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Abstract

Computer architects strive to improve machine performanceby exploiting parallelism, but control
flow and data dependences limit available parallelism. Speculative execution enhances parallelism by
selectively ignoring the constraints of control flow and data dependences, thereby executing instructions
before it it known whether they are needed or correct. Software assisted speculative execution is a form
of this tack where the running program directs the hardware in what instructions should be speculatively
executed and how. This report identifies and characterized the fundamental architectural, implementa-
tion, and compiler issues of software assisted speculativeexecution. These issues serve as the basis for
describing, comparing and contrasting proposed architectures from the literature.

1 Introduction

In the never-ending quest for high performance, computer architects strive to exploit parallelism. Pipelined,

superscalar and very large instruction word (VLIW) architectures are well known techniques for taking

advantage of parallelism, but their scalability is limited by control flowand data dependences. Control

flow divides a program's instructions into basic blocks that are typically very small and contain limited

parallelism [19, 34]. Wall [43] and Lam and Wilson [20] show that greater parallelism exists between the

instructions of different basic blocks. Furthermore, load instructions are often conservatively considered

data dependent on preceding stores just in case both memory operations refer to the same address, thus

obscuring the parallelism that exists between instructions preceding the store and following the load.

The constraints on parallelism from control flow and data dependences may be speculatively ignored

when the control flow is predictable and the dependences are conservative, enhancing parallelism by ex-

ecuting instructions before it is known whether they are needed or correct.For example, none of the

instructions in the Figure 1(a) code sequence can be executed in parallel unless we predict that the branch

will not be taken and speculatively ignore it. If we do, parallelism exists between the instructions before

and after the branch, as illustrated by Figure 1(b). The bold instructions are speculatively executed. If the

prediction is incorrect, the speculation is incorrect and the hardware and/or the software must ensure that

the program still executes correctly.

1



mul v1,v2,v3
add v4,v1,v1
bz v4,L1
mul v5,v6,v7
add v8,v5,v5

L1: . . .

(a)

slot1 slot2
t1 mul v1,v2,v3 mul v5,v6,v7
t2 add v4,v1,v1 add v8,v5,v5
t3 bz v4,L1

(b)

Figure 1: Example of the benefit of speculative execution. (a) An instruction sequence, and (b) an indication
of how its instructions can be speculatively executed in parallel if the branch is predicted to fall through.

Currently, dynamically scheduled superscalar processors are the most common speculative machines.

In them, speculative execution is entirely under the control of the hardware using a large window of in-

structions that potentially must execute. From this window, the processor issues multiple instructions per

cycle—some of which are speculatively executed—respecting the dependences it deems important and

initiating recovery when speculation is incorrect. Hardware speculative execution immediately benefits

existing software, but its resource complexity may limit its success,particularly when using sophisticated

heuristics to direct and limit speculation [25]. Management of an instruction window of sizen is regarded

as anO(n2
) endeavor, and studies suggest that an instruction window must be very large to exploit a sig-

nificant amount of parallelism [43]. Furthermore, hardware speculation isresource inefficient in that a

significant portion of the implementation logic is devoted toschedulinginstructions, rather thanexecuting

them.

Alternatively, speculation can be encoded in a program itself. This is called software assisted spec-

ulative execution, because the software—in practice, the compiler—makes thedecisions of what should

be speculated and how. When the software directs speculation, the hardware canpotentially be simpler,

faster and more resource efficient. On the other hand, software assisted speculative execution requires

existing applications to be recompiled using new and sophisticated compilation techniques. In addition,

because it makes static speculation decisions, software assisted speculativeexecution is more sensitive than

a hardware approach to dynamic variations in program behavior.

Though limited forms of software assisted speculative execution havebeen proposed without specific

architectural and hardware support [27, 30], their success is limited by the overhead of verifying correctness

of speculation. This report identifies the fundamental architectural, implementation, and compiler issues

of software assisted speculative execution. Proposed architectures from the literature are evaluated with

respect to these issues. This report is organized as follows. Section 2 introduces the foundational issues of
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speculative execution. Section 3 introduces the consequences of correct and incorrect speculative execution

and sets the stage for the examination of architectural and compiler issues in Sections 4 and 5, respectively.

The final two sections propose new research directions and give conclusions.

2 Foundations

This section introduces basic terminology, the types of speculative execution, the classes of speculative

architectures, and a few core architectural issues.

2.1 Terminology

Data dependence relations describe ordering constraints that must be preserved between instructions [44,

pages 137–138]. Atrue data dependence exists between two instructions when the first produces a value

read by the other. Ananti-dependence exists between two instructions when the first reads a location

written by the second. The dependence must be respected so that the first instruction does not read the

value written by the second. Anoutputdependence exists between two instructions that write the same

location. The dependence must be respected so that the location contains the correct value after the two

instructions execute. Output and anti-dependences are calledstorage conflicts, because the dependences

they represent are artifacts of reusing storage locations, not flows of data.

A control dependencealso describes an ordering relationship among instructions. Informally, an in-

struction,i2, is control dependent on a conditional branch instruction,i1, if one branch ofi1 always leads

to i2 and the other may not [44, pages 71–79]. In other words, instructioni1 determines whether or not

instructioni2 may need to be executed.

An instruction,i2, is speculativewhen it is executed without regard for an apparent data or control

dependence from a prior instruction,i1. We say that instructioni2 is speculatively executed with respect

to i1. When the correctness of speculation is determined, we say the speculation isresolved. Of two

speculative instructions,i2 and i3, i2 is consideredmore speculativethan i3 if i2 would normally execute

after i3 without speculative execution.

2.2 Types of Speculation

Control speculationallows an instruction to execute before a branch instruction on which itis control

dependent. It is speculated that the dependence effectively does not exist becausethe direction of the

control flow is statically known via prediction or profiling, thus the instruction will eventually need to be

executed. For example, consider the instruction sequence in Figure 2(a).If the control dependence from the
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add v1,v2,v3
beq v4,0,L1
mul v5,v6,v7
. . .

L1:

(a)

. . .
st 0(v1),v2
. . .
ld v3,0(v4)

(b)

Figure 2: Examples of the potential for (a) control speculation and (b) data dependence speculation.

conditional branch to the multiply instruction is ignored, the multiply can be executed before the branch,

potentially in parallel with the addition instruction. If the branch is taken, the speculative execution of the

multiply is incorrect. The hardware and/or software must ensure that the program runs correctly even in

this case.

