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Abstract

Active Names are a general framework for the development
and composition of wide-area applications. The key insight
behind Active Names is the need to introduce programma-
bility of name binding to support the widely varying seman-
tics and requirements of distributed applications in access-
ing wide-area resources. Active Names use an application-
specific and location-independent program to locate and re-
trieve wide area resources. This paper presents the architec-
ture for evaluating Active Names, including the technique
for binding names to programs, and a standard environment
for executing these programs. We demonstrate the utility
of the Active Naming framework via four sample applica-
tions: mobile distillation of Web content, load balancing and
replica selection across wide-area servers, extensible cache
management designed to increase the utility of Web caches,
and personalization of Web content to client preferences.

1 Introduction

The emergence of wide-area distributed applications as a
dominant computing paradigm highlights two major lim-
itations in today's computing infrastructure. First, wide-
area applications suffer performance problems in attempt-
ing to take advantage of the rich set of available network
resources. The Internet today is marked by highly variable
and unpredictable performance both in end hosts and the net-
work interconnect. The second major limitation is inflexibil-
ity within the infrastructure itself, making it difficult to de-
ploy new network services and applications. For example, a
number of schemes for replication and load balancing [Katz
et al. 1994, Berners-Lee 1995, Brisco 1995], caching [Gw-
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ertzman & Seltzer 1996, Chankhunthod et al. 1996, Zhang
et al. 1997, Cao et al. 1998, Tewari et al. 1998], and cus-
tomization (e.g., Yahoo [Yahoo 1996] or CNN [CNN 1998])
have been proposed recently. While such point solutions to
point problems have been proposed, some have enjoyed lim-
ited acceptance because the Internet is missing a general in-
frastructure to develop and deploy new network services.

In this paper, we present the design and implementation
of Active Names, a general mechanism to support perfor-
mance and flexibility in the deployment of network services.
An Active Name extends the traditional name/binding trans-
lation by executing a program to directly retrieve a resource
(not just its binding). Interposing a program on the nam-
ing interface provides a natural way to express semantics
desired by wide-area network services. For example, code
for an Active Name can (i) manage server replicas, choosing
the least loaded, closest server to a particular client (ii) uti-
lize application-specific coherence policies to locate caches
with fresh entries, and (iii) store user preferences for page
contents (e.g., specific headlines, stock quotes, weather re-
ports). As an added advantage, the code for an Active Name
is location independent, meaning that it can run at various
points in the network to exploit, for example, locality, avail-
able computation, and/or available bandwidth.

Active Names are motivated by the same goals of flex-
ibility and performance as Active Networks [Tennenhouse
& Wetherall 1996, Wetherall et al. 1998]. Active Networks
interpose a program at the IP packet level, introducing pro-
grammability into network routers. Such functionality is
well matched to introducing new network transport mecha-
nisms, such as RSVP [Zhang et al. 1993], multicast [Deering
& Cheriton 1990], or Mobile IP [Perkins 1996]. While there
is certainly overlap between functionality provided by Ac-
tive Names and Active Networks, we argue that interposing
at the naming interface is more convenient for building and
deploying higher-level services such as caching, managing
failover, replication, and customization.

The principal contribution of Active Naming is a unified
framework for extensible and application-specific naming,
location, and transformation of wide-area resources. Specif-



ically, the goals of the system are to: (i) conveniently express
in a single unified framework a wide variety of existing ap-
proaches to replication, load balancing, customization, and
caching, (ii) allow simple implementation and deployment
of new naming extensions as they become necessary and
available, (iii) compose any number of Active Name exten-
sions into a single request (as opposed to the more ad-hoc,
often mutually exclusive, nature of existing techniques), and
(iv) minimize latency and consumed wide-area bandwidth in
evaluating Active Names.

To demonstrate the utility of Active Naming we envision
the following sample applications within the Active Name
prototype; the first four are described in more detail in Sec-
tion 4.

� Mobile Distillation: Distillation [Fox et al. 1996, Fox
et al. 1997] transforms wide-area resources to better
match client characteristics. For example, a Palm Pi-
lot connected to the Internet over a modem should only
retrieve small black and white versions of images to
match its screen size and available bandwidth. The cur-
rent approach is to apply the transformation at a fixed
location in the network (the client proxy). An Active
Name specifies the operation used to retrieve the image;
we demonstrate the utility of flexibly setting the trans-
formation point at variable points in the network. For
example, when wide-area bandwidth is limited, trans-
forming an object at the server is more efficient than
transmitting a large image to a proxy before reducing
the image size.

� Extensible Cache Management: A significant portion
of Web content cannot currently be cached because
servers wish to maintain control over each access. For
example, they may wish to track hit counts for adver-
tising revenues, or perform advertising banner rotation
or other modifications for each client access [Cao et al.
1998]. Active Names run service-specific code to man-
age portions of proxy caches. Thus, for every access to
a particular service's content in a cache, code specific
to that service is run locally to perform any bookkeep-
ing or client-specific customization on behalf of the ser-
vice.

� Replication and Load Balancing: Many Web services
are replicated across geographically distributed sites.
The proper algorithm for choosing among replicas is
service and client specific, and must adapt to changes
in network/server capacity and workload. Furthermore,
clients must also perform failover in a service-specific
manner (e.g., maintaining enough state to retransmit
a request to an alternate site). Active Names provide
the requisite flexibility to direct requests to the replica
likely to deliver the best performance.

� Customization: Many services are customizing their
presentation to individual user preferences. For ex-
ample, the URLhttp://my.yahoo.com returns a
news page customized with the headlines, stock quotes,
weather forecasts, etc. of a particular user. With Active
Names, a program maintains user preferences and per-
forms customization on behalf of services.

� Uniform Resource Names: URN's [Sollins & Masin-
ter 1994] allow location independent names for web
resources. URN's possess a number of advantages
over the current URL approach. Perhaps most im-
portant is the ability to make object names persistent.
Thus, as objects are replicated or moved from host to
host or directory to directory, the name remains con-
stant (i.e., once a name is generated it will never be-
come invalid). The current proposal for implementing
URN's [Daniel & Mealling 1996] leverages DNS to in-
voke complex and static re-writing rules of names to
translate the name to an address. While we have not yet
implemented a prototype URN system, Active Naming
would allow for service-specific code to maintain map-
pings between URN's and the current location of all
objects maintained by a service. Of course, the spe-
cific name translation policy is entirely under service
control.

