Support for Software Assisted Speculative Execution

E Christopher Lewis
September 30, 1998

Abstract

Computer architects strive to improve machine performadncexploiting parallelism, but control
flow and data dependences limit available parallelism. @lp&ee execution enhances parallelism by
selectively ignoring the constraints of control flow andaddépendences, thereby executing instructions
before it it known whether they are needed or correct. Sathvaasisted speculative execution is a form
of this tack where the running program directs the hardwarehiat instructions should be speculatively
executed and how. This report identifies and characterizedundamental architectural, implementa-
tion, and compiler issues of software assisted speculakgeution. These issues serve as the basis for
describing, comparing and contrasting proposed architestfrom the literature.

1 Introduction

In the never-ending quest for high performance, computer architeces stiéxploit parallelism. Pipelined,
superscalar and very large instruction word (VLIW) architectures are wellivkrtechniques for taking
advantage of parallelism, but their scalability is limited by control flamd data dependences. Control
flow divides a program's instructions into basic blocks that areafiyi very small and contain limited
parallelism [19, 34]. Wall [43] and Lam and Wilson [20] show that greasealtelism exists between the
instructions of different basic blocks. Furthermore, load instomgtiare often conservatively considered
data dependent on preceding stores just in case both memory operations thfesame address, thus
obscuring the parallelism that exists between instructions precedirgidhe and following the load.

The constraints on parallelism from control flow and data dependences magtidagively ignored
when the control flow is predictable and the dependences are conservative, eghmarallelism by ex-
ecuting instructions before it is known whether they are needed or corFectexample, none of the
instructions in the Figure 1(a) code sequence can be executed in paraded wd predict that the branch
will not be taken and speculatively ignore it. If we do, parallelism sxietween the instructions before
and after the branch, as illustrated by Figure 1(b). The bold instmstre speculatively executed. If the
prediction is incorrect, the speculation is incorrect and the hardwarerahé/software must ensure that

the program still executes correctly.

mul vl,v2,v3

add v4,vl, vl slot; slot,
bz v4, L1 t1 [mul v, v2,v3 [mul v5, V6, v7
mul V5, Vv6, v7 t, | add v4,v1, vl | add v8, V5, V5
add v8, v5, vb t3 | bz v4, L1
L1:
(a) (b)

Figure 1. Example of the benefit of speculative execution. (a) An iastnusequence, and (b) an indication
of how its instructions can be speculatively executed in parallel if thechresnpredicted to fall through.

Currently, dynamically scheduled superscalar processors are the most n@pewnlative machines.
In them, speculative execution is entirely under the control of the hemalwsing a large window of in-
structions that potentially must execute. From this window, thegssor issues multiple instructions per
cycle—some of which are speculatively executed—respecting the dependencesstidgmriant and
initiating recovery when speculation is incorrect. Hardware speculative eardmmediately benefits
existing software, but its resource complexity may limit its sucgeadijcularly when using sophisticated
heuristics to direct and limit speculation [25]. Management of an instmetindow of sizen is regarded
as anO(n?) endeavor, and studies suggest that an instruction window must beavgeytb exploit a sig-
nificant amount of parallelism [43]. Furthermore, hardware speculatioesisurce inefficient in that a
significant portion of the implementation logic is devotedgthedulingnstructions, rather thagxecuting
them.

Alternatively, speculation can be encoded in a program itself. This is caifédease assisted spec-
ulative execution, because the software—in practice, the compile—makéds¢tstons of what should
be speculated and how. When the software directs speculation, the hardwa@teatially be simpler,
faster and more resource efficient. On the other hand, software assistethpe@xecution requires
existing applications to be recompiled using new and sophisticatediletiomp techniques. In addition,
because it makes static speculation decisions, software assisted speextativiion is more sensitive than
a hardware approach to dynamic variations in program behavior.

Though limited forms of software assisted speculative execution e proposed without specific
architectural and hardware support[27, 30], their success is limitecelmyvtrhead of verifying correctness
of speculation. This report identifies the fundamental architectural eingahtation, and compiler issues
of software assisted speculative execution. Proposed architectureshieditetature are evaluated with

respect to these issues. This report is organized as follows. Sectian@uoes the foundational issues of

speculative execution. Section 3 introduces the consequences of correct aretirggeculative execution
and sets the stage for the examination of architectural and compiler issBestions 4 and 5, respectively.

The final two sections propose new research directions and give con@usion

2 Foundations

This section introduces basic terminology, the types of speculatiweuéinn, the classes of speculative

architectures, and a few core architectural issues.

2.1 Terminology

Data dependence relations describe ordering constraints that must be¢uldsstiveen instructions [44,
pages 137-138]. Arue data dependence exists between two instructions when the first produglesa v
read by the other. Amnti-dependence exists between two instructions when the first reads a location
written by the second. The dependence must be respected so that the tfiostions does not read the
value written by the second. Asutputdependence exists between two instructions that write the same
location. The dependence must be respected so that the location containg¢lcev@ue after the two
instructions execute. Output and anti-dependences are catieaje conflictsbecause the dependences
they represent are artifacts of reusing storage locations, not flowsaf dat

A control dependencalso describes an ordering relationship among instructions. Infornaallin-
struction,ip, is control dependent on a conditional branch instructigrf one branch of; always leads
to i and the other may not [44, pages 71-79]. In other words, instruigtidatermines whether or not
instructioni, may need to be executed.

An instruction, iy, is speculativewhen it is executed without regard for an apparent data or control
dependence from a prior instructian, We say that instructiof} is speculatively executed with respect
to i1. When the correctness of speculation is determined, we say the specula@ésoli'ed Of two
speculative instructions; andis, i» is considerednore speculativéhanis if i would normally execute

afteriz without speculative execution.

2.2 Types of Speculation

Control speculatiorallows an instruction to execute before a branch instruction on whighdontrol
dependent. It is speculated that the dependence effectively does not exist tbeadsection of the
control flow is statically known via prediction or profiling, thustmstruction will eventually need to be

executed. For example, consider the instruction sequence in Figurdf #fa)control dependence from the

add v1,v2,v3
beq v4,0,L1

mul v5,v6, v7 .st - 0(vl),v2
L1: - I d. . v3, 0(v4)
(a) (b)

Figure 2: Examples of the potential for (a) control speculation anddts) dependence speculation.

conditional branch to the multiply instruction is ignored, the tiplyy can be executed before the branch,
potentially in parallel with the addition instruction. If the bransttaken, the speculative execution of the
multiply is incorrect. The hardware and/or software must ensure lilegbrtogram runs correctly even in
this case.

Data dependence speculatialiows a memory load operation to execute before a memory store opera-
tion on which it may be data dependent. It is speculated that the dependercasgeavative byproduct of
imprecise compile-time analysis and does not really exist at run-tim tHat dependences due to regis-
ter operations are always accurate and never conservative. Consider theioipyptot data dependences
speculation in Figure 2(b). There is a conservative true data dependenctht store to the load because
v1 andv4 may hold the same address. If the dependence is ignored, the load can batsmdg@xe-
cuted before the store. If the two operations actually refer to the samesadthie speculation is incorrect,
and the hardware and/or software must ensureBagets the correct value. In addition to enabling the
parallel execution of loads with other instructions, there are other behefiata dependence speculation:
it allows potentially long latency load operations to be initiated eartyiamparallel, shortening the critical
path through a program; and it allows more freedom in exploiting fedisah for instructions that use the

value produced by a load instruction.

2.3 Classes of Architectures

There are two broad architectural approaches to software assisted specwativgoa, distinguished
by the granularity of the speculative unit: the instruction or teead. Athreadin this context is a
contiguous subsequence of a program's dynamic execution. Softwdine former identifies instructions
that may be speculatively executed in parallel, and software for the latteifigethreads that may be
speculatively executed in parallel. Despite their apparent differences, thasaclpgs are founded on the
same speculative principles given in this report. The reader may find itlusatefer to the summary of

major architectures from the literature in Appendix A while reading t&ort.

[[\
(»| node; | | node, | . . __,l node,)

Figure 3: Prototypical TLS architecture.

Instruction-Level Speculati@LS) architectures are statically scheduled superscalar architectures aug-
mented with support for the speculative execution of individualriresions. ILS architectures rely
on compilers to identify parallelism by statically scheduling a progsamstructions—some of them
speculatively—in an effort to co-locate independent instructions. Thestda [35, 33, 36, 32] and IM-
PACT [5, 6, 3, 1] architectures are examples of ILS architectures.