Data dependence speculationallows a memory load operation to execute before a memory store opera-

tion on which it may be data dependent. It is speculated that the dependence is aconservative byproduct of

imprecise compile-time analysis and does not really exist at run-time. Note that dependences due to regis-

ter operations are always accurate and never conservative. Consider the opportunity for data dependences

speculation in Figure 2(b). There is a conservative true data dependence from the store to the load because

v1 andv4 may hold the same address. If the dependence is ignored, the load can be speculatively exe-

cuted before the store. If the two operations actually refer to the same address, the speculation is incorrect,

and the hardware and/or software must ensure thatv3 gets the correct value. In addition to enabling the

parallel execution of loads with other instructions, there are other benefits to data dependence speculation:

it allows potentially long latency load operations to be initiated early and in parallel, shortening the critical

path through a program; and it allows more freedom in exploiting parallelism for instructions that use the

value produced by a load instruction.

2.3 Classes of Architectures

There are two broad architectural approaches to software assisted speculative execution, distinguished

by the granularity of the speculative unit: the instruction or the thread. Athread in this context is a

contiguous subsequence of a program's dynamic execution. Software for the former identifies instructions

that may be speculatively executed in parallel, and software for the latter identifies threads that may be

speculatively executed in parallel. Despite their apparent differences, these approaches are founded on the

same speculative principles given in this report. The reader may find it useful to refer to the summary of

major architectures from the literature in Appendix A while reading thisreport.
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Figure 3: Prototypical TLS architecture.

Instruction-Level Speculative(ILS) architectures are statically scheduled superscalar architectures aug-

mented with support for the speculative execution of individual instructions. ILS architectures rely

on compilers to identify parallelism by statically scheduling a program's instructions—some of them

speculatively—in an effort to co-locate independent instructions. The Boosting [35, 33, 36, 32] and IM-

PACT [5, 6, 3, 1] architectures are examples of ILS architectures.

A thread-level speculative(TLS) architecture is a small-scale multiprocessor-on-a-chipaugmented with

support for the speculative execution of threads and for managing interthread dependences. A TLS archi-

tecture simultaneously executes different threads on independent processing elements, callednodes. One

thread isolder than another if it appears earlier in the dynamic sequence of threads. Similarly, one node

is older than another when it is executing an older thread. The oldest node is considered thenonspecu-

lative or sequentialnode. The others are speculative nodes, because all their instructions are potentially

executing speculatively with respect to those in the threads on older nodes. When the nonspeculative node

finishes executing a thread, it signals to the next oldest node to becomenonspeculative. An architectural

diagram that characterizes a generic TLS architecture appears in Figure 3. Franklin et al. introduced the

first modern TLS architecture, called the expandable split window paradigmand later the Multiscalar ar-

chitecture [11, 37]. Subsequent TLS architectures from Dubeyet al. [9], Tsai et al. [39, 22], Oplingeret

al. [28, 16], and Steffan and Mowry [38] support speculation with varyingdegrees of hardware support.

The next section introduces several fundamental concepts that will be used to explore the details of

these architectures. In addition, these concepts will also serve as a basis for comparison and contrast of the

different approaches to software assisted speculative execution.

2.4 Topics in Speculative Execution

So far, this brief introduction to speculative execution begs certain obvious questions. How do we ensure

that the side effects of speculative instructions do not affect correct program behavior when the speculation

is incorrect? How do we handle exceptions arising from speculative instructions? How do we recover
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when data dependence speculation is incorrect? Can we exploit TLS parallelismeven if some dependences

exist between threads? We briefly address each of these questions below, and give more complete and

comparative coverage in Section 4.

Preserving processor state.As a nonspeculative program executes, the register and memory processor

states evolve from successive modification by instructions; and each instruction executes within the pro-

cessor state resulting from the sequential execution of all previous instructions. State preservationin a

speculative context ensures that instructions execute within the proper machine state despite speculative

execution. State preservation separatesspeculative stateand sequentialor nonspeculative state, and it

manages the task ofcommittingportions of the former to the latter when speculation is resolved and cor-

rect. More specifically, state preservation (i) allows for the results of control speculative instructions to

be discarded when the speculation is incorrect, (ii) enables re-execution of speculative instructions by pre-

serving their operands (the importance of re-execution will become apparent shortly), and (iii) eliminates

the need to respect output and anti-dependences. If an architecture does not provide support for state

preservation, the compiler must manage it in software.

Preserving exception behavior.Preserving exception behavior is analogous to preserving processor state.

An exception is an unusual condition occurring in the execution of an instruction. Because it is not known

whether the execution of a speculative instruction is needed or correct, it is not known whether the handling

of an exception due to a speculative instruction is needed or correct. For this reason, speculative instruc-

tion exception handling must be delayed until the speculation is resolved. Otherwise, if, for example, a

control speculative instruction terminates a program due to a floating point exception and the speculation

is incorrect, the application is unnecessarily terminated. A speculative node in a TLS architecture simply

stalls when an instruction excepts until it becomes the nonspeculative node. ILS architectures must delay

speculative instructions that except and re-execute them when the speculation is resolved, as described

below. When a delayed exception is eventually handled, it is consideredcommitted.

Re-executing speculative instructions.Speculative instructions may need to be nonspeculatively re-

executed once speculation has been resolved. This is essential when data dependencespeculation is in-

correct: the speculative instruction and all instructions that depend on it must be re-executed when the data

it was intended to read actually becomes available. In addition, re-execution allows architectures that can-

not stall an excepting speculative instruction to simulate this effect: when it is determined that a delayed

excepting speculative instruction is needed and correct, it and all dependent instructions are re-executed,

this time handling exceptions as they occur.
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Synchronizing speculative instructions.A significant amount of parallelism may be exploited by TLS

architectures even when the compiler discovers nonconservative, true data dependences between threads.

This is calleddo acrossparallelism. It is important that the two threads synchronize so that the younger

thread does not read a value not yet written by the older thread, for this results in the overhead of incorrect

data dependence speculation.

3 Consequences of Speculative Execution

Given the preceding presentation of the types, architectures and basic issuesof speculative execution, we

are now prepared to describe its consequences. Depending on whether control ordata dependence specu-

lation is correct or incorrect, particular actions are taken. A summary appears inFigure 4. This discussion

serves as the context for the following section, which details the architectural and implementation implica-

tions of these consequences.

Whencontrol speculation is correct, speculative state and delayed exceptions are committed in archi-

tectures that preserve state and exception behavior. For ILS architectures, speculative state is committed

by moving the buffered results of speculative instructions to the sequential state. A delayed exception is

committed by re-executing the excepting speculative instruction and all instructions that depend on it. In

TLS architectures, a node's speculative state is committed when it becomes thenonspeculative node. TLS

architectures delay exceptions by stalling the whole node. As a result, they commit delayed exceptions by

resuming and handling the exception.

Whencontrol speculation is incorrect, unnecessary instructions have executed. State preservation and

exception delay allows their side effects to be ignored, but outstandingcontrol speculative instructions

must be squashed. This is only an issue for TLS architectures, because all ILS speculative instructions

have already executed at resolution time. TLS machines simply squash all nodes executing beyond and

including the incorrectly speculated thread.

