Array Language Support for
Wavefront and Pipelined Computations

Bradford L. Chamberlain E Christopher Lewis Lawrence Snyder

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

October 29, 1998

Abstract

Array languages such as Fortran 90, High Performance Iroaind ZPL are convenient vehicles for ex-
pressing data parallel computation. Unfortunately, ataaguage semantics prohibit the natural expression of
wavefront and pipelined computations, characterized lBgaential propagation of computed values across one
or more dimensions of the problem space. As a result, pragexsiscalarizei.g., use loop nests and scalar
indexing instead of array operations) wavefront compoieti sacrificing the benefits of the array language. We
propose an extension to array languages that provides gufppavavefront computation without scalarization
and with minimal impact on the language. Our extension iti@aarly valuable in that it identifies parallelism
to both the programmer and compiler just as conventionalyasperations do. In this paper we motivate the
problem, introduce our language extension, describe péeimentation in the ZPL data parallel array language
compiler, and experimentally evaluate the parallel penBorce improvement due to its optimization for paral-
lelism.

1 Introduction

Array languages such as Fortran 90 [1], High Performance Fortran (HP&)d&ZPL [12] have achieved success
in expressing and exploiting data parallelism. They are distihgoigrom scalar languages by their support of
operations on arrays as primitive entities, frequently obviating #elrfor explicit looping and element-wise
indexing. In addition to providing convenient and concise syntagyawperations enable programmer/compiler
collaboration, the basis of effective parallel computing. The progranameéicompiler collaborate in the sense
that the programmer presents a representation of a particular computatibasoertain expectations about its
eventual performance. If a programmer expresses a computation in termkiébr the compiler is unable to
meet the performance expectations, collaboration does not exist. Effpotigrammer/compiler collaboration is
essential in the parallel domain, where orders of magnitudes of performaamcée lost when the compiler is

*This research was supported in part by DARPA Grant E30602-0752, NSF Grant CCR-9710284 and the Intel Corporation.

DO 100 i = 2, n-1

DO 100 j = 2 , n-2 DO 100 j = 2 , n-2
r=aa(j,i)*d(j-1,i) r(2:n-2)=aa(j,2:n-2)*d(j-1,2:n-2)
d(j,i)=1.0/(dd(j,i)-aa(j-1,i)*r) d(j,2:n-2)=1.0/(dd(j,2:n-2)-aa(j-1,2:n-2)*r(2:n-2))
rx(j,1)=rx(j,i)-rx(j-1,i)*r X(j,2:n-2)=rx(j,2:n-2)-rx(j-1,2:n-2)*r(2:n-2)
ry(j,i)=ry(,i)-ry(-1,i)*r 1y(j,2:n-2)=ry(j,2:n-2)-ry(j-1,2:n-2)*r(2:n-2)
100 CONTINUE 100 CONTINUE
@) (b)

Figure 1: Fortran code fragments from SPECfp92 Tomcatv benchmark déraiiimg a limitation of array lan-
guages. In order to represent the scalar code in (a) in an array language, a pnegraost scalarize the first
dimension, as in (b).

unable to produce a parallel implementation of a code. Array languages erfabtevefcollaboration by making
parallelism apparent to both the programmer and the compiler in array apexati

Unfortunately, array languages are limited in what computations they qgaesxat the array level. This is
because an array language compiler generates a loop nest to implement one arrayoséatements, and array
language semantics prohibit the loop from carrying true data dependeocesrie statement to its self or earlier
statements. If programmers want to express such a computation, thépcalesizeone or more dimensions
of the computation by using loops to explicitly iterate over elemehtymys. Clearly, scalarization is at odds
with the goals and benefits of array language programming. Computatiamacterized by a data dependent
flow of values across one or more dimensions of the problem space cangqifessed only via primitive array
operations. We call thesgavefrontcomputations, because waves of computed values wash across the problem
space. They can be thought of as a generalization of scan or prefix computations.