� Global Location-IndependentObjects: A number of re-
search projects [Grimshaw et al. 1995, van Steen et al.
1998] envision a wide-area object based computation
system. Locating objects in such a system in the face of
replication, mobility, and cache consistency in the gen-
eral case is difficult. However, the problem becomes
easier by using application-specific knowledge for ob-
ject location. Such a model once again fits in well
with Active Name model, as Active Name programs
can employ application-specific knowledge (e.g., hints
as to which regional area an object may be located [van
Steen et al. 1998]) to locate objects across the wide
area.

While versions of each of these applications have been im-
plemented in other contexts, the existing implementations
are limited by the lack of a general framework for flexibil-
ity, deployment, composability, and resource allocation.

The rest of this paper is organized as follows. Section 2
further motivates our design rationale for Active Names with
a discussion of the need for performance and flexibility in
network services. Section 3 presents the Active Naming
architecture and implementation. Section 4 describes the
implementation of the four sample Active Naming applica-
tions. Section 5 presents related work and we conclude in
Section 6.



2 Motivation

As the popularity of wide-area distributed computing grows
with the popularity of the Internet, wide-scale replication
of distributed services has emerged as the key technique
for scaling to user and program demands. Recent propos-
als [Grimshaw et al. 1995, Foster & Kesselman 1996, van
Steen et al. 1997, Vahdat et al. 1998] suggest that wide-
area replication will become both more dynamic, with au-
tomatic replication and tear-down of popular objects, and
wide-scale, with some systems scaling to billions of objects.
We currently see this trend on a smaller scale, with popular
services such as Alta Vista [Dig 1995] and Netscape [Net
1994] replicating their web servers across the wide area for
improved scalability, performance, and availability. Interest-
ingly, the performance and availability bottleneck for many
services is not local CPU or disk performance. For exam-
ple, while NOW's [Anderson et al. 1995] and RAID's [Chen
et al. 1993] allow for highly available, scalable system per-
formance in the local area [Brewer 1997], recent studies
suggest that the performance limitations often lie in the net-
work [Paxson 1996].

Replication makes naming more difficult because the
name for a service can translate to multiple addresses spread
across the wide area. To choose the proper replica the name
system must account for current network connectivity along
multiple paths, the location of the client making the request,
and the processing power and relative load on the repli-
cas. For example, the name server must balance relative
load with Internet delay; it can be better to go to lightly-
loaded, but distant servers as opposed to a heavily-loaded
server on the same LAN. Similarly, two clients at differ-
ent locations may choose different replicas independent of
load because of backbone congestion between a client and
replica. As another example, network performance is highly
variable meaning that the proper replica for access to a large
file (e.g., the latest version of Netscape's Communicator) is
likely to change during the course of the access. The cur-
rent model of binding to an IP address, and then accessing
a resource at that address makes it difficult to switch repli-
cas midstream (similar problems arise in implementing mo-
bile IP [Ioannidis & Maguire 1993]). Similarly, perform-
ing failover on replica failure must be programmable and
service-specific. For example, failure semantics vary for In-
ternet chat [Yoshikawa et al. 1997] versus a Bayou managed
calendar program [Terry et al. 1995].

Flexibility is important for applications beyond replica-
tion and load balancing. Application-specific knowledge
can often be used to perform name translation in multi-
ple domains. For example, in attempting to locate mo-
bile objects, the knowledge that mobile users exhibit strong
geographic locality can be used to construct a hierarchi-
cal regional name lookup system with hints [van Steen
et al. 1998]. Similar application-specific knowledge can

be used to implement efficient name lookup in other do-
mains, such as: hostname to IP address translation [Mock-
apetris & Dunlap 1988], locating participants of a parallel
program [Fitzgerald et al. 1997], or locating an object in a
proxy cache [Zhang et al. 1997].

Another advantage of Active Naming is the potential
to reduce wide-area communication and improve client la-
tency. Currently, naming is usually a step in a larger process
and involves multiple round-trip communications. For ex-
ample, clients bind to a stub before generating an RPC and
browsers translate hostnames to IP addresses through DNS
before retrieving Web pages1. Active Naming makes use of
three-way RPC's to minimize the need for multiple round-
trip communications in name resolution. Thus, a request is
routed along a path to where it can be satisfied, and the re-
sult is transmitted directly back to the client. For example,
utilizing hierarchical Web caches can have a negative impact
on client-perceived latency; once the page is located, it must
travel all the way back down the hierarchy before reaching
the client. With three-way RPC's, the web page, once found,
is transmitted directly back to the client, with caches back-
filled in the background.

Active Names also provide a convenient way to express
tradeoffs in function vs. data shipping. Depending on trade-
offs in available bandwidth and local computation power,
name resolution can involve either shipping an evaluation
function to the data or retrieving data for local evaluation.
For example, consider the distillation of a large 100 KB im-
age. In the case where server CPU cycles are available and
wide-area bandwidth is scarce, it is more efficient to ship the
distillation function to the data at the server. However, if the
situation reverses and the server becomes overloaded retriev-
ing the data across the network and performing distillation
locally is likely to be more efficient. Once again, the key
observation is that the decision must be application-specific
and adaptive to changes in capacity and workload.

3 Architecture and Implementation

This section describes the design and implementation of a
name resolution system supporting extensibility and com-
posability. At a high level, our system provides a framework
for binding names to programs and a framework for chains
of programs to cooperate in translating a name to the data
that name represents. Thus, a name lookup consults a dis-
tributed name database to retrieve a program. This program
owns a portion of the global namespace (e.g., CNN) and
has the freedom to bind sub-names (e.g., CNN/frontpage)
in a service-specific manner. Active Name Resolvers export
a standard environment for the execution of Active Name

1Hostname to IP translation may involve multiple round tripsthrough
the DNS hierarchy. One recent study [Thompson et al. 1997] showed that
5-10% of backbone traffic consisted of DNS flows.



code. This resolver allows, for example, access to local
cache state and also enforces security and resource limita-
tions. In designing these interfaces, we focus on the twin
(and often contradictory) goals of simplifying the implemen-
tation of the code bound to an active name, and of allowing
the maximum flexibility with respect to performance opti-
mizations.