Whendata dependence speculation is correct, delayed exceptions are committed in architectures that

preserve exception behavior. ILS and TLS architectures re-execute and resumeexecution, respectively, to

commit delayed exceptions. If there are no delayed exceptions to commit, execution continues normally.

Whendata dependence speculation is incorrect, a true dependence between two instructions has been

violated by reordering the instructions. In other words, one instruction was supposed to read a value

produced by another, but instead it read a stale value. The instruction thatread the stale value and all

dependent instructions must be re-executed to ensure that their operands have the correct values.
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control data dependence
correct commit state and delayed exceptions commit delayed exceptions

incorrect squashpending speculative instructionsre-executespeculative instructions

Figure 4: Consequences of speculative execution.

4 Architectural Support and Implementation

This section covers the architectural and implementation issues for supporting speculative execution, begin-

ning with how speculation is encoded in a program. Next, hardware support for preserving state, preserving

exception behavior and detecting data dependence violations is covered. Finally, methods of re-execution

and synchronization are discussed.

4.1 Encoding Speculation

Despite the fact that a machine executes instructions speculatively (i.e., out of order), it must be made

aware of the nonspeculative order of instructions so that it may preserve state, preserve exception behavior,

and track data dependences. A compiler must communicate to the target machine whatinstructions are

speculated and with respect to what other instructions they are to be speculatively executed. This infor-

mation is encoded in a program by specifying each speculative instruction'shome location, the position

in the program where the instruction would appear if it were nonspeculative. At this point, control and

data dependence speculation due to the instruction can be resolved because complete control flow and data

dependence information is available.

Before describing specific techniques for encoding speculation, we introduce some useful terms.Poly-

pathcontrol speculation allows instructions reachable from both outcomes ofa conditional branch to be

speculatively executed with respect to the branch.Monopathcontrol speculation only permits instructions

along one path of a branch to be speculatively executed with respect to the branch. Most compiler research

for speculative architectures statically predicts conditional branches, onlyexploiting monopath speculation.

Thespeculation distanceof an instruction is the number of conditional branches between the speculative

instruction and its home location. Architectures encode a speculative instruction's home location in one of

three ways: by thread, sentinel or path.

In thread encoding, the speculative relationships between instructions in a TLS architecture are implicit

in the threads that contain the instructions, because the threads are started in order. For example, threads

1 (the oldest), 2, and 3 (the youngest) from the control flow graph inFigure 5(a) are assigned, in order, to

the nodes of a TLS machine. The instructions in each thread are potentially speculatively executed with
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1

2

3

(a)

add.s v1,v2,v3
beq v4,v5,L1
chk v1
. . .

L1: . . .

(b)

add.s1 v1,v2,v3
beq.n v4,v5,L1
. . .

L1: . . .

(c)

Figure 5: Examples of encoding speculation by (a) thread, (b) sentinel, and(c) path.

respect to the instructions in older threads. The TLS Multiscalar architecture [37] includes, in the program,

explicit thread descriptors defining each thread and their relationships (i.e., the potential successor of each

thread). Other TLS architectures [39, 28, 38] simply use a special fork instruction to spawn new threads. In

either case, threads are started in proper execution order so the hardware can trackthe speculation. Thread

encoding supports only monopath speculation, and it can not be made to work with ILS architectures.

Sentinel encodingentails tagging a speculative instruction with a single speculative bit and placing a

corresponding sentinel instruction in the speculative instruction's home location. The hardware matches

sentinels with speculative instructions via additional structures such as an augmented register file. Encod-

ing by sentinel has the disadvantage that the hardware only becomes aware ofa speculative instruction's

home location when the location is reached. As a result, the hardware can not distinguish the speculation

distance of instructions as they are encountered, so speculative instructions can not be speculated with re-

spect to each other (i.e., speculative instruction must be in order). On the other hand, it allows for polypath

speculation of unlimited distance. For example, the machine is aware that the addition instruction in Fig-

ure 5(b) is speculative, signified by the '.s' suffix, and is speculated with respect to the branch because

the sentinel, 'chk' , appears after the branch. In this case, the sentinel is associated with the instruction by

naming the target register of the speculative instruction. The ILS IMPACT architecture [23] uses sentinel

encoding for control flow speculation, and it was later augmented to use a similar sentinel encoding for

data dependence speculation via the memory conflict buffer (MCB) [13].

Path encodingexplicitly indicates the control flow path that must be taken to reach a speculative in-

struction's home location. For example, the home location of the speculative instruction 'add.snnt' is
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reached by not taking the next two branches and taking the third. This encoding supports polypath specula-

tion. If only monopath speculation is needed, branch predictions can be encoded in the branch instructions,

so that speculative instructions only need to indicate how many conditional branches must be traversed to

reach the home location. If any of these branches are incorrectly predicted, thehome location will not be

reached. For example, the conditional branch in Figure 5(c) is predicted to be not taken, signified by the

'.n' suffix, and the speculation distance of the addition instruction is 1. The home location is reached if

the conditional branch is not taken. Path encoding has the advantage that thehardware can determine the

speculation distance of instructions as they are encountered. As a result,instructions with different specu-

lative distances may be speculated with respect to each other. Encoding by path hasthe disadvantage that

the architecture limits the maximum speculation distance, though Bringmannet al. find that limiting the

distance to only seven is not a severe restriction for data dependence speculation [3]. Though path encoding

appears to only encode control speculation, data dependence speculation can be piggybacked on control

speculation. For example, control speculative memory operations can also beconsidered data dependence

speculative with respect to any preceding memory operations they have movedbeyond. The ILS Boosting

architecture uses path encoding for control speculation [35].

4.2 Preserving State

Architectural support for preserving state allows an instructions to be freely speculated without regard for

its register and memory side effects. Different architectural mechanisms preserve register and memory

state.

4.2.1 Register State

Register state is preserved by buffering speculative instructions' register updates in one or more additional

register files. TLS architectures have a register file local to each node. Changes to one node's local register

file are not reflected in other register files, preventing younger nodes from affecting older ones. Figure 6

illustrates the issue of preserving register state in ILS architectures. Suppose it is beneficial to speculatively

execute the divide instruction in (a) before the addition. If an architecture provides register state preser-

vation, the divide is simply tagged as speculative and moved, as in (b), without regard for the fact that it

corrupts registerv3 if the control speculation is incorrect. If preserving register state isnot supported, the

compiler must explicitly rename the result of the speculative instruction, as in (c), and copy the speculative

result back to the appropriate register if the speculation is correct.

The ILS Boosting architecture preserves register state via a fixed numberof shadow register files[35].
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add v1,v2,v3
beq v4,0,L1
div v3,v5,v6
. . .

