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Abstract

Most array languages, such as Fortran 90, Matlab, and AR\jdqe support for referencing arrays by extending
the traditional array subscripting construct found in aciinguages. We present an alternative approach thattsxplo
the concept ofegions—a representation of index sets that can be named, maniguldte high-level operators,
and syntactically separated from array references. Thpempdevelops the concept of region-based programming
and describes its benefits in the context of an idealized/ darsguage calledRL. We show that regions simplify
programming, reduce the likelihood of errors, and enablew degree of code reuse. Furthermore, we describe
how regions accentuate the locality of array expressiamshleng programmers to reason clearly about their codes'
execution when targeting parallel computers. We discuesedlationship between RL and ZPL—a fully implemented
region-based parallel language in use by scientists aridesrg. In addition, we contrast region-based programming
with the array reference constructs of other array langslage

1 Introduction

Since the earliest programming languages, array references have had ssibssoptated with them. This notation,
which was inherited from linear algebra, is natural and convenient for scalardgeg since they operate on single
values at a time. In contrast, array languages support the atomic marmpwétnultiple array elements, so they
typically extend traditional subscripting to a more complex for®LA6], the first array language, supports the use of
integer vectors in each subscript position, computing the outer ptadthe indices in each dimension to determine
the elements referenced. Fortran 90 [1] extends this syntax to supportamoraference patterns using triple or “slice”
notation to describe a regular subset of elements. Both languages adlewtibcript to be elided when referring to all
elements of an array.

Though array language subscripting is a natural extension of scalarrigting), array languages exhibit an im-
portant property that constrains subscripts. Operands in an array spresust beconformable meaning that the
subarrays referenced must have the same shape arfd Gimeformability ensures that there are corresponding ele-
ments in each operand of an array expression so that its evaluation is weddlafionformability results in a strong
correspondence between the subscripting expressions of array openpecifically, they will often be identical and
almost always be similar. This property, which we refer tanalex locality follows naturally from the fact that pro-
grammers tend to organize and reference data in logical, constrained, and mdamayg. Index locality motivates
an alternative means of array reference usaggons

1Though this is a common definition of conformability, it istnmiversal. Virtually all variations, however, at leastjuire that the number of
elements be the same.
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llo..hilo.hi]A=B+C (b)
(a) A(lo:hi, lo:hi) = B(lo:hi, lo:hi) + C(lo:hi, lo:hi)
(©)

Figure 1: Different representations of the same array language computefa) RL, (b) APL, and (c) Fortran 90 and
Matlab.

This paper describes a region-based approach for expressing array coomgutatiregion is a source-level in-
dex set that prefixes a statement to specify default indices for its array referéxrcag operators that modify the
default indices can be applied to array expressions, resulting in diffacesss patterns. In this waggion-based
programming syntactically separates array indexing from arragnerfices.

ZPL is a region-based parallel programming language in use by scéeatidtengineers [10]. In this paper, we
present region-based programming and its benefits using a simplezé&tkaliray language calld&RlL. RL demon-
strates the syntax and expressiveness of regions without thendiesyes caused by practical concerns in real-world
languages like ZPL. As an example of region use in RL, Figure 1(aysto2-dimensional region (in brackets)
that covers an array statement. The statement specifies that elements:ok thesub-arrays oB andC (where
n = hi — lo 4+ 1) are summed and assigned to the corresponding elements okai$@ynantically equivalent state-
ments are given for APL in Figure 1(b) and for Fortran 90 and Matlabguife 1(c).

The primary contribution of this paper is the concept of region-basegramming, an approach to array lan-
guage indexing. We detail the properties of region-based progragremith enumerate its benefits. We give formal
definitions of region and array operators and describe how their use etiablesurce-level identification of index
locality, thereby improving programmers' understanding of their ¢cgge$ormance. Furthermore, we compare the
region-based representation to the conventional subscripted forhoulgh the region-based ZPL language has been
described before [7], this is the first discussion of regions as aregbgrogramming language concept.