Figure 1 summarizes the interface to the classes that make
up the Active Name architecture. The system is built in
Java to leverage a number of system features, such as porta-
bility, object serialization, remote method invocation, and
stack introspection [Wallach & Felten 1998]. Three main
entities make up the system: ActiveNames, NamespacePro-
grams, and ActiveNameResolver. An Active Name is made
up of two strings. The first isnamespacethat identifies
service-specific code (this code is an instance of the class
NamespaceProgram, hereafter referred to as “Names-
pace Program”). Invocation of this code evaluates the sec-
ond portion of an ActiveName, thenamewithin a given
namespace. To evaluate an Active Name, a client invokes
the Eval method of an Active Name Resolver with four
arguments: (i) the Code Source identifies the caller and is
used for security checks by the resolver, (ii) the Active Name
specifies the name to be evaluated, (iii) After-Methods are,
by convention, invoked in order after the original program
associated with the Active Name is completed, and (iv) the
Data Stream represents the result of evaluating an Active
Name and acts as input to after-methods; the Data Stream
forms a pipeline of filters passed from program to program
and, potentially, host to host.

Given this basic architecture, we envision Active Name
programs adhering to several conventions. First, the last
after-method is a program that transmits the final result to
the client. This convention allows for the construction of
three-way RPC's and supports a distributed continuation-
passing style of name evaluation. Because Active Name pro-
grams are location-independent and completely encapsulate
their evaluation state, the programs can be routed directly to
hosts best able to evaluate a given name. Further, results can
be transmitted directly back to the client via the last after-
method, conserving bandwidth and latency by avoiding the
need to retrace the route taken to evaluate a name. A simi-
lar convention states that the array of after-methods acts as
a stack, with each successive Active Name program able to
push additional after-methods onto the stack.

A third convention concerns failure recovery. Instances
of Namespace Programs maintain state on current replica
membership. This information, in addition to service-
specific state, is used to perform failover in the case where an
error is returned or a response is not received after a given
timeout period. For backward compatibility, Active Name
resolvers can act as a web proxy that understand client HTTP
requests, providing a bridge between the current model of
naming through URL's/DNS and Active Names.

Note that more sophisticated/demanding programs may
violate any of these conventions. For example, a query op-
timizer may reorder the stack of after-methods for better lo-
cality or an anonymizer may replace the last after-method to
hide the identity of a client making a request.

3.1 Dynamic Code Location

All Active Names are implicitly associated with a Java
class responsible for evaluating the name and retrieving
the associated data. As summarized in Figure 1, the
namespace component of an Active Name identifies a Java
class that extends the base classNamespaceProgram.
This program is responsible for translating Active Names
to the resources they represent. For example, the class
CNNNamespaceProgrammight be responsible for medi-
ating access to resources provided by the CNN news service.

Namespace Program classes are instantiated and executed
by Active Name resolvers. The primary responsibility of
the resolver is to convert a string representation of an Ac-
tive Name to the class responsible for evaluating the name.
Once located, the resolver instantiates the class in a sepa-
rate thread and invokes theEval method. This method
is responsible for transmitting the resource represented by
the Active Name back to the client. The Active Name Re-
solver enforces security and resource limitations on running
Namespace Programs. Since downloaded code is generally
untrusted, it is the responsibility of the resolver to ensure
that the code accesses only authorized state (e.g., no access
to other thread's state or file data) and does not exceed cer-
tain resource limitations (e.g., the thread cannot allocate all
available physical memory).

By convention, every Active Name passed to the name
resolver matches the classRootNamespaceProgram.
The code for this class is available at every name re-
solver and bootstraps the location and instantiation of the
“proper” class necessary to evaluate a given Active Name.
For example, an active name that matches the format
of a URL will cause loading and execution of the class
UrlNamespaceProgram. While the assumed format of
Active Names is easy to change (by adding or modifying
code in the classRootNamespaceProgram), the current
format for non-URL names is:

namespace/name

Examples of Active Names include
CNN/frontpage and "www.news.com/code/
NewsNamespaceProgram.jar"/frontpage. The
string preceding the first slash (or in quotes) specifies the
class that should be run to evaluate the ActiveName. As
the examples indicate, the namespace can be identified in
either a shorthand or a fully qualified format. The shorthand



class ActiveName {
public ActiveName(String namespace, String name);
public String GetNamespace();
public String GetName();

}

abstract class NamespaceProgram { // The code for evaluating an Active Name
public void Eval(String name, ActiveName[] afterMethods, DataStream data);
public ActiveNameResolver GetActiveNameResolver();

}

class ActiveNameResolver {
public Cache GetCache(CodeSource cs);
public NetworkDataStream MakeNetworkConnection(CodeSource cs, String host, int port);
public void Eval(CodeSource cs, ActiveName name, ActiveName[] afterMethods, DataStream data);
// For Remote Method Invocation
public void EvalAt(CodeSource cs, NamespaceProgram program, String remoteHost);

}

Figure 1: This figure presents an outline of the interfaces for the Java classes that make up the Active Naming prototype.

format is for user convenience; in these cases, a registry2

is consulted for code registered to the given shorthand. On
the other hand, the fully-qualified namespace identifies the
exact piece of code to be retrieved in a URL-like format (in
fact, we currently employ HTTP to retrieve the code). The
second portion of an Active Name, the name, is opaque to
the system and is handed unmodified to theEval method
of a Namespace Program.

Active Name resolvers cache the classes responsible for
evaluating Active Names to avoid the above bootstrapping
process in the general case. Classes are cached for a pro-
grammable time period. Classes can also serialize their con-
tent to local disk to maintain state information that may be
beneficial on subsequent invocations of a particular class.

3.2 Active Name Resolver

3.2.1 Interface

Active Name Resolvers export allow Namespace Program to
access local system resources through a uniform interface.
Resolvers spawn a separate thread with an for the evaluation
of each Active Name. The resolver gates accesses to all re-
sources through a Java Security Manager and by enforcing
resource limitations (as described in 3.2.2 and 3.2.3 below).
The resolver is also used to insert and retrieve data from a
local cache and to make network connections.