L1: add v7,v8,v3

(a)

div.s1 v3,v5,v6
add v1,v2,v3
beq.n v4,0,L1
. . .

L1: add v7,v8,v3

(b)

div.s1 v30,v5,v6
add v1,v2,v3
beq.n v4,0,L1
mov v3, v30
. . .

L1: add v7,v8,v3

(c)

Figure 6: Code sequence demonstrating the role of state preservation.(a) A nonspeculative code sequence,
(b) control speculation in an architecture that preserves state, and (c) controlspeculation in an architecture
not preserving register state.

Because the architecture uses a path encoding for control speculation, a speculative instruction can write

its result directly into a shadow register file associated with the instruction's home location. At each con-

ditional branch instruction, the valid registers in the shadow register file associated with the taken path are

copied to the nonspeculative register file. This is calledcommittingthe shadow register file to the non-

speculative register state. Similarly, a speculative instruction reads from the shadow register file associated

with the instruction's home location. If the register has not been written by a preceding speculative instruc-

tion, it is invalid, and a less speculative shadow register file is consulted for a valid version of the register.

Successively less speculative shadow register files are checked for a valid version of the register until the

nonspeculative register file is reached.

In order to support polypath speculation, there is a shadow register file associated with both the taken

and not taken paths of each conditional branch instruction. If instructions are allowed to move beyondn

conditional branches, 2n+1
�2 shadow register files are required, thus the register files form a binary tree

with the sequential register file at the root. Alternatively, monopathspeculation requires only one shadow

register file per branch, orn total. Yet another alternative is to support monopath speculation with only

a single shadow register file, wherein each register is tagged with an indication of the home location of

the speculative instruction that wrote it. At each conditional branch, registers are selectively committed

or invalidated based on these tags, allowingn distance speculation with only a single shadow register file.

This approach simulates the general monopath approach with less hardware. Smith et al. show that this

last method has performance comparable to the more general monopath approach on a machine with very

limited parallel resources [33]. It is unlikely that this remains true onwider issues machines.

Architectures that do not preserve register state, such as the IMPACT architecture [5], relegate the

responsibility to the compiler. Register pressure increases, because speculation extends the live ranges of

registers; Section 5 clarifies the reasons for this. The hardware approach does not suffer from this problem,
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because the hardware separates speculative and nonspeculative register state, effectively increasing the

number of registers. Mahlkeet al. find that a machine not preserving register state must have at least 48

registers to compete with a 32 register machine that does [23]. Thoughsupport for preserving register state

effectively increases the number of registers, their use is restricted to preserving state.

4.2.2 Memory State

Architectures that prohibit both control speculative stores and memory operation reordering do not need

to preserve memory state. The General Percolation variant of the IMPACT architecture takes this ap-

proach [6], thus simplifying hardware at the expense of limiting parallelism. Mahlkeet al.find a 7% loss

of performance from prohibiting control speculative stores alone [23].

The simplest approach to preserving memory state in machines supportingmonopath speculation is to

use a modified store buffer. The store buffer reorders stores accordingto their nonspeculative order. If a

load reads from an address for which there are entries in the store buffer, it loads the value associated with

the most recent store to the same address ignoring more speculative stores. When a speculation is resolved,

its store buffer entries are either committed to the rest of the memory system or invalidated. A variant of

the store buffer approach is used by ILS architectures and some TLS architectures [12, 16]. Oplingeret

al. find that a TLS architecture can exploit a great deal of parallelism with only 300 bytes of buffer per

node [28].

Most TLS architectures preserve memory state with local data caches in order to minimize reliance on

a centralized structure. They use variants of cache coherence protocols so that writes becomes visible to

younger nodes but are hidden from older nodes. Loads that miss in the local data cache may be satisfied

by the youngest older node that has the data in its cache. Speculative writesare buffered in the local cache

and are not committed to memory until the node becomes nonspeculative, at which time all speculation

is resolved. As a result, speculative state can not be evicted from the cache until the node becomes non-

speculative. Steffan and Mowry find that a 16KB two-way set-associative datacache with a small 4 entry

victim cache eliminates nearly all node stalling due to conflicts [38]. Gopalet al. further refine this general

approach [15], adding hardware that prevents the need for the local cache to bepurged whenever a node

starts a new thread. As a result, the cache is warm and the write-back of speculative state does not happen

all at once, flooding the memory system.

Unlike for registers, buffers for preserving memory state may reach capacity. ILS architectures legis-

late the problem away, requiring the compiler to limit the number of simultaneously unresolved speculative

stores. In a TLS architecture, a node with a full buffer or cache simply stalls until it becomes the nonspec-
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ulative node.

4.3 Preserving Exception Behavior

Preserving exception behavior is analogous to preserving state: the side effects of a speculative instruction

are delayed until it is determined that the instruction is needed and correct. If the instruction is needed

and correct, the delayed side effect, in this case delayed exception, is committed. This section discusses

different approaches to preserving exception behavior.

An architecture not preserving exception behavior simply immediately repairs all transparent excep-

tions (e.g., page faults and TLB misses) on speculative instructions and ignores allterminal exceptions

(e.g., floating point exceptions and bus errors) on speculative instructions. This approach guarantees that a

terminal exception will not be handled unless it is necessary. In the process, terminal exception that should

be handled may be lost, and spurious transparent exceptions may be unnecessarily handled, impacting per-

formance but not correctness. Augustet al.find that 13% of transparent exceptions are spurious [1]. If a

terminal exception is an indicator of an error, exceptions are only lost byprograms that contain errors. The

General Percolation variant of the IMPACT architecture does not preserve exception behavior [6].

An architecture that preserves exception behavior must delay exception handling for speculative in-

structions until the speculation has been resolved, at which time it is known whether the instruction is

needed and correct. If it needed and correct, it is re-executed and the exception is handled.

TLS architectures only allow the nonspeculative node to raise exceptions. All other nodes stall when

instructions except. When and if the stalled node becomes the nonspeculative node, the exception is han-

dled and the thread continues executing. To mitigate the loss of parallelism due to stalling exceptions, a

TLS architecture could stall on terminal exceptions but repair transparent exceptions speculatively. The

performance implications of this have not been studied.

ILS architectures can not employ the same stalling technique because both speculative and nonspecu-

lative instructions appear in the same instruction stream. These architectures achieve the same effect by

temporarily ignoring an exception on a speculative instruction. At the time of speculation resolution, if

the excepting instruction should have executed, the excepting instruction and all dependent instructions are

re-executed, as described in a later section. Two methods of exception delay are discussed below.