From the trivial example of Figure 1, regions may appear to be a nsiyigtactic variation on the other forms
of indexing. However, region-based programming provides a poMvalfstraction that has advantages related to
notation, code reuse, and performance analysis, as described in the nex.séctSection 3, we give a formal
definition for regions and describe RL's support for region dectarataind operators. In Section 4, we introduce RL's
array operators and describe how they are used to express general array dongputatection 5, we describe how
regions highlight index locality and the resulting benefits for garaomputing. We also discuss the relationship
between RL and ZPL. In Section 6, we compare the expressive power ofjibateased approach with subscripting.
In the final section we describe related work.

2 Benefits of Region-based Programming
This section provides an overview of the benefits of region-basedaroging.

Notational Benefits

Regions eliminate redundanclactoring the common portions of a (potentially compound) statemantiy refer-
ences into a single region eliminates the redundancy of subscript sp#oifi, as illustrated by Figure 1. Though
subscripted languages typically allow a subscript to be elided when refegegitihe elements of an array, interior



language | total characters| non-indexing characters indexing overhead
Fortran 90 3154 1513 52%
ZPL 1957 1421 27%

Table 1: Character counts for the SPEC CFP92 swm256 benchmark wri#&iiand Fortran 90Total characters
indicates the total number of non-whitespace characters in the codes on@ahstsipped of variable declarations
and 1/0.Non-indexing characterisdicates the number of characters remaining once subscripting (in Fé@yamd
region/direction specification (in ZPL) are removéttexing overheathdicates the percentage of characters that are
devoted to array indexing.

and boundary elements of an array are often treated separately, necessitating tfisulsscripts. As a result, a

region-based representation is more concise, less tedious, easier to rdadsammr prone. As an informal measure
of conciseness, consider the example given in Table 2. Stripped of aftimglconstructs, the ZPL and Fortran 90
versions of the SPEC CFP92 swm256 benchmark are similar in size. ldgveevnparing the complete programs,
Fortran 90 is considerably larger, devoting more than half of its chasstcténdexing, as compared to ZPL's 27%.

Regions accentuate the commonalities and differences among arragnedsiBecause the common portions of
references are factored into a region, all that is left at the array references dieation of how they differ. This
applies the common language design principle that similar thingdashamk similar, and different things should look
different [8]. For example, the following RL statement contains fafierences to arrag, each shifted in one of the
cardinal directions. It is clear exactly how arrays being referenced in each operand.

[1..m,1..n] Temp = A@(-1,0) + A@(1,0) + A@(0,-1) + A@(0,1)
The subscripted equivalent of this code requires closer scrutiny tovdistte same relationship in its operands, let
alone to verify its legality.

Temp(1:m,1:n) = A(0O:m-1,1:n) + A(2:m+1,1:n) + A(1:m,2:n+1) + A(1:m,0:n-1)

Regions can be nameBy naming regions, programmers can give meaning to index sets. flicuittito associate
meaning with unnamed indices, just as it is difficult to associate meanithganinemory address without using a
variable name. For example, the nafo@Face is far more illustrative thatf0,0:n-1,0:n-1]. Providing the ability to
name index ranges (as in APL) or even entire slices does not yield the samaétbbecause a programmer must
potentially name a great number of similar things. For example, thelfstanct slices in the code fragment above
would require five different names.

Regions encode high-level information that can be manipulatecpbyators. While subscript-based languages
allow arithmetic operators to be applied to individual dimensions stilascript, RL provides operators that apply
to the index set as a whole. Regions can be defined in terms of othersgugibith is conceptually simpler than
repeatedly constructing related but different index sets. For examplepRbperator assists in the clear definition
and interpretation ofopFace astop of Cube. Furthermore, a change to one region is reflected in all regions that are
defined in terms of it, thus localizing modifications to the code.

Code Reusability Benefits

By separating the specification of array indices from the specification of catiquu, regions result in code that
is more general and more reusable than subscripted code. For examplas magike it trivial to write statements
or procedures that can operate on arrays of arbitrary size, while subscaptpehbes require the programmer to
pass around and explicitly manipulate array bound information in dadachieve the same generality. Moreover,



changing a region-based program to operate on higher dimensional arralge easimple matter of changing the
region declarations. The array computations themselves may not need to arahgg may need to change in minor
and obvious ways, depending on the characteristics of the algorithm.ntresg traditional array languages would
require modifications to every array reference.