As an example, consider the scalar Fortran 77 code fragment in Figuret igd)oim the tridiagonal systems
solver component of the SPECfp92 Tomcatv benchmark. The inner loogsartrue data dependence from
the second statement to the first due to aagnd from the third and fourth statements to themselves due to
arraysrx andry , respectively. An array language can not express these dependences withoizirsg diher first
dimension of the problem space, callgartial scalarization as in the Fortran 90 array statements in Figure 1(b).
Clearly, scalarization sacrifices the benefits of array languages, corruptiogitdigoration between programmer
and compiler. The programmer must decide whether the partially scalarizedrarscomputation is phrased in
terms that the compiler can recognize and parallelize. In addition, the scalartohdeéigure 1(b) has very poor
cache behavior because all the array references are to rows and the arrays are aflagatedri-major-order.
The compiler might optimize the partially scalarized code for spatial liycatid parallelism, but the programmer
is left to wonder and is ill-equipped to make implementation decisions.wWilf demonstrate in Section 5 that
the potential performance differential is enormous. The bottom $rthat scalarization impedes effective col-
laboration between programmer and compiler. If a full array representatiwawafront computations could be
expressed, it would regain the benefits of array language programming.

We propose an extension to array languages to directly support wavedroputations, eliminating the need

for partial scalarization, with minimal impact on the language. Thougrefvamt computations do not appear
in every array language program, they are sufficiently common that thewntdanguage support. There are
two components to our solution. First, we introduce a new arrayadpercalled theprime operator, that al-
lows a programmer to refer to values written inside the loop nest thalements the statement containing the
prime. Second, we introduce a new compound statement, calleddheblockthat groups statements in order to
establish the scope of the prime operator. These two new array langsgeet permit full array statement rep-
resentation of codes like that of Figure 1, thereby restoring the beogditsay languages and conveying the high
level nature of the computation to the compiler. Most importarttly grogrammer need not speculate whether the
compiler is able to extract parallelism from the scalarized code. Just as panalemanifest in array operations,
it is manifest in scan blocks.

This paper is organized as follows. In the next section, we describe @yrlanguage extension to support
wavefront computations in ZPL. Sections 3 and 4 describe its implenmmiatd optimization, respectively.
Performance data is presented in Section 5, and future work and conclastogigen in the final section.

2 Array Language Support for Wavefront Computation

This section describes array language support for wavefront compuitatiom context of the ZPL parallel array
language [12]. We have demonstrated that our ZPL compiler is competitth hand-coded C with MPI [3],
and it generally outperforms HPF [9]. The compiler is publicly ava#aldl4] for most modern parallel and
sequential platforms, including the Cray T3E, IBM SP2, SGI Powel€hgé, SGI Origin, and networked UNIX
workstations using MPIl and PVM. The language is in active use by sstieim fields such as astronomy, civil
engineering, biological statistics, mathematics, oceanography, and thebpétysics. The first section below
gives a very brief summary of the ZPL language, only describing the Estiithe language immediately relevant
to this paper. Detailed coverage of the language may be found elsewheréfte2}that, we introduce the prime
operator and scan blocks as a means of supporting wavefront computatéfis.i

2.1 Brief ZPL Language Summary

ZPL is a data parallel array programming language. It supports all tred ssalar data type®(g, integer
float ,char), operatorsd.g, math, logical, bit-wise), and control structures, for , while , function calls).
As an array language, it also offers array data types and operators. ZPlingulistted from other array languages
by its use ofregions[4]. A region represents an index set, and may precede a statement, spetiéyagent of
the array references within its dynamic scope. By factoring the indices #h&d e computed on into the region,
the use of regions eliminates the need to index arrays. For example]ltvwing Fortran 90 (slice-based) and
ZPL (region-based) array statements are equivalent.

a(n/2:n,n/2:n) = b(n/2:n,n/2:n) + c¢(n/2:n,n/2:n) [n/2.n,n/2..n] a = b + ¢;

for j := 2 to n-2 do

[i,2..n-1] begin [2..n-2,2..n-1] scan
r = aa * d@north; r = aa * d'@north;
d = 1.0/ (dd - aa@north * r); d =10 / (dd - aa@north * r);
X = rx - rx@north * r; X = rx - rx'‘@north * r;
ry = ry - ry@north * r; ry =ry - ry'@north * r;
end; end;
end;
(a) (b)

Figure 2: ZPL representations of the Tomcatv code fragment from Fiurehe first code fragment (a) uses
scalarization to express the wavefront, while the second (b) uses a scaraht the prime operator.