Because the Boosting architecture [35] uses a path encoding of speculation,when a speculative in-

struction excepts, the hardware sets an exception tag in the shadow register file associated with the home

location of the instruction and ignores the exception. When that home location is reached, all speculation

is resolved, and re-execution is initiated if the exception tag associated with the current block is set. If the
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home location is not reached, the exception is ignored because the speculation was incorrect.

The IMPACT architecture encodes speculation via sentinels [23], so the home location of a speculative

instruction is not apparent from the instruction itself. As a result, a special exception tag associated with

the target register of a speculative instruction is set when the instruction excepts, and the exception is

ignored. Other speculative instructions tag their target register when they read a register that has been

tagged. When a nonspeculative instruction in the home location, acting asa sentinel, reads a tagged register,

the speculation has been resolved and re-execution is initiated. As an optimization, the address of the

excepting instruction is propagated in registers along with the tag. Re-execution can begin at the exact

instruction that excepted, rather than at the earliest speculative instruction from the home location where

the exception was detected.

The scheme described above does not work for speculative store instructions, because they do not have

a register target. In order to handle this case, store buffer entries are modified to include an exception tag

and an excepting instruction address. The sentinel for a store does not specify a register, instead it provides

an index in the store buffer. Otherwise, the recovery approach is the same.

4.4 Detecting Data Dependence Violation

In order to detect incorrect data dependence speculation, speculative architecturesmust track memory

operations. If a load precedes a store to the same address, and the load has beenspeculated with respect to

the store, then the speculation is incorrect. The load operation and all instructions that depend on it must

be re-executed. Note that hardware that preserves state eliminates the need to track and recover from data

dependence violations due to storage conflicts from output and anti-dependences.

The Address Resolution Buffer (ARB) was designed for the TLS Multiscalar architecture [12]. It

contains a number of queues. Each queue tracks memory references to a subset of the address space,

allowing for faster operation and parallel access to different queues. Each queue reorders all the memory

operations to its subset of the address space. When a node stores to an address that has already been

loaded by a younger node, a data dependence violation is signaled. Recent TLS architectures use a more

distributed approach to detecting data dependence violation via a per-nodedata cache [38, 16, 15]. Cache

lines are tagged when they are speculatively read, and store addresses are broadcast on a bus. When a

node sees a store from an older node to an address that the current node has already speculatively read, a

violation is signaled. If TLS dependence tracking resources are depleted due aneed to evict a speculatively

loaded cache line, a speculative node may be simply stalled until the node becomes the nonspeculative

node. At this time, dependence violations no longer need to be tracked and thecache line can be evicted.
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The ILS IMPACT architecture has been extended to support data dependence speculation via the Mem-

ory Conflict Buffer (MCB) [13]. It is unique in that it tracks dependenceviolations without preserving

memory state, thus it only allows loads to be speculated with respect to stores. A data speculative load

instruction may conflict with subsequent stores up to its corresponding sentinel instruction. A conflict bit

is associated with each register. A sentinel instruction looks at the bit associated with the target register

of its corresponding load operation to determine whether a store subsequent to the load wrote to the same

address. If one has, re-execution is initiated. The MCB tracks memory operations like an associative cache.

An entry is added for each data dependence speculative load, associating the load address with the target

register of the load. Any subsequent store to the same address before the sentinel is reached, causes the

conflict bit on the register to be set. The MCB is conservative in that itsets the conflict bit on a register

when the corresponding entry in the MCB is replaced due to conflict. In addition, in order to conserve

space in the MCB, a hashed version of the tag is kept, thus potentially resulting in references to different

addresses sharing the same line in the MCB. Both these issues result infalse conflict reports, which degrade

performance. In practice, false conflicts are rare, representing only 1% of all conflicts [13].

4.5 Re-executing Speculative Instructions

Speculative instructions may be re-executed via either a recovery block or inline replay. Arecovery block

is a compiler generated sequence of instructions that may require re-execution [35, 13]. Recovery blocks

are separate from the body of the program, thus duplicating speculativeinstructions. When re-execution

is necessary, the hardware executes a particular recovery block. Aninline replaymechanism selectively

re-executes instructions from a previous point in the code [1, 6, 23]. The latter is more space efficient, but

it must fetch and potentially execute many more instructions than the former. Compilers for architectures

that do not preserve state must ensure that all operands to potentially re-executed instructions are available

at re-execution time. The details of this are explored in Section 5.

ILS architectures use both recover blocks and inline replay. In practice, TLS architectures re-execute

using inline replay by simply stopping and restarting a thread, becausethe hardware cost of selective re-

execution is not justified.

The basic tradeoff of these two approaches is code size versus hardware complexity. While recovery

blocks require no special hardware, they consume a significant amount of instruction memory, proportional

to the number of speculative instructions. Smithet al.argue that recovery blocks never increase code size

beyond a factor of two [33, 36], Gallagheret al.experimentally measure an average increase of 15% [13],

and Augustet al. find an average increase of 23% [1]. Inline replay does not change the code size at all,
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but it requires special hardware to determine which instructions—of a potentially long sequence—require

re-execution.

Assuming re-execution is not frequently required, the performance tradeoffs of these approaches are

not obvious. Inline replay may have to fetch a great many instructions that ultimately do not require re-

execution, resulting in slow re-execution. When a recover block actually runs, it will be very fast because

it contains exactly the instructions that require re-execution. But because re-execution is not frequently

required, invoking a recovery block will often result in instruction cache misses and perhaps page faults.

Augustet al.find that in the IMPACT architecture, recovery blocks increase the instruction cache miss rate

by 40% on average versus inline replay, resulting in a 6% execution-time slowdown [1].

Re-execution can be initiated implicitly, explicitly, or spontaneously. Special instructions, such as sen-

tinels, that check for a need to re-execute due to incorrect data dependence speculation or exception delay

are provided to support explicit re-execution initiation. The address of the recover block or the first in-

struction for inline replay is either encoded in the instruction or in anauxiliary structure [23]. Existing

instructions, such as branches, can implicitly initiate re-execution. These instructions examine auxiliary

structures to see if replay is necessary and initiate it if it is. The re-execution address is either held in

the same auxiliary structure or it is kept in a table indexed by the address of the implicit initiation instruc-

tion [32]. On some TLS architectures, particular instructions do not initiate re-execution. Instead, when the

data dependence speculation tracking hardware detects a violation, it spontaneously initiates re-execution

in the appropriate thread [37].

4.6 Synchronization

Where true data dependences exist and are statically manifest between threads of aTLS architecture, it

is important to synchronize the threads to prevent incorrect data dependence speculation. Recall that if a

node running a younger thread reads a location before a node running an older thread writes to the same

location, the younger thread will be restarted, sacrificing a significant amount of parallelism. TLS architec-

tures may support explicit and implicit interthread synchronization andcommunication mechanisms. An

explicit mechanism is one that is encoded directly into the program at the point of synchronization or com-

munication. Explicit synchronization mechanisms can be built from nonspeculative write instructions or

special signal/wait instructions. Implicit synchronization and communication occur as side effects of other

instructions. Note that an explicit communication mechanism can be builtfrom an explicit synchronization

mechanism.

