Colt: A System for Developing Software that Suppo rts
Synchronou s Collaborative Activities

Lauren J. Bricker, Marla J. Baker, Emi Fujioka, Steven L. Tanimoto
Department of Computer Science and Engineeing
University of Washington, Box 352350
Sedtle, Washington 981952350USA
{bricker, marla, emifuji, tanimoto} @cs.washington.edu

ABSTRACT

This paper presents Colt, a system designed to aid in the
development of applications that suppat close
coll aboration between two or more users. The Colt system
is comprised o three parts: a design methoddogy, a
software toolkit, and visualizaion and analysis tools. The
software todlkit includes computational objeds that
suppat simultaneous manipulations from multiple users.
This paper defines and gives examples of these
“Cooperatively Controlled Objeds’ (CCOs) and discuses
design and interfaceisales for developing them. Finaly,
four example wllaborative adivities that were built using
Colt and CCOs are described: a drawing program, a
jigsaw puzzle, a mordination game and a mlor matching
adivity.

Keywords
Computer suppated collaboration, multiple-user
interface synchronous, cooperatively-controlled oljeds

INTRODUCTION

Developing applications to suppart collaboration by two
or more users involves geda challenges. An applicaion
designer nedls to anticipate the interadion between the
user and the computer as well as the interadions between
the users. Additionally, there is a ladk of system suppart
for development of software that accepts $multaneous
input from multiple users on the same machine. The Colt
system is designed to addressboth of these isaues.

Colt is comprised of three parts, a design methoddogy, a
software todlkit, and visualization and analysis todls. The
design methoddogy is based on a series of questions to
aid developers in the aedive process of planning a
collaborative adivity. The tookit suppats the
implementation of coll aborative programs by providing a
shell application, a hierarchy of “cooperatively controlled
objeds’ (CCOs), and suppat for input from multiple
users. CCOs are designed to suppat close llaboration
among the users of a cmputer program. Each CCO
contains a mechanism to record a history of how users
cooperatively controll ed the objeds. The visualization and
analysis todls present different views of the objed
histories. These tods can be employed after program
testing to determine if the implementation meds the
origina design criteria. Colt is unique in its suppart for

the development of co-present simultaneous computer
based adivities.

This paper describes the software toolkit and analysis
tods in the Colt system. We begin by motivating the
suppat for simultaneous cooperative interadions. Then
we define operatively controlled olbjeds with a
discusson of some issles encountered in developing
them. The third sedion describes the todlkit, including the
objeds and the framework in which cooperative
applicaions may be developed, and the analysis todls.
Finally, we describe four example adivities that include
CCOs and were implemented using the Colt system.

MOTIVATION

Examples of non-computer synchronou s coop eration
Many common non-computer adivities contain elements
of highly synchronized cooperation, such as a three
legged race a music recording sesson or moving large
objeds. Inthe cae of athreelegged race ead runrer is
acually hindered by having one leg bound to a leg of the
partner. They must work synchronously and
collaboratively to make it to the finish line. The pair that
collaborates most effedively (and runs the fastest) wins
the race The purpose of this type of raceis not to permit
peole to run faster than they would as individuals, but to
foster entertaining human interadions.

Another example of an entertaining coll aborative task is
the recording of amusicad symphony. This adivity is one,
in principle, that an individual person might be ale to do
(using modern technology); it would involve playing ead
instrument and recording ead part of the pieceseparately,
and then mixing the tradks to form a rearding of the
whole work. However, the amplex and subtle changes of
intonation that should result from the red-time
interadions among the musicians would be missng from
the final reard. Performance of the piece in a
cooperative setting permits the gtainment of a richness
that would atherwise be ladking.

The llaborations in the previous two examples are
motivated either by their entertainment value or by
expeded benefits of interations within the group. In the
physicd manipulation of large objeds, however,
cooperative control is essential. When two or more people
move a piano o a sofa, their highly synchronous

collaboration is fadlitated by wvoice ad gesture
communication. By contrast, a less intensively
coll aborative method for acamplishing a task is based on
coarse-grained sharing, asin, for example the amoperative
solution to the problem of moving a dinette set: “Y ou take
out the table, and I'll take the dairs” This affords
distributing the work, but it does not require the caeful
coordination required when a group of people must ease a
sofa aound a tight bend in a narrow staircase without
damaging the sofa or walls.

Reasons to suppo rt highly synchronou s coop eration
There ae two reasons why a designer might want to
suppart highly synchronous collaboration in a computer-
based leaning adivity. First, there is evidence of
incressed problem solving and enjoyment when users
work closely together on computer-based tasks. For
example, Inkpen [10] found pairs of students were e to
solve more puzzZles when working together on a single
computer as compared to solving them aone or on
separate computers sde-by-side. Although the students
enjoyed working together, they were hampered by their
contention for a singe input resource (the mouse).
Seoondly, the preliminary testing of four Multiln-based,
multi-player adivities [4] provided aneadotal evidence
that the students tend to communicate dfedively about
the problems posed while using hghly synchronous co-
present applications. Unlike the system used in Inkpen's
study, the MultiIn adivities all owed ead user to control a
separate input device to eliminate the mntention for input
resources. These adivities also contain objeds that all ow
close synchronous interadions between users working
closely on atask

Increased problem solving, communicaion and a user’'s
level of enjoyment can also be important in a work
context. Althoughthe studies described above were done
with children and educaiona software, similar results
might be found with adults and in work situations. One
goa of this reseach is to explore whether or not this is
true. This paper describes the mmputer suppart provided
for explorations such as these.

BACK GROUND

Many of the gplicaions written to suppart collaborative
adivities focus on the technologicd chall enges, including
handling input from multiple users, and transmitting
information between the wusers. We fed that
communication between the participants is a vita
component of collaborative interadions that should not be
overlooked. Furthermore, we fed it is important to
examine how different technologies can effed
communication during a cllaborative adivity.

Communication du ring collaboration

Communication and trust are key parts of a llaborative
interadion. A person broadcasts a thought by essentially
pasing a “message” through one or more of three

different channels: verbal (auditory), physicd (gestural),
or graphicd (written, symbdlic). Another person recaves
this message primarily through auditory or visual senses.
The more dannels of information that is past between
people, the less likely it will be for them to have a
miscommunication. Conversely, the lower the bandwidth
of the communicaion channels, the harder it may be for
the users to communicate their thoughts.

