devices
such as mice, joysticks, keyboards, etc. A cooperatively
controlled object (CCO) is a controlled object that is
designed to be manipulated simultaneously by more than
one user based on certain relationships that hold between
user inputs and components of the CCO.

Each CCO is assumed to have a set of components or
“properties.” Each property may take on one of a possibly
infinite number of values. In the physical world some
properties, like the location of a spot on the floor, may
have an infinite number of possible values. We will
assume that the computer representation is simpli fied with
a finite set of discrete values.

A control mechanism for a CCO provides a means for a
group of users to provide a value for one or for several (or
even all) of the properties of the CCO. The control
mechanism for a property in a CCO can be described as a
function:

V = f((v1, v2, …, vn), (u1, u2, …, um)),

where V is the output, or new value of the property, each
vi is the input value of the properties on which this
function depends, and each uj is the input-device states
corresponding to the multiple users simultaneously
manipulating the object. By providing functions for each
of the CCO’s modifiable properties, a complete control
mechanism for the CCO can be specified.

Fine-grained sharing (FGS) is a previously studied
approach for defining one class of CCO [16]. In FGS, an
object is expressed in terms of its properties, each of
which is controlled by one of the users. Although fine-
grained sharing can offer users a clear delineation of
responsibilit y and control for shared objects, it lacks the
abilit y to compel tight cooperation among the users. Users
who work on separate pieces of a “shared” document do
not necessarily coordinate in real time. Instead the work is
done asynchronously and are the users not forced to
synchronize their activities to the same degree that one
does in musical performance, dance, three-legged races,
and the like.

Our goal is to compel users to interact synchronously.
CCOs support close collaboration though complex
interactions with objects by adopting a more general
framework than fine-grained sharing.

Figure 3. Controlling the location of a point using a
fine-grained sharing technique.

Figure 4. Controlling the location of a point using a
cooperative control technique.

Figure 3 depicts an example of a FGS technique in which
a point is controlled by decomposing it into its x and y
coordinates and each coordinate is modified by separate
users. This could be described more formally as

point.x = u1.x
point.y = u2.y

A type of cooperatively controlled point, shown in Figure
4, could involve a more general functional relationship
between the inputs from the two users and the controlled
properties. In this example the controlled point is defined
as the midpoint a line and the two users control the point
by moving the endpoints of the line. More formally this
could be described as a series of functions, such as:

point.x = (line.endpoint1.x + line.endpoint2.x) / 2
point.x = (line.endpoint1.y + line.endpoint2.y) / 2
line.endpoint1.x = u1.x
line.endpoint1.y = u1.y
line.endpoint1.x = u1.x
line.endpoint2.y = u2.y

There are many ways geometrical objects, such as lines
and polygons, can be controlled using fine-grained sharing
at the level of coordinate values, vertices, etc. They can
also be controlled cooperatively via other geometric
relationships between input values and the controlled
properties. More complicated spatial objects, such as
fractals, can be cooperatively controlled by allowing users
to jointly manipulate their parameters or properties. Yet
another example of cooperative control can be found in
the Curve Fitter program, described in [4], in which two to
four users manipulate the shape of a degree-n polynomial
curve by moving n+1 control points located on the curve.
For each geometrical or abstract object there usually are a
number of different plausible methods for cooperative
control.

Specifying the types of interactions
Developers may also wish to control how closely the users
in a collaborative activity work together. In order to assist
in the specification of the users’ interactions, we have
developed a sub-classification of synchronous activity
based on how simultaneously the users interact with a

screen object.

An asynchronous cooperative interaction is one in which
two or more users work independently on a task, then
synchronize or coordinate their work by delivering
information through messages such as conversation, snail
mail or email . Participants of this type of cooperative
interaction may not expect an immediate response from
questions or requests. A required asynchronous
cooperative interaction is one in which each user must
complete their part of the activity before the other user
may proceed. An example of this type of interaction in the
real world is two people trying to go through a doorway
that can only fit one person at a time.

A synchronous cooperative interaction, on the other hand,
is one in which two or more users interact on the same
task in real-time. Phone calls or text chat are examples of
synchronous cooperative interactions. Often, the users in a
text chat session take turns in writing (the reader will wait
for the writer to complete a thought before responding),
but they may also type at the same time. In this case a chat
writer is not guaranteed that the other user(s) are focused
on the current thread of conversation, but they are
working simultaneously.