The Multiscalar architecture provides implicit register forwarding [2], resulting in implicit synchro-
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nization and communication. The last assignment to a register in each thread is forwarded to younger

threads. When younger threads read the same register, they will stall until the new value is received from

an older thread. Each node determines whether it needs to stall or not based on whether a currently active

older node writes this register and whether it has been forwarded yet. The virtue of this scheme is that

a compiler's sequential view of a program does not change significantly. It need not do anything special

to maintain true dependences due to registers. Other than conciseness of code,there is no benefit of this

approach over explicit communication, because they both require the same static register use analysis.

A TLS architecture proposed by Tsai and Yew provides a similar implicit mechanism for forwarding

values in memory [39]. At the beginning of every thread, special instructions identify the memory ad-

dresses, calledtarget store addresses, that the current thread writes that subsequent threads may read. Each

node forwards its target store addresses to subsequent nodes when they are spawned. Values written to one

of a node's target store addresses are forwarded to younger nodes. A read to atarget store address from

an older node causes a node to stall until the node receives the value written to the same address by the

older node. Unlike for register forwarding wherein the program statically names the register that need to

be forwarded, the target store address mechanism allows the program to dynamically identify addresses

by which threads must be synchronized. This mechanism is provided in order to soften the blow of not

supporting general data dependence speculation. It has not yet been demonstrated that the benefits of this

scheme actually improve real program performance beyond explicit communication.

5 Compiler Support

Compiler support for speculative architectures is in its infancy, becausearchitectural design has received the

bulk of the research attention. This imbalance most likely stems from an unwillingness to devote research

resources to compiling for an architecture whose promise has not yet been demonstrated. Nevertheless,

a number of compilation issues for ILS and TLS architecturehavebeen studied, and they are discussed

below.

5.1 ILS Compilation

Compilers for ILS architectures use variants of trace scheduling [10, 26]to discover and identify paral-

lelism. A trace is a part of a likely path through a program, chosen based on static predictions or profile

data of branch outcomes.Trace schedulingreorders instructions within a trace—respecting dependences

between instructions—in order to co-locate independent instructions, exposing parallelism to the hardware.
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5.1.1 Eliminating Scheduling Constraints

Architectural support for speculative execution permits the instruction scheduler to ignore certain control

and data dependences. Rather than modify the scheduler, it is cleaner to actually remove dependence

arcs in the dependence graph, which serves as input to the scheduler. Though the dependences still exist,

the edges in the graph that represent them are removed so that they can be ignored. Control speculation

allows most control dependences to be removed. Control dependences between branches must be kept

to preserve the order of branches. If the target architecture does not permitcontrol speculative stores

instruction, control dependences to store instructions must be kept.If the target architecture does not

support register state preservation, a control dependence from a branch to each instruction whose target

register is live at the point of the branch must be kept; this prevents off trace instructions from reading

values written by speculative instructions. Architectures that limit the speculative distance of instructions

must preserve dependences from branches at this distance to limit excessive speculation. In addition,

compilers for architectures supporting data dependence speculation remove true data dependences arcs due

to memory operations.

State preservation allows output and anti-dependences due to memory or registers between a speculative

and nonspeculative instruction to be ignored. They may not simply beremoved from the dependence graph,

because before scheduling is performed it is not known which instructions are speculative. Though the

scheduler could be modified to exploit this situation, this has not yetappeared in the literature.

5.1.2 Enabling Re-execution

The operands of potentially re-executed instructions must not be overwritten before they are re-executed.

State preserving architectures support this in hardware. If speculative instructions need to be re-executed,

the buffered speculative state associated with them is discarded, ensuring that their operands will have

correct values when they execute a second time. This frees the compiler of the burden of considering the

re-execution issue when allocating registers. As a result, register allocation can be performed independent

of and prior to instruction scheduling. A round-robin allocator minimizes storage conflicts that may limit

speculation. A standard trace scheduling algorithm can then be used, but speculative instructions must have

their speculation depth encoded in them. The scheduler does not need to ensure that speculative instruction

operands are preserved, because the hardware guarantees this. The scheduling algorithm developed by

Smithet al. [33, 36, 32] for the Boosting architecture takes this approach.

Compilers that target architectures that do not preserve state must explicitly preserve operands to spec-

ulative instructions until the speculation is resolved. The instruction scheduler and register allocator must
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work together to generate code that respects this constraint. The IMPACT compiler exemplifies this ap-

proach [23].

First, the scheduler runs. It must ensure that the operands of all potentially re-executed instructions are

not overwritten before speculation is resolved. The scheduler prevents aninstruction from being specula-

tively executed before an instruction that overwrites any of its operands.This implies that no instruction

that writes to one of its operands may be speculated. These instructions canstill be speculated via renam-

ing: the target is given a new name and subsequent speculative uses are changedto refer to the new name;

at the point where the speculation is resolved, the value in the new namemust be copied into the old name

so that subsequent nonspeculative instructions use the correct value.

If there were an infinite number of register, the process would be finished. But at this point, the code

must be mapped down to a small number of registers without corrupting the speculation performed by

the scheduler. The compiler defines arestartable intervalfor every control speculative instruction. This

interval starts with the speculative instruction and extends to the point where the speculation is resolved at

its sentinel. The interval contains instructions that may potentially need to be re-executed and those that

do not, such as nonspeculative instructions. Let thelive-in set of an interval be the registers that are read in

the interval before they are overwritten.

If the register allocator is not sensitive to the issues above, it may prevent re-execution of a restartable

interval by reusing a register in the live-in set. This is prevented byextending the live range of all registers

in an interval's live-in set to the end of the interval. The register allocator must also be careful about

inserting spill code. If a register in the live-in set is spilled, it may not be available when the interval

is re-executed. If this happens, the instructions that use the spilledregister must be de-speculated (i.e.,

moved downward, toward their home location) until the spill problemgoes away, potentially forcing the

de-speculation of later dependent instruction. In the limit, they willmake their way back to their home

locations and no longer be speculative. In addition, because exceptions are recorded in tags associated with

registers, the target register of a speculative instruction must notbe spilled. The register allocator must

de-speculate speculative instructions that have their target spilled until the problem goes away.