Regions can be named and used symbolically to further improve readabitityonciseness. When a compu-
tation requires that not all array references refer to exactly the same setag#fsndiray operators are applied to
individual references, selecting some function of the applicable regjiodices from the the operators' operands.
ZPL provides a number of array operatoesy, reductions, parallel prefix operations, broadcasts, general per-
mutations), but for this discussion, we will only discuss thiét giperator. The shift operator, represented by the
@symbol, shifts the indices of the covering region by some offsetovectlled adirection, to determine the
indices of its argument array that are involved in the computation. Fample, the following Fortran 90 and
ZPL statements perform the same stencil computation. Notatidt , south , west , andeast representthe
programmer defined vectofs-1,0), (1,0), (0,—1), and(0, 1), respectively.

a(2:n+1,2:n+1) = (b(1:n,2:n+1)+b(3:n+2,2:n+1)+b(2:n+1,1:n)+b(2:n+1,3:n+2))/4.0
[2..n+1,2..n+1] a = (b@north+b@south+b@west+b@east)/4.0;

Figure 2(a) contains a ZPL code fragment representing the same compatatite Tomcatv Fortran 90 code
fragment in Figure 1(b). The use of regions improves code claritycantpbactness. Though the scalar variable
r is promoted to an array in the array codes, we have previously demedstanpiler techniques by which this
overhead may be eliminated via array contraction [8].

2.2 Wavefront Computation in ZPL

Array language semantics dictate that the right-hand side of an array statemealuated before the resultis as-
signed to the left-hand side. As a result, the compiler will not genarkdep that carries a true data dependence.
For example, the ZPL statement in Figure 3(a) is implemented by thenlestgn 3(b). The compiler determines
that thei-loop iterates from high to low indices in order to ensure that the bags not carry a true data de-
pendence. If arrag contains all 1s before the statement in 3(a) executes, it will have thesvaluFigure 3(c)
afterward.

In wavefront computations, the programmer wants the compiler to genarktop nest with loop carried
true data dependences. We introduce a new operator, callgutithe operator, that allows a programmer to
reference values written in previous iterations of the loops that cotitaiprimed reference. For example, the

. 1 1 1 1 1
for i + ndownto 2do 5 52 o2 2 o
— * . H
[2.n,1..n] a = 2 * a@north; for j« 1tondo a= 2 2 2 2 2
ajj = 2¢8i-1] 2 2 2 2 2
2 2 2 2 2
(a) (b) (c)
for i + 2tondo é % % é ;
[2.n,1.n] a := 2 * a@north; for j « 1tondo a= 4 4 4 4 4
8jj 281 8 8 8 8 8
16 16 16 16 16
) () (f)

Figure 3: ZPL array statements (a and d) and the corresponding loop(lnestd e) that implement them. The
arrays in (c and f) illustrate the result of the computations if aarayitially contains all 1s.

ZPL statement in Figure 3(d) is implemented by the loop nest in 3(¢hidrcase, the compiler must ensure that
a loop carried true data dependence exists due to arrdnus thd-loop iterates from low to high indices. If array
a contains all 1s before the statement in 3(d) executes, it will have theval Figure 3(f) afterward. In general,
the direction on the primed array reference defines the orientation of trefroat.

The prime operator alone cannot represent a complex wavefront such amtbat¥ code fragment in Fig-
ure 2(a), because alone it only permits loop carried true dependences ftataraent to itself. We introduce a
new compound statement, called@an blockto allow for more complex wavefronts. Primed array references
in a scan block refer to values written by any statement in the block, nathjesttatement that contains it. For
example, the ZPL code fragmentin Figure 2(b) uses scan blocks andrieeqperator to realize the computation
in Figure 2(a) without partial scalarization. The array referesti@north refers to values from the previous
iteration of the loop that iterates over the first dimension. Thustimegol @north references imply a wavefront
that travels from north to south. Non-primed references have the m®#aling. In scan blocks, they refer to the
values in the array before the scan block was entered.