Performance Analysis Benefits

Perhaps the biggest advantage of region-based programming is it6gldtemiding in performance analysis. The use
of special operators to highlight correlations between each array operandéscefpattern emphasizes index locality.
This has great benefit in the parallel realm where data locality plays a cru@ahrdetermining performance. By
supporting such operators and by clearly defining its data allocatiocypaliparallel region-based language such as
ZPL can enable programmers to reason about the parallel execution of theirusdagstraightforward syntactic
cues. As aresult, programmers and compilers can locate optimization opitieg by looking at the array operators
used within a program, thereby avoiding complex analysis of sultsagipxpressions. These benefits are discussed
in further detail in Section 5.

3 Regions

In RL, aregionis a rectangular index set of arbitrary rank and striégduLi®r defining arrays and array computations.
This section gives a formal definition of regions, explains how #reydeclared in RL, and describes RL's operators
for manipulating them.

3.1 Formal Region Definition

Each dimension of a region is defined by a 4-tig#guence descriptor = (I, h, s,a), wherel andh represent the
low and high bounds of the sequeneds the sequence's stride, amcencodes the alignment of the sequence. A
sequence descriptort, is interpreted as defining a set of integet&;), as follows:

S(r) = {zll<z<handz=a (mods)} Q)

For example, the descript(t, 6, 2, 0) describes the set of even integers between one and six, incl{§8ive5}.
A d-dimensional regiom is defined as d-ary sequence of sequence descripters . r4, wherer; represents the
indices of the region'&" dimension:

r = (ry,Ta,...,7q)
Theindex set/(r), defined by the region is simply the cross-product of the integersified by each of its dimensions:
I(r) = S(r)xS(r2) x...x S(rq)
For example, the index set of the 2-dimensional rediané, 2, 0), (1, 6,2, 1)) would be described as follows:

1({(1,6,2,0),(1,6,2,1))) 5(1,6,2,0) x 5(1,6,2,1)

= {2,4,6} x{1,3,5}
= {(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3), (6,5)}



3.2 Basic Region Declarations

Since dense regions constitute the common case in array-based languagdepk the following as its most basic
region specification:

R= [ll..h1, lz..hz, ey ld..hd]

This style of declaration is used to define regions with trivial stadd alignment. Alegenerate dimensienone with
just a single index—can be declared by simply specifying the inelgx [3,1..n]). Note that although RL could simply
allow programmers to express regions in a sequence descriptor fonmatpore abstract syntax is clearer, improving
readability. In RL, the specification above defines the formal region:

r = ((ll,hl, ]., ll), (12, hg, ]., lg), Sy (ld, hd, ]., ld)>

Since the stride is always set to 1, the complete integer rgngeh; will be used for dimension. RL's region
operators (described in the next section) are used to modify the atrilalignment values of a region. Although a
stride of value 1 makes the alignment term in a basic region inconseajysetting it to the range's low bound results
in a consistent and meaningful interpretation when region operatorsagdga modify its stride and bounds.

3.3 Region Operators

A set ofprepositional operators-of, in, at, andby—are defined for the sequence descriptors. Each of these operators
combines an integer valué, and a sequence descriptor to produce a new sequence. The operators are alefined t
transform the sequences as follows:

l+6,1-1,s,a) ifé6<0

(
dof(l,h,s,a) = (I,h,s,a) if6=0 (2)
(h+1,h+6,s,a) if6>0
(I,I+(=6—-1),s,a) if6<0
din(l,h,s,a) = (I,h,s,a) ifé=0 3)
(h—(6—1),h,s,a) f6>0
(I,h,s,a)atd = ([+6h+6,s,a+06) 4)
(Lh,s,a)byd = (I,h,]8]s,a) (5)

In short, theof andin operators modify the sequence bounds relative to the existing bpleaving the stride and
alignment unchangeaf describes a range adjacent to the original range, whereescribes a range interior to the
previous range). That operator translates the sequence bounds and alignment of the sequenbg.opbeator is
used to scale the stride of the sequence, leaving the bounds and alignmoeahged.