Technological support for communication during
collaboration

There ae many technologies that suppart communication,
including telephones, eledronic mail or newsgroups,
eledronic tak or chat, audioconferencing and
videoconferencing. How useful these systems are in
supparting a @llaborative interadion depends heavily on
the type of task that the users are working.

People generally cooperate for one of two reasons:. either
they are encouraged or required to cooperate by the nature
of the task or applicaion, or they smply enjoy working
together. However, not every cooperative interadion
requires that participants work at the same time or
communicate often. Some llaborative tasks, such as
designing and implementing a cmputer program, require
occasional faceto-facemedings enriched with infrequent
text based communication. Other collaborative tasks that
demand more immediate feedbadk require that the users
communicate in a more red-time manner.

Red-time or synchronous communicaion can occur using
text-based chat, telephone, or audio or video conferencing
software. Typing (through email or text-chat) has the
drawbadk that it can take more time than auditory
communication. Audio only communication is quicker and
more natural to most people, but ladks the aility to
gesture. Videoconferencing alows participants to see
ead other’'s expressons and gestures, but the low degree
of apparent presence and the ladk of adua contad can
hamper the moperative interadion. Admittedly, as
technology improves and becomes less costly, the
dichotomy between faceto-face ad distance mmmunica
tion will beame lessclea. Until that time, nothing will
completely replace faceto-face ollaboration for
transmitting ron-verbal communication. When users work
in a @-present situation, they can interad diredly; they
can see eah other's expressons and gestures, and they
may be ale to communicate more dfedively than they
would without co-presence

As an interesting rote, researchers have found that groups
who conduct a brainstorming sesson using computer-
mediated communicaion are more prolific than groups
that mee faceto-face[15]. Still, present day technology-
based collaboration cannot completely replace some
facds of faceto-faceinteradions, such as building trust.
For instance, Rocco found that groups that med faceto-
faceprior to dang a virtual task collaborated better than
those who dd not mee before [15]. The faceto-face

interadions helped them develop trust and an
understanding of other participants communication styles
that then caried over into the tedhnology-based
interadions. Thus, computer-mediated communication
should be used for those times when the participants are
unable to get together physicdly, and not as a mmplete
replacement for co-present coll aborations.

In addition to the problem of low apparent presence
current communicaion technologies do not aways
guaranteethat all of the usersinvolved in the task have the
same view of visual materials. Having the aility to view
the same task materials may be important in reducing the
amount of miscommunication that occurs between the
participants. For example, if the users are @mmunicating
using a telephone or text chat and attempt to find the same
information on the WWW, there is no way to guarantee
they are on the same web page. Some systems, such as
Microsoft NetMeding [11], do allow a group to share a
communal visua artifad, such as a whiteboard or web
browser. But again, there is no guarantee that al of the
users involved are adively focused on the shared
information. In contrast, participants of a @-present
collaborative dfort would notice if a group member lost
focus on the task when he or she looked or walked away.
This natural sense avarenessmay increase productivity or
aid in the group’s ability complete atask.

Thus there ae tasks or instances where there is currently
no replacement for the eae of communicaion and natural
sense of awareness in co-present collaboration.
Unfortunately, most desktop computers today are
designed to acommodate input from one user at a time.
Groups who wish to collaborate using one computer are
forced to share mntrol awkwardly througha singe mouse
and keyboard. Social and physicd conflicts over these
input devices, such as down in Figure 1, may arise since
current operating systems and application software only
suppat asingle input stream. One solution to the conflict
problem is to provide aseparate physicd device for eah
user. Many video game systems, such as the Super
Nintendo Entertainment System (SNES), do suppat
multiple joysticks. However, the multi-user games for
these systems often employ either a turn-taking
medanism, or simultaneous competitive play. The risk
in enforcing turn-taking is that inadive users will 1ose
focus on the task, as down in Figure 2. The risk in
supparting simultaneous competetive play is that it does
not apped to many people, particularly young grls. Colt
was developed to suppat simultaneous collaborative
interadionsin order to addressthese isues.

o '..,1,1 -1.5\-'1

Figure 1. Conflict over a single mouse often occurs
when two children attempt to use a single desktop PC.

Figure 2. Even with multiple input devices, one user
may lose focus on the task if he does not have some
control on the screen.

Domains for collaboration

There ae two primary domains that have been studied in
context of computer suppart for collaboration. Computer
Suppoted Cooperative Work (CSCW) and Computer
Suppoted Collabarative Learning (CSCL). CSCW isthe
study of software and systems designed to suppat
adivities that are wordinated between two o more
people. CSCW is generally focused on how to make a
group work more dficiently or productively together.

Similarly, CSCL is the study of systems and software

designed to suppat collaborative leaning. Collaborative
leaning is designed to encourage @mmunication of
concepts, discusgon of solutions, resolution of social and
cognitive onflicts, and promote problem solving and
higher-order thinking skill s. In order to work successully
on a llaborative task, students must be ale to
communicate their thoughts. This requires that they
understand and clealy formulate ideas in their own minds
before they can describe them to athersin the group. The
goa of a wllaboratively learning task may not be to make
the users work more productively together, but rather to
incresse the amount and quality of communicaion
between students. Collaboration also may add an
enjoyable asped to atask.

Collaboration is aso an important issue in entertainment.
Some tasks may be more difficult for the users in a forced
coll aborative environment than they would be for asingle
person, and yet this may be desired. Just as in runnng a
race where an individual runrer could easily bea a pair
of runrers who ead have one leg bound to one of the
other's (as in a threelegged race, a mmputer-based
collaborative adivity may have social, team-building, and
entertainment value of its own. Many people, espedaly
children, enjoy themselves more when they can play
computer games together. Unfortunately, many of the
multi-user games on the market today are fundamentally
competitive in nature. For example, the goal of first-
person perspedive worlds, such as Doom or Quake, is to
traverse the levels of the world, colleding ammunition,
food and medicd supplies, while killing the oppments
that get in the way. These games allow users to pay
together aadossa network. The users compete agjainst one
another, or form cooperative teams that fight against other
teans of cooperating players. We use the phrase
Computer Suppoted Collaborative Entertainment
(CSCE) to describe software and systems designed to
suppat collaborative interadions while not spedficdly
encouraging productive work or leaning.