The interaction of the Active Name Resolver and classes
responsible for Active Name evaluation is described in Fig-
ure 1. TheEval method on a resolver locates the class
responsible for evaluating an Active Name, enforces secu-
rity and resource consumption limits, and spawns a new

2This shorthand registry is not implemented but one simple way to con-
struct it would be to leverage DNS.

thread to run theEval method on a Namespace Program.
TheGetCache method is used to retrieve the local cache
provided by the Active Name Resolver. The cache en-
forces that different Namespace Programs see distinct par-
titions within the cache to locally store and retrieve ob-
jects. MakeNetworkConnection is used to communi-
cate with remote machines. Finally,EvalAt allows in-
stances of a Namespace program to hand off evaluation of
an Active Name to a resolver on a remote machine. This
is done through a continuation-passing style (as described
below) using Java's Remote Method Invocation.

3.2.2 Security Guarantees

Our security model is oriented toward isolating untrusted
Namespace Programs from one another and from the under-
lying machine both for security and to limit resource con-
sumption (see below). We do this by (i) requiring that all
accesses by a Namespace Program to sensitive system re-
sources or to other Namespace Programs be via explicit calls
to the Active Name Resolver interface, and (ii) requiring
Namespaces to explicitly identify themselves in all calls to
the Active Name Resolver so that the Active Name Resolver
knows what security restrictions to enforce and to whom to
charge resource consumption.

To enforce these requirements, the resolver uses
Java stack inspection [Wallach & Felten 1998] as
implemented in Sun's Java JDK 1.2. The sys-
tem's java.security.SecureClassLoader
associates all Namespace Programs with a
java.security.CodeSource3 from which the

3A CodeSource encapsulates the URL from which code was fetched
and any public keys that signed the code.



system loaded the Namespace Program class. When
loading a remote class, the SecureClassLoader initializes
a java.security.ProtectionDomain for the new
class by asking the currentjava.security.Policy
for a java.security.PermissionsCollection
for the class's CodeSource. The PermissionCollection is
essentially a list of capabilities for the ProtectionDomain.

Our ActiveName.SecurityPolicy class is a sub-
class of the defaultjava.security.Policy and en-
sures that Namespace Program classes are loaded with
minimal permissions. In particular, we grant exactly
two capabilities. The first is the standard Java permis-
sion “Class.getProtectionDomain”; this permission allows
the namespace to learn its protection domain and from
that to learn the name of its CodeSource. The second
is a new permission formed by concatenating the string
ActiveName.capability with a string that uniquely
identifies the CodeSource.

Whenever a Namespace Program makes a call to the Ac-
tive Name Resolver, it includes its CodeSource as an explicit
argument. The resolver invokes the stack inspection mecha-
nism to verify that the identity of the caller matches the call's
claim by verifying that the current stack has a valid permis-
sion forActiveName.capability.CodeSource. If
not, the request is rejected; otherwise, the call may proceed
and the resolver knows the identity of the caller making the
request. This allows it to, for instance, restrict local disk
cache accesses by a Namespace Program to a specific sub-
directory in the system.

It might appear that Java stack inspection could provide
security without requiring each AN-VM request to include a
correct CodeSource. For instance, the SecurityPolicy could
grant each CodeSource a FilePermission to read and write a
particular subdirectory. However, this allows programs di-
rect access to the filesystem, which makes it more difficult
for the Active Name Resolver to enforce resource limita-
tions.

3.2.3 Resource Limitations

Instances of Namespace Program can be arbitrary, untrusted
code. Therefore, the Active Name Resolver must ensure that
these programs do not consume arbitrary resources as they
evaluate an Active Name. We focus on five local resources:
disk bandwidth, disk space, network bandwidth, CPU cy-
cles, and memory.

Disk and network resources are easy to manage because
all accesses to the disk and network must go through the Ac-
tive Name Resolver. The security policy ensures that direct
access to the network and disk are automatically rejected.
The methods on the resolver used to access disk and net-
work resources track consumption on a per-Namespace ba-
sis to guarantee that pre-defined limits are not exceeded.

Our CPU scheduler manages cpu resources on a per-

request granularity. When a new request enters the sys-
tem, the resolver assigns it to a thread group. The request
may spawn multiple sub-threads, but all cycles used will
be charged to the originating thread group and request. We
grant each request a soft limit and a hard limit of CPU time.
While a request has consumed less than its soft limit of cy-
cles, it runs with normal priority. When it has used more
than its soft limit but less than its hard limit, it runs with re-
duced priority. The CPU scheduler kills thread groups that
exceed hard CPU limits.

The CPU scheduler is a very high priority Java thread
that manipulates Thread and ThreadGroup priorities both
to track and limit the resources consumed by each request.
When the Active Name Resolver creates a new thread group
for a new request, it registers the thread group with the
scheduler. The scheduler spins in a loop that sleeps for a
random period of time and then determines the highest pri-
ority of any job's active threads and how many active threads
each thread group that are running at that high priority. The
scheduler estimates how many cycles each thread group by
assuming that the CPU was time-sliced evenly among all
highest-priority active threads while the scheduler slept. For
example, if the scheduler sleeps fort milliseconds and a job
hash high-priority threads out ofH high priority threads
among all jobs, the scheduler increments the job's CPU con-
sumption estimate byt�h=H . After updating its accounting
on all jobs, the scheduler reduces the priority of jobs that
have exceeded their soft limits and kills jobs that have ex-
ceeded their hard limits.

Our prototype system does not presently limit memory
consumption. Because the Java language and runtime envi-
ronment present no satisfactory way to monitor or control
the memory usage of classes and threads, rationing mem-
ory will require modifications to the underlying JVM. This
feature is planned as future work.

3.3 After-Methods

One of the parameters for the evaluation of any Active Name
(the methodEval) is an array of Active Names called
afterMethods (see Figure 1). Similar to after-methods
in CLOS [Steele Jr. 1990], the array of after-methods rep-
resents a list of Active Name classes that will be invoked in
order once evaluation of the main class has completed. As
depicted in Figure 2, after-methods are typically responsible
for returning the result of evaluating an Active Name back
to the client, perhaps performing some transformation on the
data along the way. By convention, each Active Name class
promises to run the first element of the array of AfterMeth-
ods after completing its own task. The array can be empty,
in which case no action will be taken upon completion of
the main class. Typically however, at least one after-method
with the namespace “ReplyNamespaceProgram” will appear
on the array. The name field of the Active Name is a string
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Figure 2: This Figure describes how after-methods interact
with the evaluation of Active Names. Each after-method acts
as a filter on the result (a data stream) of evaluating an ac-
tive name.

containing a hostname and a port where the client awaits the
evaluation of the Active Name it originally generated.