Bringmannet al. [3, 4] have proposed a modified form of the IMPACT architecture that useswrite-

back suppressionto ease the register pressure caused by extending the live range of register to include a

whole restartable interval. The idea is that once a condition requiringre-execution, such as an exception,

is detected, writes by speculative instructions are suppressed, ensuringthat registers in a live-in set will not

be overwritten. It has not been demonstrated that this approach results in improvement versus the IMPACT

architecture.
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5.1.3 Enhancing Instruction Scheduling

Hwu et al. [17] describe a number of techniques for enhancing the parallelism found by the above tech-

niques.Trace enlargementvia loop unrolling gives the scheduler more instructions from which to choose.

The authors also describe a number of techniques for eliminating dependenceswhich may constrain par-

allelism. Renamingeliminates storage conflicts due to variable reuse.Operation migrationmoves an

instruction whose result is not used in its trace to a less frequently executed trace. As a result, all data

dependences due to the instruction are eliminated from the more frequently executed trace.Induction vari-

able expansionandaccumulator variable expansioneliminate dependences that result from loop unrolling.

Dependences between references to induction variables and accumulator variables from different iterations

of an unrolled loop can be eliminated by assigning a different register toeach unrolled iteration. Prefix and

epilogue code is required, and naturally register pressure is increased.Operation combiningmerges two

flow dependent instructions into one when both instructions contain compile-time constants.

In the process of developing instruction schedulers for ILS architectures, researchers address a number

of shortcomings of basic trace scheduling. Trace scheduling optimizes only for the chosen trace, so it may

result in very inefficient off trace code. This is particularly problematic when static analysis or profile

information does not match a program's actual dynamic behavior. The schedulers of Smithet al. [33, 36]

and Deitrich and Hwu [7] only speculate when it does not have a significant adverse effect on off trace

code. Trace scheduling has a complex bookkeeping stage that patches off trace code to compensate for

instruction movement within the trace. Hwuet al.develop a new compiler structure called thesuperblock

to mitigate this complexity [17]. The superblock is a trace that has hadall its side entrances removed by

a technique calledtail duplication. The elimination of side entrances greatly simplifies the scheduler's

bookkeeping stage at the expense of increased code size.

5.2 TLS Compilation

A compiler for a TLS architecture must address issues of thread selection, scheduling, synchronization and

communication.

5.2.1 Thread Selection and Scheduling

Thread selection may be based on control flow graph (CFG) nodes, loop iterations, or procedures. The

CFG-based approach is the most general, so we discuss it first.

Research in compiling for the Multiscalar architecture develops the CFG-based approach to thread se-

lection [41, 42]. The nodes of the CFG are partitioned into threads in aneffort to minimize the following
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reasons for performance degradation: (i) control flow misspeculation, (ii) inter-thread true data depen-

dences,1 (iii) memory dependence misspeculation, (iv) load imbalance, and (v) task overhead. The basic

thread selection algorithm traverses a CFG beginning with the root node. Nodes are added to the current

thread if a heuristic condition is met. When no more nodes can be added, thethread is complete. The

process repeats for nodes not already added to a thread. The heuristic for node inclusion is a prioritized

combination of five heuristics, each attempting to minimize the five points, above. After thread selection,

the compiler constructs a descriptor for each thread that contains the addresses of instructions that may

follow the thread. The Multiscalar hardware is aware of these descriptors and uses them to schedule subse-

quent threads during program execution [18]. Rotenberget al.move these compiler issues to the hardware

in an architecture called atrace processor[31].

Loop-based thread selection assigns each iteration of a loop to a different thread. Unfortunately, por-

tions of code that do not contain loops amenable to speculative parallelization do not benefit from this

approach. Oplingeret al.use profile information to decide—in the presence of nested loops—what loops

should be parallelized [28]. The five reasons for performance degradationdiscussed above are all relevant

in this context. The bulk of recent research takes the loop-based approach [22, 28, 38], because a significant

portion of execution time is spent in loops and the scheduling mechanism for parallelizing loops is very

simple: scheduling typically occurs in software via a fork instruction that simply specifies the next loop

iteration to execute.

For procedure-based thread selection, before each procedure call, a thread is spawned to execute the

code following the call. Hammondet al. [16] find the approach to be impractical, because there is insuffi-

cient parallelism between procedures and subsequent code.

5.2.2 Synchronization and Communication

Vijaykumar describes compiler support for register forwarding [41] in the Multiscalar architecture, but the

techniques are applicable to any architecture supporting register forwarding. For each thread, the compiler

must first identify what registers need to be forwarded. Conservatively, this can be all registers written

in the thread. With better analysis, registers that do not live beyondthe thread can be ignored. Next, the

compiler must identify the point in the program where the register canbe forwarded. Conservatively, this

can be after the last instruction of the thread, but analysis is often able to identify the last assignment to

a register in a thread, at which time it can be forwarded. Alternatively, eagerand speculative forwarding

schemes can be used to allow registers to be forwarded as early as possible, butsubsequent threads may

1Preserving state eliminates the need to preserve output andanti-dependences.
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need to be squashed if they are using an incorrect version of a register. This is the register analog of

data dependence speculation. Next, the instructions of the thread are reorganized to move value producing

instructions early in the thread and value consuming instructions latein the thread in order to improve do

across parallelism. A cost model determines what instructions may benefit most from movement.

In addition, the compiler must insert synchronization to stall instructions that can not be speculated,

such as system calls and I/O instructions.

5.2.3 Enhancing Parallelism

A TLS compiler can enhance parallelism by eliminating certain classes of dependences,such as those due

to induction variables and reductions [38, 41]. In addition, dependences between instances of certain library

routines can be eliminated by rewriting the library [38]. For example,the C functionfgetc(stream)

reads the next character at the current position instream, and it advances the current position. There is a

true data dependence between successive calls to this function through its argument. The function can be

rewritten so that in certain cases it uses random access to get a particular character ina file, eliminating the

dependence.

Improved memory disambiguation can also improve performance. Synchronizing true dependences

reduces thread squashing an restarting due to incorrect data dependence speculation, potentially improving

performance. Static techniques for disambiguating array references [14, 24] and arbitrary pointers [21, 8]

exist with varying degrees of success, but their impact on speculative architectures has not yet been studied.

Profiling is also useful for identifying operations that frequently result in misspeculation, which would

benefit from synchronization [28].

6 Research Directions

As a relatively recent advent, software assisted speculative execution permits many opportunities for re-

search. Below, we summarize four areas of potential research: (i) studying andaddressing the performance

loss when the compiler's view of the hardware resources differs from the target machine, (ii) addressing

the issue of poor resource utilization, (iii) studying the impact of speculation in different application and

programming language contexts, and (iv) comparing different approaches to speculative execution. Un-

fortunately, any research in this area is impeded by the lack of a common infrastructure. Advances will

be slow and modest if researchers must develop their own compilers and machine simulators. Hewlett-

Packard, the IMPACT group from the University of Illinois at Urbana-Champaign, and the ReaCT-ILP

group from New York University have established the Trimaran projectto develop an infrastructure for
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research in instruction-level parallelism [29]. This enabling project isa step in the right direction.

