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Abstract

Most array languages, such as Fortran 90, Matlab, and APL, provide support for referencing arrays by extending
the traditional array subscripting construct found in scalar languages. We present an alternative approach that exploits
the concept ofregions—a representation of index sets that can be named, manipulated with high-level operators,
and syntactically separated from array references. This paper develops the concept of region-based programming
and describes its benefits in the context of an idealized array language calledRL. We show that regions simplify
programming, reduce the likelihood of errors, and enable a new degree of code reuse. Furthermore, we describe
how regions accentuate the locality of array expressions, enabling programmers to reason clearly about their codes'
execution when targeting parallel computers. We discuss the relationship between RL and ZPL—a fully implemented
region-based parallel language in use by scientists and engineers. In addition, we contrast region-based programming
with the array reference constructs of other array languages.

1 Introduction

Since the earliest programming languages, array references have had subscripts associated with them. This notation,

which was inherited from linear algebra, is natural and convenient for scalar languages since they operate on single

values at a time. In contrast, array languages support the atomic manipulation of multiple array elements, so they

typically extend traditional subscripting to a more complex form. APL [6], the first array language, supports the use of

integer vectors in each subscript position, computing the outer product of the indices in each dimension to determine

the elements referenced. Fortran 90 [1] extends this syntax to support common reference patterns using triple or “slice”

notation to describe a regular subset of elements. Both languages allow the subscript to be elided when referring to all

elements of an array.

Though array language subscripting is a natural extension of scalar subscripting, array languages exhibit an im-

portant property that constrains subscripts. Operands in an array expression must beconformable, meaning that the

subarrays referenced must have the same shape and size.1 Conformability ensures that there are corresponding ele-

ments in each operand of an array expression so that its evaluation is well-defined. Conformability results in a strong

correspondence between the subscripting expressions of array operands. Specifically, they will often be identical and

almost always be similar. This property, which we refer to asindex locality, follows naturally from the fact that pro-

grammers tend to organize and reference data in logical, constrained, and meaningful ways. Index locality motivates

an alternative means of array reference usingregions.

1Though this is a common definition of conformability, it is not universal. Virtually all variations, however, at least require that the number of
elements be the same.
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[lo..hi,lo..hi] A = B + C
(a)

A[S; S] B[S; S] + C[S; S 1+LO+ �HI-LO-1]
(b)

A(lo:hi, lo:hi) = B(lo:hi, lo:hi) + C(lo:hi, lo:hi)
(c)

Figure 1: Different representations of the same array language computation in (a) RL, (b) APL, and (c) Fortran 90 and
Matlab.

This paper describes a region-based approach for expressing array computations. A region is a source-level in-

dex set that prefixes a statement to specify default indices for its array references. Array operators that modify the

default indices can be applied to array expressions, resulting in differentaccess patterns. In this way,region-based

programming syntactically separates array indexing from array references.

ZPL is a region-based parallel programming language in use by scientists and engineers [10]. In this paper, we

present region-based programming and its benefits using a simple, idealized array language calledRL. RL demon-

strates the syntax and expressiveness of regions without the idiosyncrasies caused by practical concerns in real-world

languages like ZPL. As an example of region use in RL, Figure 1(a) shows a 2-dimensional region (in brackets)

that covers an array statement. The statement specifies that elements of then � n sub-arrays ofB andC (where

n = hi � lo + 1) are summed and assigned to the corresponding elements of arrayA. Semantically equivalent state-

ments are given for APL in Figure 1(b) and for Fortran 90 and Matlab in Figure 1(c).

The primary contribution of this paper is the concept of region-based programming, an approach to array lan-

guage indexing. We detail the properties of region-based programming and enumerate its benefits. We give formal

definitions of region and array operators and describe how their use enablesthe source-level identification of index

locality, thereby improving programmers' understanding of their codes' performance. Furthermore, we compare the

region-based representation to the conventional subscripted form. Although the region-based ZPL language has been

described before [7], this is the first discussion of regions as an abstract programming language concept.

From the trivial example of Figure 1, regions may appear to be a minorsyntactic variation on the other forms

of indexing. However, region-based programming provides a powerful abstraction that has advantages related to

notation, code reuse, and performance analysis, as described in the next section. In Section 3, we give a formal

definition for regions and describe RL's support for region declarations and operators. In Section 4, we introduce RL's

array operators and describe how they are used to express general array computations. In Section 5, we describe how

regions highlight index locality and the resulting benefits for parallel computing. We also discuss the relationship

between RL and ZPL. In Section 6, we compare the expressive power of the region-based approach with subscripting.