This reseach explores the design and development of
collaborative adivities in al three domains, CSCW,
CSCL and CSCE. Rather than concentrating on a spedfic
domain of collaboration, our focus is on cooperation
where the users are simultaneously working together.
Although simultaneous interadions can occur in either a
faceto-face or distance dtuation, we ae primarily
interested in the examining co-present coll aborations. This
type of interadions may incresse the amount of
communication between the users, a feaure that may be
best suited for leaning and entertainment adivities, but
can be useful in awork context.

THE COOPERATIVELY CONTROLLED OBJECT

Many common non-computer adivities contain elements
of highly synchronized cooperation. Some adivities are
done ollaboratively purely for the social enjoyment.
Some ae done because they are eaier to complete with

additional help. One of the goals of this reseach is to
define a ¢assof interesting objeds that helps to keep the
users focused during collaborative adivities. One can
exped that there will be an increese in total or certain
types of communicaion between the users if the users
become more focused on atask.

Cooperatively Controlled Objects Defined

In objed-oriented terminology, an objed contains gate
and has behavior. A controlled ohjed is an objed
containing methods that allow one or more users to
manipulate properties of that objed. Typicdly these
properties are manipulated diredly through input devices
such as mice joysticks, keyboards, etc. A cooperativdy
controlled ohjeda (CCO) is a mntrolled okhjed that is
designed to be manipulated simultaneously by more than
one user based on certain relationships that hold between
user inputs and components of the CCO.

Each CCO is assumed to have aset of components or
“properties.” Each property may take on one of a possbly
infinite number of values. In the physicd world some
properties, like the locaion of a spat on the floor, may
have a1 infinite number of possble values. We will
assume that the computer representation is smplified with
afinite set of discrete values.

A control mechanism for a CCO provides a means for a
group of usersto provide avalue for one or for several (or
even al) of the properties of the CCO. The ntrol
medanism for a property in a CCO can be described as a
function:

V= f((va, V2, -+ Vi), (Ug, Uy, ...y Un),

where V is the output, or new value of the property, eat
v; is the input value of the properties on which this
function depends, and ead y; is the input-device states
corresponding to the multiple users s$multaneousy
manipulating the objed. By providing functions for eadh
of the CCO’'s modifiable properties, a cmplete cntrol
medhanism for the CCO can be spedfied.

Fine-grained sharing (FGS) is a previousy studied
approach for defining one dassof CCO [16]. In FGS, an
objed is expressd in terms of its properties, eah of
which is controlled by one of the users. Although fine-
grained sharing can offer users a dea delinedion of
responsibility and control for shared oljeds, it ladks the
ability to compel tight cooperation among the users. Users
who work on separate pieces of a “shared” document do
not necessarily coordinate in red time. Instead the work is
done aynchronously and are the users not forced to
synchronize their adivities to the same degree that one
does in musicd performance, dance, threelegged races,
and the like.

Our goal is to compel users to interad synchronoudly.
CCOs aippat close wllaboration though complex
interadions with objeds by adopting a more general
framework than fine-grained sharing.

L J <= @ @&

i i

Figure 3. Controlling the location of a point using a
fine-grained sharing technique.

Figure 4. Controlling the location of a point using a
cooper ative control technique.

Figure 3 depicts an example of a FGS technique in which
a point is controlled by decomposing it into its x and y
coordinates and ead coordinate is modified by separate
users. This could be described more formally as

point.x = u;.X

point.y = Uy
A type of cooperatively controlled pant, shown in Figure
4, could involve a more genera functional relationship
between the inputs from the two users and the controlled
properties. In this example the controlled padnt is defined
as the midpaint a line and the two users control the point
by moving the endpadnts of the line. More formally this
could be described as a series of functions, such as:

point.x = (line.endpadnt,.x + line.endpant,.x) / 2
point.x = (lineendpadnt,.y + line.endpant,.y) / 2
line.endpant;.x = uy.X
line.endpant..y = u.y
line.endpant;.x = uy.X
line.endpadnt,y = U,y

There ae many ways geometricd objeds, such as lines
and pdygons, can be mntrolled using fine-grained sharing
at the level of coordinate values, vertices, etc. They can
aso be ontrolled cooperatively via other geometric
relationships between input values and the cntrolled
properties. More acmplicated spatial objeds, such as
fradals, can be woperatively controlled by alowing wsers
to jointly manipulate their parameters or properties. Y et
another example of cooperative @ntrol can be found in
the Curve Fitter program, described in [4], in which two to
four users manipulate the shape of a degreen polynomial
curve by moving n+1 control points located on the arve.
For eath geometricd or abstrad objed there usually are a
number of different plausible methods for cooperative
control.

Specifying the types of interactions

Developers may also wish to control how closely the users
in a ollaborative adivity work together. In order to asdst
in the spedfication of the users interadions, we have
developed a sub-classficaion of synchronous adivity
based on how simultaneously the users interad with a

screen objed.

An asynchronous cooperative interaction is one in which
two o more users work independently on a task, then
synchronize or coordinate their work by delivering
information through messages siuch as conversation, snail
mail or email. Participants of this type of cooperative
interadion may not exped an immediate response from
guestions or requests. A required asynchronous
cooperative interaction is one in which ead user must
complete their part of the adivity before the other user
may proceal. An example of this type of interadion in the
red world is two people trying to go through a doarway
that can only fit one person at atime.

A synchronous cooperativeinteraction, on the other hand,
is one in which two or more users interad on the same
task in red-time. Phone cdls or text chat are examples of
synchronous cooperative interadions. Often, the usersin a
text chat sesgon take turns in writing (the reader will wait
for the writer to complete athought before responding),
but they may also type & the sametime. In this case a dat
writer is not guaranteed that the other user(s) are focused
on the arrent thread of conversation, but they are
working simultaneously.