We have further broken up this temporal classification
based on how simultaneously the users interact with each
other. A required simultaneous interaction is one in which
the users must manipulate an object at the same time in
order to make any progress on the activity. An example of
this is two people attempting to li ft a heavy piece of
furniture, such as a piano. An encouraged simultaneous
interaction is one in which the users do not have to
manipulate objects at the same time, but doing so will
allow them to complete the task more easily or in a shorter
amount of time. Furthermore, their progress may be
hampered (slower) if the interactions are not
simultaneous. Moving a heavy object where no li fting is
required is an example of this type of interaction.

We can further describe asynchronous interactions as two
other forms of “simultaneous” interactions. As with an
asynchronous interaction, a discouraged simultaneous
interaction is one in which the users can make progress on
their task independently. However, it also may be much
more diff icult for the users to make progress on the task if
they work on it at the same time. Two people on a
playground seesaw are an example of this. If both people
on the seesaw attempt to push up at the same time, neither
of them will be able to push the other very far. Finally, we
can also describe a required asynchronous interaction as a
disallowed simultaneous interaction. Here, the software or
system physically prevents the users from making
progress on their task if they work together. Two people
going through a small doorway is a disallowed
simultaneous interaction.

Degree of cooperative control
All objects that are jointly manipulated by two or more
users are considered cooperatively controlled. However,
there is a wide variabilit y in how these objects are
cooperatively controlled. Some objects are controlled
through complex constraints that require simultaneous
interaction to be activated, but others are simply
controlled without constraints through asynchronous
interactions (as in a shared database). As a way to specify
the differences between the wide variety of cooperatively
controlled objects, we introduce a measure called the
degree of cooperative control (DOCC).

neither encouraged
or discouraged

Simultaneity
disallowed discouraged encouraged required

distant

Complexity of Control

Location

fine-grained sharing

highly complex
(constrained)

co-present

co-located,
networked

Groupkit

MultiIn
Activities

Figure 5. A visualization of three characteristics of
systems that use cooperatively controlled objects

The degree to which an object is cooperatively controlled
depends on two factors, the simultaneity of interaction and
how complex the method is for manipulating the objects.
If we graph these two factors on orthogonal axis, such as
in Figure 5, one might think of the more cooperatively
controlled objects as being in the upper right corner of the
graph. This is similar to graphs seen in the CSCW and
CSCL literature, such as the one in Elli s, et al [7, p. 41],
where groupware is categorized based on the location of
the users (same or difference places) and the times or
method of synchronization (same or different times). The
physical location of the users can be added to this graph as
third axis, and although distance does play a role in how
tightly synchronized the interaction may be, this will not
factor into our definition of a CCO. CCOs are, by
definition, able to be used by users who are at a distance
as well as co-located.

User Interface Issues for CCOs
A number of interface issues must be taken into
consideration when writing software to support two or
more people working in a synchronous collaborative
situation. If users are to manipulate a single object
simultaneously, each user must have access to her or his
own device to input their modifications. It is possible, if
the users are co-located and using a single display, to use
an off- the-shelf computer system with one mouse and one
keyboard. However, this scenario typically causes
frustration because of either an unintuitive interface or a
contention for the mouse or keyboard. Obvious solutions

include having the users interact over a network, or to
support multiple input devices on a single machine,
similar to systems such as Multi In [4] and MMM [3].

Apart from the hardware, the software should indicate
objects each user may access. Also, some indication
should be given to all users as to which user currently has
possession or is controlli ng each object in the shared
space. Color usually affords a reasonable sign of object
ownership, particularly if the color matches that of the
owner’s cursor.

Co-present vs . Distant Collaboration Considerations
A popular way to distinguish different kinds of CSCL
situations is along an axis that represents the relative
distance between the participants (long-distance, intra-
meeting-room, or co-present) [7]. While the definition of
a CCO is not dependent on the location of the users,
different interfaces may be required for each situation.