6.1 Compiler/Resource Mismatch

A deficit of ILS architectures is that they expose resource availability, such as issue width, to the static

scheduler in the compiler. The result is that programs are compiled for a particular machine configuration,

and they may perform poorly on other configurations. For example, a compiler targeting an 8 instruction

issue ILS machine may very aggressively speculate in order to use all available parallel resources, but if the

compiled program runs on a 2 issue machine, performance may suffer due to incorrect speculation. This is

a serious issue because economics require chip makers to sell products at several price points. Traditionally

clock rate and cache size have defined microprocessor price points, but issuewidth is a logical next step.

The first step in exploring this issue is evaluating the severity of the problem. If the Trimaran project lives

up to its claims, a few adjustments to their compiler and simulator couldbegin to answer the question.

If compiler/resource mismatch is a problem, we need to develop techniques to address it. I propose

adding hardware support for selective dynamic de-speculation. The compiler very aggressively speculates,

but the hardware only uses the speculative instructions to fill otherwise empty issue slots. When speculative

instructions are encountered they are placed in a queue, called adynamic de-speculation queue, or perhaps

in one of several queues, each containing speculative instructions of a particular speculation depth. When

the processor has available issue slots and there are no nonspeculative instructions ready, it simply grabs the

oldest speculative instructions from the queue. In many ways, this has the feel of a dynamically scheduled

processor except that a large instruction window is not required to findinstructions for speculation, because

the compiler has already identified them to the hardware. The processor is statically scheduled, but it can

selectively de-speculate when there is no apparent benefit. The dynamic de-speculation queues are very

simple because dependences between instructions need not be tracked. In order toevaluate this research,

the queue structure needs to be defined and simulations need to evaluate itseffect.

6.2 Addressing Resource Efficiency

Speculation enables a greater degree of parallelism, but in the near future itstill appears quite limited.

As a result, it is difficult to justify high issue machines when they mostly go under utilized. I propose

introducing simultaneous miltithreading (SMT) [40] ideas into thesoftware speculative execution arena.

Such a union would provide both the single application benefits of ILS architectures and the throughput

benefits of the SMT architecture. Though SMT is a dynamically scheduled superscalar architecture, ILS

additions would allow for a high degree of parallelism without a large instruction window.
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I recognize that speculation is somewhat at odds with the SMT throughput goals. I propose using the

de-speculation technique, above, so that speculation is only used to fill otherwise empty slots. The hope is

that single application performance can be improved and dynamic hardware scheduling hardware reduced

in size without adversely impacting multiple application performance.

In TLS architectures the efficiency issue becomes more complex. Again multithreading at the node

level could be useful when nodes stall due to data dependences. But a great manypolicy issues need to be

addressed so that single application performance can still be good. The nodes of a TLS machine also need

to be able to be dynamically redistributed among multiple applications. Sometimes there is no parallelism

in an application, so the other nodes should be made available. Again thereare policy issues that need to be

resolved. There are also technical issues: What hardware support is requiredto allow node sharing? What

is the cost of changing the application on a node, including saving/restoring state, cache warmup,etc.?

6.3 Changing the Backdrop

The bulk of the compiler research for software assisted speculative execution is based on a very low-

level intermediate form, typically actual machine instructions, producedby the compilation of a low-level

language, such as C or Fortran. I propose examining the impact of software assisted speculative execution

in other contexts, in particular high-level, dynamic languages. We will no doubt find that these languages

pose a new set of difficulties. For example, how do we proceed without a static control flow graph? We may

also find that the high-level nature of some languages is beneficial in exploiting speculation. For example,

static memory disambiguation may be easier than it is in object code.

Current work examines the limits on parallelism from simple controlflow and data dependence. In

most speculative architectures, procedure calls, system calls, and I/O instructions also limit parallelism

by enforcing serialization. How much do they limit parallelism? How muchdo they limit parallelism in

applications more exotic than gcc, such as multimedia and graphics codes? Wemust investigate hardware

techniques analogous to state preservation for allowing graphics and otherI/O routines to be speculated.

6.4 Comparing Dynamic and Static Speculation

Eventually, researchers must compare dynamically scheduled superscalar processors to software assisted

speculative processors. Though it is unlikely that a definitive winnercould ever be named from this, we

can better understand under what circumstances one would be superior to the other. We should enumerate

a number of parameters that define a machine's performance (e.g., clock rate, issue width, window size,

branch prediction accuracy) and find the crossover points between statically anddynamically scheduled
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machines.

7 Conclusion

Of the architectures and techniques that we have examined, which result in the best performance? Though

a couple studies make direct performance comparisons of different TLS [15] and ILS architecture [6, 23],

the general trend is that additional architectural support—and the hardwarethat implements it—modestly

improves performance. Computer architects must weigh their performance goals and resource budget when

determining the appropriate degree of architectural support.

Comparing the performance of ILS and TLS architecture is a much stickier issue, and, in fact, no direct

comparisons have yet been published. Comparison is made difficult by the fact that the two approaches have

drastically different hardware requirements. Even if a study discovers that one approach has superior cycle-

level performance over another, it is difficult to compare the amount of required hardware, and the bottom

line performance advantage is not obvious because the impact of architectureon cycle time is hard to

quantify. Nevertheless, until specific studies directly and successfullycompare ILS and TLS performance,

the relative utility of these architectures will be determined by the ease with which they can be extended to

address issues like those introduced in the previous section.

Software assisted speculative execution shows promise as a technique for exploiting parallelism, but

the research is immature. A number of fundamental issues must be addressed before it can significantly

impact computer architectures. Studying the issues of compiler/resource mismatch, resource utilization,

impact on non-C languages, and performance relationship to other approaches form a good first step in

taking this research to the next level.
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class ILS TLS

control speculation ✔ ✔ ✔ ✔ ✔ loops loops loops

data dependence
speculation

optional no no MCB
ARB or

SVC
no D$ D$

preserve register
state

✔ no no no ✔ ✔ ✔ ✔

preserve memory
state

optional no optional optional
ARB or

SVC
no store buffer D$

preserve exception
behavior

delay no delay delay stall stall stall stall

control speculation
encoding

path sentinel sentinel sentinel thread thread thread thread

data dependence
speculation encoding

path no no sentinel thread no thread thread

scope mono poly poly poly mono mono mono mono

speculation distance
limit

limited
unlim-

ited
unlim-

ited
limited unlimited unlimited unlimited unlimited

re-execution mecha-
nism

block
inline
replay

inline
replay

block restart n/a restart restart

synchrinization sup-
port

n/a n/a n/a n/a
register

forwarding

target
address

forwarding

nonspecu-
lative store

nonspecu-
lative store
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