A Region-based Approach for Sparse Parallel Comptiting
Bradford L. Chamberlain E Christopher Lewis Lawrence Snyder

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

Abstract

This paper introduces a technique for parallel sparse ctatipn by extending the array-language
concept ofregions—regular programmer-specified index sets used for spegifgimay computations.
We introduce the notion cfparse regionsvhich can represent an arbitrary set of indices. Sparsensgi
inherit the benefits of regular regions, including concésan a direct encapsulation of parallelism, and
support for language performance models that highlighalfgroverheads. We show that region-based
array languages can benefit from the use of sparse regiatfisinbierms of the semantic richness avail-
able to the programmer and the execution times of the ragufirogram. We also demonstrate that
regions result in efficient implementations as comparedaysbased approachs, due to their role in
amortizing sparse overheads and enabling optimizations.

1 Introduction

Sparse computations form an important class of applications for paratigluting, yet one that has been
largely ignored in the parallel programming language community. Fegulages exist that contain built-in
support for sparsity. Instead, most require programmers to etkpliziild and manipulate data structures
for representing sparse arrays and matrices. Although considerableneffdveen devoted to developing
runtime libraries for sparse computations as well as efficient data stesdir representing sparse matri-
ces, direct support for sparsity in a programming language can have raaafite. Chief among these is
the opportunity to cleanly and unambiguously alert the compiler tpthsence of sparsity in order to en-
sure its efficient implementation and highlight opportunities foaflalism. In addition, language support
for sparse computations can result in cleaner programs, increasing a larsguagkelbility and the ease
with which programmers can express their computations.

For the purposes of this discussi@parsityis characterized by an arbitrary subset of indices from a
regular index space. Typically the subset represents only a small fragtibe space. For example, an
array or matrix is considered to be sparse when it contains a large nunidenti€al values (typically “0”)
such that it becomes worthwhile to represent only the values that difféinid paper, we refer to these as

*This research was supported in part by DARPA Grant E30602-0752, NSF Grant CCR-9710284 and the Intel Corporation.

therepresented value®ue to the arbitrary location of the represented values' indices, theeactof any
sparse representation is tied to the representation of, and iteratiottiseet of indices. The magnitude
of this overhead determines whether a sparse representation will resaitings over a dense one. In
any reasonable representation, if the number of represented elements iscaigathpsmaller than the
overall size of the index space.(, 3n elements in am? array), the sparse representation should result in
a savings.

In this paper, we discussragion-basedpproach to expressing sparse computationgegfonis an
array language construct used to represent a regular, rectangular set of dicag.irin regular array-
based computations, the use of regions has resulted in clean, concishatddedadily parallelizable [4].
Furthermore, parallel region-based languages can be designed with cleampeidermodels that allow
programmers to trivially detect and quantify the concurrency and parakeheads associated with their
code [2]. In this paper, we relax the regularity characteristic of tiautti regions to creatgparse regions
that can represent arbitrary index sets. We find that the use of regi@xpttess sparsity results in the

following benefits:

e The advantages obtained in regular region-based computaganscpnciseness, concurrency, a
clear performance model) [4] are preserved.

e Sparse computations with a wide variety of dynamic and structural chastictecan be expressed
clearly and efficiently.

¢ Overheads associated with representing and traversing sparse arrays cantizedamnoss expres-
sions that share the same sparsity pattern.

e Sparsity is presented to the compiler at a high level, leveraging theosugf traditional parallel
array language optimizations and creating opportunities for new gations resulting from the
presence of sparsity.

Programming language support for sparsity has perhaps been best achi¢lredmatrix language
MATLAB [10]. The extension of its original dense formulation teclude sparsity is a model example of
language design [6]. MATLAB's dense language concepts were transpagrtghded to support com-
putations on sparse matrices, while remaining true to the mathematicdmtaof a matrix. In this work,
we have similar goals, seeking to extend the region-based array langBade support computations on
sparse arrays However, our work differs in that MATLAB is a serial, interpreted laage whereas ZPL
is parallel and compiled. Moreover, while MATLAB provides implicitiénpreter-managed sparse arrays,
ZPL provides the programmer with an explicit means of specifying andatipgrover sparse index sets.
This enables a rich variety of sparse computing styles that cannot be saghsesccinctly in MATLAB.