The scan blocks we have looked at thus far contain only cardinal directiend(rections in which only
one dimension is nonzero, such as north, south, east and west). Whendiaiadirections appear with primed
references, there are nested wavefronts. In this situation, multippes loarry dependences due to the primed
array. This is a logical extension of wavefronts as we have described Begause nested wavefronts appear far
less frequently and they are not a source of significant parallelism, wetdmnsider them further in this paper.

There are a number of statically checked legality conditions. (i) Primeysin a scan block must also be
defined in the block; (ii) the directions on primed references may not ovstream the wavefrontg.g, primed
@north and @south references are not permitted because they imply both north-to-souttoatidts-north
wavefronts, which are contradictory); (iii) all statements in a scan hiegkt have the same ranikg(, are imple-
mented by a loop nest of the same depth)—this precludes the inclussoalaf assignment in a scan block; and
(iv) array operands to parallel operators other than the shift operator atde primed; this is essential because
array operators are pulled out of the scan block during compilation (seile$8t

The prime operator and scan blocks can be added to a language such as Fortiem&tslogous way. Again,
the wavefront orientation is defined by primed shifted array referencesighhbis somewhat less obvious to a
programmer how arrays are shifted in slice notation versus a regi@ttbagproach, the compilation approach is
the same, which we discuss in the next section.

3 Implementation

This section describes our approach to implementing primed array referencesamibeks in the ZPL compiler.
First, we show how data dependences determine loop structure in thedmphiler. Next, we show how to
leverage this infrastructure to determine the loop structure of slkeenkd Finally, we describe the compiler's
approach to communication insertion.

3.1 Deriving Loop Structure in ZPL

The ZPL compiler identifies groups of statements that are to be implemantesdingle loop nest, essentially per-
forming loop fusion. The data dependences (true, anti and output)xisabetween these statements determine
the structure of the resulting loop nest. Specifically, they determirat loop iterates over each array dimension
and in what directiond.g, from high to low indices). The ZPL and scalar code fragments in Fig(ageehd (b)
illustrate this. Notice that th¢-loop has to iterate from high to low indices in order to preserve thp tmarried
anti-dependence from the statement to itself.

We have developednconstrained distance vectdis represent these array-level data dependences [8]. Un-
constrained distance vectors are analogous to conventional distance vE8}@nscept that they are independent
of the iteration space. This is essential in an array language compiler becaugsearsak performed before
the array statements have been converted to loop nests, thus before an tedatied space exists. The un-
constrained representation is enabled by the regularity of the loopthast@re generated for array statements.
An unconstrained distance vector associated with a particular dependencplisthienvector difference of the
direction at the source and target of the dependence. For example, the waoedstistance vector due to the
anti-dependence from referena@north to a in Figure 3(a) is simply—1,0) — (0,0) = (—1,0). We have
previously developed an algorithm that computes a legal loop steugtuen a list of the unconstrained distance
vectors associated with the data dependences between the statements thatithi® looptain [8]. In the event
that the unconstrained distance vectors do not uniquely determine atfoofure, cache issues are considered in
order to improve spatial locality. In the event that the unconstrairsdrite vectors over-constrain the loop and
no loop structure can be found, all the statements cannot appear in alsoml&ome of them must be placed in
separate loops thereby eliminating some dependences and their associatettainedrdistance vectors.

3.2 Deriving Loop Structure of Scan Blocks

In order to simplify analysis, all potentially parallel array operatoreépt shifted primed arrays) are removed
from scan blocks via the insertion of temporary arrays. These temporagpsawill be subsequently eliminated
via array contraction if possible [8].