As stated previously, conflicts often arise over the use of
the physical input devices if there is only a single
mouse/keyboard pair for all the participants during a co-
present activity. One solution to this problem is to
provide a separate physical device for each user. Support
for multiple input devices must be both at hardware and a
software level. Many operating systems today can support
multiple joysticks, and some more recent systems support
a new standard known as the Universal Serial Bus (USB)
[17]. USB is can provide inexpensive multiple serial
input, such as mice, keyboards, joysticks, etc. However,
most off the shelf operating systems do not support
multiple people using separate input devices to control on-
screen artifacts at the same time. In order to support
synchronous co-present cooperative control, operating
systems should, at a minimum, provide multiple cursors to
give each user an on-screen presence. This requires that
the system accept multiple streams of events (such as
mouse move events) from the separate input devices, and
that these events include the ID of the device that
generated them. Once a multiple cursors are supported,
software can be written to allow the users to cooperatively
control objects.

In contrast to the lack of support for co-present
collaboration, many systems can and do support distance
communication by passing messages between each user’s
computer. However, the latency of this message passing
across the network can be problematic for synchronous
collaboration. Take as an example, two users attempting
to trace the path as shown in Figure 6a. If the user with
the white cursor (W) moves before receiving a message
that the user with the grey cursor (G) has moved, W might
move as shown in Figure 6b. However, if the G had
actually moved first and the message had not arrived to
update W’s system because of network latency, the result
might be as shown in Figure 6c. Network latency such as
this could easily interfere in how well the users are able to
work together.

(a)

(b)

(c)

Figure 6. Problems with network latency when two
users are trying to tracing a path with the midpoint
CCO.

To make up for some of the communication deficiency of
long-distance cooperative control, the appearances of
shared objects can be adjusted dynamically to reflect not
only current ownership or control, but also other emergent
properties such as the current degree of contention or
intensity of “ force,” “ internal tension,” or “pressure” in
the object. In the example where a midpoint object is
controlled by the endpoints of a line segment, the length
of the line segment can be considered as a measure of
internal tension, particularly if the line segment is thought
of as a rubber band or spring. The color of the half-line
segments can be made to indicate the degree of disparity
between two users’ intent for the controlled point.
Additionally, a point of this kind, under high tension,
could be displayed in bright red.

THE COLT SOFTWARE TOOLKIT
There are many toolkits designed to support computer-
based collaboration. These toolkits facilit ate the
development of cooperative software by providing
abstractions for more diff icult concepts in programming
groupware applications, such as how to maintain
synchronization of the objects or views of objects, and
users dynamically joining and leaving sessions. Most of
the existing toolkits, such as JAMM [2], Rendevous [9],
DistView [14], GroupKit [8], and Habanero [13] support
synchronous cooperation over a network.

There are also a number of collaborative systems that
encourage communication at a distance through common
objects [8], tasks [9] or physical situations [3]. Groupkit
[8] and Turbo Turtle [6], in particular, use indicators such
as telepointers and other “awareness widgets” to indicate
to others (working at distant locations) where a user is
working on the screen. These systems permit cooperation,
but the activities in which they are used do not require the
users to work on a task simultaneously or to communicate

frequently. Furthermore, none of these systems support
co-present interactions. We believe that there are some
situations in which a common focus and closer
communication are objectives of the activity.

Since we feel that support for co-present, simultaneous
cooperative control of objects may be important in some
applications, we have developed the Collaborative
Toolkit, or Colt. Colt is designed to facilit ate the rapid
prototyping or implementation of such applications. This
toolkit includes the Collaborative Object-based
Application Program Interface (CO-API) hierarchy of
Cooperatively Controlled Objects and the CoImage
application shell with support for various multiple-user
input solutions. The overall architecture for the Colt
system is show in Figure 7.

CoImage Shell

Activities
Toolbar Support
File support
Interaction History
 Visualization

CO-API Object
hierarchy

Sharable Object
Graphical Objects

Text

Line
Point

Rectangle
Puzzle Piece
...

Constraints

Regular Mouse, Joystick
Access.Bus or NetMeeting
Messages

Input Translation
Regular Mouse
Access.Bus Mice
Joysticks
NetMeeting events
(future) USB

Move object,
Object selected by user
Object hit testing, etc

COOP_* messages
Left button down/up
Right button down/up
Mouse move
etc...