It should be noted that we distinguish between matrices and arrays wahis—the former being a
special case of the latter with inherent mathematical interpretations and figep@ur goal isiotto design
a language that provides sparse matrix support, for example by ingltattoring and solving routines as
primitives. Rather, we provide support for a general sparse array tiattuse and array-based operators.

By way of analogy, ZPL does not contain an explicit matrix multiplicatiprerator, but instead provides
array operators with which users can express standard parallel matrix lioatign routines such as the
SUMMA algorithm [14]. Similarly, we view sparse arrays as a toolrgpresenting arbitrary sparse data
structures, of which sparse matrices are just one instance.

The rest of this paper is organized as follows: The next section characteifieesrd sparsity types
used in the real-world that we believe a sparse array language shoplorsupection 3 provides a brief
introduction to ZPL, emphasizing those features that we extend t@siggarse computation. We discuss
these extensions in Section 4. Section 5 discusses implementation égligives some preliminary
results demonstrating the benefits obtained using sparse regioneanS&stimmarizes related work for
expressing sparse computations, and we conclude in Section 7.

2 Characterizing Sparsity

Before describing our region-based approach for sparse computatignsydrthwhile to consider the
different sparsity characteristics that a real-world problem might hawebegin with, we classify the
dynamic properties of sparsity as falling into four rough categories:

static the sparsity pattern is known and expressible at compile time. Form@gaantridiago-
nal or densely banded matrix.

runtime constant the sparsity pattern is not known until runtime, but will be fixed tioe
program's duration. For example, the indices representing coastlireeslistretized
ocean modeling application.

dynamic predictable the sparsity pattern will change during the course of the programa*s e
cution, butin ways that can be anticipated. For example, the fill-in thgtithie produced
by matrix operations on well-ordered sparse matrices.

dynamic chaotic the sparsity pattern will change during the course of the prograxe@ie
tion, butin completely arbitrary ways. For example, a sparse implenemtftthe game
of life.

It is our intention to introduce language features to support conmpaotatvith any of these dynamic
characteristics. It should be clear that the costs associated with each of tlescabeyories can be vastly
different. For example, dynamic chaotic sparsity results in runtivegheeads stemming from the com-
putation of new sparsity patterns, updating the sparse representatsbmanaging the changing memory
requirements. In contrast, static sparsity requires no dynamic ragingaind gives the compiler access
to an array's sparsity pattern, enabling opportunities for optimizafis a result, our intention is to make
the distinction between these sparsity types clear at the language letteht $he users have a notion of
the computational overhead induced by their code.

In addition, sparse computations have different density characteristicsh we categorize as follows:

spar se complete an operation on all of the elements of a sparse array.

sparse subset an operation over a sparse subset of elements in a dense (or possilghalsss s
array.

dense superset an operation that reads a sparse array as though it were a fully allocated dense
array.

sparse-dense mix an index set that is sparse in some dimensions but dense in others. For
example, a sparse subset of dense planes from a 3-dimensional index space.

As with the dynamic sparity characteristics, our intent is to suppbdfdahese density types in our lan-
guage. The use of sparse regions makes this trivial and gives prograrfutheontrol over the types of
sparsity they require.

3 Introduction to ZPL

ZPL is an array-based data-parallel language that contains support for dexyseaard regularly-strided
sparse arrays [12]. Its features have proven popular with applicatiogsgmmers, and ZPL is supported
for most modern parallel architectures. ZPL has an associated performancemabdbbtvs programmers
to reason about the parallel implementation of their code without fothirm to program at a per-processor
level [2]. The ZPL compiler produces efficient code that is competitivh Withd-coded C [3] and which
tends to outperform High Performance Fortran (HPF) [11]. Given ZBRlitcesses in the domain of regular
array computation, it seems only logical to consider extending it to atigparse computations. We
do this in the context of Advanced ZPL (A-ZPL), the successor languag@dt. This section gives a
brief introduction to some of ZPL's fundamental concepts. A moreothgin presentation is available
elsewhere [12].