For example, if a client requests evaluation of the Ac-
tive Name “yahoo/search”, it will listen on a local port
for HTML representing the contents of that object. Thus,
when requesting evaluation of the object, the client in-
vokes code similar to that outlined in Figure 3(a). The
client first creates and runs a thread that will listen for
the result of the evaluation on, say, port 8040 of the local
host. It then creates array of Active Names with a single
element specifying the namespace, “ReplyNamespacePro-
gram,” and the name to be evaluated within this names-
pace, “myhost:8040” (the address where the client expects
to get its answer). It then invokes the methodEval on
the Active Name Resolver implemented by the local Active
Name Resolver.RootNamespaceProgram evaluates the
Active Name “yahoo/search” and determines that the class
YahooNamespaceProgram is responsible for the “ya-
hoo” namespace.RootNamespaceProgram spawns a
thread to invoke the Yahoo code and then exits. Once the
Yahoo code completes evaluation of the Active Name (and
stores the result in the DataStream), it will pop the first
element off ofafterMethods and request that the Ac-
tive Name Resolver evaluate this Active Name, as summa-
rized by the sample Java code in Figure 3(b). Evaluation
of ReplyNamespaceProgramwill cause the contents of
the data stream (HTML for “yahoo/search”) to be transmit-
ted to the waiting client.

Most classes follow the convention of setting up a
stream of data that flows from class to class to avoid
store and forward delays. Thus, after-methods are of-
ten invoked before the previous class has completed its
evaluation (i.e., as soon as it is ready to start produc-

ing data on theDataStream). After-methods allow a
natural implementation of continuation-passing style eval-
uation of Active Names and the integration of 3-way
RPC's in name resolution. A single after-method of class
ReplyNamespaceProgram allows the system to pass
name evaluation from resolver to resolver, with the result
directly transmitted back to the client (rather than working
its way back through the entire chain of resolvers).

Another utility of after-methods is the opportunity to flex-
ibly perform client or service-specific transformation or cus-
tomization on a resource before returning the resource to the
client. For example, the mobile distillation application de-
scribed in Section 1 is implemented through an after-method
that transforms pictures into a format suitable to particular
clients. As will be described in Section 4.1, a mobile distil-
lation after-method has the ability to insert itself into optimal
points in the evaluation stream to take advantage of available
network bandwidth and computation power. Similarly, after-
methods could expand Server Side Include (SSI) directives
in HTML as a filter on data returned to the client.

3.4 Example

As a concrete example of the functionality described in the
previous subsections, consider the evaluation of the Active
Name “CNN/Frontpage”. The evaluation of this name will
be customized along a number of axes: the user sits behind
a slow modem and prefers small, black and white pictures to
conserve bandwidth. The HTML representing CNN's front
page is customized to contain the news stories, stock quotes,
and weather forecasts preferred by the user; the service se-
lects among a number of different advertisements based on
the object requested and information on the user; the ser-
vice also wishes to keep track of the number of accesses to
a given page, both for advertising revenue and to track the
popularity of different pages (in fact, a separate impartial
auditing service may be employed to track hit counts). Each
customization can be thought of as a filter on data. These fil-
ters are implemented through Namespace Program. In this
example, a number of different programs cooperate to pro-
duce the desired resource for the end client. The steps are
summarized below:

� The client generates the Active Name
“CNN/Frontpage” and requests that the local name
resolver evaluate this name along with a array of
after-methods containing two entries. The first is
responsible for distillation, transforming images to
match client requirements (in this case, reducing
size and converting to black and white). The second
after-method is a program that knows how to transmit
the result of evaluating an Active Name back to the
waiting client. Note that (i) these after-methods will
not be run until after the name has been evaluated,



t = new ListenForAnswerThread(8040); // client chooses port
t.run();
afterMethods[0] = new ActiveName("ReplyNamespaceProgram", "myhost:8040");
ActiveNameResolver.Eval("RootNamespaceProgram", "yahoo/search",

new DataStream(), afterMethods);

(a) Name Evaluation

// remove the first element, e.g., ReplyNamespaceProgram/myhost:8040
ActiveName afterMethod = afterMethods.pop(); // remove first element
ActiveNameResolver.Eval(afterMethod, dataStream, afterMethods);

(b) After-Method Invocation

Figure 3: Part (a) of this figure presents sample Java code for a client wishing to evaluate the Active Name “yahoo/search.”
Part (b) presents sample Java code for invoking the first after method,in this case an Active Name responsible for delivering
the resource represented by “yahoo/search” back to the client.

(ii) the client only specifies the name of programs;
retrieving the actual code is the responsibility of name
resolvers.

� After requesting evaluation, the client listens for the
result (this operation can be either blocking or non-
blocking). However, the result does not have to come
from the local name resolver. Active Name evaluation
is accomplished through a continuation-passing style,
so the result of evaluation will often come back from
a third party. Such multi-way RPC's reduce the need
for multiple round-trip communications to evaluate a
name, allowing requests (and their evaluation state) to
be routed directly to locations best able to carry out
evaluation.

� Given the Active Name, the local name resolver will re-
trieve code specific to the CNN service for evaluating
the name. This code: (i) contacts servers for any user
preferences and caches them for future reference, (ii)
retrieves the appropriate news stories, stock quotes, etc.
from CNN servers, (iii) inserts advertising, either ran-
domly or tailored to the particular user, and (iv) main-
tains a profile of access characteristics that are periodi-
cally transmitted back to servers.

� Once the CNN program completes its work, the name
resolver executes all after-methods associated with the
evaluation of the Active Name. In this example, one
after-method distills images to client preferences and
the second transmits the result back to the waiting
client.

4 Applications

4.1 Mobile Distillation

Clients accessing Web resources vary widely in their charac-
teristics from powerful workstations with fast Internet links
to hand-held devices with small black and white displays,
little processing power, and slow connections. The proper
way to present Web content depends on these client char-
acteristics. For example, it makes little sense to transmit a
200 KB 1024x768 color image to a hand-held device with
a 320x200 black and white screen behind a wireless link.
To address this mismatch, the current approach [Fox et al.
1996, Fox et al. 1997] is to mediate client accesses through
Web proxies. These proxies retrieve requested resources
and dynamically distill the content to match individual client
characteristics, e.g., by shrinking a color image and convert-
ing it to black and white.

