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Abstract

This paper introduces a technique for parallel sparse computation by extending the array-language
concept ofregions—regular programmer-specified index sets used for specifying array computations.
We introduce the notion ofsparse regionswhich can represent an arbitrary set of indices. Sparse regions
inherit the benefits of regular regions, including conciseness, a direct encapsulation of parallelism, and
support for language performance models that highlight parallel overheads. We show that region-based
array languages can benefit from the use of sparse regions, both in terms of the semantic richness avail-
able to the programmer and the execution times of the resulting program. We also demonstrate that
regions result in efficient implementations as compared to array-based approachs, due to their role in
amortizing sparse overheads and enabling optimizations.

1 Introduction

Sparse computations form an important class of applications for parallel computing, yet one that has been

largely ignored in the parallel programming language community. Few languages exist that contain built-in

support for sparsity. Instead, most require programmers to explicitly build and manipulate data structures

for representing sparse arrays and matrices. Although considerable efforthas been devoted to developing

runtime libraries for sparse computations as well as efficient data structures for representing sparse matri-

ces, direct support for sparsity in a programming language can have many benefits. Chief among these is

the opportunity to cleanly and unambiguously alert the compiler to thepresence of sparsity in order to en-

sure its efficient implementation and highlight opportunities for parallelism. In addition, language support

for sparse computations can result in cleaner programs, increasing a language's readability and the ease

with which programmers can express their computations.

For the purposes of this discussion,sparsityis characterized by an arbitrary subset of indices from a

regular index space. Typically the subset represents only a small fractionof the space. For example, an

array or matrix is considered to be sparse when it contains a large number ofidentical values (typically “0”)

such that it becomes worthwhile to represent only the values that differ. In this paper, we refer to these as
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therepresented values. Due to the arbitrary location of the represented values' indices, the overhead of any

sparse representation is tied to the representation of, and iteration over,this set of indices. The magnitude

of this overhead determines whether a sparse representation will result in savings over a dense one. In

any reasonable representation, if the number of represented elements is asymptotically smaller than the

overall size of the index space (e.g., 3n elements in ann2 array), the sparse representation should result in

a savings.

In this paper, we discuss aregion-basedapproach to expressing sparse computations. Aregion is an

array language construct used to represent a regular, rectangular set of array indices. In regular array-

based computations, the use of regions has resulted in clean, concise code that is readily parallelizable [4].

Furthermore, parallel region-based languages can be designed with clear performance models that allow

programmers to trivially detect and quantify the concurrency and parallel overheads associated with their

code [2]. In this paper, we relax the regularity characteristic of traditional regions to createsparse regions

that can represent arbitrary index sets. We find that the use of regions toexpress sparsity results in the

following benefits:

� The advantages obtained in regular region-based computations (e.g., conciseness, concurrency, a
clear performance model) [4] are preserved.

� Sparse computations with a wide variety of dynamic and structural characteristics can be expressed
clearly and efficiently.

� Overheads associated with representing and traversing sparse arrays can be amortized across expres-
sions that share the same sparsity pattern.

� Sparsity is presented to the compiler at a high level, leveraging the support of traditional parallel
array language optimizations and creating opportunities for new optimizations resulting from the
presence of sparsity.

Programming language support for sparsity has perhaps been best achieved in the matrix language

MATLAB [10]. The extension of its original dense formulation to include sparsity is a model example of

language design [6]. MATLAB's dense language concepts were transparentlyextended to support com-

putations on sparse matrices, while remaining true to the mathematical concept of a matrix. In this work,

we have similar goals, seeking to extend the region-based array languageZPL to support computations on

sparse arrays. However, our work differs in that MATLAB is a serial, interpreted language whereas ZPL

is parallel and compiled. Moreover, while MATLAB provides implicit, interpreter-managed sparse arrays,

ZPL provides the programmer with an explicit means of specifying and operating over sparse index sets.

This enables a rich variety of sparse computing styles that cannot be expressed succinctly in MATLAB.