In addition to standard support for constants and variables, ZPLgesvonfiguration variablegor
defining runtime constants—values that are set at the outset of a pregeaacution and then remain
constant for the duration of the program. Configuration variablesiaes glefault initializing values that
can be overridden on the command line. These variables tend to be invaloratéséribing values such
as problem sizes, numeric tolerances, and input files to a program. Forlexamp

config var n:integer = 100; — — problem size
epsilon:double = 0.0001; - —tolerance
filename:string = “A.mat”; ——input filename

Configuration variables are commonly used to define regions. As desdnilibd introduction, re-
gions are a programmer-specified representation of a regular rectangulbimsbtes. For example, the
following declaration defines the index g¢ét., 1), (1,2),...,(n,n)}:

region R =[1..n,1..n]; ——declare an n x n index set

ZPL's support for regions includes a set of operators useful for id@sghoundary conditions, strided
regions for use in hierarchical multigrid problems, and other commamstormations on index sets [4].

Regions serve two purposes in ZPL. The first is to declare parallel affayexample, the following
declaration creates thre@e< narrays of integers and anx n array of booleans:
var A, B, C:[R] integer; ——n X ninteger arrays
Mask:[R] boolean; ——an n x n boolean array
The second use of regions is to specify the indices over which an arrayiopestabuld take place. For
example, the region preceding the following statement indicates that etefmem thei™ row of A andB
are to be added and assigned to their corresponding element in

[i,1..n]C:= A+ B; —-add thei-th rows of A and B, assigning to C's i-th row

Theseregion specifierare dynamically scoped and can inherit from the enclosing scope, allowinda&ode
be written in a region-independent manner.

In addition to simple element-wise operators such as the addition aighment operators shown
above, ZPL provides a number afray operatorsthat support more complex array manipulations. These
operators include reductions, parallel prefix operations, subarray rémlicpermutations, stencil opera-
tions, and boundary conditions.

Regions have two main benefits in ZPL. The first is to unclutter tlee' si€ode by factoring indexing
expressions traditionally scattered throughout an array statementdat@ise, dynamically scoped prefix.
The second is to emphasiz@lex localityso that the relationship between the elements accessed by each
array operand is clear and obvious to the programmer [4]. This is thefbagBPL's WYSIWYG perfor-
mance model, which allows the parallel overheads associated with every staterbergasily detected
and reasoned about by the programmer [2]. Our goal in this work is enéX@PL's regular regions to
support sparse index sets without sacrificing the syntactic, semandigesformance benefits that were
achieved in the non-sparse case.

ZPL currently supports a notion of operating on arbitrary indicesgusiasking This is a variation
on the region specifier in which a boolean array is used in combinatiortléthegion. For example the
following statement sums and assigns corresponding elemeat8pandC, for all indices inR at which
the variableviask is true:

[R with Mask] C := A+ B; ——assign A + B to C wherever Mask = true

Although ZPL's masking allows for computation over arbitrary ingets, it is not sufficient for efficiently
expressing sparse computation. For one thing, due to the preseathesof n regionR, the computational
complexity of the statement above will Bn?), even if only®(n) elements oMask are true. In sparse
computations, one would like the asymptotic complexity to bgprtional to the number of represented
values. Furthermore, ZPL's masking does not support the declaraspaisie arrays, but merely “sparse”
computations over dense arrays. This results in wasted memory and poopesitiimance in true sparse
applications. In the next section, we discuss the design of sparemsdg A-ZPL to support efficient
sparse computation.

4 Sparse Computation in A-ZPL
4.1 SparseRegionsand Arrays

A-ZPL's approach for supporting sparse computations is to allowrtregion of sparse regions by extend-
ing ZPL's masking concept. Whereas masking associates a dense mask witle aegéns to select a
sparse subset of indices, A-ZPL's sparse regions will expli@fyasent the index set, so that all computa-
tions over them will be proportional to the number of represented@sdiather than the size of the index
space.

To this end, declaring a sparse region will be done in a manner sinilarasking, substituting the
keywordswith for with. For example, the following declaration takes a snapshot of the indicesvhere
the variableviask is true and associates those indices Wish

region Rs = R swith Mask;

As a result, although the following two statements achieve the saee dffie time required by the first is
O(n?), whereas the second will be proportional to the number of representedsnd

[R with Mask] A :=B + C;
[Rs]A:=B+C;

Sparse regions can be used to declare arrays, just like traditionahsegio
var As, Bs, Cs:[Rs] integer;

Arrays declared using a sparse region only allocate storage for elemergspmording to the region's
represented indices (plus one additional element to store the unrepregaiotedset to 0 by default).
Decoupling the sparse indices from the array in this manner allows eachsamayesented values to be
allocated densely in memory (Section 5).