In the final section we describe related work.

2 Benefits of Region-based Programming

This section provides an overview of the benefits of region-based programming.

Notational Benefits

Regions eliminate redundancy.Factoring the common portions of a (potentially compound) statement's array refer-

ences into a single region eliminates the redundancy of subscript specification, as illustrated by Figure 1. Though

subscripted languages typically allow a subscript to be elided when referencing all the elements of an array, interior
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language total characters non-indexing characters indexing overhead
Fortran 90 3154 1513 52%
ZPL 1957 1421 27%

Table 1: Character counts for the SPEC CFP92 swm256 benchmark written inZPL and Fortran 90.Total characters
indicates the total number of non-whitespace characters in the codes once theyare stripped of variable declarations
and I/O.Non-indexing charactersindicates the number of characters remaining once subscripting (in Fortran90) and
region/direction specification (in ZPL) are removed.Indexing overheadindicates the percentage of characters that are
devoted to array indexing.

and boundary elements of an array are often treated separately, necessitating the use of subscripts. As a result, a

region-based representation is more concise, less tedious, easier to read, andless error prone. As an informal measure

of conciseness, consider the example given in Table 2. Stripped of all indexing constructs, the ZPL and Fortran 90

versions of the SPEC CFP92 swm256 benchmark are similar in size. However, comparing the complete programs,

Fortran 90 is considerably larger, devoting more than half of its characters to indexing, as compared to ZPL's 27%.

Regions accentuate the commonalities and differences among array references.Because the common portions of

references are factored into a region, all that is left at the array references is an indication of how they differ. This

applies the common language design principle that similar things should look similar, and different things should look

different [8]. For example, the following RL statement contains four references to arrayA, each shifted in one of the

cardinal directions. It is clear exactly how arrayA is being referenced in each operand.

[1..m,1..n] Temp = A@(-1,0) + A@(1,0) + A@(0,-1) + A@(0,1)

The subscripted equivalent of this code requires closer scrutiny to discover the same relationship in its operands, let

alone to verify its legality.

Temp(1:m,1:n) = A(0:m-1,1:n) + A(2:m+1,1:n) + A(1:m,2:n+1) + A(1:m,0:n-1)

Regions can be named.By naming regions, programmers can give meaning to index sets. It is difficult to associate

meaning with unnamed indices, just as it is difficult to associate meaning with a memory address without using a

variable name. For example, the nameTopFace is far more illustrative than[0,0:n-1,0:n-1]. Providing the ability to

name index ranges (as in APL) or even entire slices does not yield the same benefit, because a programmer must

potentially name a great number of similar things. For example, the fivedistinct slices in the code fragment above

would require five different names.

Regions encode high-level information that can be manipulated by operators. While subscript-based languages

allow arithmetic operators to be applied to individual dimensions of asubscript, RL provides operators that apply

to the index set as a whole. Regions can be defined in terms of other regions, which is conceptually simpler than

repeatedly constructing related but different index sets. For example, RL's of operator assists in the clear definition

and interpretation ofTopFace astop of Cube. Furthermore, a change to one region is reflected in all regions that are

defined in terms of it, thus localizing modifications to the code.

Code Reusability Benefits

By separating the specification of array indices from the specification of computation, regions result in code that

is more general and more reusable than subscripted code. For example, regions make it trivial to write statements

or procedures that can operate on arrays of arbitrary size, while subscripted languages require the programmer to

pass around and explicitly manipulate array bound information in orderto achieve the same generality. Moreover,
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changing a region-based program to operate on higher dimensional arrays canbe a simple matter of changing the

region declarations. The array computations themselves may not need to change,or they may need to change in minor

and obvious ways, depending on the characteristics of the algorithm. In contrast, traditional array languages would

require modifications to every array reference.

Performance Analysis Benefits

Perhaps the biggest advantage of region-based programming is its potential for aiding in performance analysis. The use

of special operators to highlight correlations between each array operand's reference pattern emphasizes index locality.