Figure 7. The Colt toolkit system architecture.

As input is delivered to the CoImage shell window, it is
diverted to the Input Translation subsystem (ITS). This
subsystem translates the input-device dependent event
messages into input-device independent Colt event
messages. Colt messages include information about
position, button state, and the user associated with the
message. The activities implemented in the CoImage shell
respond to the device independent messages. The
movement and location of each device is mapped to a
separate color-coded cursor on the screen. Based on the
location and the owner of a cursor, the activity software
can determine which objects to manipulate and if that user
may manipulate that object, respectively. In particular, if a
user attempts to manipulate an object he does not own the
object will not allow that user to control the object, and
the attempt to control the object is ignored. The CCOs in
the CO-API do not respond directly to the input events,
they only respond to changes to object properties.

The CO-API, CoImage Shell and Input Translation
subsystem will be discussed in the next sections.

The system requirements for the toolkit are Pentium based

PC platforms running Microsoft Windows 3.1 or
Windows 95. For the co-present, single display situation,
we currently support the Access.Bus multiple input system
from Computer Access Technology Corporation for
Windows 3.1 and Microsoft Sidewinder Game Pads for
Windows 95. The CoImage Shell supports distance
collaboration with Microsoft NetMeeting conferencing
technology. NetMeeting supports audio, video, file and
data transfer, as well as a rudimentary sharing (turn-
taking) mechanism for single-user applications that are not
designed to be manipulated simultaneously.

The CO-API
The CO-API is comprised of a number parts: a hierarchy
of cooperatively controlled objects (including object
necessary for specifying access and recording a history of
events) event, a constraint system, and tools for viewing
and transforming bitmapped images.

Cooperatively controlled objects are implemented in our
software environment as reusable C++ classes, and they
thereby can inherit state and behavior. CCOs derive the
abilit y for sharing from access control li sts similar to [16].
Other properties of a CCO include location, size,
orientation, coordinate system, display parameters, and
color. An object will i gnore attempts to change a property
by users who do not have the proper privileges (as
dictated by access control li sts).

In order to track when the users cooperatively control
objects, each object in the CO-API can also store
information regarding the users’ changes to an object, or
actions, in what we call a history of actions. The
information stored for each action will vary depending on
how the object is manipulated, but typically includes the
changed property and the new value, which user effected
the change, when the change occurred and how long it
took. The history of actions may be saved and analyzed
after the activity is completed. This information may be
restored at a later time for evaluation purposes. The
interface for an activity can be designed to include
visualizations that aid the analysis of measured quantities
such as the number of interactions on an object, the total
time of each interaction, how the interactions overlapped,
or the order in which the users interacted.

In addition to the object hierarchy, the Colt system
includes a Constraint Manager for use in the
implementation of more complex interactions between the
users and the objects. The Constraint Manager keeps a list
of constraints currently used in the Colt system. Each
constraint contains a list of input objects, or objects that
may affect other objects in the system, and a list of output
objects, or objects which are affected by changes to other
objects. As a user manipulates an object in the CO-API
hierarchy, the object informs the Constraint Manager that
it is being modified. The Constraint Manager checks its
list to see if any constraint includes that object as an input.
The constraint manager will t hen “ fire off ” any changes to

output objects of constraints using this object as an input
object. The constraint can be viewed as a function taking
states of input objects to new states of the output objects.

Currently the constraints in the CO-API hierarchy are
implemented as one-way constraints. At the time of the
original implementation we did not see the need to include
multi -way constraints or to gracefully handle cyclical
constraint dependencies in this system, but the constraint
manger is designed to handle the eventual use of more
complex constraint hierarchies

The CoImage Shell

We support development of collaborative activities using
CCOs by providing an application shell that handles the
operations, such as handling input from toolbars, and
saving and restoring files, which are shared by all
activities built i n the environment.

As in Bricker, et al [4], the activities supported by Colt
allow each user to own an input device and corresponding
colored cursor on the screen. The color of the cursor
identifies its user. Objects are displayed in a user’s color if
only they are permitted to manipulate that object. For
example, a tool on the toolbar is outlined with the user’s
color if they are permitted to use that tool. If two users
may select a tool, it is outlined with both of the users’
colors. The design and implementation of an activity
defines how the tools in the toolbar are used. Some tools
simply set the value of a property for an object, while
others may change a mode for the whole activity.
Depending on the design of the activity, a user’s cursor
may change shape to indicate that a user just selected an
instance of a particular tool.