At a high level, clients name a Web resource but would
like the resource transformed based on client-specific char-
acteristics. This model fits in well with Active Names.
Clients specify the name of a resource and an after-method
that specifies the distillation program to be applied on the
resource once it is located. The distillation program ensures
that the object returned to the client will match its require-
ments. Active Names allow clients to specify and control
the contents of the objects returned to them. Because Active
Names take advantage of computation resources distributed
throughout the network, they free clients from being bound
to a single proxy or from locating appropriate proxies in
the case of mobile clients. Further, since the clients spec-
ify (and potentially provide) the programs any Active Name
resolver distributed throughout the network can potentially
satisfy client requests.

An added benefit of taking advantage of network re-
sources with respect to distillation is the ability to flexibly
choose the transformation point of a requested resource at



Proxy Distillation Server Distillation
No Server Load 3.8 s / 15.8 s 3.1 s / 11.2 s
High Server Load 3.6 s / 16.0 s 14.5 s / 117.4 s

Table 1: This table describes the performance of Dynamic
Distillation implemented with Active Names. Each entry re-
ports client latency in retrieving a small and a large image.
The proxy is located at U.C. Berkeley and the server is lo-
cated at Duke University. Server load is varied from no load
to ten competing CPU-intensive processes.

arbitrary points in the network. For example, if the network
path between a server and a proxy is congested, it may not
make sense to transmit a large image over the congested net-
work to perform a transformation at the proxy that greatly
reduces the size of the image. In a function versus data-
shipping tradeoff, it is usually more efficient to perform the
transformation at the server and then transmit the smaller
image to the proxy (or directly to the client). Conversely,
if the transformation function is expensive, a fast network
connection is available, and the CPU server is over loaded,
then it is often more efficient to transmit the larger image
to a proxy (or client) where more CPU cycles are available.
Thus, the location-independent programs that comprise Ac-
tive Names allow for flexible evaluation of function versus
data shipping, trading off network bandwidth for computa-
tion time.

To demonstrate the above points, we have implemented
dynamic distillation within the Active Naming framework.
A distillation after method applies filters to images, shrink-
ing images and converting color images to grayscale. To
evaluate the utility the utility of flexibly setting the distilla-
tion point, we ran the following experiment. A client at U.C.
Berkeley requests an image located at Duke University. This
request is made under a number of different circumstances.
The first variable is where distillation takes place. Active
Name resolvers are available at both Berkeley and Duke so
execution of the program can take place at either location.
The second variable is the load on the machine at Duke, in-
fluencing the utility of choosing distillation location. In one
case, the Name Resolver at Duke runs on an otherwise un-
loaded machine. In another, the resolver must compete with
ten CPU intensive processes. The third variable is the size of
the original and distilled image. For our experiments, we use
one 59 K image that is distilled to 9K and a 377 K image that
is distilled to 19 K. Machines at both Berkeley and Duke are
Sun Ultrasparcs. At the time of our measurements, transfer-
ring 377 K from Duke to Berkeley achieves 90 KB/s, while
transferring 59 K achieves 38 KB/s. Note that the measure-
ments are taken on a weekend night to minimize variability
in wide-area performance. The Active Name resolvers (in-
cluding all distillation code) are compiled and run with the
Java Development Kit, version 1.2 beta 4.

Table 1 shows the client-perceived latency of retrieving
distilled versions of the two Jpeg images of varying sizes.
For each entry in the table, the left number represents client-
perceived latency in obtaining the smaller (59 K distilled to
9 K) image, while the right number is the latency for obtain-
ing the smaller (377 K distilled to 19 K) image. For exam-
ple, when the image is distilled at the server with no load at
the server, the client waits 3.1 seconds for the smaller im-
age and 11.2 seconds for the larger image. Table 1 shows
that with no load on the server, distilling the image at the
server produces between 20-40% better than performing dis-
tillation at the proxy. Larger savings come from perform-
ing distilling the larger picture because of the higher cost
of transmitting 377 K across the Internet. Also note that
the reported performance numbers are pessimistic because
are measurements where taken at a time (a weekend night)
when the network link was not congested and did not display
packet drops. Larger performance improvements should be
seen from server distillation during the day when transmit-
ting large amounts of data across the Internet is slower.

The performance improvement for server distillation
comes from two sources: (i) distillation takes place close to
the data, meaning that less data must be transmitted across
the wide area, and (ii) the server transmits the image directly
to the client (as opposed to going through the proxy) via
three-way RPC meaning that one hop is avoided. The sec-
ond row of the table shows that when the server becomes
heavily loaded (competing with ten other CPU intensive pro-
cesses), shipping the data to the proxy where CPU cycles are
plentiful produces much better performance: distillation at
the proxy performs between four to seven times better than
server distillation. In this case, it is preferable to pay the cost
of wide-area transmission for available CPU cycles. Also
note that the streaming nature of Active Name transmission
means the proxy begins performing image transformation as
soon as the image begins arriving, a performance enhance-
ment over waiting for the entire image to arrive before be-
ginning computation as is often done with current proxy ar-
chitectures.

4.2 Extensible Cache Management

The explosive growth of Internet usage has led to similar
growth in consumed wide-area bandwidth. Today, network
performance is likely the dominant component of access-
ing remote resources. HTTP traffic currently comprises the
majority of of bytes across network backbones [Thomp-
son et al. 1997]. Caching of Web content at local prox-
ies is an important technique for improving performance
and reducing consumed bandwidth. Unfortunately, the per-
formance of current caching schemes is limited by low
hit rates stubbornly near 50% [Abrams et al. 1995, Duska
et al. 1997, Gribble & Brewer 1997, Arlitt & Williamson
1996, Glassman 1994] even for large client populations.



Reason Percent Requests Percent Bytes
Dynamic 20.7% 14.5%
Consistency 9.9% 8.1%
No Caching 9.2% 12.3%
Compulsory 44.8% 58.0%
Redirection 3.7% 0.1%
Misc 11.5% 7.4%

Table 2: This table presents the breakdown among all re-
quests that missed in the proxy cache of a national ISP. The
first column accounts for requests that missed, while the sec-
ond column breaks down misses by the number of bytes re-
turned by the requests.