This has great benefit in the parallel realm where data locality plays a crucial role in determining performance. By

supporting such operators and by clearly defining its data allocation policy, a parallel region-based language such as

ZPL can enable programmers to reason about the parallel execution of their codesusing straightforward syntactic

cues. As a result, programmers and compilers can locate optimization opportunities by looking at the array operators

used within a program, thereby avoiding complex analysis of subscripting expressions. These benefits are discussed

in further detail in Section 5.

3 Regions

In RL, a region is a rectangular index set of arbitrary rank and stride, useful for defining arrays and array computations.

This section gives a formal definition of regions, explains how theyare declared in RL, and describes RL's operators

for manipulating them.

3.1 Formal Region Definition

Each dimension of a region is defined by a 4-tuplesequence descriptor, r = (l; h; s; a), wherel andh represent the

low and high bounds of the sequence,s is the sequence's stride, anda encodes the alignment of the sequence. A

sequence descriptor,r, is interpreted as defining a set of integers,S(r), as follows:

S(r) = fxjl � x � h andx � a (mod s)g (1)

For example, the descriptor(1; 6; 2; 0) describes the set of even integers between one and six, inclusive:f2; 4; 6g.

A d-dimensional regionr is defined as ad-ary sequence of sequence descriptorsr

1

: : : r

d

, wherer
i

represents the

indices of the region'sith dimension:

r = hr

1

; r

2

; : : : ; r

d

i

The index set,I(r), defined by the region is simply the cross-product of the integers specified by each of its dimensions:

I(r) = S(r

1

)� S(r

2

)� : : :� S(r

d

)

For example, the index set of the 2-dimensional regionh(1; 6; 2; 0); (1; 6; 2; 1)iwould be described as follows:

I(h(1; 6; 2; 0); (1; 6; 2; 1)i) = S(1; 6; 2; 0)� S(1; 6; 2; 1)

= f2; 4; 6g� f1; 3; 5g

= f(2; 1); (2; 3); (2; 5); (4; 1); (4; 3); (4; 5); (6; 1); (6; 3); (6; 5)g
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3.2 Basic Region Declarations

Since dense regions constitute the common case in array-based languages, RL adopts the following as its most basic

region specification:

R = [l
1

..h
1

, l
2

..h
2

, . . . , l
d

..h
d

]

This style of declaration is used to define regions with trivial stride and alignment. Adegenerate dimension—one with

just a single index—can be declared by simply specifying the index (e.g., [3,1..n]). Note that although RL could simply

allow programmers to express regions in a sequence descriptor format, the more abstract syntax is clearer, improving

readability. In RL, the specification above defines the formal region:

r = h(l

1

; h

1

; 1; l

1

); (l

2

; h

2

; 1; l

2

); : : : ; (l

d

; h

d

; 1; l

d

)i

Since the stride is always set to 1, the complete integer rangel

i

: : : h

i

will be used for dimensioni. RL's region

operators (described in the next section) are used to modify the strideand alignment values of a region. Although a

stride of value 1 makes the alignment term in a basic region inconsequential, setting it to the range's low bound results

in a consistent and meaningful interpretation when region operators are used to modify its stride and bounds.

3.3 Region Operators

A set ofprepositional operators—of, in, at, andby—are defined for the sequence descriptors. Each of these operators

combines an integer value,�, and a sequence descriptor to produce a new sequence. The operators are defined to

transform the sequences as follows:

� of (l; h; s; a) =

8

<

:

(l + �; l � 1; s; a) if � < 0

(l; h; s; a) if � = 0

(h+ 1; h+ �; s; a) if � > 0

(2)

� in (l; h; s; a) =

8

<

:

(l; l + (�� � 1); s; a) if � < 0

(l; h; s; a) if � = 0

(h� (� � 1); h; s; a) if � > 0

(3)

(l; h; s; a) at � = (l + �; h+ �; s; a+ �) (4)

(l; h; s; a) by � = (l; h; j�j � s; a) (5)

In short, theof and in operators modify the sequence bounds relative to the existing bounds, leaving the stride and

alignment unchanged (of describes a range adjacent to the original range, whereasin describes a range interior to the

previous range). Theat operator translates the sequence bounds and alignment of the sequence. Theby operator is

used to scale the stride of the sequence, leaving the bounds and alignmentunchanged.

Although there are certainly other region operators that would be useful to a programmer, those listed here were

selected as a basis set since they support common array reference paradigms and areclosed over our region notation.