The CoImage shell also supports saving and restoring data
in a number of formats. The shell i ncludes methods that
save the state of an activity as a binary data file so that a
user can continue at a later date. The shell also includes
separate methods for saving a history file in a tab
delimited text format. This format permits an
experimenter to visually read the data or analyze it using
another program such as a spreadsheet. A copy of the data
is also written in a binary CoImage data file format
whenever the text version is written to disk. The CoImage
shell can also save image data in the standard Microsoft
Windows bitmap format, and in a format that can be read
by a World Wide Web (WWW) browser.

The CoImage shell also includes methods that read and
write a text-based problem description file. A problem
description includes an initial state, goal states or criterion
the users are expected to reach, any constraints enforced
on the users in reaching that goal, and a possible scoring
criteria. The current implementation of the shell contains
methods that can be overridden by an activity developer to
read and write problem description files. Most activities
implemented with Colt to date support a problem file that
contains the number of users, the initial state of the

program, a text description of the goal state(s) that can be
presented to the user, and the scoring criterion.

The Inpu t Translation Subsys tem

The input translation subsystem (ITS) was developed to
abstract away the details of any specific input device.
Device dependent input events delivered to the CoImage
shell are diverted to the ITS, where they are translated into
input-device independent messages. These Colt messages
include information about the mouse position, the state of
the mouse buttons, and the user associated with the
message. Thus, the application developer only needs to
respond to the one set of messages

ANALYSIS TOOLS
The Colt system also provides tools to aid in the analysis
of the history of actions stored by each CO-API object
used in the activity. We will discuss two tools here; the
visualization and the measure of joint activity.

Visualization o f the users’ interactions
The visualization of the history of actions provided in the
Colt system is intended to aid in analyzing how users
work together on an activity. This visualization shows the
time interval each action occurred as a bar color-coded to
match which user changed the object. The bars are marked
with a character to denote what type of action occurred (s
when the object was selected, m when it was moved, r
when it was rotated, etc). The colors of the bars denote
which users produced the events.

Figure 8 shows an example of a visualization from the
“drawing” activity described in the next section. In this
figure, the drawing point (ptTool) is cooperatively
controlled by two methods. In the first thirteen seconds
(denoted by the tick marks on the time line at the top),
each user is moving the point by changing the x- or y-
coordinate with a scroll bar. At first these movements are
sequential, then they occur simultaneously, shown when
the movement intervals overlap. In the second half of this
figure, the two users are changing the location of the point
by moving a line together.

We note that this visualization is easily understood if the
context of the interface and how the objects relate to each
other are known. We feel it is valuable in assessing how
users work together, when they communicate and what
their communication may entail .

Figure 8. A visualization of the history of actions in the

drawing activity. A bar with a s indicates the user
selected an object, a bar with a m shows the user
moved that object.

Measures of the users’ interactions
One reason to support highly synchronous collaboration is
that it may help users stay focused on a task. During the
course of an activity, however, some users in a group may
contribute a lot more to the solution of the problem than
others. The expectation is that the more actively a user is
participating, the more likely he or she will be focused on
the given task. Such a measure of a user’s involvement
might be helpful to a designer during an iterative
development process to identify when the users were able
to cooperate and when they had problems. This measure
could also be used as feedback to a teacher who needs to
determine the contributions of each member of a
collaborative group to the solution of a problem.

One measure of the users’ involvement is to determine
how much the users either independently or jointly
manipulate an object. For any object in an application, the
measure of joint activity or JA summarizes this
information by weighting the relative amount of time the
users work in subgroups of various sizes. Thus, the time
the users spend working simultaneously all together
weighs more heavily than the time spent working in
subgroups, and the time the users spend working in
subgroups weighs more heavily than the time the users
spend working individually. The JA can be thought of as a
measure of the average number of users who are actively
manipulating an object at any given time. The Colt system
includes an analysis tool for calculating the JA that may
be used while viewing the event spans for an activity. The
tool has a very simple interface that takes an input file
containing the periods of time that are to be analyzed, an
output file name and the object to analyze in the activity.
The tool produces an output file containing the analysis in
a tab-delimited text form.