It should be noted that we distinguish between matrices and arrays in thiswork—the former being a

special case of the latter with inherent mathematical interpretations and properties. Our goal isnot to design

a language that provides sparse matrix support, for example by including factoring and solving routines as

primitives. Rather, we provide support for a general sparse array data structure and array-based operators.
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By way of analogy, ZPL does not contain an explicit matrix multiplicationoperator, but instead provides

array operators with which users can express standard parallel matrix multiplication routines such as the

SUMMA algorithm [14]. Similarly, we view sparse arrays as a tool forrepresenting arbitrary sparse data

structures, of which sparse matrices are just one instance.

The rest of this paper is organized as follows: The next section characterizes different sparsity types

used in the real-world that we believe a sparse array language should support. Section 3 provides a brief

introduction to ZPL, emphasizing those features that we extend to support sparse computation. We discuss

these extensions in Section 4. Section 5 discusses implementation issuesand gives some preliminary

results demonstrating the benefits obtained using sparse regions. Section 6 summarizes related work for

expressing sparse computations, and we conclude in Section 7.

2 Characterizing Sparsity

Before describing our region-based approach for sparse computations, it is worthwhile to consider the

different sparsity characteristics that a real-world problem might have. To begin with, we classify the

dynamic properties of sparsity as falling into four rough categories:

static the sparsity pattern is known and expressible at compile time. For example, a tridiago-
nal or densely banded matrix.

runtime constant the sparsity pattern is not known until runtime, but will be fixed for the
program's duration. For example, the indices representing coastlines ina discretized
ocean modeling application.

dynamic predictable the sparsity pattern will change during the course of the program's exe-
cution, but in ways that can be anticipated. For example, the fill-in that might be produced
by matrix operations on well-ordered sparse matrices.

dynamic chaotic the sparsity pattern will change during the course of the program's execu-
tion, but in completely arbitrary ways. For example, a sparse implementation of the game
of life.

It is our intention to introduce language features to support computations with any of these dynamic

characteristics. It should be clear that the costs associated with each of the above categories can be vastly

different. For example, dynamic chaotic sparsity results in runtime overheads stemming from the com-

putation of new sparsity patterns, updating the sparse representation, and managing the changing memory

requirements. In contrast, static sparsity requires no dynamic restructuring and gives the compiler access

to an array's sparsity pattern, enabling opportunities for optimization. As a result, our intention is to make

the distinction between these sparsity types clear at the language level, sothat the users have a notion of

the computational overhead induced by their code.

In addition, sparse computations have different density characteristics, which we categorize as follows:

sparse complete an operation on all of the elements of a sparse array.
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sparse subset an operation over a sparse subset of elements in a dense (or possibly less sparse)
array.

dense superset an operation that reads a sparse array as though it were a fully allocated dense
array.

sparse-dense mix an index set that is sparse in some dimensions but dense in others. For
example, a sparse subset of dense planes from a 3-dimensional index space.

As with the dynamic sparity characteristics, our intent is to support all of these density types in our lan-

guage. The use of sparse regions makes this trivial and gives programmers full control over the types of

sparsity they require.

3 Introduction to ZPL

ZPL is an array-based data-parallel language that contains support for dense arrays and regularly-strided

sparse arrays [12]. Its features have proven popular with applications programmers, and ZPL is supported

for most modern parallel architectures. ZPL has an associated performance model that allows programmers

to reason about the parallel implementation of their code without forcingthem to program at a per-processor

level [2]. The ZPL compiler produces efficient code that is competitive with hand-coded C [3] and which

tends to outperform High Performance Fortran (HPF) [11]. Given ZPL's successes in the domain of regular

array computation, it seems only logical to consider extending it to support sparse computations. We

do this in the context of Advanced ZPL (A-ZPL), the successor language to ZPL. This section gives a

brief introduction to some of ZPL's fundamental concepts. A more thorough presentation is available

elsewhere [12].