For example, RL does not support the set-theoretic union, intersection, and difference operators due to the increased

overhead of storing and iterating over non-rectangular index sets.

RL applies the prepositional operators to regions by factoring the� offsets for each dimension into a vector called

a direction. The following code specifies example directions and a region in RL:
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(e) region R at se (f) region R by se2(d) region south in R
se, and se2

(b) directions east, south,(a) region R (c) region east of R

R RR

Figure 2: Illustrations of the region and direction declarations from Section 3.3. Note that the prepositional operators
give intuitive meaning to the regions they define.

south = (1,0)
east = (0,1)
se = (1,1)
se2 = (2,2)

R = [1..m,1..n]

Using RL's prepositional region operators, new regions can be specified using regionR and directions:

EasternBoundary = east of R
SouthernInterior = south in R
ShiftedSE = R at se
OddElements = R by se2

The prepositional operators are evaluated for regions by distributing each component of the direction to its cor-

responding sequence descriptor and applying the prepositional operator. For example, theat operator would be dis-

tributed as follows:

r at (�
1

; �

2

) = h(l

1

; h

1

; s

1

; a

1

); (l

2

; h

2

; s

2

; a

2

)i at (�
1

; �

2

)

= h(l

1

; h

1

; s

1

; a

1

) at �
1

; (l

2

; h

2

; s

2

; a

2

) at �
2

i

= h(l

1

+ �

1

; h

1

+ �

1

; s

1

; a

1

+ �

1

); (l

2

+ �

2

; h

2

+ �

2

; s

2

; a

2

+ �

2

)i

Having defined the prepositional region operators, we can now evaluate the RL regions defined above (see Figure 2

for illustrated interpretations):

I(east of R) = (0; 1) of h(1;m; 1; 1); (1; n; 1; 1)i

= h0 of (1;m; 1; 1); 1 of (1; n; 1; 1)i
= h(1;m; 1; 1); (n+ 1; n+ 1; 1; 1)i

I(south in R) = (1; 0) in h(1;m; 1; 1); (1; n; 1; 1)i

= h1 in (1;m; 1; 1); 0 in (1; n; 1; 1)i

= h(m;m; 1; 1); (1; n; 1; 1)i

I(R at se) = h(1;m; 1; 1); (1; n; 1; 1)i at (1; 1)

= h(1;m; 1; 1) at1; (1; n; 1; 1) at1i
= h(2;m+ 1; 1; 2); (2; n+ 1; 1; 2)i

I(R by se2) = h(1;m; 1; 1); (1; n; 1; 1)i by (2; 2)
= h(1;m; 1; 1) by 2; (1; n; 1; 1) by 2i
= h(1;m; 2; 1); (1; n; 2; 1)i

3.4 Flood Dimensions

RL also supports the concept offlood dimensionsto represent lower-dimensional arrays as if they were higher-

dimensional. Flood dimensions are represented by the sequence descriptor(�1,1,0,0). While this specialized

descriptor doesn' t make mathematical sense by equation (1) above, it represents a dimension with a single set of defin-

ing values that are effectively replicated across its entire index range. Flooddimensions are expressed in RL region
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specifications using an asterisk. For example, the following two regions would be used to represent 1-dimensional

vectors perpendicular to one another in a 2-dimensional space:

Row = [* ,1..n]
Col = [1..n,* ]

4 Computing with Regions

This section explains how regions are used to represent array computations in RL. We describe how regions specify the

extent of array computations and then define RL's operators that modify these indices for individual array expressions.

4.1 Extent Specification with Regions

In RL, regions prefix a statement to specify the elements referenced by each array operand of matching rank. Regions

are dynamically scoped, allowing for the creation of region independent functions and libraries. The following RL

code fragment illustrates several properties of region use. Assume thatInterior=[1..m,1..n], south=(1,0), and arraysA,

B, andU are 2-, 2-, and 1-dimensional, respectively.

[Interior] begin
A = 0;
[south in ”] A = 1;
[1,] A = 2;
[1..q] U = 0;
A = A + B;

end;

This fragment applies the 2-dimensional regionInterior to a compound statement. The regioncoversonly the

first and fifth assignments since the others have a more tightly-binding region of the appropriate rank. The second

assignment uses the” symbol as a means of referring to the covering region whose rank matchessouth's, namely

Interior. The next statement omits a dimension specification to inherit a singledimension from the covering region of

the same rank, in this case1..n). Note that” and blank dimensions are more than syntactic conveniences, since they

support the construction of region-independent functions where the covering region is not lexically available.