Although there are certainly other region operators that would be luseduprogrammer, those listed here were
selected as a basis set since they support common array reference paradigmgkmsedi@/er our region notation.
For example, RL does not support the set-theoretic union, interaeetial difference operators due to the increased
overhead of storing and iterating over non-rectangular index sets.

RL applies the prepositional operators to regions by factoring thfésets for each dimension into a vector called
adirection The following code specifies example directions and a region in RL:



(a) region R (b) directions east, south, (c) region east of R (d) region south in R (e) region Rat se (f) region R by se2
se, and se2

Figure 2: lllustrations of the region and direction declarationsf@ection 3.3. Note that the prepositional operators
give intuitive meaning to the regions they define.

south = (1,0)
east =(0,1)
se =(1,1)
se2 =(2,2)

=[1..m,1..n]

Using RL's prepositional region operators, new regions can be sggkasing regioiR and directions:

EasternBoundary = east of R
Southerninterior = southin R
ShiftedSE =Ratse
OddElements =R by se2

The prepositional operators are evaluated for regions by distripgtich component of the direction to its cor-
responding sequence descriptor and applying the prepositional opdfata@xample, thet operator would be dis-
tributed as follows:

rat(61,62) = ((l1,h1,51,01),(l2, ha, 82,02)) at(6y, 02)
((l1, h1,81,0a1) atéy, (Io, ha, 52,a2) atdy)
((l1 + 61, h1 + 61,81,a1 -I-(Sl),(lz+52,h2+52,82,a2+52)>

Having defined the prepositional region operators, we can now evah&fRlt regions defined above (see Figure 2
for illustrated interpretations):

I(eastofR) = (0,1)o0f((1,m,1,1),(1,n,1,1)) I(Ratse) = ((1,m,1,1),(1,n,1,1))at(1,1)

= (0of(1,m,1,1),10f(1,n,1,1)) = {((1,m,1,1)atl,(1,n,1,1)atl)

((1,m,1,1),(n+1,n+1,1,1)) ((2,m+1,1,2),(2,n+ 1,1,2))

I(southinR) = (1,0)in{((1,m,1,1),(1,n,1,1)) I(Rbyse2) = {((1,m,1,1),(1,n,1,1)) by (2,2)

= (Lin(1,m,1,1),0in (1,n,1,1)) = ((1,m,1,1)by2,(1,n,1,1) by 2)
((m,m,1,1),(1,n,1,1)) ((1,m,2,1),(1,n,2,1))

3.4 Flood Dimensions

RL also supports the concept @bod dimensiongo represent lower-dimensional arrays as if they were higher-
dimensional. Flood dimensions are represented by the sequence dederigi@k,0,0). While this specialized
descriptor doesn't make mathematical sense by equation (1) above, it repsedieménsion with a single set of defin-
ing values that are effectively replicated across its entire index range. Eipwmhsions are expressed in RL region



specifications using an asterisk. For example, the following two nsgieould be used to represent 1-dimensional
vectors perpendicular to one another in a 2-dimensional space:

Row=[* ,1..n]
Col =[1..n* ]

4 Computing with Regions

This section explains how regions are used to represent array compsitatiln. We describe how regions specify the
extent of array computations and then define RL's operators that moedfy thdices for individual array expressions.

4.1 Extent Specification with Regions

In RL, regions prefix a statement to specify the elements referenced by each aragdpf matching rank. Regions
are dynamically scoped, allowing for the creation of region independentifuns and libraries. The following RL
code fragment illustrates several properties of region use. Assumiatdratr=[1..m,1..n], south=(1,0), and arrays,

B, andu are 2-, 2-, and 1-dimensional, respectively.

[Interior] begin

A=0;
[southin"] A =1,
[1]JA=2;
[1..qU=0;
A=A+B;

end,

This fragment applies the 2-dimensional regioterior to a compound statement. The regicoversonly the
first and fifth assignments since the others have a more tighttjiffirregion of the appropriate rank. The second
assignment uses thiesymbol as a means of referring to the covering region whose rank matctidss, namely
Interior. The next statement omits a dimension specification to inherit a siligiension from the covering region of
the same rank, in this cagen). Note that’ and blank dimensions are more than syntactic conveniences, since they
support the construction of region-independent functions wheredtering region is not lexically available.