A thread-level speculativ@ LS) architecture is a small-scale multiprocessor-on-a-chip augmeitted w
support for the speculative execution of threads and for managingirdad dependences. A TLS archi-
tecture simultaneously executes different threads on independent prgoelssients, calledodes One
thread isolder than another if it appears earlier in the dynamic sequence of threads. Sinolaelnode
is older than another when it is executing an older thread. The oldest sadasidered thaonspecu-
lative or sequentiahode. The others are speculative nodes, because all their instructiorstemgghly
executing speculatively with respect to those in the threads on older.néthesn the nonspeculative node
finishes executing a thread, it signals to the next oldest node to benamspeculative. An architectural
diagram that characterizes a generic TLS architecture appears in Figure 3. rredrtlintroduced the
first modern TLS architecture, called the expandable split window paraalighater the Multiscalar ar-
chitecture [11, 37]. Subsequent TLS architectures from Debey. [9], Tsai et al. [39, 22], Oplingeret
al. [28, 16], and Steffan and Mowry [38] support speculation with varylagrees of hardware support.

The next section introduces several fundamental concepts that will be ussglore the details of
these architectures. In addition, these concepts will also serve as a basisfftarison and contrast of the

different approaches to software assisted speculative execution.

2.4 Topics in Speculative Execution

So far, this brief introduction to speculative execution begs certarioab questions. How do we ensure
that the side effects of speculative instructions do not affect correctarolgehavior when the speculation

is incorrect? How do we handle exceptions arising from speculativaugigins? How do we recover

when data dependence speculation is incorrect? Can we exploit TLS paraéieiarif some dependences
exist between threads? We briefly address each of these questions belowentbg complete and

comparative coverage in Section 4.

Preserving processor statéAs a nonspeculative program executes, the register and memory processor
states evolve from successive modification by instructions; and eachdtish executes within the pro-
cessor state resulting from the sequential execution of all previstiziations. State preservatioin a
speculative context ensures that instructions execute within theeproachine state despite speculative
execution. State preservation separagsculative stat@nd sequentialor nonspeculative stateand it
manages the task abmmittingportions of the former to the latter when speculation is resolved and cor-
rect. More specifically, state preservation (i) allows for the results nfrobspeculative instructions to

be discarded when the speculation is incorrect, (ii) enables re-executipaaflative instructions by pre-
serving their operands (the importance of re-execution will become apsr@nly), and (iii) eliminates

the need to respect output and anti-dependences. If an architecture does ¢ pupport for state

preservation, the compiler must manage it in software.

Preserving exception behavidPreserving exception behavior is analogous to preserving processor stat
An exception is an unusual condition occurring in the execution of druictson. Because it is not known
whether the execution of a speculative instruction is needed or correatot known whether the handling

of an exception due to a speculative instruction is needed or correct. ioedison, speculative instruc-
tion exception handling must be delayed until the speculation is redol@therwise, if, for example, a
control speculative instruction terminates a program due to a floatimg @xception and the speculation

is incorrect, the application is unnecessarily terminated. A speculativein@ TLS architecture simply
stalls when an instruction excepts until it becomes the nonspeculatife hoS architectures must delay
speculative instructions that except and re-execute them when the specida@solved, as described

below. When a delayed exception is eventually handled, it is considerethitted

Re-executing speculative instructionsSpeculative instructions may need to be nonspeculatively re-
executed once speculation has been resolved. This is essential when data depgmelaiaton is in-
correct: the speculative instruction and all instructions that depertchaursit be re-executed when the data
it was intended to read actually becomes available. In addition, re-executiars afchitectures that can-
not stall an excepting speculative instruction to simulate this effelsenvit is determined that a delayed
excepting speculative instruction is needed and correct, it and all depensieatiions are re-executed,

this time handling exceptions as they occur.

Synchronizing speculative instruction& significant amount of parallelism may be exploited by TLS
architectures even when the compiler discovers nonconservative, true dataldapes between threads.
This is calleddo acrosgparallelism. It is important that the two threads synchronize so tieaydlinger
thread does not read a value not yet written by the older thread, for thitsrésthe overhead of incorrect

data dependence speculation.

3 Consequences of Speculative Execution

Given the preceding presentation of the types, architectures and basicaéspesulative execution, we
are now prepared to describe its consequences. Depending on whether coddtal dependence specu-
lation is correct or incorrect, particular actions are taken. A summary appdaiguire 4. This discussion
serves as the context for the following section, which details the aathiial and implementation implica-
tions of these consequences.

Whencontrol speculation is corregcspeculative state and delayed exceptions are committed in archi-
tectures that preserve state and exception behavior. For ILS architecheegladive state is committed
by moving the buffered results of speculative instructions to theemipl state. A delayed exception is
committed by re-executing the excepting speculative instruction andsatlictions that depend on it. In
TLS architectures, a node's speculative state is committed when it beconmes#peculative node. TLS
architectures delay exceptions by stalling the whole node. As a resytcttmmit delayed exceptions by
resuming and handling the exception.

Whencontrol speculation is incorrectinnecessary instructions have executed. State preservation and
exception delay allows their side effects to be ignored, but outstarmdinyol speculative instructions
must be squashed. This is only an issue for TLS architectures, becaut8 alpéculative instructions
have already executed at resolution time. TLS machines simply squash afi arecuting beyond and
including the incorrectly speculated thread.

Whendata dependence speculation is correielayed exceptions are committed in architectures that
preserve exception behavior. ILS and TLS architectures re-execute and resecnéon, respectively, to
commit delayed exceptions. If there are no delayed exceptions to commitfiexemntinues normally.

Whendata dependence speculation is incorrectrue dependence between two instructions has been
violated by reordering the instructions. In other words, one u$ion was supposed to read a value
produced by another, but instead it read a stale value. The instructioretiththe stale value and all

dependent instructions must be re-executed to ensure that their opeasadbédncorrect values.

control data dependence
correct | commit state and delayed exceptions commit delayed exceptions
incorrect | squashpending speculative instructionsre-executespeculative instructiong

Figure 4: Consequences of speculative execution.

4 Architectural Support and Implementation

This section covers the architectural and implementation issues for singgEpeculative execution, begin-
ning with how speculation is encoded in a program. Next, hardware stfpppreserving state, preserving
exception behavior and detecting data dependence violations is coveredly, Riretthods of re-execution

and synchronization are discussed.

4.1 Encoding Speculation

Despite the fact that a machine executes instructions speculative)yo(it of order), it must be made
aware of the nonspeculative order of instructions so that it may prestate, preserve exception behavior,
and track data dependences. A compiler must communicate to the target machinestvhations are
speculated and with respect to what other instructions they are to be spetylaxecuted. This infor-
mation is encoded in a program by specifying each speculative instructionis locationthe position

in the program where the instruction would appear if it were nonspéeellaft this point, control and
data dependence speculation due to the instruction can be resolved becausgecoonprol flow and data
dependence information is available.

Before describing specific techniques for encoding speculation, we utesbme useful termBoly-
path control speculation allows instructions reachable from both outcomascofditional branch to be
speculatively executed with respect to the braMdbnopathcontrol speculation only permits instructions
along one path of a branch to be speculatively executed with respect to tloh bikémst compiler research
for speculative architectures statically predicts conditional brancheserplgiting monopath speculation.
The speculation distancef an instruction is the number of conditional branches between the speeulat
instruction and its home location. Architectures encode a speculativedtisn's home location in one of
three ways: by thread, sentinel or path.

Inthread encodingthe speculative relationships between instructions in a TLS archigemtenimplicit
in the threads that contain the instructions, because the threads agd stastder. For example, threads
1 (the oldest), 2, and 3 (the youngest) from the control flow gragtigare 5(a) are assigned, in order, to

the nodes of a TLS machine. The instructions in each thread are potenpiedylatively executed with

add.s vl1,v2,v3

beq v4, v5, L1 add. s1 v1,v2,v3
chk vl beq.n v4,v5,L1
L1 ... L1:
(b) (©)

Figure 5: Examples of encoding speculation by (a) thread, (b) sentine{capdth.

respect to the instructions in older threads. The TLS Multiscalar archite[87] includes, in the program,
explicit thread descriptors defining each thread and their relationstepshe potential successor of each
thread). Other TLS architectures [39, 28, 38] simply use a special fstiuiction to spawn new threads. In
either case, threads are started in proper execution order so the hardware ctretspelculation. Thread
encoding supports only monopath speculation, and it can not be madekewtlo ILS architectures.