In addition to standard support for constants and variables, ZPL providesconfiguration variablesfor

defining runtime constants—values that are set at the outset of a program's execution and then remain

constant for the duration of the program. Configuration variables are given default initializing values that

can be overridden on the command line. These variables tend to be invaluable for describing values such

as problem sizes, numeric tolerances, and input files to a program. For example:

config var n:integer = 100; – – problem size
epsilon:double = 0.0001; – – tolerance
filename:string = “A.mat”; – – input filename

Configuration variables are commonly used to define regions. As describedin the introduction, re-

gions are a programmer-specified representation of a regular rectangular set of indices. For example, the

following declaration defines the index setf(1;1);(1;2); : : : ;(n;n)g:

region R = [1..n,1..n]; – – declare an n x n index set

ZPL's support for regions includes a set of operators useful for describing boundary conditions, strided

regions for use in hierarchical multigrid problems, and other common transformations on index sets [4].
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Regions serve two purposes in ZPL. The first is to declare parallel arrays. For example, the following

declaration creates threen�n arrays of integers and ann�n array of booleans:

var A, B, C:[R] integer; – – n x n integer arrays
Mask:[R] boolean; – – an n x n boolean array

The second use of regions is to specify the indices over which an array operation should take place. For

example, the region preceding the following statement indicates that elements from theith row of A andB

are to be added and assigned to their corresponding element inC:

[i,1..n] C := A + B; – – add the i-th rows of A and B, assigning to C's i-th row

Theseregion specifiersare dynamically scoped and can inherit from the enclosing scope, allowing codeto

be written in a region-independent manner.

In addition to simple element-wise operators such as the addition and assignment operators shown

above, ZPL provides a number ofarray operatorsthat support more complex array manipulations. These

operators include reductions, parallel prefix operations, subarray replication, permutations, stencil opera-

tions, and boundary conditions.

Regions have two main benefits in ZPL. The first is to unclutter the user's code by factoring indexing

expressions traditionally scattered throughout an array statement into aconcise, dynamically scoped prefix.

The second is to emphasizeindex localityso that the relationship between the elements accessed by each

array operand is clear and obvious to the programmer [4]. This is the basisfor ZPL's WYSIWYG perfor-

mance model, which allows the parallel overheads associated with every statementto be easily detected

and reasoned about by the programmer [2]. Our goal in this work is to extend ZPL's regular regions to

support sparse index sets without sacrificing the syntactic, semantic, and performance benefits that were

achieved in the non-sparse case.

ZPL currently supports a notion of operating on arbitrary indices using masking. This is a variation

on the region specifier in which a boolean array is used in combination withthe region. For example the

following statement sums and assigns corresponding elements ofA, B, andC, for all indices inR at which

the variableMask is true:

[R with Mask] C := A + B; – – assign A + B to C wherever Mask = true

Although ZPL's masking allows for computation over arbitrary indexsets, it is not sufficient for efficiently

expressing sparse computation. For one thing, due to the presence ofthen�n regionR, the computational

complexity of the statement above will beΘ(n2
), even if onlyΘ(n) elements ofMask are true. In sparse

computations, one would like the asymptotic complexity to be proportional to the number of represented

values. Furthermore, ZPL's masking does not support the declaration ofsparse arrays, but merely “sparse”

computations over dense arrays. This results in wasted memory and poor cacheperformance in true sparse

applications. In the next section, we discuss the design of sparse regions in A-ZPL to support efficient

sparse computation.
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4 Sparse Computation in A-ZPL

4.1 Sparse Regions and Arrays

A-ZPL's approach for supporting sparse computations is to allow thecreation of sparse regions by extend-

ing ZPL's masking concept. Whereas masking associates a dense mask with a dense region to select a

sparse subset of indices, A-ZPL's sparse regions will explicitly represent the index set, so that all computa-

tions over them will be proportional to the number of represented indices rather than the size of the index

space.

To this end, declaring a sparse region will be done in a manner similar to masking, substituting the

keywordswith for with. For example, the following declaration takes a snapshot of the indices in R where

the variableMask is true and associates those indices withRs:

region Rs = R swith Mask;

As a result, although the following two statements achieve the same effect, the time required by the first is

Θ(n2
), whereas the second will be proportional to the number of represented indices:

[R with Mask] A := B + C;
[Rs] A := B + C;

Sparse regions can be used to declare arrays, just like traditional regions:

var As, Bs, Cs:[Rs] integer;

Arrays declared using a sparse region only allocate storage for elements corresponding to the region's

represented indices (plus one additional element to store the unrepresentedvalue, set to 0 by default).

Decoupling the sparse indices from the array in this manner allows each array's represented values to be

allocated densely in memory (Section 5).