RL also provides predefined arrays, namedI1, I2, etc., that give the programmer access to the index values of the

covering region. These are virtual arrays that need not be represented explicitly (i.e., they do not consume memory).

The value of arrayI
i

at a particular index is defined to be the value of the index in thei

th dimension. For example, the

RL statement[1..n] U = I1 assigns the values 1 ton to the corresponding elements of arrayU. Array I
i

may be used any

place where an array of rank� i is expected. As another example, the following statement assigns elements of array

A their row-major order index.

[1..n,1..n] A = (n * (I1-1)) + I2

4.2 Array Operators

In the examples of the previous section, identically indexed elements ofall arrays are referenced in each statement.

RL uses explicit array operators to represent array references that are variationsfrom the indices of the covering

region. This section defines the RL array operators, which map indices of the covering region to indices of their array

operands. The result of any operator can be used as the operand to any other, andexcept where noted, array operators

have an l-value (i.e., they may appear on the left-hand side of an assignment).
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The shift operator (infix@) translates the portion of its operand array that is referenced. Its left operand is the

array to shift, and the right operand is a direction vector of the same rankthat specifies the magnitude and direction

of the shift in each dimension. For example, the following RL statementassigns the nearest neighbor average of the

elements of arrayB as specified by the covering region into arrayA. Assume that the following directions are defined:

north = (-1,0),south = (1,0),east = (0,1), andwest = (0,-1).

[1..m,1..n] A = (B@north + B@south + B@east + B@west) / 4

Thescaleoperator (infix$) adjusts the stride in each dimension of a single array reference relative to the covering

region. Its left operand is an array to scale, and the right operand is a direction of the same rank. The new stride in each

dimension is the product of the corresponding direction element and thestride in the covering region. The low element

referenced is the same as the low element in the covering region. For example,the following RL statement assigns the

odd elements of arrayB between 1 and2n to the consecutive elements of arrayA between 1 andn, inclusive.

[1..n] A = B$(2)

The promotionoperator (prefix>) transforms ad0-dimensional array into ad-dimensional array by replicating

alongd
f

of its dimensions (whered0

= d� d

f

). A d-dimensional region—called anoperator region—is encoded in

the operator. The flood dimensions in this region (there must bed

f

of them) specify which dimensions of the resulting

array are to contain replicated data. For example, the following RL statement replicates elements 1 throughm of

1-dimensional arrayU across the columns of 2-dimensional arrayA.

[1..m,1..n] A = >[,*] U

As this example shows, operator regions may contain blank dimensionsto inherit from the covering region. Operator

regions serve as the covering region for the operand array, which may itself be a complex array expression. Because

the operand array expression for promotion has lesser rank than the operator region, the region formed by eliminating

its flood dimensions covers the array operand expression. For example in the following statement, elements 1 through

m of U andV are added together before performing the promotion.

[1..m,i] A = >[,*] (U+V)

The promotion operator can also be used to promote a subarray. This is expressed by specifying degenerate

dimensions in the operator rather than flood dimensions. For example, the following RL statement copies theith

column of 2-dimensional arrayB into columns 1 throughn of 2-dimensional arrayA.

[1..m,1..n] A = >[,i] B

It is important to note that the implementation of promotion does not actually need to create a new array of

increased rank (and increased storage requirements). Promotion simply provides a different way to reference data

without changing memory requirements. Promotion expressions do not have l-values because they represent more

elements than are actually represented in memory.

Thedemotionoperator (prefix<) collapsesd
d

dimensions of and0-dimensional array to produce and-dimensional

array (d = d

0

� d

d

). A d

0-dimensional operator region is encoded in the operator. The degenerate dimensions of the

region (there must bed
d

of them) specify which dimensions of the operand array are to be collapsed. For example, the

following RL statement assigns columni of 2-dimensional arrayA into 1-dimensional arrayU.

[1..n] U = <[,i] A

As this example shows, the demotion operator's operator region may use blank dimensions. Though the covering

region and the operator region have different rank, the operator region's blank dimensions will inherit from the corre-

sponding dimension in the covering region (determined by ignoringdegenerate dimensions in the operator region).