Note that sparse arrays are simply an efficient representation of an arraydbatéptually dense. To
illustrate this, consider the eight simple assignments expreasslihg the declarations so far:

[R] A :=B; —— DDD: Dense region, Dense LHS, Dense RHS

[R] A :=Bs; —— DDS: Dense region, Dense LHS, Sparse RHS

[R] As :=B; — — DSD: Dense region, Sparse LHS, Dense RHS—illegal
[R] As:=Bs; ——DSS: Dense region, Sparse LHS, Sparse RHS—illegal
[Rs] A :=B; — — SDD: Sparse region, Dense LHS, Dense RHS
[Rs]A:=Bs; —— SDS: Sparse region, Dense LHS, Sparse RHS

[Rs] As :=B; —— SSD: Sparse region, Sparse LHS, Dense RHS

[Rs] As :=Bs; —— SSS: Sparse region, Sparse LHS, Sparse RHS

The first case (DDD) is simply a traditional ZPL assignmenbdg&lements. In the second case (DDS),
a sparse array is read within the context of a dense region. At firsteylainis might seem illegal since
Bs does not have memory allocated for all indicesRinHowever, values that are not explicitly stored
are represented implicitly by the unrepresented value. Thus, this statasségns each element Afits

corresponding value frors for indices defined irRs and the unrepresented value for all other indices
inR.

The next two cases (DSD and DSS) are illegal, since they try to writedioes inAs for which there
is no associated memory. This violates ZPL's basic principle that thbdefl side of an assignment must
have memory allocated for all indices in the enclosing region specifier.

The following two cases (SDD and SDS) perform a sparse assignmentawisa drray. These state-
ments only assign elements Aafcorresponding to the indices Rs—the remainder are left unchanged.
Whether the right-hand expression is sparse or dense, only elemergspmnding tRs are accessed.
The final two statements (SSD and SSS) are similar, except that the |efstiknis sparse, causing all of
its elements to be overwritten.

These cases illustrate sparse complete (SSS), sparse subset (SDBSBI)$nd dense superset (DDS)
styles of computation. Note that this richness of expression isatdiesult from the use of regions to di-
vorce index sets from arrays. By way of contrast, MATLAB only allowsrsso operate concisely over
regular sections of an array's values, or to index explicitly into treyarwhen an irregular subset of array
values is required. Sparse regions give a programmer direct, concisel@wvar sparse array allocation
and computation.

Sparse-dense mixes are also expressible in this scheme, relying oncdRté&pt of flood dimensions
for replicated storage. Due to space constraints, we do not introduckdlpensions and their use in
declaring sparse-dense regions here.

Mixing Different Sparsity Patterns The eight basic assignments listed above become more interesting
as different sparsity patterns are used in combination. However, tipdesimes outlined above remain the
same: left-hand side arrays must be defined for all indices in the enclegjimgnrscope, while right-hand
side arrays can always be read as a dense set of values, regardless of theipallo&ata result, the
conformability rules for sparse computation are a simple extensithose present in ZPL.

Sparse Interpretation of Array Operators By definition, the interpretation of an array operator within
a sparse region specifier is identical to its operation within the eearivebensely masked region. Similarly,
applying an array operator to a sparse array has a straightforward dafaugao the sparse array's dense
interpretation. Thus, sparsity represents a transparent extenstonttage ZPL language, eliminating the
need for detailed rules for complex sparse expressions.

4.2 Expressing Static and Dynamic Spar sity

Sparse regions are sufficient for expressing sparsity patterns aitbug dynamic characteristics. This
is done using A-ZPL's support for array constants, array configuratidables, andlynamically bound
regions We begin by showing an example of a region with a constant spgasitgrn:

constant TriDiag:[R] boolean = abs(Index1 — Index2) <= 1;

region RTri = R swith TriDiag;
In this example, an array constahiDiag is declared over regioR and defined in terms of the compiler-
provided constantidex1 andindex2. Indexi is defined to be a constant array in which the value of each
element is equal to its index in thi dimension. ThusTriDiag is “true” for all elements on the tridiagonal.
TriDiag is then used to define the sparse regiin to be those indices along the tridiagonal. Note that
the definition ofTriDiag could have been inlined directly inteTri's declaration to eliminate the dense
representation ofriDiag.