We set out to discover the cause of the large percentage of
requests that miss in the cache. We examined a 6-day trace
of 7618537 requests for 64.5GB of data by 23080 clients4

of a national commercial dial-up internet service provider.
We simulated the behavior of a proxy cache during this six
day period. We used the first day of the trace to warm the
cache and gathered statistics for the remaining 5 days that
contained 6461733 requests for 54.8GB. Assuming current
caching technology – an shared proxy with infinite storage
and a cache consistency algorithm based on client polling
– 40.2% of all requests (for 29.3% of all bytes) could be
satisfied by the cache. In this section we will break down the
cause of the remaining cache misses and argue that Active
Names (i.e. service-controlled programs mediating service
access) can eliminate a significant portion of the misses.

Table 2 summarizes the cause of the remaining accesses
that miss in the cache. Because Active Naming allows
service-specific code to be run in caches before returning an
object, we hypothesize that Active Names could satisfy sig-
nificant fractions of the requests to proxy caches that miss.
Each row of Table 2 is examined below along with an expla-
nation of how Active Naming code could reduce misses of
the specified variety.

� 20.7% of miss requests contain URLs that contained ei-
ther the string ”cgi” or the character ' ?' , indicating that
they invoked a program at the server. Of course, some
of these requests access large or valuable proprietary
databases where shipping the function will not be ap-
propriate. Still, we hypothesize that a significant frac-
tion of such requests could be satisfied in a proxy cache
by Active Name code (i.e., the code is not necessarily
bound to the server).

� 9.9% of the miss requests would be cache hits, but
they are delayed by cache consistency polling mes-
sages to the server (”Get-if-modified” requests an-

4The ISP uses dynamic IP for dial-up modem users. The trace contains
requests by 23080 distinct IP addresses.

swered with ”304 Not Modified” replies) required for
client-driven cache consistency. As currently done by
a typical shared proxy cache, our simulated cache ver-
ifies data by querying the server before delivering it to
clients. Although cache consistency will still require
some communication, Active Naming allows more so-
phisticated consistency policies to remove polling from
the critical path of many such requests. For ex-
ample, Active Name programs can maintain service-
specific information about how frequently certainly ob-
jects change, removing the need to check with the ser-
vice.

� 9.2% of the miss requests had headers that forbid
caching. HTTP headers generally turn off caching
for one of three reasons: i) although the request does
not contain a ”cgi” or a ' ?' , the object is dynamically
generated at the server, ii) the server wishes to count
the number of accesses to the page to, for instance,
maximize advertising revenue, or iii) the page changes
rapidly and the service wishes to avoid use of stale data.
Active naming has the potential to make significant
fractions of all of these types of requests cacheable.

� 44.8% of the miss requests are compulsory misses as-
sociated with the first access to a distinct URL in the
trace. Prefetching could avoid a significant fraction
of these misses [Gwertzman & Seltzer 1996, Padman-
abhan & Mogul 1996, Kroeger et al. 1997]. Using
service-specific Active Name code has the added ben-
efit of using service knowledge of access patterns to
drive prefetching (as opposed to forcing the proxy to
determine such access patterns on its own). For exam-
ple, many services display common URL access pat-
terns (i.e., if URLA is accessed, there is a high proba-
bility that URLB will also be accessed). Active Name
programs can use service-specific information to per-
form prefetching, potentially reducing a portion of the
compulsory misses.

� 3.7% of the miss requests are redirections to a new
server. Most of these redirections are used to per-
form load balancing. As motivated in Section 4.3,
load balancing can be performed by Active Name code
without the benefit of such redirects. Note that while
only a small number of bytes are involved in redirects,
they nonetheless make a significant contribution to la-
tency because connection time often dominates web ac-
cesses.

� 11.4% of the requests are of a miscellaneous variety,
largely comprised of requests that encountered an error
and requests for objects that actually had changed at the
server. Active Name programs can avoid forwarding
most error requests to the server by maintaining knowl-
edge of the names of objects stored at servers. Simi-
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Figure 4: This Figure presents the performance of three dif-
ferent algorithms for choosing among a set of replicas. The
x-axis is the number of clients simultaneously requesting a
1 KB file from the replicas. The y-axis shows the average
latency perceived by the clients in retrieving the file.

lar to the compulsory miss category, Active Names can
also eliminate many of the misses to data that actually
has changed through prefetching.

Clearly, Active Naming will not make hits out of all of
the above categories of misses. Yet, given the difficulty of
improving cache hit rates beyond 50% with current cache ar-
chitectures, pursuing an Active Naming based strategy will
be productive even if only half of the current misses are con-
verted to hits.

4.3 Replicated Service Location

Today, many service providers are replicating their service
across both the local and wide area to achieve better per-
formance, scalability, and availability. A principal problem
with replication is determining which replica to access from
the client's perspective. Current techniques range from plac-
ing the onus entirely on the end user to randomly directing
requests to a set of replicas at the IP level (e.g., DNS round
robin). Unfortunately, a large number of variables must be
considered to optimally choose among replicas. Considera-
tions include replica load/processing power, network con-
nectivity, and incomplete replication (as is often the case
with, for example, FTP mirror sites). For example, even
considering variable CPU load, network connectivity (band-
width, latency) may make one replica optimal for one client,
whereas a different replica is optimal for a second client.

Active Naming allows service-specific programs to ac-
count for any number of variables in choosing a replica,
including client, server, and network characteristics. It is
beyond the scope of this paper to determine the appropri-
ate replica-selection policy for any service. However, Fig-
ure 4 summarizes the results of an experiment demonstrat-
ing the importance of introducing programmability into the

decision making process. For these measurements, between
one and eighteen clients located at U.C. Berkeley attempted
to access a service made up of two replicated servers, one at
U.C. Berkeley and the second at the University of Washing-
ton. The clients used one of the three following policies to
choose among the replicas:

� DNS Round Robin: In this extension to DNS, a host-
name is mapped to multiple IP addresses, and the par-
ticular binding returned to a client requesting hostname
resolution is done in a round robin fashion. Services
employing DNS round robin achieve randomized load
balanced access to replicas. However, no programma-
bility or extensibility is possible with this scheme.

� Distributed Director: With this product from
CISCO [Cisco 1997], specialized code is run in
routers that allows services to register the current set
of replicas making up a service. Any requests (at
the IP routing level) bound for a particular service,
are automatically routed to the closest replica (as
measured by hop count). While still not extensible,
Distributed Director achieves geographic locality for
service requests5.