Note that sparse arrays are simply an efficient representation of an array that isconceptually dense. To

illustrate this, consider the eight simple assignments expressible using the declarations so far:

[R] A := B; – – DDD: Dense region, Dense LHS, Dense RHS
[R] A := Bs; – – DDS: Dense region, Dense LHS, Sparse RHS
[R] As := B; – – DSD: Dense region, Sparse LHS, Dense RHS—illegal
[R] As := Bs; – – DSS: Dense region, Sparse LHS, Sparse RHS—illegal
[Rs] A := B; – – SDD: Sparse region, Dense LHS, Dense RHS
[Rs] A := Bs; – – SDS: Sparse region, Dense LHS, Sparse RHS
[Rs] As := B; – – SSD: Sparse region, Sparse LHS, Dense RHS
[Rs] As := Bs; – – SSS: Sparse region, Sparse LHS, Sparse RHS

The first case (DDD) is simply a traditional ZPL assignment ofn2 elements. In the second case (DDS),

a sparse array is read within the context of a dense region. At first glance, this might seem illegal since

Bs does not have memory allocated for all indices inR. However, values that are not explicitly stored

are represented implicitly by the unrepresented value. Thus, this statementassigns each element ofA its
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corresponding value fromBs for indices defined inRs and the unrepresented value for all other indices

in R.

The next two cases (DSD and DSS) are illegal, since they try to write toindices inAs for which there

is no associated memory. This violates ZPL's basic principle that the left-hand side of an assignment must

have memory allocated for all indices in the enclosing region specifier.

The following two cases (SDD and SDS) perform a sparse assignment of a dense array. These state-

ments only assign elements ofA corresponding to the indices inRs—the remainder are left unchanged.

Whether the right-hand expression is sparse or dense, only elements corresponding toRs are accessed.

The final two statements (SSD and SSS) are similar, except that the left-hand side is sparse, causing all of

its elements to be overwritten.

These cases illustrate sparse complete (SSS), sparse subset (SDD, SDS,SSD), and dense superset (DDS)

styles of computation. Note that this richness of expression is a direct result from the use of regions to di-

vorce index sets from arrays. By way of contrast, MATLAB only allows users to operate concisely over

regular sections of an array's values, or to index explicitly into the arrays when an irregular subset of array

values is required. Sparse regions give a programmer direct, concise control over sparse array allocation

and computation.

Sparse-dense mixes are also expressible in this scheme, relying on ZPL'sconcept of flood dimensions

for replicated storage. Due to space constraints, we do not introduce flood dimensions and their use in

declaring sparse-dense regions here.

Mixing Different Sparsity Patterns The eight basic assignments listed above become more interesting

as different sparsity patterns are used in combination. However, the simple rules outlined above remain the

same: left-hand side arrays must be defined for all indices in the enclosing region scope, while right-hand

side arrays can always be read as a dense set of values, regardless of their allocation. As a result, the

conformability rules for sparse computation are a simple extension to those present in ZPL.

Sparse Interpretation of Array Operators By definition, the interpretation of an array operator within

a sparse region specifier is identical to its operation within the equivalent densely masked region. Similarly,

applying an array operator to a sparse array has a straightforward definition due to the sparse array's dense

interpretation. Thus, sparsity represents a transparent extension to the base ZPL language, eliminating the

need for detailed rules for complex sparse expressions.

4.2 Expressing Static and Dynamic Sparsity

Sparse regions are sufficient for expressing sparsity patterns with various dynamic characteristics. This

is done using A-ZPL's support for array constants, array configuration variables, anddynamically bound

regions. We begin by showing an example of a region with a constant sparsitypattern:
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constant TriDiag:[R] boolean = abs(Index1 – Index2) <= 1;
region RTri = R swith TriDiag;

In this example, an array constantTriDiag is declared over regionR and defined in terms of the compiler-

provided constantsIndex1 andIndex2. Indexi is defined to be a constant array in which the value of each

element is equal to its index in theith dimension. Thus,TriDiag is “true” for all elements on the tridiagonal.

TriDiag is then used to define the sparse regionRTri to be those indices along the tridiagonal. Note that

the definition ofTriDiag could have been inlined directly intoRTri's declaration to eliminate the dense

representation ofTriDiag.