RL also provides predefined arrays, naned2, etc, that give the programmer access to the index values of the
covering region. These are virtual arrays that need not be representeagitigxfle., they do not consume memory).
The value of array; at a particular index is defined to be the value of the index infféimension. For example, the
RL statemenlL..n] U = I1 assigns the values 1 toto the corresponding elements of artayArray |; may be used any
place where an array of rank ¢ is expected. As another example, the following statement assigns elerhantsyo
A their row-major order index.

[1..n,2.n]A=(n*(11-1)) + 12

4.2 Array Operators

In the examples of the previous section, identically indexed elemerat afrays are referenced in each statement.
RL uses explicit array operators to represent array references that are vardaimonthe indices of the covering
region. This section defines the RL array operators, which map indices obtlering region to indices of their array
operands. The result of any operator can be used as the operand to any otbrcegmidvhere noted, array operators
have an |-valueife., they may appear on the left-hand side of an assignment).



The shift operator (infix@) translates the portion of its operand array that is referenced. Its lefaogés the
array to shift, and the right operand is a direction vector of the samethamlspecifies the magnitude and direction
of the shift in each dimension. For example, the following RL staterassigns the nearest neighbor average of the
elements of arrap as specified by the covering region into arrayAssume that the following directions are defined:
north = (-1,0),south = (1,0),east = (0,1), andwest = (0,-1).

[1..m,1..n] A = (B@north + B@south + B@east + B@west) / 4

Thescaleoperator (infix$) adjusts the stride in each dimension of a single array reference retative tovering
region. Its left operand is an array to scale, and the right operand is dalire€the same rank. The new stride in each
dimension is the product of the corresponding direction element arstirttie in the covering region. The low element
referenced is the same as the low element in the covering region. For exttregtdlowing RL statement assigns the
odd elements of arra§ between 1 andn to the consecutive elements of arrapetween 1 and, inclusive.

[1..n] A = B$(2)

The promotionoperator (prefix>) transforms al’-dimensional array into d-dimensional array by replicating
alongd; of its dimensions (wheré’ = d — dy). A d-dimensional region—called asperator regior—is encoded in
the operator. The flood dimensions in this region (there mugt twé them) specify which dimensions of the resulting
array are to contain replicated data. For example, the following RL statemglitates elements 1 through of
1-dimensional array across the columns of 2-dimensional array

[1.m1.nfA=>[*U
As this example shows, operator regions may contain blank dimentsidmserit from the covering region. Operator
regions serve as the covering region for the operand array, which ne#fybiésa complex array expression. Because
the operand array expression for promotion has lesser rank than theoopegidn, the region formed by eliminating
its flood dimensions covers the array operand expression. For exanipefollowing statement, elements 1 through
m of U andV are added together before performing the promotion.

[1.m,i] A = >[*] (U+V)

The promotion operator can also be used to promote a subarray. Thiprsssed by specifying degenerate
dimensions in the operator rather than flood dimensions. For exarhgldoltowing RL statement copies th#®
column of 2-dimensional arra into columns 1 through of 2-dimensional arra.

[1.m1.n]A=>[i]B

It is important to note that the implementation of promotion doesawntually need to create a new array of
increased rank (and increased storage requirements). Promotion simpilyegra different way to reference data
without changing memory requirements. Promotion expressions thave |-values because they represent more
elements than are actually represented in memory.

Thedemotioroperator (prefix) collapsesl; dimensions of ad’-dimensional array to produce drdimensional
array @ = d' — dy). A d'-dimensional operator region is encoded in the operator. The degenienatestbns of the
region (there must b&; of them) specify which dimensions of the operand array are to be collapsedx&mple, the
following RL statement assigns columnf 2-dimensional arraj into 1-dimensional array.

[1.n]U = <[i] A

As this example shows, the demotion operator's operator region seaylank dimensions. Though the covering
region and the operator region have different rank, the operatameagilank dimensions will inherit from the corre-
sponding dimension in the covering region (determined by ignatégenerate dimensions in the operator region).