We have further broken up this temporal classfication
based on how simultaneously the users interad with eadh
other. A required simultaneous interadion is one in which
the users must manipulate an ohbjed at the same time in
order to make any progresson the adivity. An example of
this is two people dtempting to lift a heavy piece of
furniture, such as a piano. An encouraged simultaneous
interadion is one in which the users do not have to
manipulate objeds at the same time, but doing so will
allow them to complete the task more eaily or in a shorter
amount of time. Furthermore, their progress may be
hampered (dower) if the interadions are not
simultaneous. Moving a heary objed where no lifting is
required is an example of thistype of interadion.

We can further describe asynchronous interadions as two
other forms of “simultaneous’ interadions. As with an
asynchronous interadion, a discouraged simultaneous
interadion is one in which the users can make progresson
their task independently. However, it also may be much
more difficult for the users to make progresson the task if
they work on it at the same time. Two people on a
playground seesaw are an example of this. If both people
on the seesaw attempt to push up at the same time, neither
of them will be aleto push the other very far. Finaly, we
can also describe arequired asynchronowsinteradion asa
disallowed simultaneous interadion. Here, the software or
system physicdly prevents the users from meking
progresson their task if they work together. Two people
going through a smal doaway is a disalowed
simultaneous interadion.

Degree of cooperative control

All objeds that are jointly manipulated by two or more
users are considered cooperatively controlled. However,
there is a wide variability in how these objeds are
cooperatively controlled. Some objeds are ontrolled
through complex constraints that require simultaneous
interadion to be adivated, but others are simply
controlled without constraints through asynchronous
interadions (as in a shared database). As a way to spedfy
the differences between the wide variety of cooperatively
controlled oljeds, we introduce a measure cdled the
degreeof cooperative ontrol (DOCC).

Complexity of Control

highly complex
(constrained)

fine-grained sharing

Ay

s : Simultaneity
disalTowed discouraged néther encouraged encouraged required
/,/ or gitscouraged

co-present, ya <
/7 Multiln
7 Activities
4
7
4
7
/

./'
Groupkit

co-located,
networked

digtant

Location

Figure 5. A visualization of three characteristics of
systemsthat use cooperatively controlled objects

The degreeto which an objed is cooperatively controlled
depends on two fadors, the simultaneity of interadion and
how complex the method is for manipulating the objeds.
If we graph these two fadors on orthogonal axis, such as
in Figure 5, one might think of the more moperatively
controlled oljeds as being in the upper right corner of the
graph. This is smilar to graphs sen in the CSCW and
CSCL literature, such asthe one in Ellis, et a [7, p. 41],
where groupware is categorized based on the location of
the users (same or difference places) and the times or
method o synchronization (same or different times). The
physica location of the users can be alded to this graph as
third axis, and although distance does play a role in how
tightly synchronized the interadion may be, this will not
fador into our definition of a CCO. CCOs are, by
definition, able to be used by users who are & a distance
aswell as co-locaed.

User Interface Issues for CCOs

A number of interface isses must be taken into
consideration when writing software to suppat two o
more people working in a synchronous collaborative
dtuation. If users are to manipulate a singe objed
simultaneously, ead user must have accssto her or his
own device to input their modificaions. It is passble, if
the users are m-located and using a single display, to use
an off-the-shelf computer system with one mouse and one
keyboard. However, this <enario typicdly causes
frustration because of either an urintuitive interfaceor a
contention for the mouse or keyboard. Obvious lutions

include having the users interad over a network, or to
suppat multiple input devices on a singe macdine,
similar to systems such as Multiln [4] and MMM [3].

Apart from the hardware, the software should indicae
objeds eah wser may access Also, some indicaion
should be given to al users as to which user currently has
posssson or is controlling eah objed in the shared
space Color usually affords a reasonable sign of objed
ownership, particularly if the clor matches that of the
owner’s cursor.

Co-present vs. Distant Collaboration Considerations
A popular way to dstingush different kinds of CSCL
situations is along an axis that represents the relative
distance between the participants (long-distance, intra-
meeing-room, or co-present) [7]. Whil e the definition of
a CCO is not dependent on the locaion of the users,
different interfaces may be required for ead situation.

As gdated previously, conflicts often arise over the use of
the physicd input devices if there is only a singe
mouse/keyboard pair for all the participants during a @-
present adivity. One solution to this problem is to
provide aseparate physicd device for eat user. Suppat
for multiple input devices must be both at hardware and a
software level. Many operating systems today can suppart
multi ple joysticks, and some more recent systems sippartt
a new standard known as the Universal Serial Bus (USB)
[17]. USB is can provide inexpensive multiple serial
input, such as mice, keyboards, joysticks, etc. However,
most off the shelf operating systems do not suppat
multi ple people using separate input devices to control on-
screen artifads at the same time. In order to suppart
synchronous co-present cooperative ntrol, operating
systems sould, at a minimum, provide multiple airsorsto
give eab user an on-screen presence This requires that
the system accept multiple streams of events (such as
mouse move events) from the separate input devices, and
that these events include the ID of the device that
generated them. Once amultiple aursors are suppaorted,
software can be written to all ow the users to cooperatively
control objeds.

In contrast to the ladk of suppat for co-present
collaboration, many systems can and do suppart distance
communication by passng messages between ead user's
computer. However, the latency of this message passng
aaoss the network can be problematic for synchronous
collaboration. Take a an example, two users attempting
to tracethe path as sown in Figure 6a. If the user with
the white airsor (W) moves before receving a message
that the user with the grey cursor (G) has moved, W might
move & down in Figure 6b. However, if the G had
acualy moved first and the message had not arrived to
update W’'s gystem because of network latency, the result
might be & $own in Figure 6¢. Network latency such as
this could easily interfere in how well the users are ale to
work together.

(a) y\/’\j

(b)

© a>.\’
Figure 6. Problems with network latency when two

users are trying to tracing a path with the midpoint
CCoO.