If a static sparsity pattern cannot be represented as a constant expression,but is computable at runtime

(possibly by reading it from a file), the declaration can be made using an array configuration variable:

config var Pat:[R] boolean = ComputePattern();
region RFixed = R swith Pat;

One proposed extension for A-ZPL is the promotion of regions toa full type, in which caseRFixed could

be declared as a configuration variable and read directly from a file rather than being declared in terms of

an array.

To express dynamic sparsity patterns, the programmer must use dynamically bound regions as in the

following example:

region Rdyn = R swith ?;
var Adyn, Bdyn, Cdyn:[Rdyn] integer;

Replacing the sparsity pattern with a question mark allows it to be set at any time during the program's

execution. This is done by referring to the region's sparsity pattern using the unary$ operator:

Mask1 := (A > delta) and (B = 0);
$Rdyn := Mask1;
...
Mask2 := (B > delta) and (A = 0);
$Rdyn := Mask2;

Each assignment toRdyn's sparsity pattern results in the reallocation of all arrays defined in termsof it

(i.e., Adyn, Bdyn, andCdyn). All indices that are common to the old and new sparsity patterns will have

their values preserved. All new indices will have their values set to that ofthe unrepresented element (since

the element's value is being converted from an implicit representation to an explicit one). This dynamic

restructuring of sparse indices and array values is costly by nature and therefore emphasized symbolically

to programmers in the$ operator (which also resembles an “S” for “sparsity”).

This technique is useful for representing both predictable and chaotic dynamic sparsity patterns. Since

the syntax makes programmers aware of the overheads associated with changinga region's sparsity, al-

gorithms with predictable dynamic sparsity patterns may be written inan attempt to reduce the number

of restructurings. For example, sparsely banded matrices can be naively represented using a dynamically
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bound region that is incrementally updated as matrix operations cause fill-in. Or, to avoid the overhead

of repeated restructuring, the programmer could statically declare the region to be fully banded, as in the

tridiagonal case above. Matrices with more complicated fill-in patterns might be amenable to approaches

between these two extremes in which the region is restructured infrequently.

Note that the region sparsity accessor,$, can be used not only to assign a region's sparsity pattern, but

also to read it. For example, the following declaration creates a region whose sparsity pattern is the union

of two others' :

region RsTot = $Rs1 j $Rs2;

The$ operator can be thought of as returning an implicit boolean array whose values indicate the sparsity

of the region. These implicit arrays can be used in general array computation, just like any other.

Using the region syntax described here, we have written codes that implement tridiagonal matrix mul-

tiplication, sparse matrix-matrix multiplication using the SUMMAalgorithm, coastline computations in

the tropic portion of the MOM ocean simulator, boundary conditions for irregular instances of solving

Laplace's equation, the sparse component of a fuzzy clustering algorithm, and a sparse implementation of

the game of life. We expect that once sparsity is implemented in the A-ZPLcompiler and made available

to users, an abundance of other interesting applications of sparse regions will be found.

5 Implementation

In this section, we discuss the issues that will be involved in supporting sparse regions and arrays in the

A-ZPL compiler.

5.1 Runtime Region and Array Representations

The implementation decision of primary importance is related to the language's separation of sparse index

sets and arrays. Since regions are distinct from arrays in A-ZPL, they are represented separately at runtime.

This yields a great benefit in the sparse case, since much of the overhead in sparse computations is related to

the representation of the sparse structure. Sparse index representations need only be stored for each sparse

region. Every array declared in terms of the region can simply refer to its sparse structure as necessary.

The array values themselves can therefore be allocated densely and accessed using a unique index stored

at each node in the sparse representation (Figure 1).

The net effect of this implementation choice is that only a single sparse structure will have to be tra-

versed for each unique sparsity pattern in a statement. The result is that overheads related to sparse traversal

are amortized across array expressions with the same sparsity. By way of contrast, if each array stored its

own sparsity pattern, multiple sparse structures would have to be traversed, even if they were all identical.

In A-ZPL, this worst-case scenario will occur only when it must—when each array has a unique sparsity

pattern (and therefore a different defining region).
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Figure 1:An illustration of how sparse regions separate the representation of a sparse index set from the actual sparse
data. The sparse array in (a) is shown to be separated into itsindices (b) and its data (c). Each node in (b) contains an
index for its corresponding data element in the array's packed representation in (c). Note that multiple arrays with the
same sparsity pattern can share a single sparsity structure, allowing the overhead of storing and traversing the sparse
index set to be amortized between them. Sparse regions enable this implementation. Note that each node in (b) also
stores its logical index (not shown here) and that the 0th element of (c) stores the unrepresented element's value (inthis
case, 0).