Theremapoperator (infix#) allows for arbitrary references by permitting the programmer to specifigafrom



| code fragment] signature | rankrelationship | j'value (L <i < d) |

e fro-opli) =’ d=d Ji = Ji
.@v... f@l,v)=j |d=d Ji=Jitvi
. . . li — i i + g|ow(ri) if s; >0
.8V Vo) =j | d=d (= § Ui~ goulro)o: .
[re] v fg(dsv,re) = Ji { (ji — gnigh(r:))vi + giow(r;) Otherwise
. . . l[; ifdimensionr; is degenerate
__ 3 _ ! I 2 1
o>l f>Q0,r0) =] d = d' + dniood(To) )i = { ju otherwise { = diooq(r, 1))
. . . l; ifdimensionr; is degenerate
—_— — A _ ’ — ¢ . !
.. -<[ro’] e f< (J; ro’) =1J d=d dndegel{ro ) Ji { ji’ otheI’WISe( = ddeger{r: Zl))
LHX) .. | ) =)  |d=d Jr= i1, 02,1 Jd)
Notation Functions
v = (vi,...,vqg) :rankd’ direction dfiood(r, %) = " non-flood dim. ofr
rc = (ri,...,7q4) :rankd covering region ddegedT, 7) = 4" non-degenerate dim. of
ro = (r1,...,rq) :rankd operator region dnfiood(T) = no. of flood dims inr
ro = (ri,...,re) :rankd operator region dndegedT) = no. of degenerate dims in
x = (z1,...,x4) d-arylistof rankd integer arrays giow(r = (I, h,s,a)) = I+ (a —[) mod s

ghigh(r = (I, h,5,a)) = h— (h—a) mod s

Figure 3: Array operator summary. The first column gives a code fragmeicating the operator's use. The sec-
ond column summarizes the map function's argument signature for eachoopédra¢ third column describes the
relationship betweed andd’. The final column gives the value of an element of the resultirayry j’ index.

indices of the covering region to indices of the operator's operand affay.operator's left operand is an array to
remap, while the right is a vector of integer indices whose correspgrelements form an index into the operand
array. The value of each element of the resulting array is the data appearimgiat#x in the operand array. The
ranks of the argument array, integer arrays, and resulting array are alitie sFor example, the following RL
statement assigns each elemgnj) of A the value of elemert(s, 7), J(i, j)) of B.

[1..m,1..n] A = B#(1,J)
As a more specific example, the following statement assigns the trsmgparrays to A. Note the use of predefined
arraysl1 andI2.

[1..n,1..n] A = B#(12,11)

Though all of RL's operators can be expressed using the remap operatspettialized operators are not without
value. They provide a more concise and readable representation of certaionapenations compared to the general
#-operator. Moreover, the specialized operators serve as a more accurate iraficadex locality and parallel cost,
as discussed in Section 5.

4.3 Operator Summary

Figure 3 summarizes the semantics of each array operator. A funggjgn,.), is given for each operator that maps
indicesj = (j1,...,Jq), of the rankd covering region to indiceg = (ji,...,ji ) of the operator's ran’ operand
array.

Due to space limitations, we are not able to discuss RL's sujgbanasksor selecting subsets of a region's index
set, nor its computational array operators (reductions and scahsgse will be described in the final paper.



5 Discussion

5.1 Index Locality in RL

At first glance, RL's array operators may appear to be gratuitous. For exawip} should a language support the
special-purpose @ and $ operators, when they can be expressed with tred-gan@ose # using simple functions of
the index array$? The answer is that RL's operators were selected to emphasize differentftiqmesxdocality.

In the context of this paper, indices are considered to be local to oneeaii@bed on their relationship in index
space. We do not define any quantitative metric for measuring index jodalitrather give examples in qualitative
terms: indices close to one other in the traditional Cartesian sergsé {, 1) and(2, 1)) might be considerespatially
local. Indices that are distant but which share common indices in a dimersign((, 1) and(1,100)) could be
considered to havdimensional locality A third examplejnter-rank locality, is exhibited by indices of different rank
that share common coordinatesd, (1,2) and(1, 100, 2)). Finally, two indices whose coordinates are separated by
a multiplicative factor might be considered to hdweality of scale(e.qg, (2,2) and(6, 6)). These definitions can be
trivially extended to describe the locality of a pair of index sets rathen individual indices. Furthermore, note that
indices may be related by a combination of locality types.