Sentinel encodingntails tagging a speculative instruction with a single speculativert placing a
corresponding sentinel instruction in the speculative instructibome location. The hardware matches
sentinels with speculative instructions via additional structurek ag an augmented register file. Encod-
ing by sentinel has the disadvantage that the hardware only becomes awsspetfulative instruction's
home location when the location is reached. As a result, the hardware castirgudsh the speculation
distance of instructions as they are encountered, so speculative immstsuzzn not be speculated with re-
spect to each other.€., speculative instruction must be in order). On the other hand, Walfor polypath
speculation of unlimited distance. For example, the machine is awarénthatltlition instruction in Fig-
ure 5(b) is speculative, signified by thes" suffix, and is speculated with respect to the branch because
the sentinel,¢hk’, appears after the branch. In this case, the sentinel is associated withtthetion by
naming the target register of the speculative instruction. The ILBAGIT architecture [23] uses sentinel
encoding for control flow speculation, and it was later augmented to useilarsgantinel encoding for
data dependence speculation via the memory conflict buffer (MCB) [13].

Path encodingexplicitly indicates the control flow path that must be taken to reach a steeuin-

struction's home location. For example, the home location of the Ei@euinstruction add. snnt ' is

reached by not taking the next two branches and taking the third. Thisiagsagports polypath specula-
tion. If only monopath speculation is needed, branch predictions can beezhicothe branch instructions,
so that speculative instructions only need to indicate how many conditimanches must be traversed to
reach the home location. If any of these branches are incorrectly predictémrtteelocation will not be
reached. For example, the conditional branch in Figure 5(c) is predictesltottiaken, signified by the
'. n' suffix, and the speculation distance of the addition instruction iBHe home location is reached if
the conditional branch is not taken. Path encoding has the advantage thatdia@re can determine the
speculation distance of instructions as they are encountered. As a irestalictions with different specu-
lative distances may be speculated with respect to each other. Encoding by ptith isadvantage that
the architecture limits the maximum speculation distance, though Badnget al. find that limiting the
distance to only seven is not a severe restriction for data dependenckasipad@]. Though path encoding
appears to only encode control speculation, data dependence speculation oggybagked on control
speculation. For example, control speculative memory operations can atsosidered data dependence
speculative with respect to any preceding memory operations they have mx@ud. The ILS Boosting

architecture uses path encoding for control speculation [35].

4.2 Preserving State

Architectural support for preserving state allows an instructiontfrdely speculated without regard for
its register and memory side effects. Different architectural mechanismsrpee®gister and memory

State.

4.2.1 Register State

Register state is preserved by buffering speculative instructiogistee updates in one or more additional
register files. TLS architectures have a register file local to each node. &htangne node's local register
file are not reflected in other register files, preventing younger nodesdffecting older ones. Figure 6
illustrates the issue of preserving register state in ILS architect8tggpose it is beneficial to speculatively
execute the divide instruction in (a) before the addition. If an aechitre provides register state preser-
vation, the divide is simply tagged as speculative and moved, as in ithpw regard for the fact that it
corrupts registev 3 if the control speculation is incorrect. If preserving register stat@isupported, the
compiler must explicitly rename the result of the speculative instmgés in (c), and copy the speculative
result back to the appropriate register if the speculation is correct.

The ILS Boosting architecture preserves register state via a fixed nuhsleadow register fileg35].

10

div.sl v30,v5, v6

add vl,v2,v3 div.sl v3,vb5,v6 add vl,v2,v3
beq v4, 0, L1 add vl,v2,v3 beq.n v4,0,L1
div v3, v5,v6 beg.n v4,0,L1 nmov v3, v30
L1: add v7,v8,v3 L1: add v7,v8,v3 L1: add v7,v8,v3
(a) (b) (©)

Figure 6: Code sequence demonstrating the role of state preseryajiémonspeculative code sequence,
(b) control speculation in an architecture that preserves state, and (c) @p#coilation in an architecture
not preserving register state.

Because the architecture uses a path encoding for control speculation, aspedaustruction can write
its result directly into a shadow register file associated with theuosbn's home location. At each con-
ditional branch instruction, the valid registers in the shadowstegfile associated with the taken path are
copied to the nonspeculative register file. This is caltechmittingthe shadow register file to the non-
speculative register state. Similarly, a speculative instruction reansthe shadow register file associated
with the instruction's home location. If the register has not bedtanrby a preceding speculative instruc-
tion, it is invalid, and a less speculative shadow register file is dtatstor a valid version of the register.
Successively less speculative shadow register files are checked for a valahwadrie register until the
nonspeculative register file is reached.

In order to support polypath speculation, there is a shadow registeisBociated with both the taken
and not taken paths of each conditional branch instruction. If instrictom allowed to move beyomd
conditional branches"21 — 2 shadow register files are required, thus the register files form ayttiresr
with the sequential register file at the root. Alternatively, monogatttulation requires only one shadow
register file per branch, or total. Yet another alternative is to support monopath speculation with o
a single shadow register file, wherein each register is tagged with an indicdtthe home location of
the speculative instruction that wrote it. At each conditional brandfisters are selectively committed
or invalidated based on these tags, allowingjstance speculation with only a single shadow register file.
This approach simulates the general monopath approach with less hardwatle eSahishow that this
last method has performance comparable to the more general monopath appraanhchine with very
limited parallel resources [33]. Itis unlikely that this remains truevister issues machines.

Architectures that do not preserve register state, such as the IMPACTeatand [5], relegate the
responsibility to the compiler. Register pressure increases, beca@datn extends the live ranges of

registers; Section 5 clarifies the reasons for this. The hardware appmeshat suffer from this problem,

11

because the hardware separates speculative and nonspeculative registerfetéiasyeincreasing the
number of registers. Mahlket al. find that a machine not preserving register state must have at least 48
registers to compete with a 32 register machine that does [23]. Trsuoglort for preserving register state

effectively increases the number of registers, their use is restricteddeping state.
4.2.2 Memory State

Architectures that prohibit both control speculative stores and menmasation reordering do not need
to preserve memory state. The General Percolation variant of the IMPACTieattine takes this ap-
proach [6], thus simplifying hardware at the expense of limitingap@lism. Mahlkeet al.find a 7% loss
of performance from prohibiting control speculative stores along [23

The simplest approach to preserving memory state in machines suppodivapath speculation is to
use a modified store buffer. The store buffer reorders stores accdedihgir nonspeculative order. If a
load reads from an address for which there are entries in the store hiuffads the value associated with
the most recent store to the same address ignoring more speculatdse $then a speculation is resolved,
its store buffer entries are either committed to the rest of the memestgrayor invalidated. A variant of
the store buffer approach is used by ILS architectures and some TLS araleitedf, 16]. Oplingeet
al. find that a TLS architecture can exploit a great deal of parallelism with odlyi8/tes of buffer per
node [28].

Most TLS architectures preserve memory state with local data caches in ordeirttza reliance on
a centralized structure. They use variants of cache coherence protocols sotdmbacomes visible to
younger nodes but are hidden from older nodes. Loads that miss inclediata cache may be satisfied
by the youngest older node that has the data in its cache. Speculativeasgitasffered in the local cache
and are not committed to memory until the node becomes nonspeculativeichttimie all speculation
is resolved. As a result, speculative state can not be evicted from the aaidite@inode becomes non-
speculative. Steffan and Mowry find that a 16KB two-way set-associativecdatee with a small 4 entry
victim cache eliminates nearly all node stalling due to conflicts [38]. Geipall further refine this general
approach [15], adding hardware that prevents the need for the local cach@uogeel whenever a node
starts a new thread. As a result, the cache is warm and the write-back ofatjecstiate does not happen
all at once, flooding the memory system.

Unlike for registers, buffers for preserving memory state may reach cgpHc® architectures legis-
late the problem away, requiring the compiler to limit the numbemfitaneously unresolved speculative

stores. In a TLS architecture, a node with a full buffer or cache simplissintil it becomes the nonspec-

12

ulative node.

4.3 Preserving Exception Behavior

Preserving exception behavior is analogous to preserving state: ¢heffddts of a speculative instruction
are delayed until it is determined that the instruction is needed and corfeabe ihstruction is needed
and correct, the delayed side effect, in this case delayed exception, is committiisdsection discusses
different approaches to preserving exception behavior.