� Active Naming: With this instance of programmable
replica selection, the program uses the number of hops
(as reported by traceroute) from the client replica to
bias the choice of replica. Replicas further away are
less likely to be chosen than nearby replicas. How-
ever, this weighing is biased by a decaying histogram
of previous performance. Thus, if a replica has demon-
strated better performance in the recent past, it is more
likely to be chosen. While, such an algorithm is not
purported to be optimal it will demonstrate the utility
of programmable replica selection.

Figure 4 shows the average latency perceived by clients
continuously requesting the same small 1 KB file from the
replicated service. The x-axis presents offered load, varying
the number of clients simultaneously requesting the file. The
y-axis shows the average latency in seconds perceived by the
clients. The graph shows that at low load the proper replica
selection policy is to choose the “nearest” replica in Berke-
ley because accessing the Seattle server would consistently
incur higher latency as a number of wide-area links must
be traversed. This is the policy implemented by Distributed
Director and this policy shows the best performance at low
load. However, as load increases, the Berkeley replica be-
gins to become over-loaded, and the proper policy is to send
approximately half the requests to the Seattle replica. In this
regime, the cost of going across the wide area is amortized

5Note that minimizing hop count is not guaranteed to achieve ge-
ographic locality or choose the server able to deliver the lowest la-
tency/highest bandwidth to a particular client.



by the high load at the Berkeley server. Such load balanc-
ing is implemented by DNS round robin, which achieves the
best performance at high load.

Note that the simple Active Naming policy is able to track
the best performance of the two policies by accounting for
not just distance, but also previous performance. At low lev-
els of load, both distance and previous performance heavily
bias Active Naming toward the Berkeley replica. However,
as load increases and performance at the Berkeley replica
degrades, an increasing number of the requests are routed to
Seattle achieving better overall performance.

4.4 Personalization

Another application we have implemented in the Active
Naming framework is service-controlled personalization of
a Web service. For example, many news services [Yahoo
1996, CNN 1998] allow a single name (a URL to a front
page) to be customized to user preferences for headlines,
stock quotes, weather forecasts, etc. Currently, this mapping
is accomplished by translating a “cookie” uniquely identi-
fying a user to an entry in the server's database describ-
ing such preferences. Such personalization is implemented
with greater generality and location independence with Ac-
tive Names.

An Active Name program stores user preferences in the
cache of an Active Name Resolver (the entire class, along
with user preferences is serialized to disk). Using Active
Names has a number of benefits. For example, today prox-
ies cannot cache objects associated with cookies; provided
the server trusts the cache to execute the Active Name, we
can provide customization near the client because the Ac-
tive Name is an agent of the service. The Active Name
program also tracks user accesses, ensuring that hit counts
are correctly transmitted to the service (i.e., for advertis-
ing revenue). The program also performs service-specific
cache consistency. For example, a service might update a
set of headlines every two hours, meaning there is no need
to check for updates at other intervals. Finally, the Active
Name program personalizes objects by customizing adver-
tisement banners to user preferences, or by simply rotating
among a set of available banners [Cao et al. 1998].

5 Related Work

Our work in Active Naming introduces programmability and
location independence to existing wide-area naming systems
such as Apollo Domain [Leach et al. 1983], DNS [Mock-
apetris & Dunlap 1988] and LDAP [Bolot & Afifi 1993].
For their target domains, these systems have been success-
ful. However, as new requirements are introduced it is diffi-
cult to expand such systems. Current wide-area computing
research proposals, such as Globe [van Steen et al. 1998],

Globus [Fitzgerald et al. 1997], and Legion [Grimshaw et al.
1995], propose a number of schemes for locating computa-
tional resources across the wide area. These proposals are
orthogonal to our work as any could be incorporated within
the extensible Active Naming framework.

Prospero [Neuman 1992, Neuman et al. 1993] also sup-
ports extensible naming to support mobility and the integra-
tion of multiple wide-area information services (e.g., WAIS
and gopher). Relative to Prospero, our work demonstrates
the utility of location-independent and portable programs for
name resolution, a security and resource allocation model
for extensions, and implementation of a different set of
wide-area applications. Programmability in Active Names
grew out of earlier work on Smart Clients [Yoshikawa et al.
1997]. Smart Clients retrieve service-specific code into the
client to mediate access to a set of server replicas. Active
Names are more general than Smart Clients, with location
independent code able to run anywhere in the system allow-
ing for the deployment of a broader range of applications.

Anycasts [Bhattarcharjee et al. 1997, Fei et al. 1998],
Nomenclator [Ordille & Miller 1993], and Query Rout-
ing [Leach & Weider 1997] also allow for resource dis-
covery and replica selection. Anycasts allow a name to be
bound to multiple servers, with any single request transmit-
ted to a single replica according to policy in routers or end
hosts. Nomenclator uses replicated catalogs with distributed
indices to locate wide-area resources. The system also in-
tegrates data from multiple repositories for heterogeneous
query processing. Query Routing uses compressed indexes
of multiple resources and sites to route requests to the proper
destination. These approaches show promising results and
should, once again, fit well within our extensible framework.

Active Caches [Cao et al. 1998] allow for customization
of cache content through Java programs similar to our ex-
tensible cache management system described in Section 4.2.
With Active Caches however, retrieved data files contain
programs, with the cache promising to execute the program
(which may change the contents of the file) before return-
ing the data to the client. On the other hand, our extensible
cache management system uses service-specific programs to
mediate all accesses to a service. This approach is more gen-
eral and allows, for example, the program to manage local
cache replacement policy or to perform load balancing (on a
cache miss).

6 Conclusions

In this paper, we described Active Names, a general frame-
work for the development and composition of applications
requiring access to wide-area resources. The key insight be-
hind Active Names is the need to introduce programmability
to support the widely varying semantics and requirements of
distributed applications. To this end, an application-specific



and location independent program is associated with each
name resolution. Location independence allows the system
to take advantage of remote computational resources and
provides a framework to evaluate tradeoffs in function ver-
sus data shipping. Further, three-way RPC's are utilized to
route results directly back to clients, reducing latency and
consumed bandwidth. To demonstrate the utility of the Ac-
tive Naming framework, this paper describes the design and
implementation of four sample applications: mobile distil-
lation of Web content, load balancing and replica selection
across wide-area servers, extensible cache management de-
signed to increase the utility of Web caches, and personal-
ization of Web content to client preferences.
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