The principle of index locality is crucial in a language due to its refathip to data locality. On modern architec-
tures, the locality of a program's data references plays a crucial role immileitgg its performance and is therefore
worthy of consideration by performance-minded programmers. Since s&te are used both to define and access
arrays, index locality directly correlates to reference locality (dependenbaldbe data allocation scheme). This
relationship between index locality and data locality is especially impoiridhe realm of parallel computing, where
data locality affects the amount of communication (explicit or impli@tjuired between processors.

To this end, RL emphasizes index locality through its region-basetdsyamd choice of array operators. State-
ments with perfect localityi ., all operations performed element-wise on identical indices) simply rethe region
defining the index set with no other special array operations. Other stateosenthe RL array operators to describe
different types of index locality:

Statements with spatial locality use the shift operator to modifyximdgby a constant offset.
Dimensional locality is expressed using the dimension-preservitgrioe of promotion.

Inter-rank locality is expressed using the promotion and demotieradprs.
Locality of scale is achieved using the scale operator.

Since the catch-all remap operator can be used to arbitrarily scramble indext d&s no inherent locality and
symbolizes references with potentially no locality. The result is thatlalbperators serve as clear visual annotations
to the programmer and compiler of a statement's index locality. It thfereason that RL enforces a stricter definition
of conformability than slice-based languages. In the terms given abMen), b(1..n,j), andc(1..n) do not exhibit
perfect locality and must therefore use array operations to describe tlagiomship.

This is a useful property for a programming language to have becavee giparticular data allocation scheme,
both the programmer and the compiler have a clear means of reasoning abouplementation and expense of a
particular piece of code. This leads to ease of analysis and optimizationtfopaxies.

In addition, algorithms naturally tend to exhibit index localityedto the ways in which data is typically stored
and accessed. Though conformability merely requires that array operands neeithéoshme shape and size, there
often exist additional logical correlations between the operand indicet diae ways in which programmers organize
and reference data—the indices may be offset by a constant factor, scaled gntidif@ounts, or projected from one
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dimension to another. Cases in which arrays are accessed in completely arlzdttargpare relatively infrequent.

To this end, the introduction of specific operators to emphasize the consase simplifies the expression of the
operation €.g, A@(1,1) rather thaa#(11+1,12+1)) and makes code easier to write and to understand (both for humans
and compilers).

5.2 ZPL: A practical parallel region-based language

ZPL is a real-world instance of a region-based programming languagevis designed for portable data parallel
computation. One of its chief design goals was to give the programmetutivie model for determining and reason-
ing about the concurrency and parallel overheads incurred by their implerarthoices. This is known as ZPL's
WYSIWYG performance model [3].

In particular, both concurrency and parallel performance are determined Ipattigoning of data and compu-
tation between processors. Since regions are indicators of a progratra'ardi computation spaces, the policy of
distributing regions across processors is the fundamental detettmindRL program performance. In order to em-
phasize data locality in the parallel context, ZPL maps regions to a caratgpbcessor grid of the same rank in
a grid-aligned fashion, mapping region indices to processor indices in the corresgpdonension €.g, rows of
a 2-dimensional region would be mapped to rows of a virtual 2-dilneakprocessor grid). This has the result of
preserving spatial and dimensional index locality across the virtuabgeor grid's topology.

In addition, ZPL defines thahteracting regiongdefined in [3]) will be mapped to the processors in the same
way. One result is that all simple array statements will execute completgdariallel without any interprocessor
communication. Thus, communication is only induced by the array opsrédgdined in Section 4.

For this reason, the array operators supported in ZPL were chosen to refledistinguish between the com-
munication costs that they tend to induce. For example, the RL operatarsi@ result in different communication
patterns for grid-aligned distributions—typically nearest neiglpmimt-to-point and all-to-all communication, respec-
tively. As aresult, unique operators were chosen to represent them iniZ@Histributed context, RL's rank-changing
promotion and demotion operators tend to result in all-to-all comoatioins similar in cost and implementation to #.
For this reason, ZPL chose not to instantiate these as specialized operahersanguage, instead overloading # to
express them. This reduces the number of concepts that users must leart wlithcuring their model of a program's
parallel cost. As a final example, the $ operator results in fairly compdéx ohotions when used with grid-aligned
arrays, while expressing the same computation using regions ahgastyides has a direct and highly efficient paral-
lel implementation. For this reason, ZPL added supportrfoltiregions—parameterized collections of regions—and
omitted an explicit $ operator, as a way of encouraging the more efficiermagpr