Though all the statements in a scan block are implemented by a singledsge cannot simply calculate
unconstrained distance vectors as described above, because primed referencedifferemtameaning. For
example, consider the scan block in Figure 2(b). Normal unconstraistahde vector calculation creates an
anti-dependence from the first to the second statement due todarBut because the referencedas primed,
there should actually be a true data dependence from the second stateteffitsb. tWe represent this by simply
negating the unconstrained distance vector between the two statemergghatqirimed array references only
appear on the right-hand side of array statements, so only unconstrateettd vectors due to anti-dependences
need to be negated when the apparent source of the dependence is primeg.viEnadle our existing algorithm
to derive loop structure from the unconstrained distance vectors as=wuiith inter scan block dependences.

3.3 Communication

Next, we consider the issues of generating communication for scan bldois the arrays they contain are
distributed. ZPL aligns interacting arrays so that interprocessor camcation is apparent to the programmer
and the compiler from the parallel array operators, such as the shift opgfatBecause only the shift operator
on primed arrays may appear in scan blocks, we need only describe its implearenésie.

Recall that shifted primed arrays imply that there is a wavefront movirgsacthe arrays in a scan block. In a
naive implementation, each scan block is preceded by a message receive and fofl@wradssage send. Thus,
a particular processor will not enter the loop nest that computes itopart a scan block until the data from
the previous processors becomes available. When a processor compldtespthisst, it sends the data required
by subsequent processors to them. The communication has the effect afisgril the computation along the
direction of the wavefront, which is the intended meaning of the wameftomputation. Figure 4(a) illustrates
this interprocessor communication. This simplistic implementadioes not exploit any parallelism along the
wavefront dimension. The next section discusses optimizationsfailplism.

4 Optimization
This section discusses a number of optimizations that improve thdgd@miformance of scan blocks.

4.1 Pipelining

In the implementation described above, a processor finishes computitsgemtire portion of a scan block before
data is sent on to later processors in the wavefront computation. Asila tégre is no parallelism along the
wavefront dimensieathe dimension across which the wavefront travels. The computaisedquential and

1]
B] | R R
1]
]
RLT R
]

-
-
|I||”|||
|I||”|||
allff
l<— * -
II	”			
II	”			
I		”		
l<— * -

— -

(@) (b)

Figure 4: lllustration of the data movement and parallelism charactsristiwavefront computations (a) without
and (b) with pipelining.

processors sit idle. Suppose a north-to-south wavefront conmutatperformed on an x n array distributed
across a X 2 processor mesh as in Figure 4(a). Processors 3 and 4 must wait for preceasid 2 to compute
onn?/4 elements each before they may proceed. Furthermore, processors 1 and 2entifl Wait for the others
to complete if they depend on the global result of the wavefront coatipat

Alternatively, the wavefront computation may p&elinedin order to exploit parallelism. Specifically, a
processor may compute a small slice of its portion of a scan block, sesahomof the data needed by subsequent
processors, then continue to execute its next slice. The benefit of grisaah is that it allows multiple processors
to become involved in the computation as soon as possible, greatiyimgnmarallelism. Figure 4(b) illustrates
this. Processors 3 and 4 only need to wait long enough for processors2ltarmdmpute a single slica(4 x
1/4 = n/16 elements) each. They can then immediately begin computing slices of timpoof the scan
block. By the time they are finished with a slice, the next bit of data been passed on by the preceding
processor. Parallel implementation of seemingly sequential wavefrontutatigms is not a new idea [10, 11],
but providing direct array language support for it is.

The compiler performs this optimization by generating a loop to itere¢e slices of a processor's portion of
a scan block. As in the unpipelined case, communication routines and adebforiterate over the slice appear
in the loop body. In each iteration of this loop, each processor only cteemn a slice of its portion of the
scan block. This slice includes the processor's entire range of thenaai/dimension, but only part of the other
dimensions. The size of the slice in the non-wavefront dimensiomdetermined by factors such the relative cost
of communication versus computation and cache characteristics.