If a static sparsity pattern cannot be represented as a constant expressisrcomputable at runtime

(possibly by reading it from a file), the declaration can be made using ay @onfiguration variable:

config var Pat:[R] boolean = ComputePattern();

region RFixed = R swith Pat;
One proposed extension for A-ZPL is the promotion of regiores fuall type, in which cas®Fixed could
be declared as a configuration variable and read directly from a file rather thrapdweglared in terms of
an array.

To express dynamic sparsity patterns, the programmer must use adytigrbobund regions as in the

following example:

region Rdyn = R swith ?;

var Adyn, Bdyn, Cdyn:[Rdyn] integer;
Replacing the sparsity pattern with a question mark allows it to be setyairaa during the program's
execution. This is done by referring to the region's sparsity pattsing the unarg operator:

Mask1l := (A > delta) and (B = 0);
$Rdyn := Maskl;

i\/laskz = (B > delta) and (A = 0);

$Rdyn := Mask2;
Each assignment tBdyn's sparsity pattern results in the reallocation of all arrays defined in tefiibs
(i.e., Adyn, Bdyn, andCdyn). All indices that are common to the old and new sparsity patterns aséh
their values preserved. All new indices will have their values set to thheainrepresented element (since
the element's value is being converted from an implicit representation tepdicieone). This dynamic
restructuring of sparse indices and array values is costly by nature aetbtteeemphasized symbolically
to programmers in thg operator (which also resembles an “S” for “sparsity”).

This technique is useful for representing both predictable and chaatanulg sparsity patterns. Since
the syntax makes programmers aware of the overheads associated with clearggan's sparsity, al-
gorithms with predictable dynamic sparsity patterns may be writteamiattempt to reduce the number
of restructurings. For example, sparsely banded matrices can be naivelyergpdegsing a dynamically

bound region that is incrementally updated as matrix operations cause fill+, to avoid the overhead
of repeated restructuring, the programmer could statically declare thenregbe fully banded, as in the
tridiagonal case above. Matrices with more complicated fill-in patternstrbiglamenable to approaches
between these two extremes in which the region is restructured infréguent

Note that the region sparsity accessprcan be used not only to assign a region's sparsity pattern, but
also to read it. For example, the following declaration creates a regiopendparsity pattern is the union
of two others':

region RsTot = $Rs1 | $Rs2;

The$ operator can be thought of as returning an implicit boolean array whosesvialdicate the sparsity
of the region. These implicit arrays can be used in general array compujasblike any other.

Using the region syntax described here, we have written codes that irpiémndiagonal matrix mul-
tiplication, sparse matrix-matrix multiplication using the SUMM#gorithm, coastline computations in
the tropic portion of the MOM ocean simulator, boundary conditions for irtaginstances of solving
Laplace's equation, the sparse component of a fuzzy clustering algoritdra,sarse implementation of
the game of life. We expect that once sparsity is implemented in the AedRipiler and made available
to users, an abundance of other interesting applications of sparsesagiidre found.

5 Implementation

In this section, we discuss the issues that will be involved in sdjppsparse regions and arrays in the
A-ZPL compiler.

5.1 Runtime Region and Array Representations

The implementation decision of primary importance is related to the Egajs separation of sparse index
sets and arrays. Since regions are distinct from arrays in A-ZPL, teegpresented separately at runtime.
This yields a great benefit in the sparse case, since much of the overhead@éapaputations is related to
the representation of the sparse structure. Sparse index represantagdonly be stored for each sparse
region. Every array declared in terms of the region can simply refer tpése structure as necessary.
The array values themselves can therefore be allocated densely and accessed usjng iadex stored
at each node in the sparse representation (Figure 1).

The net effect of this implementation choice is that only a single spamnsetisre will have to be tra-
versed for each unique sparsity pattern in a statement. The result is¢nbéads related to sparse traversal
are amortized across array expressions with the same sparsity. By waytraistoifieach array stored its
own sparsity pattern, multiple sparse structures would have t@bersed, even if they were all identical.
In A-ZPL, this worst-case scenario will occur only when it must—when eaydras a unique sparsity
pattern (and therefore a different defining region).