Theremapoperator (infix#) allows for arbitrary references by permitting the programmer to specify amap from
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code fragment signature rank relationship j

0 value (1 � i � d

0)

. . . fno-op(j) = j

0

d = d

0

j

0

i

= j

i

. . .@v . . . f@(j;v) = j

0

d = d

0

j

0

i

= j

i

+ v

i

[r
c

] . . .$v . . . f$(j;v; rc) = j

0

d = d

0

j

0

i

=

�

(j

i

� glow(ri))vi + glow(ri) if s
i

> 0

(j

i

� ghigh(ri))vi + glow(ri) otherwise

. . .>[r
o

] . . . f

>

(j; r

o

) = j

0

d = d

0

+ dnflood(ro) j

0

i

=

�

l

i

if dimensionr
i

is degenerate
j

i

0 otherwise (i0 = dflood(r; i))

. . .<[r
o

0 ] . . . f

<

(j; r

o

0

) = j

0

d = d

0

� dndegen(ro0

) j

0

i

=

�

l

i

if dimensionr
i

is degenerate
j

i

0 otherwise (i = ddegen(r; i
0

))
. . .#(x) . . . f#(j;x) = j

0

d = d

0

j

0

i

= x

i

(j

1

; j

2

; : : : ; j

d

)

Notation
v = hv

1

; : : : ; v

d

0

i : rankd0 direction
r

c

= hr

1

; : : : ; r

d

i : rankd covering region
r

o

= hr

1

; : : : ; r

d

i : rankd operator region
r

o

0

= hr

1

; : : : ; r

d

0

i : rankd0 operator region
x = hx

1

; : : : ; x

d

i : d-ary list of rankd integer arrays

Functions
dflood(r; i) = i

th non-flood dim. ofr
ddegen(r; i) = i

th non-degenerate dim. ofr
dnflood(r) = no. of flood dims inr
dndegen(r) = no. of degenerate dims inr
glow(r = (l; h; s; a)) = l + (a� l) mod s

ghigh(r = (l; h; s; a)) = h� (h� a) mod s

Figure 3: Array operator summary. The first column gives a code fragmentindicating the operator's use. The sec-
ond column summarizes the map function's argument signature for each operator. The third column describes the
relationship betweend andd0. The final column gives the value of an element of the resultingd

0-ary j0 index.

indices of the covering region to indices of the operator's operand array.The operator's left operand is an array to

remap, while the right is a vector of integer indices whose corresponding elements form an index into the operand

array. The value of each element of the resulting array is the data appearing at this index in the operand array. The

ranks of the argument array, integer arrays, and resulting array are all the same. For example, the following RL

statement assigns each element(i; j) of A the value of element(I(i; j); J(i; j)) of B.

[1..m,1..n] A = B#(I,J)

As a more specific example, the following statement assigns the transpose of arrayB to A. Note the use of predefined

arraysI1 andI2.

[1..n,1..n] A = B#(I2,I1)

Though all of RL's operators can be expressed using the remap operator, the specialized operators are not without

value. They provide a more concise and readable representation of certain common operations compared to the general

#-operator. Moreover, the specialized operators serve as a more accurate indicator of index locality and parallel cost,

as discussed in Section 5.

4.3 Operator Summary

Figure 3 summarizes the semantics of each array operator. A function,fop(: : :), is given for each operator that maps

indicesj = hj
1

; : : : ; j

d

i, of the rankd covering region to indicesj0 = hj0

1

; : : : ; j

0

d

0

i of the operator's rankd0 operand

array.

Due to space limitations, we are not able to discuss RL's support of masksfor selecting subsets of a region's index

set, nor its computational array operators (reductions and scans). These will be described in the final paper.
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5 Discussion

5.1 Index Locality in RL

At first glance, RL's array operators may appear to be gratuitous. For example, why should a language support the

special-purpose @ and $ operators, when they can be expressed with the general-purpose # using simple functions of

the index arraysI
i

? The answer is that RL's operators were selected to emphasize different types of index locality.

In the context of this paper, indices are considered to be local to one another based on their relationship in index

space. We do not define any quantitative metric for measuring index locality, but rather give examples in qualitative

terms: indices close to one other in the traditional Cartesian sense (e.g., (1; 1) and(2; 1)) might be consideredspatially

local. Indices that are distant but which share common indices in a dimension (e.g., (1; 1) and(1; 100)) could be

considered to havedimensional locality. A third example,inter-rank locality, is exhibited by indices of different rank

that share common coordinates (e.g., (1; 2) and(1; 100; 2)). Finally, two indices whose coordinates are separated by

a multiplicative factor might be considered to havelocality of scale(e.g., (2; 2) and(6; 6)). These definitions can be

trivially extended to describe the locality of a pair of index sets ratherthan individual indices. Furthermore, note that

indices may be related by a combination of locality types.