An architecture not preserving exception behavior simply immediatelginepll transparent excep-
tions (.9, page faults and TLB misses) on speculative instructions and ignoresrraihal exceptions
(e.g, floating point exceptions and bus errors) on speculative instrigtiinis approach guarantees that a
terminal exception will not be handled unless it is necessary. In the gdeesinal exception that should
be handled may be lost, and spurious transparent exceptions may be uanlydessdled, impacting per-
formance but not correctness. Augestl. find that 13% of transparent exceptions are spurious [1]. If a
terminal exception is an indicator of an error, exceptions are only loptdiyrams that contain errors. The
General Percolation variant of the IMPACT architecture does not preservetiexceghavior [6].

An architecture that preserves exception behavior must delay exceptionngafud speculative in-
structions until the speculation has been resolved, at which time itdakmwhether the instruction is
needed and correct. If it needed and correct, it is re-executed and the exceptiodiésihan

TLS architectures only allow the nonspeculative node to raise excep#dinather nodes stall when
instructions except. When and if the stalled node becomes the nonsperatadie, the exception is han-
dled and the thread continues executing. To mitigate the loss of paalldlie to stalling exceptions, a
TLS architecture could stall on terminal exceptions but repair transpaxeeptons speculatively. The
performance implications of this have not been studied.

ILS architectures can not employ the same stalling technique because botlagpeemnd nonspecu-
lative instructions appear in the same instruction stream. These arahgeeichieve the same effect by
temporarily ignoring an exception on a speculative instruction. Attime of speculation resolution, if
the excepting instruction should have executed, the exceptingatistn and all dependent instructions are
re-executed, as described in a later section. Two methods of exception deléscassed below.

Because the Boosting architecture [35] uses a path encoding of speculdtiom,a speculative in-
struction excepts, the hardware sets an exception tag in the shadoterélgisassociated with the home
location of the instruction and ignores the exception. When that hooation is reached, all speculation

is resolved, and re-execution is initiated if the exception tag associatedheicurrent block is set. If the

13

home location is not reached, the exception is ignored because the speouksgimcorrect.

The IMPACT architecture encodes speculation via sentinels [23], so the luzation of a speculative
instruction is not apparent from the instruction itself. As a resultpecial exception tag associated with
the target register of a speculative instruction is set when the atigtruexcepts, and the exception is
ignored. Other speculative instructions tag their target register wienread a register that has been
tagged. When a nonspeculative instruction in the home location, actinggainel, reads a tagged register,
the speculation has been resolved and re-execution is initiated. As anzgitimj the address of the
excepting instruction is propagated in registers along with the tagexgcution can begin at the exact
instruction that excepted, rather than at the earliest speculative instrdicdim the home location where
the exception was detected.

The scheme described above does not work for speculative store irmtgjdtecause they do not have
a register target. In order to handle this case, store buffer entries aiéeddo include an exception tag
and an excepting instruction address. The sentinel for a store dogseedys register, instead it provides

an index in the store buffer. Otherwise, the recovery approach is the same.

4.4 Detecting Data Dependence Violation

In order to detect incorrect data dependence speculation, speculative architeatstasack memory
operations. If a load precedes a store to the same address, and the load Ispebelated with respect to
the store, then the speculation is incorrect. The load operation andtaliatisns that depend on it must
be re-executed. Note that hardware that preserves state eliminates the maekl amdl recover from data
dependence violations due to storage conflicts from output and anti-adiepess.

The Address Resolution Buffer (ARB) was designed for the TLS Meater architecture [12]. It
contains a number of queues. Each queue tracks memory references to a subsetdofréiss space,
allowing for faster operation and parallel access to different queues. Each gaoeders all the memory
operations to its subset of the address space. When a node stores to ar Hudrhas already been
loaded by a younger node, a data dependence violation is signaled. Recenthit&ctures use a more
distributed approach to detecting data dependence violation via a pedatadeache [38, 16, 15]. Cache
lines are tagged when they are speculatively read, and store addresses are bovaddass. When a
node sees a store from an older node to an address that the current nodedthssgleculatively read, a
violation is signaled. If TLS dependence tracking resources are depletechded to evict a speculatively
loaded cache line, a speculative node may be simply stalled until the motenles the nonspeculative

node. At this time, dependence violations no longer need to be tracked acattieline can be evicted.

14

The ILS IMPACT architecture has been extended to support data dependendetipevia the Mem-
ory Conflict Buffer (MCB) [13]. It is unique in that it tracks dependemi@lations without preserving
memory state, thus it only allows loads to be speculated with respectras st data speculative load
instruction may conflict with subsequent stores up to its correspgrsgintinel instruction. A conflict bit
is associated with each register. A sentinel instruction looks at thedwtided with the target register
of its corresponding load operation to determine whether a store sudrseq the load wrote to the same
address. If one has, re-execution is initiated. The MCB tracks memorgtiqes like an associative cache.
An entry is added for each data dependence speculative load, associating thediesd adth the target
register of the load. Any subsequent store to the same address Wefarertinel is reached, causes the
conflict bit on the register to be set. The MCB is conservative in theti the conflict bit on a register
when the corresponding entry in the MCB is replaced due to conflict. Irtiaddin order to conserve
space in the MCB, a hashed version of the tag is kept, thus potentialljingsin references to different
addresses sharing the same line in the MCB. Both these issues réalsiéiconflict reports, which degrade

performance. In practice, false conflicts are rare, representing only 1% of #ittfi3].

4.5 Re-executing Speculative Instructions

Speculative instructions may be re-executed via either a recovery blocknar iaplay. Arecovery block
is a compiler generated sequence of instructions that may require re-erd85tid 3]. Recovery blocks
are separate from the body of the program, thus duplicating speculaivactions. When re-execution
is necessary, the hardware executes a particular recovery blochlida replay mechanism selectively
re-executes instructions from a previous point in the code [1,]6,12& latter is more space efficient, but
it must fetch and potentially execute many more instructions than tieefo Compilers for architectures
that do not preserve state must ensure that all operands to potentiedgceeted instructions are available
at re-execution time. The details of this are explored in Section 5.

ILS architectures use both recover blocks and inline replay. In practice, Tdif#extures re-execute
using inline replay by simply stopping and restarting a thread, bed¢haseardware cost of selective re-
execution is not justified.

The basic tradeoff of these two approaches is code size versus hardwarexigmpVhile recovery
blocks require no special hardware, they consume a significant amoustroicition memory, proportional
to the number of speculative instructions. Sndthal. argue that recovery blocks never increase code size
beyond a factor of two [33, 36], Gallaghet al. experimentally measure an average increase of 15% [13],

and Augustt al. find an average increase of 23% [1]. Inline replay does not change the zeds sill,

15

but it requires special hardware to determine which instructions—ofenpally long sequence—require
re-execution.

Assuming re-execution is not frequently required, the performancedffsdof these approaches are
not obvious. Inline replay may have to fetch a great many instructtoastsuitimately do not require re-
execution, resulting in slow re-execution. When a recover block actuaily, fuwill be very fast because
it contains exactly the instructions that require re-execution. But lseceatexecution is not frequently
required, invoking a recovery block will often result in instruction aaahisses and perhaps page faults.
Augustet al.find that in the IMPACT architecture, recovery blocks increase the instructiche miss rate
by 40% on average versus inline replay, resulting in a 6% executioagiowdown [1].

Re-execution can be initiated implicitly, explicitly, or spontaneguSpecial instructions, such as sen-
tinels, that check for a need to re-execute due to incorrect data dependence Epecukatception delay
are provided to support explicit re-execution initiation. The adtlidshe recover block or the first in-
struction for inline replay is either encoded in the instruction or iraariliary structure [23]. Existing
instructions, such as branches, can implicitly initiate re-executiomsd linstructions examine auxiliary
structures to see if replay is necessary and initiate it if it is. The re-¢énecaddress is either held in
the same auxiliary structure or it is kept in a table indexed by theesddsf the implicit initiation instruc-
tion [32]. On some TLS architectures, particular instructions domitiate re-execution. Instead, when the
data dependence speculation tracking hardware detects a violation, it gmrghrinitiates re-execution

in the appropriate thread [37].