To make up for some of the cmmunicaion deficiency of
long-distance ®operative wntrol, the gpeaances of
shared ohjeds can be ajusted dynamicdly to refled not
only current ownership or control, but also ather emergent
properties gich as the aurrent degree of contention or
intensity of “force” “internal tension,” or “presare” in
the objed. In the example where a midpant objed is
controlled by the endpadnts of a line segment, the length
of the line segment can be mnsidered as a measure of
internal tension, particularly if the line segment is thought
of as a rubber band or spring. The lor of the half-line
segments can be made to indicae the degree of disparity
between two users intent for the ntrolled pant.
Additionaly, a paint of this kind, under high tension,
could be displayed in bright red.

THE COLT SOFTWARE TOOLKIT

There ae many toodlkits designed to suppat computer-
based collaboration. These toodkits fadlitate the
development of cooperative software by providing
abstradions for more difficult concepts in programming
groupware gplicdions, such as how to maintain
synchronization of the objeds or views of objeds, and
users dynamicdly joining and leasing sessons. Most of
the existing todlkits, such as JAMM [2], Rendevous [9],
DistView [14], GroupKit [8], and Habanero [13] suppart
synchronous cooperation over a network.

There ae dso a number of collaborative systems that
encourage cmmunicaion at a distance through common
objeds [8], tasks [9] or physicd situations [3]. Groupkit
[8] and Turbo Turtle [6], in particular, use indicaors such
as telepointers and ather “awareness widgets’ to indicae
to athers (working at distant locaions) where auser is
working on the screen. These systems permit cooperation,
but the adivities in which they are used donot require the
users to work on atask simultaneously or to communicate

frequently. Furthermore, none of these systems suppart
co-present interadions. We believe that there ae some
situations in which a @mmon focus and closer
communication are objedives of the adivity.

Since we fed that suppart for co-present, simultaneous
cooperative control of objeds may be important in some
applicaions, we have developed the Collabaorative
Toadlkit, or Colt. Colt is designed to fadlitate the rapid
prototyping or implementation of such applicaions. This
tookit includes the Collaborative Objed-based
Applicaion Program Interface (CO-API) hierarchy of
Cooperatively Controlled Objeds and the Colmage
applicaion shell with suppat for various multiple-user
input solutions. The overal architecdure for the Colt
systemis $ow in Figure 7.

Colmage Shell
Activities
Toolbar Support
File support
Interaction History

Visualization Move object,
Object selected by user
Object hit testing, etc

Regular Mouse, Joystick
Access.Bus or NetMeeting
Messages

Input Translation

COOP_* messages

Left button down/up n
Right button down/up CO-API Object

Mouse move hierarchy
Regular Mouse etc... Sharable Object
Access.Bus Mice Graphical Objects
Joysticks Text
NetMeeting events Point

(future) USB Line

Rectangle
Puzzle Piece

Constraints

Figure 7. The Colt toolkit system ar chitecture.

As input is delivered to the Colmage shell window, it is
diverted to the Input Trandation subsystem (ITS). This
subsystem tranglates the input-device dependent event
messages into input-device independent Colt event
messages. Colt messges include information about
position, button state, and the user associated with the
message. The adiviti es implemented in the Colmage shell
respond to the device independent messages. The
movement and location of ead device is mapped to a
separate wlor-coded cursor on the screen. Based on the
locdion and the owner of a aursor, the adivity software
can determine which objeds to manipulate and if that user
may manipulate that objed, respedively. In particular, if a
user attempts to manipulate an objed he does not own the
objea will not allow that user to control the objed, and
the atempt to control the objed isignored. The CCOs in
the CO-API do not respond dredly to the input events,
they only respond to changesto oljed properties.

The CO-API, Colmage Shell and Input Translation
subsystem will be discussed in the next sedions.

The system requirements for the toolkit are Pentium based

PC platforms runnng Microsoft Windows 3.1 or
Windows 95. For the c-present, single display situation,
we airrently suppart the AccessBus multi ple input system
from Computer Access Technology Corporation for
Windows 3.1 and Microsoft Sidewinder] Game Pads for
Windows 95. The Colmage Shell suppats distance
collaboration with Microsoft NetMedingl conferencing
technology. NetMeding supparts audio, video, file and
data transfer, as well as a rudimentary sharing (turn-
taking) medhanism for singe-user appli cations that are not
designed to be manipulated simultaneously.

The CO-API

The CO-API is comprised of a number parts: a hierarchy
of cooperatively controlled oljeds (including objed
necessry for spedfying accessand recording a history of
events) event, a mnstraint system, and tools for viewing
and transforming bitmapped images.

Cooperatively controlled oljeds are implemented in our
software environment as reusable C++ classes, and they
thereby can inherit state and behavior. CCOs derive the
ability for sharing from accesscontrol lists smilar to [16].
Other properties of a CCO include locaion, size
orientation, coordinate system, display parameters, and
color. An objed will i gnore atempts to change aproperty
by users who do not have the proper privileges (as
dictated by accesscontral li sts).

In order to tradk when the users cooperatively control
objeds, eah objed in the CO-API can aso store
information regarding the users' changes to an objed, or
actions, in what we cdl a history of actions. The
information stored for ead adion will vary depending on
how the objed is manipulated, but typicdly includes the
changed property and the new value, which user effeded
the change, when the dhange occurred and how long it
took. The history of adions may be saved and anayzed
after the adivity is completed. This information may be
restored at a later time for evaluation purposes. The
interface for an adivity can be designed to include
visualizations that aid the analysis of measured quantities
such as the number of interadions on an objed, the total
time of ead interadion, how the interadions overlapped,
or the order in which the usersinteraaed.

In addition to the objed hierarchy, the Colt system
includes a Congtraint Manager for use in the
implementation of more complex interadions between the
users and the objeds. The Constraint Manager keeps alist
of congraints currently used in the Colt system. Each
constraint contains a list of input objeds, or objeds that
may affed other objeds in the system, and a list of output
objeds, or objeds which are dfeded by changes to ather
objeds. As a user manipulates an objed in the CO-API
hierarchy, the objed informs the Constraint Manager that
it is being modified. The Constraint Manager cheds its
list to seeif any constraint includes that objed as an input.
The onstraint manager will then “fire off” any changes to

output objeds of constraints using this objed as an input
objed. The mnstraint can be viewed as a function taking
states of input objeds to new states of the output objeds.