12345678910
0000000000 FNNANANANA
220 0000020 0
1 N1
0000O0GO0OTOT OO e e
2 Y e 2
0 004 000UO0GO0O0 3 1 N3
000000O0G 0GOSO g 'HH‘A Sg 01 2 3 4 5 6
000006 00 0 0 6 (@) SG ‘0|21|28|44|66| 8(110}4
000000 OGO0O0O : ,<5>.__;
0 000O0GOGO OGO 0 8 9 X N o
000000 OGO0O0O 1 kd 110
0 0 01040 0 0 0 0 O CNNTINCTINITIN
12345678910
(a) asparse array (b) arepresentation of its defining region (c) the array’ s sparse representation

Figure 1:An illustration of how sparse regions separate the reptatien of a sparse index set from the actual sparse
data. The sparse array in (a) is shown to be separated intalitgs (b) and its data (c). Each node in (b) contains an
index for its corresponding data element in the array's g@éc&presentation in (c). Note that multiple arrays with the
same sparsity pattern can share a single sparsity struellowing the overhead of storing and traversing the sparse
index set to be amortized between them. Sparse regionsectiibimplementation. Note that each node in (b) also
stores its logical index (not shown here) and that fhe@ment of (c) stores the unrepresented element's valttggin
case, 0).

Although we have not settled on a precise sparse representation gaisitht the main characteristic
of our choice will have to be flexibility. A-ZPL's array operatorsuig arrays to be traversed in any
dimensional and directional order, and for subarrays and nearest neigbtmddcated quickly. As a
result, we envision a sparse representation in which each represented indencganaccess its neighbors
in both directions of each dimension. In addition, we envision a demgxing subarray allocated for each
dimension that points to the first and last indices in that positiggu¢e 1 (b)).

Each node in the sparse region structure will contain a unique Vadean be used to index into the
packed representation of sparse arrays declared over the region. Necessanibyeb will also store the
index position that they represent.

5.2 Paralld Issues

Although the description above could be used for a sequential implati@mtwe envision it to exist on
each node of a parallel machine. The base index set of each sparse regiondistribeited across the
processor set as with dense regions [4]. Each processor will then allbeaspdrse structure described
above to store its subset of the global index space.

We recognize that sparse computations are often more sensitive to laadihglthan dense computa-
tions, and therefore expect to extend A-ZPL's distribution capisilib handle more complex partitions.
In doing this, we intend to preserve ZPlsgion distribution invarian{2] so that the performance model

10

will extend transparently to the sparse domain. This will allow paogmers to quickly identify which
operations are completely parallel and which require specific types of coroatiami €.g, point-to-point,
subdimension broadcast, all-to-all).

5.3 Compiler Issues

The current ZPL compiler generates different loops for array statements degendvhether the region
specifier's dimensions are dense, strided, or flooded. Although genepaise loops can be constructed,
they tend to contain unnecessary overheads for the simpler cases. Simitaryg are accessed in different
ways depending on the characteristics of their defining regions. As &, rescih statement is implemented
by determining the regions that could be involved and generating langsaccesses of the appropriate
type (note that this decision is obscured by aliasing and dynamicallyited region scopes).

We expect that the support of sparse regions and arrays will simpay lextension of this code gen-
eration phase in which dimensions may also be sparse. Loops will thereéogenerated that iterate
over a region's sparse structure, and arrays will be accessed appropfiatelgh the interplay of sparse
and dense regions and arrays can result in a large number of possib#itd=mmonstrated in the previ-
ous section, our current compiler infrastructure is easily extensitibandle each case without explicitly
considering the cross product of possibilities.

One challenge in supporting sparse computation is that all reqguiansegnd arrays could be described
by one “most-general” looping or accessing method, since they were basedtangular index sets with
a high degree of regularity. Since sparse dimensions break this pppdeédures written to work in both
sparse and dense domains may be candidates for specialization in the cosoptihat, sparse and dense
versions are generated to ensure the efficiency of each.

In addition to performing our traditional optimizations in a sparsetext (most notably array contrac-
tion [9] and communication optimizations [5]), we expect that theré lvélmany new opportunities for
optimization exposed by language support for sparsity. One siexaleple is that array statements which
involve only a single sparsity pattern can be implemented by ignahegparse structure altogether and
performing the operation directly on the arrays' dense representatiorermory.

54 Preliminary Experiments

In this section, we present some simple experiments that demonsedienefits of sparse language sup-
port. These experiments use a naive sparse representation similar desleribed above, in which region
nodes are allocated densely in memory and refer to their neighbors via goMiehand-generated code
similar to that which we would expect a complete A-ZPL compiler to pogdiAll experiments were run
on 16 nodes of a Cray T3E running at 450 MHz.