4.6 Synchronization

Where true data dependences exist and are statically manifest between threddsScdrahitecture, it
is important to synchronize the threads to prevent incorrect data depensieeculation. Recall that if a
node running a younger thread reads a location before a hode runnindearthmead writes to the same
location, the younger thread will be restarted, sacrificing a significantiahod parallelism. TLS architec-
tures may support explicit and implicit interthread synchronizationa@mmunication mechanisms. An
explicit mechanism is one that is encoded directly into the program abihegf synchronization or com-
munication. Explicit synchronization mechanisms can be built from pecidative write instructions or
special signal/wait instructions. Implicit synchronization and comication occur as side effects of other
instructions. Note that an explicit communication mechanism can beftmriitan explicit synchronization
mechanism.

The Multiscalar architecture provides implicit register forwardinf f2sulting in implicit synchro-

16

nization and communication. The last assignment to a register in each tkréamvarded to younger
threads. When younger threads read the same register, they will stedhaniew value is received from
an older thread. Each node determines whether it needs to stall or not basedtbarneahcurrently active
older node writes this register and whether it has been forwarded yet. ifthe of this scheme is that
a compiler's sequential view of a program does not change significahtiged not do anything special
to maintain true dependences due to registers. Other than conciseness dfieazles no benefit of this
approach over explicit communication, because they both require the tatioeegister use analysis.

A TLS architecture proposed by Tsai and Yew provides a similar implieiclmanism for forwarding
values in memory [39]. At the beginning of every thread, special in8tms identify the memory ad-
dresses, callerget store addressethat the current thread writes that subsequent threads may read. Each
node forwards its target store addresses to subsequent nodes where thggvamed. Values written to one
of a node's target store addresses are forwarded to younger nodes. A rdadjet atore address from
an older node causes a node to stall until the node receives the vallenvoitthe same address by the
older node. Unlike for register forwarding wherein the programcllyi names the register that need to
be forwarded, the target store address mechanism allows the programamidglly identify addresses
by which threads must be synchronized. This mechanism is provided ém trdoften the blow of not
supporting general data dependence speculation. It has not yet been demdtisatathe benefits of this

scheme actually improve real program performance beyond explicit coroatiam.

5 Compiler Support

Compiler supportfor speculative architectures is in its infancy, beaaabéectural design has received the
bulk of the research attention. This imbalance most likely stems fromaillimgness to devote research
resources to compiling for an architecture whose promise has not yet beemstestted. Nevertheless,
a number of compilation issues for ILS and TLS architechagebeen studied, and they are discussed

below.

5.1 ILS Compilation

Compilers for ILS architectures use variants of trace scheduling [1O0to2@iscover and identify paral-
lelism. Atraceis a part of a likely path through a program, chosen based on static jjwedior profile
data of branch outcome3race schedulingeorders instructions within a trace—respecting dependences

between instructions—in order to co-locate independent instructigpsesing parallelism to the hardware.

17

5.1.1 Eliminating Scheduling Constraints

Architectural support for speculative execution permits the instsaccheduler to ignore certain control
and data dependences. Rather than modify the scheduler, it is cleaner to actualhe dependence
arcs in the dependence graph, which serves as input to the scheduler. Tieugpéndences still exist,
the edges in the graph that represent them are removed so that they can bd.ighamtrol speculation
allows most control dependences to be removed. Control dependences betwetedranst be kept
to preserve the order of branches. If the target architecture does not pemtribl speculative stores
instruction, control dependences to store instructions must be Kefhe target architecture does not
support register state preservation, a control dependence from a boaeabh instruction whose target
register is live at the point of the branch must be kept; this preveffttrace instructions from reading
values written by speculative instructions. Architectures that lingitgpeculative distance of instructions
must preserve dependences from branches at this distance to limit excessiveaton. In addition,
compilers for architectures supporting data dependence speculation renegata dependences arcs due
to memory operations.

State preservation allows output and anti-dependences due to memorngt@redgetween a speculative
and nonspeculative instruction to be ignored. They may not simpigrbeved from the dependence graph,
because before scheduling is performed it is not known which instngtece speculative. Though the

scheduler could be modified to exploit this situation, this has ncagpeared in the literature.

5.1.2 Enabling Re-execution

The operands of potentially re-executed instructions must not be attembefore they are re-executed.
State preserving architectures support this in hardware. If speculagivedtions need to be re-executed,
the buffered speculative state associated with them is discarded, endairthdir operands will have
correct values when they execute a second time. This frees the compiler afrtien of considering the
re-execution issue when allocating registers. As a result, registeatibn can be performed independent
of and prior to instruction scheduling. A round-robin allocator imizes storage conflicts that may limit
speculation. A standard trace scheduling algorithm can then be used, buasipe@ustructions must have
their speculation depth encoded in them. The scheduler does not need to kassjpetulative instruction
operands are preserved, because the hardware guarantees this. The schegulthghaleveloped by
Smithet al.[33, 36, 32] for the Boosting architecture takes this approach.

Compilers that target architectures that do not preserve state must#xplieserve operands to spec-

ulative instructions until the speculation is resolved. The irsibn scheduler and register allocator must

18

work together to generate code that respects this constraint. The IMPA@fileo exemplifies this ap-
proach [23].

First, the scheduler runs. It must ensure that the operands of alltjaditere-executed instructions are
not overwritten before speculation is resolved. The scheduler prevemstauction from being specula-
tively executed before an instruction that overwrites any of its operaHuis.implies that no instruction
that writes to one of its operands may be speculated. These instructiostilida@ speculated via renam-
ing: the target is given a new name and subsequent speculative uses are ¢haafgrdo the new name;
at the point where the speculation is resolved, the value in the new maistebe copied into the old name
so that subsequent nonspeculative instructions use the correct value.

If there were an infinite number of register, the process would bénédisBut at this point, the code
must be mapped down to a small number of registers without corgipiim speculation performed by
the scheduler. The compiler definegeatartable intervafor every control speculative instruction. This
interval starts with the speculative instruction and extends to the phere the speculation is resolved at
its sentinel. The interval contains instructions that may potentiagdrto be re-executed and those that
do not, such as nonspeculative instructions. Letitleein set of an interval be the registers that are read in
the interval before they are overwritten.

If the register allocator is not sensitive to the issues above, it mexept re-execution of a restartable
interval by reusing a register in the live-in set. This is preventeeidtgnding the live range of all registers
in an interval's live-in set to the end of the interval. The registercatiaor must also be careful about
inserting spill code. If a register in the live-in set is spilled, iaymot be available when the interval
is re-executed. If this happens, the instructions that use the spitgster must be de-speculatea(
moved downward, toward their home location) until the spill probgas away, potentially forcing the
de-speculation of later dependent instruction. In the limit, they mdke their way back to their home
locations and no longer be speculative. In addition, because exceptioasairgad in tags associated with
registers, the target register of a speculative instruction mudbaaspilled. The register allocator must
de-speculate speculative instructions that have their target spillédhenproblem goes away.

Bringmannet al. [3, 4] have proposed a modified form of the IMPACT architecture that usite-
back suppressioto ease the register pressure caused by extending the live rangesbérégiinclude a
whole restartable interval. The idea is that once a condition requigiggecution, such as an exception,
is detected, writes by speculative instructions are suppressed, ernbatinggisters in a live-in set will not
be overwritten. It has not been demonstrated that this approach resuftsrimvement versus the IMPACT

architecture.

19

5.1.3 Enhancing Instruction Scheduling

Hwu et al. [17] describe a number of techniques for enhancing the parallelism foptttetabove tech-
nigues.Trace enlargementia loop unrolling gives the scheduler more instructions fromolho choose.
The authors also describe a number of techniques for eliminating dependéricksnay constrain par-
allelism. Renamingeliminates storage conflicts due to variable reu€gperation migrationmoves an
instruction whose result is not used in its trace to a less frequexgiguted trace. As a result, all data
dependences due to the instruction are eliminated from the more fregeratiuted tracdnduction vari-
able expansioandaccumulator variable expansiaiiminate dependences that result from loop unrolling.
Dependences between references to induction variables and accumulator variableéfdrent derations
of an unrolled loop can be eliminated by assigning a different registatb unrolled iteration. Prefix and
epilogue code is required, and naturally register pressure is incre@paalation combiningnerges two
flow dependent instructions into one when both instructions contanpite-time constants.