Currently the onstraints in the CO-API hierarchy are
implemented as one-way constraints. At the time of the
original implementation we did not seethe need to include
multi-way constraints or to gracdully handle oyclicad
constraint dependencies in this s/stem, but the @nstraint
manger is designed to handle the eventual use of more
complex constraint hierarchies

The Colmage Shell

We suppat development of collaborative adivities using
CCOs by providing an applicaion shell that handles the
operations, such as handling input from toolbars, and
saving and restoring files, which are shared by all
adivities built i n the environment.

As in Bricker, et d [4], the adivities supparted by Colt
allow ead user to own an input device and corresponding
colored cursor on the screen. The wlor of the airsor
identifiesits user. Objeds are displayed in auser’s color if
only they are permitted to manipulate that objed. For
example, a todl on the todbar is outlined with the user’s
color if they are permitted to use that todl. If two users
may seled a todl, it is outlined with both of the users
colors. The design and implementation of an adivity
defines how the toadls in the toolbar are used. Some toodls
simply set the value of a property for an objed, while
others may change a mode for the whole adivity.
Depending on the design of the adivity, a user's cursor
may change shape to indicae that a user just seleded an
instance of a particular toal.

The Colmage shell also supparts sving and restoring data
in a number of formats. The shell includes methods that
save the state of an adivity as a binary data file so that a
user can continue & a later date. The shell also includes
separate methods for saving a history file in a tab
delimited text format. This format permits an
experimenter to visually real the data or analyze it using
another program such as a spreadshed. A copy of the data
is also written in a binary Colmage data file format
whenever the text version is written to disk. The Colmage
shell can also save image data in the standard Microsoft
Windows bitmap format, and in a format that can be read
by aWorld Wide Web (WWW) browser.

The Colmage shell also includes methods that read and
write a text-based problem description file. A problem
description includes an initial state, goal states or criterion
the users are expeded to read, any constraints enforced
on the users in reading that goal, and a possble scoring
criteria. The arrent implementation of the shell contains
methods that can be overridden by an adivity developer to
read and write problem description files. Most adivities
implemented with Colt to date suppart a problem fil e that
contains the number of users, the initial state of the

program, a text description of the goal state(s) that can be
presented to the user, and the scoring criterion.

The Input Translation Subsystem

The input trandation subsystem (ITS) was developed to
abstrad away the details of any spedfic input device
Device dependent input events delivered to the Colmage
shell are diverted to the ITS, where they are trandated into
input-device independent messages. These Colt messages
include information about the mouse positi on, the state of
the mouse buttons, and the user asciated with the
message. Thus, the gplicaion developer only neels to
respond to the one set of messages

ANALYSIS TOOLS

The Colt system also provides tools to aid in the analysis
of the history of adions gored by ead CO-API obed
used in the adivity. We will discusstwo todls here; the
visuali zation and the measure of joint adivity.

Visualization of the users’ interactions

The visuali zaion of the history of adions provided in the
Colt system is intended to aid in analyzing how users
work together on an adivity. This visualization shows the
time interval ead adion occurred as a bar color-coded to
match which user changed the objed. The bars are marked
with a charader to denote what type of adion occurred (s
when the objed was sleded, m when it was moved, r
when it was rotated, etc). The wlors of the bars denote
which users produced the events.

Figure 8 shows an example of a visualizaion from the
“drawing’ activity described in the next sedion. In this
figure, the drawing point (ptToo) is cooperatively
controlled by two methods. In the first thirteen seconds
(denoted by the tick marks on the time line & the top),
ead user is moving the point by changing the x- or y-
coordinate with a scroll bar. At first these movements are
sequential, then they occur simultaneously, shown when
the movement intervals overlap. In the second half of this
figure, the two users are changing the location of the point
by moving aline together.

We note that this visualization is easily understood if the
context of the interface ad how the objeds relate to eah
other are known. We fed it is valuable in assssng how
users work together, when they communicate axd what
their communication may entail .

Time 21:56:06
=
slm

piTool 12% [l

i

.

scroll 0%

Im | fm |
scroll 0% [m] -
line 102

-

Figure 8. A visualization of the history of actionsin the

drawing activity. A bar with a s indicates the user
selected an object, a bar with a m shows the user
moved that object.

Measures of the users’ interactions

One reason to suppart highly synchronous coll aboration is
that it may help users day focused on a task. During the
course of an adivity, however, some users in a group may
contribute alot more to the solution of the problem than
others. The expedation is that the more adively a user is
participating, the more likely he or she will be focused on
the given task. Such a measure of a user’s involvement
might be helpful to a designer during an iterative
development processto identify when the users were ale
to cooperate and when they had problems. This measure
could also be used as feedbad to a teater who neals to
determine the ntributions of ead member of a
coll aborative group to the solution of a problem.

One measure of the users' involvement is to determine
how much the users either independently or jointly
manipulate an objed. For any objed in an applicaion, the
measure of joint activity or JA summarizes this
information by weighting the relative anount of time the
users work in subgroups of various szes. Thus, the time
the users gend working simultaneously all together
weighs more heavily than the time spent working in
subgroups, and the time the users gend working in
subgroups weighs more heavily than the time the users
spend working individually. The JA can be thought of asa
measure of the average number of users who are adively
manipulating an objed at any given time. The Colt system
includes an analysis tod for cdculating the JA that may
be used whil e viewing the event spans for an adivity. The
tod has a very simple interface that takes an input file
containing the periods of time that are to be aalyzed, an
output file name and the objed to analyze in the adivity.
The tod produces an output file containing the analysisin
a tab-deli mited text form.

ACTIVITIES THAT EMPLOY COOPERATIVE CONTROL
We have developed a number of adivities that employ
CCOs using the Colt system. As in Bricker et al [4], the
adiviti es described below alow ead user to own an input
device and corresponding colored cursor on the screen.
The wmlor of the aursor identifies its user. Objeds are
displayed in a user’s color if only they are permitted to
manipulate that objed.

A Collaborative “Drawing” Activity

The ollaborative Etch-a-SketchO is one of the adivities
implemented using Colt, based on the toy developed by
Ohio Arts. This adivity all ows the users to draw with one
of three different cooperatively controlled pens. In the
simplest form of the adivity, users can manipulate the
pens to draw what they'd like, or they can be given a
spedfic task such as“draw a house.” The adivity can also
be used to solve more complex problems, such as mazes,

02:49

0556

(a) (b)

ol0?