In the first experiment, we demonstrate the advantage of using spgises and arrays over dense
regions with masking. A sparse array assignment is implemented invfays: (i) masked DDD: using

11

Sparse Assignment within a 4k x 4k index space Sparse Addition within a 4k x 4k index space

1000 T T T T T T T T T 1000 — T T T T T T T T T
w I w r
2 [2 - L
S 100 i S 100 | ki
(] Q -
2 1of 3
s 10f S 1ol
E E i
£ 1 £
o o [
£ L)) E 1F
had 0.1 a’ E - I
S g e masked DDD —— 5
£ B o SDD -+-- S 01k~ array-based —— |
2 001F o SSS -8--- 4 S o (worst-case) region-based -+--
x [optimized SSS - % L (best-case) region-based -&---
0001 [1 1 1 1 1 1 1 1 1 1 001 1 1 1 1 1 1 1 1 1 1
4k 16k 64k 256k 1M 4M 8M 4k 16k 64k 256k 1M 4M 8M
represented elements represented elements

@ (b)

Figure 2: Initial performance results timing the execution of simgpparse array statements with varying numbers
of represented elements. (a) Sparse assignment impletnienteur ways: using dense arrays and a masked dense
region, using dense arrays and a sparse region, using spaays, and using an optimized sparse array assignment
that operates directly on the packed data allocations. {ajs® addition comparing the cost of storing sparsity pate

in regions vs. the traditional method of making them partefarray's data structure. Region-based sparsity is shown
in its best- and worst-case scenarios: when all arrays shameymon region and when they each have a unique region.

dense arrays and dense masking, (ii) SDD: using dense arrays and a sgamsg(iii) SSS: using sparse
arrays and a sparse region, and (iv) optimized SSS: an optimized vef$$&8an which the assignment

is performed directly over the dense allocation (as described in the peesitsection). The assignment

is done within the context of a 40964096 index space for a varying numbers of represented elements
(nto n?/2) distributed uniformly throughout the index space.

Several observations can be made: The masked DDD implementation takes/ riiegsdme amount
of time regardless of array density, due to the fact tRalements of the mask must be read. In contrast,
all of the sparse versions scale proportionally to the number of reptes elements. As hoped, the sparse
implementations are significantly cheaper than the dense version umtilthieer of represented elements
approaches?/2. Furthermore, each sparse implementation is approximately an order oftudagfaster
than the previous. SDD is faster than SSS due to the fact that the méwotpyint of the sparse arrays is
smaller than that of their dense counterparts. Similarly, optimized $§&idorms SSS since the sparse
region structure does not need to be traversed.

Our second experiment shows the savings available by associatintgyswétsregions rather than ar-
rays. We perform sparse addition using two representations: ondch e sparsity pattern is associated
with the region as proposed here, and a second in which sparsity is asdotitht arrays as is traditional.
For the region-based approach, we run two versions: one in which eacthasag own region and one
in which they all share a common region. These represent the best- agdoase scenarios for region-
based sparsity. The graph indicates that when sparsity patterns are shareltifoie arrays, regions result

12

in faster runtimes. Yet when arrays have different patterns, the rdgiead approach performs similarly
to array-based techniques. The overhead of the region-based approachaalietin less dense arrays
due to the fact that the region representation is separate from the aru@gwwalmemory, resulting in a
larger footprint. In conclusion, our experiments demonstrate thasspegions can result in significant
performance improvements over more naive sparse array representations.

6 Reated Work

Few parallel programming languages have included direct support f@espamputation, instead requir-
ing users to build their own sparse data structures and manipulate ¥micitly. One such example is
NESL [1], a functional language that allows the construction of nesteallpl data structures. These struc-
tures can be used to explicitly construct standard sparse array represesgatib as compressed column
storage. This approach puts the burden of the sparse representatioersnfarcing them to deal with
low-level details that could be handled by the compiler. Furthermoeegdmpiler has no means of detect-
ing that a data structure represents a sparse array, and therefore caroot p@timizations specific to
the sparse context. In contrast, our approach allows for the clear re@tEseiof a sparse computation at
a global level, leaving details of representation and optimizationstodampiler.