In the process of developing instruction schedulers for ILS architestoesearchers address a number
of shortcomings of basic trace scheduling. Trace scheduling optimibefooithe chosen trace, so it may
result in very inefficient off trace code. This is particularly problematieew static analysis or profile
information does not match a program's actual dynamic behavior. Theuderedf Smithet al.[33, 36]
and Deitrich and Hwu [7] only speculate when it does not have a significaetrsel effect on off trace
code. Trace scheduling has a complex bookkeeping stage that patches off tra¢e cothpensate for
instruction movement within the trace. Hwtial. develop a new compiler structure called guperblock
to mitigate this complexity [17]. The superblock is a trace that hasalldts side entrances removed by
a technique calledhil duplication The elimination of side entrances greatly simplifies the scheduler's

bookkeeping stage at the expense of increased code size.

5.2 TLS Compilation

A compiler for a TLS architecture must address issues of thread selectieddicly, synchronization and

communication.

5.2.1 Thread Selection and Scheduling

Thread selection may be based on control flow graph (CFG) nodes, loopoites;adir procedures. The
CFG-based approach is the most general, so we discuss it first.
Research in compiling for the Multiscalar architecture develops the Gi¥8ebapproach to thread se-

lection [41, 42]. The nodes of the CFG are partitioned into threads &ffart to minimize the following

20

reasons for performance degradation: (i) control flow misspeculatiprinter-thread true data depen-
dences, (i) memory dependence misspeculation, (iv) load imbalance, and (v) taskead. The basic
thread selection algorithm traverses a CFG beginning with the ratg.ndodes are added to the current
thread if a heuristic condition is met. When no more nodes can be addetthrétagl is complete. The
process repeats for nodes not already added to a thread. The heuristicddndodion is a prioritized
combination of five heuristics, each attempting to minimize the fivetppabove. After thread selection,
the compiler constructs a descriptor for each thread that contains the addoéssstructions that may
follow the thread. The Multiscalar hardware is aware of these desiptat uses them to schedule subse-
quent threads during program execution [18]. Rotenkerd. move these compiler issues to the hardware
in an architecture calledteace processof31].

Loop-based thread selection assigns each iteration of a loop to a differead tHnfortunately, por-
tions of code that do not contain loops amenable to speculative paraltatizidi not benefit from this
approach. Oplingegt al. use profile information to decide—in the presence of nested loops—uadbas |
should be parallelized [28]. The five reasons for performance degradkdicussed above are all relevant
in this context. The bulk of recent research takes the loop-based approa2B,[38], because a significant
portion of execution time is spent in loops and the scheduling meahdnisparallelizing loops is very
simple: scheduling typically occurs in software via a fork instruttioat simply specifies the next loop
iteration to execute.

For procedure-based thread selection, before each procedure call, a threadnisdsfzaexecute the
code following the call. Hammonet al.[16] find the approach to be impractical, because there is insuffi-

cient parallelism between procedures and subsequent code.

5.2.2 Synchronization and Communication

Vijaykumar describes compiler support for register forwarding [#thie Multiscalar architecture, but the
techniques are applicable to any architecture supporting register fongaFebr each thread, the compiler
must first identify what registers need to be forwarded. Conservatitreés/can be all registers written
in the thread. With better analysis, registers that do not live beytomthread can be ignored. Next, the
compiler must identify the point in the program where the registetbeaforwarded. Conservatively, this
can be after the last instruction of the thread, but analysis is often alidientify the last assignment to
a register in a thread, at which time it can be forwarded. Alternatively, eagkspeculative forwarding

schemes can be used to allow registers to be forwarded as early as possiblé&ydagjuent threads may

Ipreserving state eliminates the need to preserve outpuraindependences.

21

need to be squashed if they are using an incorrect version of a registisrisThe register analog of
data dependence speculation. Next, the instructions of the thread ayanieed to move value producing
instructions early in the thread and value consuming instructiongnlake thread in order to improve do
across parallelism. A cost model determines what instructions may benefifrorasnovement.

In addition, the compiler must insert synchronization to stall irdtons that can not be speculated,

such as system calls and I/O instructions.

5.2.3 Enhancing Parallelism

A TLS compiler can enhance parallelism by eliminating certain classes of dependrruiesas those due
to induction variables and reductions [38, 41]. In addition, dependert@sbn instances of certain library
routines can be eliminated by rewriting the library [38]. For examgble,C functionf get c(st r eam
reads the next character at the current positisstineam and it advances the current position. There is a
true data dependence between successive calls to this function througjuiteeat. The function can be
rewritten so that in certain cases it uses random access to get a particular chamfiter @iminating the
dependence.

Improved memory disambiguation can also improve performance. Synehrgriiue dependences
reduces thread squashing an restarting due to incorrect data dependence spepolatitially improving
performance. Static techniques for disambiguating array references [14,d24dtkE@trary pointers [21, 8]
exist with varying degrees of success, but their impact on speculativéemttines has not yet been studied.
Profiling is also useful for identifying operations that frequen#gult in misspeculation, which would

benefit from synchronization [28].

6 Research Directions

As a relatively recent advent, software assisted speculative executiongeararity opportunities for re-
search. Below, we summarize four areas of potential research: (i) studyirgldressing the performance
loss when the compiler's view of the hardware resources differs frertatiget machine, (ii) addressing
the issue of poor resource utilization, (iii) studying the impdcpeculation in different application and
programming language contexts, and (iv) comparing different approactsgectulative execution. Un-
fortunately, any research in this area is impeded by the lack of a commontinétase. Advances will
be slow and modest if researchers must develop their own compilers and mathirdators. Hewlett-
Packard, the IMPACT group from the University of lllinois at UrbaBhampaign, and the ReaCT-ILP

group from New York University have established the Trimaran prdjectevelop an infrastructure for

22

research in instruction-level parallelism [29]. This enabling projeatdtep in the right direction.

6.1 Compiler/Resource Mismatch

A deficit of ILS architectures is that they expose resource availabilityh ss issue width, to the static
scheduler in the compiler. The result is that programs are compiled fantiaydar machine configuration,
and they may perform poorly on other configurations. For example, aitzmgrgeting an 8 instruction
issue ILS machine may very aggressively speculate in order to use all épitabllel resources, but if the
compiled program runs on a 2 issue machine, performance may suffer cuetreict speculation. This is
a serious issue because economics require chip makers to sell productsatgmsee points. Traditionally
clock rate and cache size have defined microprocessor price points, buvidués a logical next step.
The first step in exploring this issue is evaluating the sevefiti@problem. If the Trimaran project lives
up to its claims, a few adjustments to their compiler and simulator deedih to answer the question.

If compiler/resource mismatch is a problem, we need to develop technig@ekltess it. | propose
adding hardware support for selective dynamic de-speculation. The leowgny aggressively speculates,
but the hardware only uses the speculative instructions to fill oibemmpty issue slots. When speculative
instructions are encountered they are placed in a queue, callgthmic de-speculation quews perhaps
in one of several queues, each containing speculative instructions ofaulzarspeculation depth. When
the processor has available issue slots and there are no nonspecusdtivetions ready, it simply grabs the
oldest speculative instructions from the queue. In many ways, thishbdee| of a dynamically scheduled
processor except that a large instruction window is not required tafgtidictions for speculation, because
the compiler has already identified them to the hardware. The processordallstgcheduled, but it can
selectively de-speculate when there is no apparent benefit. The dynamic deapeaeues are very
simple because dependences between instructions need not be tracked. In evdkrate this research,

the queue structure needs to be defined and simulations need to evalatieeits

6.2 Addressing Resource Efficiency

Speculation enables a greater degree of parallelism, but in the near fustitedppears quite limited.
As a result, it is difficult to justify high issue machines when thegstty go under utilized. | propose
introducing simultaneous miltithreading (SMT) [40] ideas into siaftware speculative execution arena.
Such a union would provide both the single application benefits 8fdtchitectures and the throughput
benefits of the SMT architecture. Though SMT is a dynamically scheduledsaister architecture, ILS

additions would allow for a high degree of parallelism without adargstruction window.

23

| recognize that speculation is somewhat at odds with the SMT throagjoails. | propose using the
de-speculation technique, above, so that speculation is only used toéitiagle empty slots. The hope is
that single application performance can be improved and dynamic hardwadusioy hardware reduced
in size without adversely impacting multiple application performance.