Clearly, the number of slices impact parallelism. Ignoring communicatists, we expect better parallelism
for a larger number of slices.€., smaller slices). In reality, at some point the overhead of increased communi
cation overshadows the benefit of increased parallelism. We have developgu@rmodel to demonstrate this

Modeling Speedup on Cray T3E

~

experimental ——
model -~ 1

A~ 0o o
e r——

Speedup

w

0 200 400 600 800 1000
Number of Slices

Figure 5: Modeled versus experimental speedup due to pipelining. dlaecdmes from a single 20482048
wavefront computation in the Tomcatv benchmark on 8 nodes of the Cray T3E

tradeoff. This model can be used to determine the optimal number of slibesfollowing equation models the
speedup of pipelining versus not performing pipelining aman array. Letc be the number of slices by which
is divided andp be the number of processors, arranged in a row or column.

base base
comp+ Tcomm

ipe ipe
Tc%ﬁ”lp"‘ Tc%ﬁ”lm

Speedup=

b _ "2

Teomp =" TEse = (a+Bn)(p—1)
pipe _ N* N2 TP (B (et p—2
Tcomp:B-|-C—p(p—1) comm= (0 + E)(+p-2)

Without pipelining the compute timé’c%arﬁg, is simply a function of the total number of array elements. With
pipelining, the compute timé}%‘r’nep is the sum of the time to compute one processor's) and a slice of
the data. Without pipelining, communication is necesgaryl times (I'C%"’}ﬁﬁ,). The cost of each communication
has a constant startup cost, and a per transmitted data element c@st,The pipelined communication cost
(TC%Pnem) is similar except that there are more messages, and each message sends fexlemdata. Note that
the total number of messages for the pipelined caserip — 2 rather tharc(p — 1). This is because most of the
communication proceeds in parallel. Figure 5 contains a graph that plaksietband experimental speedup due
to pipelining as a function of the number of slicesjnto which the arrays are divided. One slice implies that
there is no pipelining, thus the speedup 1. The model closely traclextf@imental data. In future work, the

compiler will use this model to find the optimal number of slices foaetipular computation and machine.

4.2 Other Optimizations

There are a number of other possible optimizations that may improf@pemce of certain codes.

Array Contraction. The ZPL compiler fuses statements in an effort to enable the contractiomagyfsaio
scalars [8]. Normally, the compiler does not fuse statements if therfustroduces a loop carried flow depen-
dence, for this would prohibit parallelism in one or more dimensi@ezause scan blocks are inherently sequen-
tial in the wavefront dimension, we may extend our implementationrafyatontraction to allow contraction of
arrays resulting in loop carried true data dependences along the wavefnamisibn.

Associativity Detection. In the eventthat scan block computations are associative, more efficieneparedix

implementations exist [7]. As an optimization, the compiler could recmgthis and use the more efficient
implementation.

Broadcast Detection. Similarly, scan blocks can be used to copy values across an array. This code is bes
implemented as a broadcast, rather than the more general serial scheme presented.

5 Performance Evaluation

In this section we demonstrate the potential performance benefits aflprggcan blocks in an array language.
Though it is possible that a compiler for a language without scan blookld achieve this same level of per-
formance, by providing explicit language support for wavefront cotation, a programmer is ensured that the
compiler is aware of the high-level structure of the computation autialis likely to optimize it. This is an exam-
ple of programming language design facilitating programmer/compiltatmration. Alternatively, a compiler
could recognize wavefront idioms in partially scalarized code. The probligmtiis approach is that it is difficult
for programmers to know whether they have expressed their prograrasrs that the compiler can optimize,
and often the success of the compiler is sensitive to small changes in pooigcam.

We conduct experiments on the Cray T3E and the SGI PowerChallengethsifigmcatv and Simple [5]
benchmarks. For each experiment, we consider each program as a whole, and @erdamscomponents of
each that contain a single wavefront computation. Our extensionsadistmprove the performance of the two
wavefront portions of code in each benchmark, which results in signifinarall performance enhancement.
First, we demonstrate the potential cache performance benefits of scan blscis yartially scalarized array
code even without the optimizations presented in Section 4. Next, weungethiee additional improvement in
parallelism of pipelining.