Although we have not settled on a precise sparse representation, it is clear that the main characteristic

of our choice will have to be flexibility. A-ZPL's array operators require arrays to be traversed in any

dimensional and directional order, and for subarrays and nearest neighbors to be located quickly. As a

result, we envision a sparse representation in which each represented index canquickly access its neighbors

in both directions of each dimension. In addition, we envision a dense indexing subarray allocated for each

dimension that points to the first and last indices in that position (Figure 1 (b)).

Each node in the sparse region structure will contain a unique value that can be used to index into the

packed representation of sparse arrays declared over the region. Necessarily, the nodes will also store the

index position that they represent.

5.2 Parallel Issues

Although the description above could be used for a sequential implementation, we envision it to exist on

each node of a parallel machine. The base index set of each sparse region will bedistributed across the

processor set as with dense regions [4]. Each processor will then allocate the sparse structure described

above to store its subset of the global index space.

We recognize that sparse computations are often more sensitive to load balancing than dense computa-

tions, and therefore expect to extend A-ZPL's distribution capabilities to handle more complex partitions.

In doing this, we intend to preserve ZPL'sregion distribution invariant[2] so that the performance model
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will extend transparently to the sparse domain. This will allow programmers to quickly identify which

operations are completely parallel and which require specific types of communication (e.g., point-to-point,

subdimension broadcast, all-to-all).

5.3 Compiler Issues

The current ZPL compiler generates different loops for array statements depending on whether the region

specifier's dimensions are dense, strided, or flooded. Although general-purpose loops can be constructed,

they tend to contain unnecessary overheads for the simpler cases. Similarly,arrays are accessed in different

ways depending on the characteristics of their defining regions. As a result, each statement is implemented

by determining the regions that could be involved and generating loopsand accesses of the appropriate

type (note that this decision is obscured by aliasing and dynamically inherited region scopes).

We expect that the support of sparse regions and arrays will simply bean extension of this code gen-

eration phase in which dimensions may also be sparse. Loops will therefore be generated that iterate

over a region's sparse structure, and arrays will be accessed appropriately.Though the interplay of sparse

and dense regions and arrays can result in a large number of possibilitiesas demonstrated in the previ-

ous section, our current compiler infrastructure is easily extensible to handle each case without explicitly

considering the cross product of possibilities.

One challenge in supporting sparse computation is that all regular regions and arrays could be described

by one “most-general” looping or accessing method, since they were based onrectangular index sets with

a high degree of regularity. Since sparse dimensions break this model, procedures written to work in both

sparse and dense domains may be candidates for specialization in the compiler,so that sparse and dense

versions are generated to ensure the efficiency of each.

In addition to performing our traditional optimizations in a sparsecontext (most notably array contrac-

tion [9] and communication optimizations [5]), we expect that there will be many new opportunities for

optimization exposed by language support for sparsity. One simpleexample is that array statements which

involve only a single sparsity pattern can be implemented by ignoringthe sparse structure altogether and

performing the operation directly on the arrays' dense representations in memory.

5.4 Preliminary Experiments

In this section, we present some simple experiments that demonstrate the benefits of sparse language sup-

port. These experiments use a naive sparse representation similar to that described above, in which region

nodes are allocated densely in memory and refer to their neighbors via pointers. We hand-generated code

similar to that which we would expect a complete A-ZPL compiler to produce. All experiments were run

on 16 nodes of a Cray T3E running at 450 MHz.