ACTIVITIES THAT EMPLOY COOPERATIVE CONTROL
We have developed a number of activities that employ
CCOs using the Colt system. As in Bricker et al [4], the
activities described below allow each user to own an input
device and corresponding colored cursor on the screen.
The color of the cursor identifies its user. Objects are
displayed in a user’s color if only they are permitted to
manipulate that object.

A Collaborative “ Drawing” Activity
The collaborative Etch-a-Sketch is one of the activities
implemented using Colt, based on the toy developed by
Ohio Arts. This activity allows the users to draw with one
of three different cooperatively controlled pens. In the
simplest form of the activity, users can manipulate the
pens to draw what they’d like, or they can be given a
specific task such as “draw a house.” The activity can also
be used to solve more complex problems, such as mazes,

by including a background picture that the users must
cooperatively trace in the least amount of time. Once the
timer begins, the users must stay within the boundaries of
a background object or time is added to their total in
increments larger than 1 second.

The simplest cooperatively controlled pen allows each
user to manipulate a slider. The location of the “ thumb” in
the slider corresponds to the x or y coordinate of the pen.
An example of drawing a house using the “ fine-grained
shared” pen is shown in Figure 5a.

Figure 5b shows users tracing a circle with another CCO.
This control constrains the location of the drawing pen to
be the midpoint of a line segment. Two users adjust the
location and rotation of the line by manipulating endpoints
of the segment. To make this interaction more diff icult,
each user may only manipulate the endpoint he “owns,”
which is colored to match his cursor. A user may not
manipulate the other user’s endpoint. This cooperatively
controlled pen could be further restricted so that the line
cannot move until both users are actively manipulating
their endpoints.

The most diff icult control, shown being used to solve a
maze in Figure 5c, requires four users to manipulate the
pen. The location of the drawing nib is defined as the
intersection of two lines. Each line is controlled by its own
pair of points, and each user may only manipulate the
point colored to match her or his cursor. Even without this
restriction, this pen is very diff icult to control without help
of other users. By making it diff icult to manipulate the pen
alone, this control encourages the users to focus together
on the task and communicate about the problem posed by
the activity.

The Collaborative Puzzle Activity
The collaborative puzzle is an activity implemented by a
student using Colt [1]. The users may choose to solve the
puzzle in parallel, or by using the CCO version of this

activity. In the parallel version, shown in Figure 10 the
pieces of the puzzle are moved separately, although the
puzzle as a whole can be worked on simultaneously by
more than one user. This is identical to the interaction of
multiple people working on a physical jigsaw puzzle.

Figure 10. Two users manipulating pieces
simultaneously in the Parallel Puzzle Activity.

In the CCO version of the activity, shown in Figure 11,
the positioning of each puzzle piece is controlled using a
line segment. The geometric center of the puzzle piece is
constrained to the midpoint of an “attached” line segment.
Two users adjust the location and rotation of each piece in
an integrated manner by manipulating endpoints of the
segment.

Figure 11. Two users manipulating one piece using a
line segment in the Constraint Puzzle Activity.

Both the parallel and CCO versions of the jigsaw puzzle

Figure 9. (a) Fine-grained sharing etch-a-sketch used to draw a house, (b) Two users manipulating a cooperatively
controlled pen, (c) Four users manipulating a cooperatively controlled pen to solve a maze.

activity have another interesting feature: they utili ze the
history of actions for each object to maintain a record of
the selections, rotations and translations performed by
each user. This information can be saved and analyzed by
researchers after the puzzle has been solved. The interface
includes added visualizations to help analyze measured
quantities such as the number of actions on a puzzle piece
(by each user or by all users), the time of each action, and
the order in which the users interacted with each piece.
These added visualizations are described in more detail i n
[1].

An Exercise in Coordination: The Chop stick Activity
The Chopstick activity was another activity developed by
a student testing the Colt System. This activity is based on
a game where two people each use a chopstick to pick up
a “bean.” The users must coordinate tightly in order to be
successful at the game.

Figure 12. Two users manipulating the large square
"bean" in the Chopstick activity.