In TLS architectures the efficiency issue becomes more complex. Againthmegdtiing at the node
level could be useful when nodes stall due to data dependences. But a gregtati@nissues need to be
addressed so that single application performance can still be good. d@hs ofa TLS machine also need
to be able to be dynamically redistributed among multiple applicatiometimes there is no parallelism
in an application, so the other nodes should be made available. Agairatkgyelicy issues that need to be
resolved. There are also technical issues: What hardware support is re¢quatiedv node sharing? What

is the cost of changing the application on a node, including savirigfieg state, cache warmugtc.?

6.3 Changing the Backdrop

The bulk of the compiler research for software assisted speculative exedsitbased on a very low-
level intermediate form, typically actual machine instructions, prodbgettie compilation of a low-level
language, such as C or Fortran. | propose examining the impact of sefassisted speculative execution
in other contexts, in particular high-level, dynamic languages. Wenaitloubt find that these languages
pose a new set of difficulties. For example, how do we proceed withaatia sontrol flow graph? We may
also find that the high-level nature of some languages is beneficial inigrglspeculation. For example,
static memory disambiguation may be easier than it is in object code.

Current work examines the limits on parallelism from simple corftcl and data dependence. In
most speculative architectures, procedure calls, system calls, and I/Qctitsts also limit parallelism
by enforcing serialization. How much do they limit parallelism? How mdotthey limit parallelism in
applications more exotic than gcc, such as multimedia and graphics codasdMavestigate hardware

technigues analogous to state preservation for allowing graphics and/@heutines to be speculated.

6.4 Comparing Dynamic and Static Speculation

Eventually, researchers must compare dynamically scheduled superscalar peotesetiware assisted
speculative processors. Though it is unlikely that a definitive wicoetd ever be named from this, we
can better understand under what circumstances one would be superior tioethé¥e should enumerate
a number of parameters that define a machine's performarmec{ock rate, issue width, window size,

branch prediction accuracy) and find the crossover points between staticaltlyaandhically scheduled

24

machines.

7 Conclusion

Of the architectures and techniques that we have examined, which resa@tiaghperformance? Though
a couple studies make direct performance comparisons of different TlLafitiaLS architecture [6, 23],
the general trend is that additional architectural support—and the harthvedienplements it—modestly
improves performance. Computer architects must weigh their performansegoiiesource budget when
determining the appropriate degree of architectural support.

Comparing the performance of ILS and TLS architecture is a much stickige,iand, in fact, no direct
comparisons have yet been published. Comparison is made difficuk fgdtthat the two approaches have
drastically different hardware requirements. Even if a study discovetstte approach has superior cycle-
level performance over another, it is difficult to compare the amount afiredjhardware, and the bottom
line performance advantage is not obvious because the impact of architeotayele time is hard to
guantify. Nevertheless, until specific studies directly and successfuhpare ILS and TLS performance,
the relative utility of these architectures will be determined by the eébenich they can be extended to
address issues like those introduced in the previous section.

Software assisted speculative execution shows promise as a techniguplfuting parallelism, but
the research is immature. A number of fundamental issues must be addressedthetn significantly
impact computer architectures. Studying the issues of compiler/resoistetoh, resource utilization,
impact on non-C languages, and performance relationship to other approaches §ood first step in

taking this research to the next level.

References

[1] David I. August, Daniel A. Connors, Scott A. Mahlke, JoWw Sias, Kevin M. Crozier, Ben-Chung Cheng,
Patrick R. Eaton, Qudus B. Olaniran, and Wen-mei W. Hwu. dgratted predicated and speculative execution
in the IMPACT EPIC architecture. IRroceedings of the 25th Annual International Symposium omgiter
Architecture (ISCA-25)pages 227-37, Barcelona, Spain, June 27-July 1, 1998.

[2] Scott E. Breach, T. N. Vijaykumar, and Gurindar S. SohiheTanatomy of the register file in a Multiscalar
processor. IProceedings of the 27th Annual International Symposium amddrchitecture pages 181-190,
San Jose, California, November 30-December 2, 1994.

[3] Roger A. Bringmann, Scott A. Mahlke, Richard E. Hank, déh Gyllenhaal, and Wen-mei W. Hwu. Speculative
execution exception recovery using write-back suppressim Proceedings of the 26th Annual International
Symposium on Microarchitectyrpages 214-23, Austin, Texas, December 1-3, 1993.

[4] Roger Alexander BringmannEnhancing Instruction Level Parallelism through Compi@ontrolled Specula-
tion. PhD thesis, University of lllinois at Urbana-Champaig@93.

25

(5]

(6]

(7]

Pohua P. Chang, Scott A. Mahlke, William Y. Chen, NancWarter, and Wen-mei W. Hwu. IMPACT: An ar-
chitectural framework for multiple-instruction-issueopessors. IfProceedings of the 18th Annual International
Symposium on Computer Architecture (ISCA;Iges 266—75, Toronto, Ontario, Canada, May 27-30, 1991.
Published a€omputer Architecture New$9(3), May 1991.

Pohua P. Chang, Nancy J. Warter, Scott A. Mahlke, Willldn€hen, and Wen-mei W. Hwu. Three architectural
models for compiler-controlled speculative executidBEE Transactions on Computeré4(4):481-94, April
1995.

Brian L. Deitrich and Wen mei W. Hwu. Speculative hedgegRlating compile-time speculation against profile
variations. InProceedings of the 29th Annual International Symposium mnddrchitecture pages 70-79, Paris,
France, December 2—4, 1996.

[8] Alain Deutsch. Interprocedural may-alias analysisgointers: Beyond k-limiting. IrProceedings of the ACM

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

SIGPLAN '94 Conference on Programming Language Design mmpieimentation (PLDI '94)ages 230—-241,
Orlando, Florida, June 1994.

Pradeep K. Dubey, Kevin O'Brien, Kathryn O'Brien, anda@fs Barton. Single-program speculative mul-
tithreading (SPSM) architecture: Compiler-assisted fjrned multithreading. IfProceedings of the 1995
Conference on Parallel Architectures and Compilation Teghes (PACT '95)ages 109-21, Limassol, Cyprus,
June 27-29, 1995.

Joseph A. Fisher. Trace scheduling: A technique fobaglanicrocode compactionlEEE Transactions on
ComputersC-30(7):478-490, July 1981.

Manoj Franklin and Gurindar S. Sohi. The expandablét gsphdow paradigm for exploiting fine-grain paral-
lelism. InProceedings of the 19th Annual International Symposium am@iter Architecture (ISCA-19ages
58-67, Gold Coast, Australia, May 19-21, 1992. Publishedasputer Architecture New20(2), May 1992.

Manoj Franklin and Gurindar S. Sohi. ARB: A hardware ime&gism for dynamic reordering of memory refer-
ences.|EEE Transactions on Compute5(5):552-571, May 1996.

David M. Gallagher, William Y. Chen, Scott A. Mahlke, Hlo C. Gyllenhaal, and Wen-mei W. Hwu. Dynamic
memory disambiguation using the memory conflict bufferPiceedings of the Sixth International Conference
on Architectural Support for Programming Languages and @peg Systems (ASPLOS-\jjages 183-93, San
Jose, California, October 4—7, 1994. Publishe@k3PLAN Notices29(11), November 1994.

Gina Goff, Ken Kennedy, and Cheu-Wen Tseng. Practiepletidence testing. IRroceedings of the ACM
SIGPLAN '91 Conference on Programming Language Design amglementation (PLDI '91)pages 15-29,
Toronto, Ontario, Canada, June 26-28, 1991.

Sridhar Gopal, T. N. Vijaykumar, James E. Smith, andifdar S. Sohi. Speculative versioning cache. In
Proceedings of the Fourth International Symposium on Highformance Computer Architecture (HPCA-4)
pages 195-205, Las Vegas, Nevada, February 1-4, 1998.

Lance Hammond, Mark Willey, and Kunle Olukotun. Dataeplation support for chip multiprocessors. In
Proceedings of the Eighth International Conference on Aedtural Support for Programming Languages and
Operating Systems (ASPLOS-V|Ban Jose, California, October 4—7, 1998.

Wen-mei W. Hwu, Scott A. Mahlke, William Y. Chen, PohuaGhang, Nancy J. Warter, Roger A. Bringmann,
Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, GErHaab, John G. Holm, and Daniel M. Lavery.
The superblock: An effective technique for VLIW and supatac compilation. Journal of Supercomputer
7(1-2):229-48, May 1993.