High-Performance Fortran [7] is perhaps the most prominent parallguége. Although it has no
inherent support for sparse arrays, an extension to HPF has been prbpagjettionet al,, which allows
for the declaration of sparse arrays using a variety of standard storagaeshl 3]. Although this exposes
the sparse array representation to the compiler, computations overdlys still require users to directly
refer to the underlying sparse data structure. This is an unfortunedetvto place on users, obfuscating
a code's meaning. In contrast, the sparse and dense versions of A-ZPithaigoare quite similar in
appearance.

Although parallel libraries have been developed for representing and iopeatsparse arrays g, [8]),
these have typically assumed a sparse matrix interpretation, prgwdpport for linear algebra operations.
We believe that although such libraries are valuable, support for spangeutation at the language level
aids in the clear expression of the programmer's computation. Ideallyase array language would
provide a means of interfacing to sparse matrix libraries to take advaoitége efforts in this area.

7 Conclusions

In this paper, we have proposed a region-based approach for represgrating computations. We have
shown that regions are a clean, concise means of expressing sparsiherfare, we have argued that
sparse regions admit an efficient parallel implementation as well as paralletiparfce modeling. Our
experiments demonstrate that languages using sparse regions can dghiéearstly improved execution

13

times, due to the possibility of optimizations as well as the optt to amortize sparse overheads be-
tween arrays with identical sparsity patterns. In future work, we interichplement sparse regions and
arrays in the A-ZPL compiler, seeking to develop new language conceptptndzations specific to the
sparse context.

Acknowledgements The authors would like to thank Donna Calhoun, Jason Secosky, agd/G&mmes
for their help in motivating this work. Additional thanks to Sukgn Choi, Derrick Weathersby, and Ruth
Anderson for their ideas in the early stages of the design. This researclhip@sted by a grant of HPC
time from the Arctic Region Supercomputing Center.

References

[1] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan CdiWask, Jay Sipelstein, and Marco Zagha. Implementation
of a portable nested data-parallel languageurnal of Parallel and Distributed Computin@1(1):4-14, April
1994.

[2] Bradford L. Chamberlain, Sung-Eun Choi, E Christophenis, Calvin Lin, Lawrence Snyder, and W. Derrick
Weathersby. ZPL's WYSIWYG performance model. Aroceedings of the Third International Workshop on
High-Level Parallel Programming Models and Supportive iEmvments pages 50-61. IEEE, March 1998.

[3] Bradford L. Chamberlain, Sung-Eun Choi, E Christophewis, Lawrence Snyder, W. Derrick Weathersby, and
Calvin Lin. The case for high-level parallel programmingifL. IEEE Computational Science and Engineering
5(3):76-85, July—September 1998.

[4] Bradford L. Chamberlain, E Christopher Lewis, CalvimLand Lawrence Snyder. Regions: An abstraction for
expressing array computation. Technical Report UW-CSH®82, University of Washington, October 1998.

[5] Sung-Eun Choi and Lawrence Snyder. Quantifying theotffé communication optimizations. IRroceedings
of the International Conference on Parallel Processipgges 218-222, August 1997.

[6] John R. Gilbert, Cleve Moler, and Robert Schreiber. Spamatrices in MATLAB: Design and implementation.
SIMAX 13(1):333-356, January 1992.

[7] High Performance Fortran Forurkligh Performance Fortran Specification Version 2J@nuary 1997.

[8] S. A. Hutchinson, J. N. Shadid, and R. S. Tuminafatec User's Guide: Version 2.@andia National Labora-
tories, September 1998.

[9] E Christopher Lewis, Calvin Lin, and Lawrence Snyder. eTimplementation and evaluation of fusion and
contraction in array languages. $\GPLAN Conference on Programming Language Design ancelmgrhtation
pages 50-59, June 1998.

[10] Mathworks.MATLAB User's Guidel993.

[11] Ton A. Ngo, Lawrence Snyder, and Bradford L. Chambarldortable performance of data parallel languages.
In SC97: High Performance Networking and ComputiNgvember 1997.

[12] Lawrence SnydeProgramming Guide to ZPLMIT Press (in press), 1998.

[13] M. Ujaldon, E. L. Zapata, B. M. Chapman, and H. Zima. \fiarfortran/HPF extensions for sparse and irregular
problems and their compilation]EEE Transactions on Parallel and Distributed Syster@€l0):1068—1083,
October 1997.

[14] Robert van de Geijn and Jerrell Watts. SUMMA: Scalabiezersal matrix multiplication algorithm. Technical
Report TR-95-13, University of Texas, Austin, Texas, ApaP5.

14