There are a number of options in this activity, some of
which are designed to make the coordination much more
diff icult. There are two sizes of bean to pick up, large and
small . The bean can be square, which has more surface
area on the sides to work with, or round. In more diff icult
rounds the basket “ floats” above the ground, much like a
basketball basket. In the most diff icult case, the basket
slowly moves across the screen. Figure 12 shows the
simplest version of this activity in action.

The Color Matcher: Colt style
The Color Matcher activity, as described in [4], was
originally implemented in Microsoft’s Visual Basic with
the Multi In system to support the Access.Bus multiple
input devices. Multi In can only be used under Windows
3.1, and we wished to conduct a user study on a version of
this activity under Windows 95 (for more information on
the user study, see [5]). The original version of the Color
Matcher activity took an undergraduate student
approximately ten weeks to implement. The re-
implementation of the activity using Colt took the author
only a few days. This version included an interface that
mirrored the original version as well as a new CCO
method for selecting the users’ color, shown in Figure 13.

Figure 13. The Color Matcher activity user interface.

In this activity, the users’ color is set according to the
color of a selected pixel in a bitmapped image (e.g. a
palette). The pixel location is set by the location of the
centroid of a triangle. Each user controls the vertex of the
triangle that is colored to correspond to the color of their
cursor. Although it would be impractical to have a
bitmapped image of a full 24 bit color palette, the
Windows 256 color palette affords a reasonable
approximation for the purposes of the activity. The users’
color in the Colt/CCO version of the activity is scored in
the same way as the original application – based on the
distance from the target color in RGB color space.

TESTING THE TOOLKIT WITH DEVELOPERS
The graduate student who authored the Puzzle activity
(Marla Baker) was the first user of the toolkit. She felt that
the toolkit made her job a lot easier by hiding many of the
details that are necessary in a multiple user system. These
details included displaying multiple cursors, mapping
users to the cursors, and translating device dependent
input messages into a device independent form that
contains user information. Marla noted that her primary
diff iculties included learning the toolkit, Microsoft Visual
C++ and the Microsoft Foundation class hierarchy. Her
only negative comment about using the toolkit was that it
was constantly evolving at the time she was developing
her activity, and that the documentation was somewhat
scarce and out-of-date [1]. The latter problem was later
rectified.

The Chopstick game was designed and developed by an
undergraduate at the University of Washington (Emi
Fujioka) as a way to test the design methodology as well
as the toolkit. The design and development of Emi’s
Chopstick activity was begun after Colt had become more
stable than for Marla’s project and a user manual had been
written. Emi found both the documentation and the
example code to be useful, but did make some suggestions

on how to improve them. These suggestions will be
incorporated into the next version of the documentation.
Emi also was able to develop her activity relatively easily,
and also had to learn the compiler environment as well as
the Colt system. Part of her design would benefit from the
implementation of multi -way constraints, but since the
system is not yet supporting them, she used other methods
to simulate this. She did notice that it is currently
impossible to get the information for both of the sticks
simultaneously and that the device events arrive at the
application serially. This was another area in which she
had to work around the existing toolkit to permit users to
move the ball with the sticks.

FUTURE WORK
The Colt system was tested in the development of the
drawing, jigsaw, and chopstick activities. Further testing
needs to be done with developers to improve the system.

There are many enhancements we’d like to add to the
software toolkit, including adding support for other types
of multiple input devices, such as the USB, and support
for multi -way constraints. As the USB standard gains
acceptance and is supported, we would like to modify the
Input Translation subsystem of the CoImage Shell to use
it. The CCOs designed to date can also be ported to other
platforms, such as Java, support distance collaboration in
WWW based activities.

We also wish to continue to expand the CCOs in CO-API
to support other types of collaborative interactions and
activities. Colt could be used to implement collaborative
versions of popular games such as: Tetris™, where one
person controls side-to-side motion while the other
controls rotation. Additionally, CCOs could be used in 3D
virtual worlds, or first-person perspective games such as
Doom™. An example of a CCO in such a game is a
cooperatively controlled latch on a door where users may
be required, encouraged, discouraged or forbidden from
manipulating the latch at the same time.