The principle of index locality is crucial in a language due to its relationship to data locality. On modern architec-

tures, the locality of a program's data references plays a crucial role in determining its performance and is therefore

worthy of consideration by performance-minded programmers. Since index sets are used both to define and access

arrays, index locality directly correlates to reference locality (dependent alsoon the data allocation scheme). This

relationship between index locality and data locality is especially important in the realm of parallel computing, where

data locality affects the amount of communication (explicit or implicit)required between processors.

To this end, RL emphasizes index locality through its region-based syntax and choice of array operators. State-

ments with perfect locality (i.e., all operations performed element-wise on identical indices) simply require the region

defining the index set with no other special array operations. Other statements use the RL array operators to describe

different types of index locality:

� Statements with spatial locality use the shift operator to modify indexing by a constant offset.
� Dimensional locality is expressed using the dimension-preserving instance of promotion.
� Inter-rank locality is expressed using the promotion and demotion operators.
� Locality of scale is achieved using the scale operator.

Since the catch-all remap operator can be used to arbitrarily scramble index sets, it has no inherent locality and

symbolizes references with potentially no locality. The result is that all RL operators serve as clear visual annotations

to the programmer and compiler of a statement's index locality. It is forthis reason that RL enforces a stricter definition

of conformability than slice-based languages. In the terms given above,a(i,1..n), b(1..n,j), andc(1..n) do not exhibit

perfect locality and must therefore use array operations to describe their relationship.

This is a useful property for a programming language to have because given a particular data allocation scheme,

both the programmer and the compiler have a clear means of reasoning about the implementation and expense of a

particular piece of code. This leads to ease of analysis and optimization for both parties.

In addition, algorithms naturally tend to exhibit index locality, due to the ways in which data is typically stored

and accessed. Though conformability merely requires that array operands need to be the same shape and size, there

often exist additional logical correlations between the operand indices dueto the ways in which programmers organize

and reference data—the indices may be offset by a constant factor, scaled by different amounts, or projected from one

10



dimension to another. Cases in which arrays are accessed in completely arbitrary patterns are relatively infrequent.

To this end, the introduction of specific operators to emphasize the common case simplifies the expression of the

operation (e.g., A@(1,1) rather thanA#(I1+1,I2+1)) and makes code easier to write and to understand (both for humans

and compilers).

5.2 ZPL: A practical parallel region-based language

ZPL is a real-world instance of a region-based programming language that was designed for portable data parallel

computation. One of its chief design goals was to give the programmer an intuitive model for determining and reason-

ing about the concurrency and parallel overheads incurred by their implementation choices. This is known as ZPL's

WYSIWYG performance model [3].

In particular, both concurrency and parallel performance are determined by thepartitioning of data and compu-

tation between processors. Since regions are indicators of a program's data and computation spaces, the policy of

distributing regions across processors is the fundamental determinant of ZPL program performance. In order to em-

phasize data locality in the parallel context, ZPL maps regions to a conceptual processor grid of the same rank in

a grid-aligned fashion, mapping region indices to processor indices in the corresponding dimension (e.g., rows of

a 2-dimensional region would be mapped to rows of a virtual 2-dimensional processor grid). This has the result of

preserving spatial and dimensional index locality across the virtual processor grid's topology.

In addition, ZPL defines thatinteracting regions(defined in [3]) will be mapped to the processors in the same

way. One result is that all simple array statements will execute completely in parallel without any interprocessor

communication. Thus, communication is only induced by the array operators defined in Section 4.

For this reason, the array operators supported in ZPL were chosen to reflect and distinguish between the com-

munication costs that they tend to induce. For example, the RL operators @and # result in different communication

patterns for grid-aligned distributions—typically nearest neighborpoint-to-point and all-to-all communication, respec-

tively. As a result, unique operators were chosen to represent them in ZPL. In a distributed context, RL's rank-changing

promotion and demotion operators tend to result in all-to-all communications similar in cost and implementation to #.