In the first experiment, we demonstrate the advantage of using sparse regions and arrays over dense

regions with masking. A sparse array assignment is implemented in fourways: (i) masked DDD: using
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Figure 2: Initial performance results timing the execution of simplesparse array statements with varying numbers
of represented elements. (a) Sparse assignment implemented in four ways: using dense arrays and a masked dense
region, using dense arrays and a sparse region, using sparsearrays, and using an optimized sparse array assignment
that operates directly on the packed data allocations. (b) Sparse addition comparing the cost of storing sparsity patterns
in regions vs. the traditional method of making them part of the array's data structure. Region-based sparsity is shown
in its best- and worst-case scenarios: when all arrays sharea common region and when they each have a unique region.

dense arrays and dense masking, (ii) SDD: using dense arrays and a sparse region, (iii) SSS: using sparse

arrays and a sparse region, and (iv) optimized SSS: an optimized version of SSS in which the assignment

is performed directly over the dense allocation (as described in the previous subsection). The assignment

is done within the context of a 4096�4096 index space for a varying numbers of represented elements

(n to n2
=2) distributed uniformly throughout the index space.

Several observations can be made: The masked DDD implementation takes roughly the same amount

of time regardless of array density, due to the fact thatn2 elements of the mask must be read. In contrast,

all of the sparse versions scale proportionally to the number of represented elements. As hoped, the sparse

implementations are significantly cheaper than the dense version until thenumber of represented elements

approachesn2
=2. Furthermore, each sparse implementation is approximately an order of magnitude faster

than the previous. SDD is faster than SSS due to the fact that the memoryfootprint of the sparse arrays is

smaller than that of their dense counterparts. Similarly, optimized SSS outperforms SSS since the sparse

region structure does not need to be traversed.

Our second experiment shows the savings available by associating sparsity with regions rather than ar-

rays. We perform sparse addition using two representations: one in which the sparsity pattern is associated

with the region as proposed here, and a second in which sparsity is associated with arrays as is traditional.

For the region-based approach, we run two versions: one in which each arrayhas its own region and one

in which they all share a common region. These represent the best- and worst-case scenarios for region-

based sparsity. The graph indicates that when sparsity patterns are shared bymultiple arrays, regions result
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in faster runtimes. Yet when arrays have different patterns, the region-based approach performs similarly

to array-based techniques. The overhead of the region-based approach is noticeable in less dense arrays

due to the fact that the region representation is separate from the array values in memory, resulting in a

larger footprint. In conclusion, our experiments demonstrate that sparse regions can result in significant

performance improvements over more naive sparse array representations.

6 Related Work

Few parallel programming languages have included direct support for sparse computation, instead requir-

ing users to build their own sparse data structures and manipulate them explicitly. One such example is

NESL [1], a functional language that allows the construction of nested parallel data structures. These struc-

tures can be used to explicitly construct standard sparse array representations such as compressed column

storage. This approach puts the burden of the sparse representation on users, forcing them to deal with

low-level details that could be handled by the compiler. Furthermore, the compiler has no means of detect-

ing that a data structure represents a sparse array, and therefore cannot perform optimizations specific to

the sparse context. In contrast, our approach allows for the clear representation of a sparse computation at

a global level, leaving details of representation and optimizations to the compiler.

High-Performance Fortran [7] is perhaps the most prominent parallel language. Although it has no

inherent support for sparse arrays, an extension to HPF has been proposedby Ujaldonet al., which allows

for the declaration of sparse arrays using a variety of standard storage schemes [13]. Although this exposes

the sparse array representation to the compiler, computations over the arrays still require users to directly

refer to the underlying sparse data structure. This is an unfortunate burden to place on users, obfuscating

a code's meaning. In contrast, the sparse and dense versions of A-ZPL algorithms are quite similar in

appearance.

Although parallel libraries have been developed for representing and operating on sparse arrays (e.g., [8]),

these have typically assumed a sparse matrix interpretation, providing support for linear algebra operations.

We believe that although such libraries are valuable, support for sparsecomputation at the language level

aids in the clear expression of the programmer's computation. Ideally, asparse array language would

provide a means of interfacing to sparse matrix libraries to take advantageof the efforts in this area.

7 Conclusions

In this paper, we have proposed a region-based approach for representingsparse computations. We have

shown that regions are a clean, concise means of expressing sparsity. Furthermore, we have argued that

sparse regions admit an efficient parallel implementation as well as parallel performance modeling. Our

experiments demonstrate that languages using sparse regions can achieve significantly improved execution
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times, due to the possibility of optimizations as well as the opportunity to amortize sparse overheads be-

tween arrays with identical sparsity patterns. In future work, we intendto implement sparse regions and

arrays in the A-ZPL compiler, seeking to develop new language concepts and optimizations specific to the

sparse context.
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