CONCLUSIONS
This paper has given a description of the toolkit and
analysis tools in the Colt System, as well as collaborative
activities that were built using them. The software toolkit
includes Cooperatively Controlled Objects, objects
generalize fine-grained shared objects in being
manipulated by more complicated, higher degree-of-
freedom, or less intuitive methods. Additionally, CCOs
enforce a tighter degree of simultaneity than their fine-
grained shared counterparts. CCOs and the applications
that use them can help encourage close collaboration and
communication among a group of users.

ACKNOWLEDGMENTS
We gratefully acknowledge the partial support of the
Washington Technology Center, Ark Interface II , a
Packard Bell Company, and the National Science
Foundation under Grant Number RED-9155709.

REFERENCES
1. Baker, M.J. Bricker, L.J., Tanimoto, S.L.

Cooperative interaction techniques in a computer-
supported collaborative learning environment.
University of Washington Technical Report UW-
CSE-97-04-03. April , 1997.

2. Begole, J., Struble, C., Shaffer, C., and Smith, R.
Transparent Sharing of Java Applets: A Replicated
Approach, in Proceedings of UIST’97, (Banff ,
Canada, October 14-17, 1997), ACM Press, N.Y., pp
55- 64.

3. Bier, E. and Freeman, S. MMM : A User Interface
Architecture for Shared Editors on a Single Screen,
in Proceedings of UIST’91, (Hilton Head, November
11-13, 1991), ACM Press, N.Y., pp 79-86.

4. Bricker, L., Tanimoto, S., Rothenberg, A., Hutama,
D., Wong, T. Multiplayer Activities Which Develop
Mathematical Coordination, in Proceedings of
CSCL’95 (Bloomington, October 17-20, 1995), ACM
Press, N.Y., pp 32-39.

5. Bricker, L. Cooperatively Controlled Objects in
Support of Collaboration. Ph.D. Thesis, University of
Washington, Department of Computer Science and
Engineering, Seattle, 1998.

6. Cockburn, A. and Greenberg, S. Children’s
Collaboration Styles in a Newtonian MicroWorld, in
Proceedings of CHI'96 (April 13-18, Vancouver,
BC), ACM/SIGCHI, N.Y., 1996, pp. 181-182.

7. Elli s. C. A., Gibbs, S. J., and Rein, G. L. Groupware:
Some issues and experiences. Communications of the
ACM, 34(1):38-58, 1991.

8. Gutwin, C, Stark, G., and Greenberg, S. Support for
Workspace Awareness in Educational Groupware, in
Proceedings of CSCL’95 (Bloomington, October 17-
20, 1995), ACM Press, N.Y., pp 147-156.

9. Hill , R., Brinck, T., Patterson, J. Rohall , S., and
Wilner, W. The Rendezvous language and
architecture. Communications of the ACM, 36(1):62-
67, 1993.

10. Inkpen, K., Booth, K.S., Klawe, M., and Upitis, R.
Playing together beats playing apart, especially for
girls, in Proceedings of CSCL '95 (Bloomington,
October 17-20, 1995), pp. 177-181.

11. Microsoft. Microsoft NetMeeting. Available as
http://www.microsoft.com/netmeeting/ (Accessed
September 3, 1998).

12. Munson, J. and Dewan, P. A concurrency control
framework for collaborative systems, in Proceedings
of CSCW ’96 (Boston, November 16-20, 1996), pp.
278-287.

13. National Center for Supercomputing Applications.
NCSA Habanero. Available as
http://www.ncsa.uiuc.edu/SDG/Software/Habanero/
(Accessed September 2, 1998).

14. Prakash, A. and Shim, H.S. DistView: support for
building eff icient collaborative applications using
replicated objects, in Proceedings of CSCW ’94
(Chapel Hill , October 22-26, 1994), pp. 153-164.

15. Ross-Flannigan, N., "The Virtues (and Vices) of
Virtual Colleagues," in Technology Review,
Cambridge, MA: MIT, March/April , 1998.

16. Shen, H. and Dewan, P. Access Control for
Collaborative Environments, in Proceedings of
CSCW’92 (Toronto, October 31-November 4, 1992),
ACM Press, N.Y., pp 51-58.

17. Universal Serial Bus. Welcome to USB. Available
as http://www.usb.org (Accessed September 2,
1998).