(c)

Figure 9. (a) Fine-grained sharing etch-a-sketch used to draw a house, (b) Two users manipulating a cooper atively
controlled pen, (c) Four users manipulating a cooper atively controlled pen to solve a maze.

by including a badground picture that the users must
cooperatively tracein the least amount of time. Once the
timer begins, the users must stay within the boundaries of
a badkground oljed or time is added to their total in
increments larger than 1 second.

The simplest cooperatively controlled pen alows ead
user to manipulate adlider. The locaion of the “thumb” in
the dlider corresponds to the x or y coordinate of the pen.
An example of drawing a house using the “fine-grained
shared” penis shown in Figure 5a.

Figure 5b shows users tradng a drcle with another CCO.
This control constrains the location of the drawing pen to
be the midpant of a line segment. Two users adjust the
locaion and rotation of the line by manipulating endpants
of the segment. To make this interadion more difficult,
ead user may only manipulate the endpant he “owns,”
which is colored to match his cursor. A user may not
manipulate the other user's endpant. This cooperatively
controlled pen could be further restricted so that the line
cannot move until both users are adively manipulating
their endpants.

The most difficult control, shown being wsed to solve a
mazein Figure 5c¢, requires four users to manipulate the
pen. The location of the drawing rib is defined as the
intersecion of two lines. Each lineis controlled by its own
pair of points, and eadh user may only manipulate the
point colored to match her or his cursor. Even without this
restriction, this pen is very difficult to control without help
of other users. By making it difficult to manipulate the pen
alone, this control encourages the users to focus together
on the task and communicae aout the problem posed by
the adivity.

The Collaborative Puzzle Activity

The wllaborative puzze is an adivity implemented by a
student using Colt [1]. The users may choose to solve the
puzzle in parald, or by using the CCO version of this

adivity. In the parallel version, shown in Figure 10 the
pieces of the puzzZe ae moved separately, although the
puzzle @ a whole can be worked on simultaneously by
more than one user. This is identicd to the interadion of
multi ple people working on a physicd jigsaw puzze.

Figure 10. Two users manipulating pieces
simultaneously in the Parallel Puzzle Activity.

In the CCO version of the adivity, shown in Figure 11,
the positioning of ead puzze pieceis controlled using a
line segment. The geometric cater of the puzze pieceis
constrained to the midpaint of an “attached” line segment.
Two users adjust the locaion and rotation of ead piecein
an integrated manner by manipulating endpants of the
segment.

ol

Figure 11. Two users manipulating one piece using a
line segment in the Constraint Puzzle Activity.

Both the parallel and CCO versions of the jigsaw puzze

adivity have aother interesting feaure: they utili ze the
history of adions for eat objed to maintain a record of
the seledions, rotations and trandations performed by
ead user. Thisinformation can be saved and analyzed by
reseachers after the puzze has been solved. The interface
includes added visualizaions to help analyze measured
guantities guch as the number of adions on a puzzle piece
(by eadh user or by all users), the time of ead adion, and
the order in which the users interaded with ead piece
These added visualizations are described in more detail in
[1].

An Exercise in Coordination: The Chopstick Activity
The Chopstick adivity was another adivity developed by
a student testing the Colt System. This adivity is based on
a game where two people eat use a topstick to pick up
a“bean.” The users must coordinate tightly in order to be
succesgul at the game.

F‘ K
]
ety]
otatetel
Lotatetetels

Figure 12. Two users manipulating the large square
"bean" in the Chopstick activity.

There ae anumber of options in this adivity, some of
which are designed to make the @ordination much more
difficult. There ae two sizes of bean to pick up, large and
small. The bean can be square, which has more surface
areaon the sides to work with, or round. In more difficult
rounds the basket “floats’ above the ground, much like a
basketball basket. In the most difficult case, the basket
sowly moves aaoss the screen. Figure 12 shows the
simplest version of this adivity in adion.

The Color Matcher: Colt style

The Color Matcher adivity, as described in [4], was
originaly implemented in Microsoft's Visual Basic with
the Multiln system to suppat the AccessBus multiple
input devices. Multiln can only be used under Windows
3.1, and we wished to conduct a user study on a version of
this adivity under Windows 95 (for more information on
the user study, see[5]). The origina version of the Color
Matcher adivity took an urdergraduate student
approximately ten weeks to implement. The re
implementation of the adivity using Colt took the author
only a few days. This version included an interface that
mirrored the origina version as well as a new CCO
method for seleding the users’ color, shown in Figure 13.

Value: (102, 0, 204)

Value: (41, 35, 190)

00:36 Score: 84
Match the target color by choosing a color from the bitmap using the triangle

Figure 13. The Color M atcher activity user interface.

In this adivity, the users color is &t acording to the
color of a seleded pixel in a bitmapped image (e.g. a
palette). The pixel location is st by the locaion of the
centroid of atriange. Each user controls the vertex of the
triange that is colored to correspond to the wlor of their
cursor. Although it would be impradicd to have a
bitmapped image of a full 24 Lt color palette, the
Windows 256 color palette dfords a reasonable
approximation for the purpases of the adivity. The users
color in the Colt/CCO version of the adivity is sored in
the same way as the original applicaion — based on the
distance from the target color in RGB color space

TESTING THE TOOLKIT WITH DEVELOPERS

The graduate student who authored the PuzzZle adivity
(Marla Baker) was the first user of the todlkit. She felt that
the toalkit made her job alot easier by hiding many of the
detail s that are necessary in a multiple user system. These
details included dsplaying multiple airsors, mapping
users to the aursors, and trandating device dependent
input messages into a device independent form that
contains user information. Marla noted that her primary
difficulties included leaning the todlkit, Microsoft Visual
C++ and the Microsoft Foundation class hierarchy. Her
only negative comment about using the toolkit was that it
was constantly evolving at the time she was developing
her adivity, and that the documentation was mewhat
scace and aut-of-date [1]. The latter problem was later
redified.