Quinn Jacobson, Steve Bennett, Nikhil Sharma, and gdmeé&mith. Control flow speculation in Multiscalar
processors. IProceedings of the Third International Symposium on HighfdPmance Architecturepages
218-229, San Antonio, Texas, February 1-5, 1997.

Norman P. Jouppi and David W. Wall. Available instractilevel parallelism for superscalar and superpipelined
machines. IProceedings of the Third International Conference on Amttural Support for Programming Lan-
guages and Operating Systems (ASPLOS{iHpes 272-82, Boston, Massachusetts, April 3—-6, 1989isRheb
asComputer Architecture New&7(2), April 1989.

26

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

Monica S. Lam and Robert P. Wilson. Limits of control floan parallelism. InProceedings of the 19th Annual
International Symposium on Computer Architecture (ISCAflages 46-57, Gold Coast, Australia, May 19-21,
1992. Published aSomputer Architecture New20(2), May 1992.

William Landi and Barbara G. Ryder. A safe approximdtgpéethm for interprocedural pointer aliasing. ro-
ceedings of the ACM SIGPLAN '92 Conference on Programmimgui@ge Design and Implementation (PLDI
'92), pages 235-248, San Francisco, California, June 1992.

Zhiyuan Li, Jenn-Yuan Tsai, Xin Wang, Pen-Chung Yeg] Bess Zheng. Compiler techniques for concurrent
multithreading with hardware speculation support. In @de&&€hr, Uptal Banerjee, David Gelernter, Alex Nicolau,
and David Padua, editor®roceedings of the Ninth International Workshop on Langsagnd Compilers for
Parallel Computing (LCPC '96)pages 175-91, San Jose, California, August 1996. Spr\veytag.

Scott A. Mahlke, William Y. Chen, Roger A. Bringmann,dRard E. Hank, Wen-mei W. Hwu, B. Ramakrishna
Rau, and Michael S. Schlansker. Sentinel scheduling: A infodeompiler-controlled speculative execution.
ACM Transactions on Computer Systeitiy4):376—-408, November 1993.

Dror E. Maydan, John L. Hennessy, and Monica S. Lam. efficand exact data dependence analysi®rtn
ceedings of the ACM SIGPLAN '91 Conference on Programmimglizge Design and Implementation (PLDI
'91), pages 1-14, Toronto, Ontario, Canada, June 26-28, 1991.

Andreas Moshovos, Scott E. Breach, T. N. Vijaykumax] &urindar S. Sohi. Dynamic speculation and syn-
chronization of data dependences. Aroceedings of the 24th Annual International Symposium omgiter
Architecture (ISCA-24)pages 181-93, Denver, CO, June 2—4, 1997. Publish€dmputer Architecture News,
25(2), May 1997.

Alexandru Nicolau. Percolation scheduling: A parbtiempilation technique. Technical report, Cornell Univer
sity Department of Computer Science, TR 85-678, May 1985.

Alexandru Nicolau. Run-time disambiguation: Copyingh statically unpredictable dependencHsSEE Trans-
actions on Computer88(5):663—-678, May 1989.

Jeffrey Oplinger, David Heine, Shih-Wei Liao, BasemMayfeh, Monica S. Lam, and Kunle Olukotun. Software
and hardware for exploiting speculative parallelism witmaltiprocessor. Technical Report CSL-TR-97-715,
Stanford University Computer Systems Lab, February 1997.

Trimaran Project. Trimaran project homepage. httpvwtrimaran.org.

Lawrence Rauchwerger and David Padua. The LRPD tescigtive run-time parallelization of loops with
privatization and reduction parallelization. Rroceedings of the ACM SIGPLAN '95 Conference on Program-
ming Language Design and Implementation (PLDI |95 Jolla, California, June 18-21, 1995. Published as
SIGPLAN Notices30(6), June 1995.

Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeided,Jam Smith. Trace processors. Rmoceedings of
the 30th Annual International Symposium on Microarchifegtpages 138-48, Research Triangle Park, North
Carolina, December 1-3, 1997.

Michael D. Smith.The Interaction of Compilation Technology and Computeh#ecture chapter Architectural
Support for Compile-Time Speculation, pages 13-49. Kludeademic Publishers, Boston, Massachusetts,
1994.

Michael D. Smith, Mark Horowitz, and Monica S. Lam. Eféot superscalar performance through boosting.
In Proceedings of the Fifth International Conference on Awattiural Support for Programming Languages and
Operating Systems (ASPLOS-yages 248-59, Boston, Massachusetts, October 12—-15, 1Rglished as
SIGPLAN Notices27(9), September 1992.

Michael D. Smith, Mike Johnson, and Mark A. Horowitz.nhits on multiple instruction issue. Broceedings of
the Third International Conference on Architectural Sugiior Programming Languages and Operating Systems
(ASPLOS-III) pages 290-302, Boston, Massachusetts, April 3—6, 198®lisRad asComputer Architecture
News 17(2), April 1989.

27

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Michael D. Smith, Monica S. Lam, and Mark A. Horowitz. &sting beyond static scheduling in a superscalar
processor. IrProceedings of the 17th Annual International Symposium omliter Architecture (ISCA-17)
pages 344-54, Seattle, WA, May 28-31, 1990.

Michael David Smith.Support for Speculative Execution in High-Performancecessors PhD thesis, Stanford
University, November 1992.

Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumtultiscalar processors. IRroceedings of the 22nd
Annual International Symposium on Computer ArchitectlB€A-22) pages 414-425, Santa Margherita Ligure,
Italy, June 22—-24, 1995.

J. Gregory Steffan and Todd C. Mowry. The potential fsing thread-level data speculation to facilitate auto-
matic parallelization. IrProceedings of the Fourth International Symposium on Heghformance Computer
Architecture (HPCA-4)pages 2-13, Las Vegas, Nevada, February 1-4, 1998.

Jenn-Yuan Tsai and Pen-Chung Yew. The superthreadsiitesture: Thread pipelining with run-time data
dependence checking and control speculatiorProteedings of the 1996 Conference on Parallel Architexstur
and Compilation Techniques (PACT '9fpages 35-46, Boston, MA, October 20—-23, 1996.

Dean Tullsen, Susan Eggers, and Hank Levy. Simultameudtithreading: Maximizing on-chip parallelism. In
Proceedings of the 22nd Annual International Symposiumanygliter Architecture (ISCA-22)ages 392-403,
Santa Margherita Ligure, Italy, June 22—-24, 1995.

T. N. Vijaykumar. Compiling for the Multiscalar ArchitecturePhD thesis, University of Wisconsin—Madison,
1998.

T. N. Vijaykumar and Gurindar S. Sohi. Task selectionddViultiscalar processor. IRroceedings of the 31st
Annual International Symposium on Microarchitectubecember 1998. To appear.

David W. Wall. Limits of instruction-level parallelis. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and OpiagaSystems (ASPLOS-[\plages 176-88, Santa
Clara, California, April 8-11, 1991. Published 8§5PLAN Notices26(4), April 1991.

Michael Wolfe. High Performance Compilers for Parallel Computingddison-Wesley, Redwood City, Califor-
nia, 1996.

28

A Projects Summary

class

control speculation

data dependencé
speculation

preserve register
state

preserve memory
state

preserve exception

behavior

control speculation
encoding

data dependence

speculation encoding

scope

speculation distance
limit

re-execution mechat

nism

synchrinization sup-
port

o Q —
= =) -] 8,
g 2 = % — 3 >
= om — (o)) —
o & 5 O =) = 5
®, ©) 0 = 5 = - =
g = = = S| > o
£ Q @) 8 2 & S) 5
7] < < < = — £ =
S [o [5 o o)
@ = = = = £ o n
ILS TLS
O O O ad ad loops loops loops
3 . ARB or
optional no no MCB SVC no D$ D$
O no no no 0 0 0 0
. . . ARB or
optional no optional | optional SVCO no store buffer D$
delay no delay delay stall stall stall stall
path sentinel sentinel sentinel thread thread thread thread
path no no sentinel thread no thread thread
mono poly poly poly mono mono mono mono
limited | UMM | ounlim- oy ied | unfimited | unlimited | unlimited | unlimited
ited ited
block inline inline block restart n/a restart restart
replay replay
register target nonspecu- | nonspecu-
n/a n/a n/a n/a giste address nsp nsp
forwarding) lative store | lative store
forwarding

29