For this reason, ZPL chose not to instantiate these as specialized operatorsin the language, instead overloading # to

express them. This reduces the number of concepts that users must learn without obscuring their model of a program's

parallel cost. As a final example, the $ operator results in fairly complex data motions when used with grid-aligned

arrays, while expressing the same computation using regions of varying strides has a direct and highly efficient paral-

lel implementation. For this reason, ZPL added support formultiregions—parameterized collections of regions—and

omitted an explicit $ operator, as a way of encouraging the more efficient approach.

This discussion of design decisions made in ZPL is heavily abridged in order to meet the space requirements of the

extended abstract. In the final paper, we will discuss the design of ZPL and its relationship to RL in greater depth. In

addition, we' ll describe extensions to RL that were added to ZPL in order to support common paradigms and improve

a programmer's expressiveness (including multiregions, wraps, and reflects).

6 Relationship to Subscripting

Two array references in a subscript-based language are typically considered conformable if the same number of array

elements are referenced in corresponding, non-degenerate dimensions of thereferences. Region-based programming

enforces a stricter meaning of conformability, because a single region selects the indices of all array references in
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reference difference Fortran 90 RL
shifting U(1:n) = (W(0:n-1)+W(2:n+1))/2 [1..n] U = (W@(-1)+W@(1))/2
striding U(1:n) = W(1:2*n:2) [1..n] U = W$(2)
changing rank (promotion) A(1:n,i) = U(1:n) [1..n,i] A = >[,*] U
changing rank (demotion) U(1:n) = A(1:n,i) [1..n] U = <[,i] A
changing dim. alignment A(1:n,i) = B(j,1:n) [1..n,i] A = B#(j,I1)
vector subscripts (1-dim.) U(1:n) = W(V(1:n)) [1..n] U = W#(V)
vector subscripts (2-dim.) A(1:m,1:n) = B(U(1:m),W(1:n)) [1..m,1..n] A = B#(>[,*]U,>[*,]W)

Table 2: Equivalent Fortran 90 and RL statements that contain conformable, yet not identical references.

a statement. Thus, it is the role of the array operators to map indices of the covering region to indices of the array

operands, allowing for the expression of more general referencing. Table6 summarizes a number of ways by which

array references may conform without being identical (column 1). For each, a Fortran 90 example statement is given

(column 2) and its corresponding RL statement (column 3).

7 Related Work

The most prevalent alternative to region-based programming is array subscripting, as found in Fortran 90, APL, and

Matlab [1, 6, 5]. As we have argued, array subscripting is a more cumbersome means of expressing simple array

operations and is no more powerful than a region-based approach.

Several parallel languages have supported mechanisms for storing and manipulating index sets. Parallaxis-III

and C� are two such examples, both designed to express a SIMD style of computation [2, 11]. Both languages

support dense multidimensional index spaces that are used to declare parallel arrays. Parallaxis-III array statements

are performed over the entire array, and therefore do not use index sets todescribe computation. C� does uses its

index sets (shapes) to designate parallel computation over entire arrays. However, it enforcesa tight correspondence

between the shapes of the computation and the arrays being operated on. Due tothis restriction, its shapes are more

of a type modifier than a general index set for expressing array computation. Both languages allow for individual

elements to be masked on and off. Neither provides support for strided index sets.

FIDIL is another parallel array language designed for scientific computation[9] with support for more general

index sets calleddomains. Domains need neither be rectangular nor dense, and FIDIL supports computation over

them using set-theoretic union, intersection, and difference operations. The role of domains is limited to describing

the structure of arrays (maps) and not for specifying computational references. Statements therefore operate either

over the entirety of an array, or by indexing into the array as in scalar languages. Conformability in FIDL is somewhat

more dynamic than in other languages—operations are only performed on indices that are present in both operators.

KeLP [4] is a C++ runtime library that is a descendent of FIDIL. It supports shift, intersect, and grow operators

on rectangular index sets calledregions. KeLP uses regions to express iteration spaces using a “for all indices in the

region” control construct. It departs from the region-based programming model described in this paper in that regions

are used to enumerate indices which are then used to subscript arrays in the standard way. As a result, it does not

support array operators to emphasize index locality. Furthermore, sinceregions are not an inherent part of C++, region

manipulation is less elegant, with no implicit support for dynamically scoped regions and dimension inheritance.
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