The Chopstick game was designed and developed by an
undergraduate & the University of Washington (Emi
Fujioka) as a way to test the design methoddogy as well
as the toolkit. The design and development of Emi’s
Chopstick adivity was begunafter Colt had become more
stable than for Marla's projed and a user manual had been
written. Emi found bah the documentation and the
example cde to be useful, but did make some suggestions

on how to improve them. These suggestions will be
incorporated into the next version of the documentation.
Emi also was able to develop her adivity relatively eaily,
and also had to lean the compiler environment as well as
the Colt system. Part of her design would benefit from the
implementation of multi-way constraints, but since the
system is not yet supparting them, she used other methods
to smulate this. She did notice that it is currently
imposgble to get the information for both of the sticks
simultaneously and that the device e/ents arrive & the
applicaion serially. This was another areain which she
had to work around the eisting toolkit to permit users to
move the ball with the sticks.

FUTURE WORK

The Colt system was tested in the development of the
drawing, jigsaw, and chopstick adivities. Further testing
needsto be done with developersto improve the system.

There ae many enhancements we'd like to add to the
software toalkit, including adding suppart for other types
of multiple input devices, such as the USB, and suppart
for multi-way constraints. As the USB standard gains
accetance and is supparted, we would like to modify the
Input Trandation subsystem of the Colmage Shell to use
it. The CCOs designed to date can also be ported to ather
platforms, such as Java, suppart distance mllaboration in
WWW based adivities.

We dso wish to continue to expand the CCOs in CO-API
to suppat other types of collaborative interadions and
adivities. Colt could be used to implement collaborative
versions of popular games such as: Tetris™, where one
person controls dde-to-side motion while the other
controls rotation. Additionally, CCOs could be used in 3D
virtual worlds, or first-person perspedive games sich as
Doom™. An example of a CCO in such a game is a
cooperatively controlled latch on a doar where users may
be required, encouraged, discouraged or forbidden from
manipulating the latch at the same time.

CONCLUSIONS

This paper has given a description of the toolkit and
analysis tods in the Colt System, as well as collaborative
adivities that were built using them. The software toolkit
includes Cooperatively Controlled Objeds, objeds
generadize fine-grained shared objeds in being
manipulated by more mplicaed, higher degreeof-
freedom, or less intuitive methods. Additionaly, CCOs
enforce atighter degree of simultaneity than their fine-
grained shared courterparts. CCOs and the gplicdions
that use them can help encourage dose mllaboration and
communication among a group of users.

ACKNOWLEDGMENTS

We gratefully adknowledge the partial suppat of the
Washington Technology Center, Ark Interface Il, a
Packard Bell Company, and the Nationa Science
Foundation urder Grant Number RED-9155709

REFERENCES

1.

10.

11

Baker, M.J. Bricker, L.J, Tanimoto, S.L.
Coorperative interaction techniques in a computer-
suppated collabarative learning environment.
University of Washington Technicd Report UW-
CSE-97-04-03. April, 1997

Begade, J., Struble, C., Shaffer, C., and Smith, R.
Transparent Sharing d Java Applets: A Replicated
Approady, in Procealings of UIST'97, (Banff,
Canada, October 14-17, 1997, ACM Press N.Y., pp
55 64.

Bier, E. and Freaman, S. MMM: A User Interface
Architedure for Shared Editors on a Single Screen,
in Proceadings of UIST' 91, (Hilton Head, November
11-13, 1991, ACM Press N.Y., pp 7986.

Bricker, L., Tanimoto, S., Rothenberg, A., Hutama,
D., Wong T. Multiplayer Activities Which Develop
Mathematicd Coordination, in Procealings of
CSCL’ 95 (Bloomington, October 17-20, 1995, ACM
Press N.Y., pp 3239.

Bricker, L. Cooperativdy Controlled Objeds in
Suppot of Collabaration. Ph.D. Thesis, University of
Washington, Department of Computer Science and
Engineeaing, Sedtle, 1998

Cockburn, A. and Greeberg, S. Children's
Collaboration Styles in a Newtonian MicroWorld, in
Procealings of CHI'96 (April 13-18, Vancouver,
BC), ACM/SIGCHI, N.Y ., 1996 pp. 181-182

Ellis. C. A., Gibbs, S. J, and Rein, G. L. Groupware:
Some isaues and experiences. Commnunications of the
ACM, 34(1):38-58, 1991

Gutwin, C, Stark, G., and Greenberg, S. Suppat for
WorkspaceAwarenessin Educaiona Groupware, in
Procealings of CSCL’95 (Bloomington, October 17-
20,1995, ACM Press N.Y., pp 147156,

Hill, R., Brinck, T., Patterson, J. Rohdl, S., and
Wilner, W. The Rendezvous languege ad
architecdure. Comnunications of the ACM, 36(1):62-
67, 1993

Inkpen, K., Boath, K.S., Klawe, M., and Upitis, R.
Playing together beas playing apart, espedally for
girls, in Procealings of CSCL '95 (Bloomington,
October 17-20, 1995, pp. 177-181

Microsoft. Microsoft NetMeding. Available &
http://www.microsoft.com/netmeeing/ (Accesed
September 3, 1998.

12

13.

14.

Munson, J. and Dewan, P. A concurrency corntrol
framework for collaborative systems, in Procealings
of CSCW '96 (Boston, November 16-20, 1996, pp.
278287.

National Center for Supercomputing Applications.
NCSA Habanero. Available &
http://www.ncsa.uiuc.edw/'SDG/Software/Habanero/
(Accessed September 2, 1998.

Prakash, A. and Shim, H.S. DistView: suppat for
building efficient collaborative gplicaions using
replicaed objeds, in Procealings of CSCW '94
(Chapel Hill, October 22-26, 1994, pp. 153164

15.

16.

17.

RossFlannigan, N., "The Virtues (and Vices) of
Virtual Colleggues," in Tecndogy Review,
Cambridge, MA: MIT, March/April, 1998

Shen, H. and Dewan, P. Access Control for
Collaborative Environments, in Proceeadings of
CSCW 92 (Toronto, October 31-November 4, 1992,
ACM Press N.Y., pp 5158

Universal Serial Bus. Welcome to USB. Available
as http://www.ush.org (Accessed September 2,
1998.