This discussion of design decisions made in ZPL is heavily abridgexder to meet the space requirements of the
extended abstract. In the final paper, we will discuss the designloffi# its relationship to RL in greater depth. In
addition, we'll describe extensions to RL that were added to ZPLdardo support common paradigms and improve
a programmer's expressiveness (including multiregions, wrapbreftects).

6 Relationship to Subscripting

Two array references in a subscript-based language are typically consideredwalie if the same number of array
elements are referenced in corresponding, non-degenerate dimensionsabétbeces. Region-based programming
enforces a stricter meaning of conformability, because a single regieatse¢he indices of all array references in
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reference difference Fortran 90 RL

shifting U(L:n) = (W(0:n-1)+W(2:n+1))/2 | [1..n] U = (W@(-1)+W@(1))/2
striding U(L:n) = W(1:2*n:2) [1..n] U =W$(2)

changing rank (promotion) A(1:n,i) = U(1:n) [1..ni]A=>[*U

changing rank (demotion)| U(1:n) = A(1:n,i) [1.nU=<[i]A

changing dim. alignment | A(1:n,i) = B(j,1:n) [1..n,i] A = B#(j,11)

vector subscripts (1-dim.)| U(1:n) = W(V(1:n)) [1..n] U = WH(V)

vector subscripts (2-dim.)| A(1:m,1:n) = B(U(1:m),W(1:n)) | [1..m,1..n] A = B#(>[,*]U,>[*]W)

Table 2: Equivalent Fortran 90 and RL statements that contain conformablegtyidentical references.

a statement. Thus, it is the role of the array operators to map indicég @bivering region to indices of the array
operands, allowing for the expression of more general referencing. ahlexmarizes a number of ways by which
array references may conform without being identical (column 1). For eachfrafr80 example statement is given
(column 2) and its corresponding RL statement (column 3).

7 Related Work

The most prevalent alternative to region-based programming is arbggripting, as found in Fortran 90, APL, and
Matlab [1, 6, 5]. As we have argued, array subscripting is a more cuwrersneans of expressing simple array
operations and is no more powerful than a region-based approach.

Several parallel languages have supported mechanisms for storing andulatamipindex sets. Parallaxis-1lI
and Gt are two such examples, both designed to express a SIMD style of coropy@t 11]. Both languages
support dense multidimensional index spaces that are used to declarel@aralls. Parallaxis-Ill array statements
are performed over the entire array, and therefore do not use index slsdidbe computation. «Cdoes uses its
index setsghape}to designate parallel computation over entire arrays. However, it enfartigist correspondence
between the shapes of the computation and the arrays being operated on.tlisedstriction, its shapes are more
of a type modifier than a general index set for expressing array computaioth languages allow for individual
elements to be masked on and off. Neither provides support for strided gets.

FIDIL is another parallel array language designed for scientific computfjonith support for more general
index sets calledlomains Domains need neither be rectangular nor dense, and FIDIL supports coiompahatr
them using set-theoretic union, intersection, and difference operafldwesrole of domains is limited to describing
the structure of arraysmapg and not for specifying computational references. Statements thereforeeopithar
over the entirety of an array, or by indexing into the array as in scalar égyagu Conformability in FIDL is somewhat
more dynamic than in other languages—operations are only performedioasrthat are present in both operators.

KeLP [4] is a C++ runtime library that is a descendent of FIDIL. It supgshift, intersect, and grow operators
on rectangular index sets callesjions KeLP uses regions to express iteration spaces using a “for all indicks in t
region” control construct. It departs from the region-based progriagmodel described in this paper in that regions
are used to enumerate indices which are then used to subscript arrays ianti@dtway. As a result, it does not
support array operators to emphasize index locality. Furthermore,rgigioms are not an inherent part of C++, region
manipulation is less elegant, with no implicit support for dynamycsdloped regions and dimension inheritance.
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