5.1 Cache Benefits

Consider the code fragment without scan blocks in Figure 2(a). A naipkementation of this code iterates over
the rows of each array. If the arrays are allocated in column-major-ordeorpeniice will be limited by poor

cache behavior. The scan block version of this code in Figure 2(b) Jesydoes not specify an iteration order at
the source level. This gives the compiler the freedom to choose thieappopriate way by which loops iterate

10

Cray T3E SGI PowerChallenge
4

8
3
Se 5 ..
§ 3, I whole application
(7]
%4 ‘é’_ 1 wavefront 1
2 1 I wavefront 2
| 0
Tomcatv ~ Simple Tomcatv ~ Simple

Figure 6: Potential speedup due to scan blocks from improved cache behavio

over arrays for good cache performance. Though a compiler can optimize thmd¢adare 2(a), the better code
is much more likely to be generated when it is a by-product of the cornggilatrocess, rather than a specific
optimization.

With this in mind, we experimentally compare the performance of prsahlarized and scan block exploit-
ing implementations of identical computations. Figure 6 graphs thedifp of the former over the latter. Because
these experiments are on a single node of each machine, the speedup ig éuaérel caching effects. On the
Cray T3E, the wavefront computations alone (the two grey bars) spdadup to a factor of 8.5, resulting in
an overall speedup (black bars) of a factor of 3 for Tomcatv and 7% for Simplecdtv experiences such a
large overall speedup, because the wavefront computations represefitaigmortions of the program's total
execution time. The SGI PowerChallenge graph has a similar character exatdhtthpeedups are more modest
(up to a factor of 4). This is because the PowerChallenge has a much slewesgor than the T3E, thus the
relative cost of a cache miss is less, so it is less sensitive to cache panfenihan the T3E.

5.2 Optimization Benefits

We are in the process of implementing the optimizations described ino8ettin the ZPL compiler. In the
meantime, we have performed the pipelining transformations by haradrarmber of programs to assess its
impact. Figure 7 presents speedup data due to pipelining alone. Thddrasasculating the speedup is a fully
parallel version of the code without the pipelining transformatidhus the bars representing whole program
speedup (black bars) are speedup beyond an already highly parallel code. Trephesenting speedup of the
wavefront computations (grey bars) are serial without pipeliniogfis baseline in their case does not benefit from
parallelism. We would like the grey bars to achieve speedup as close tuthber of processors as possible. In
all cases the speedup of the wavefront segments approaches the numbees$@rs, and the overall program
improvements are very large in several cases (up to a factor of 3). The droadles| performance improvements
are still greater than 5 to 8%. Though the absolute speedup improves agrtiber of processors increases, the
efficiency decreases. This is because we have kept the problem size constenteladive cost of communication
increases with the number of processors.

11

Cray T3E (p=4) 5. Cray T3E (p=8)
4

I whole application
1 wavefront1
1 2 I wavefront 2

speedup
N

speedup
N

0
Tomcatv ~ Simple Tomcatv ~ Simple

SGI Power Challenge (p=4) SGBI Power Challenge (p=8)
4

3 6

2 4

speedup
speedup

1 2

Tomcatv ~ Simple 0 Tomcatv ~ Simple
Figure 7: Speedup due to pipelining optimization.

6 Conclusion

We have extended array languages to support wavefront computatitrmsit\gtalarization, thus reclaiming the
benefits of representing computations via high level array operatiorsddition to its convenient and concise
syntax, our extension enhances programmer/compiler collaboration. ésub, programmers' expectations of
their codes' performance are likely to be met by the compiler, equippogrammers to make informed imple-
mentation decisions. We have described our approach to compiling théanguage extension, and we have
proposed several optimizations. In addition, we have shown thhtfhbtarray and optimized implementations
result in significant speedup versus naive scalarized and unoptimized impéeimes, respectively.

The experiments in this paper demonstrating pipelining benefit wemmiapt by hand. We will next fully
mechanize this process, using the speedup model presented in Section 4rinooadtomatically select the
appropriate number of pipeline slices. We must decide how to parametegiradadel given the characteristics
of a particular machine and wavefront computation. Furthermore, we axlgisess the issue of the appropriate
slice size when the slice is perpendicular to the closely allocated array elenretitis case, the ideal slice size
may need to be slightly increased or decreased so that the slice size is denudiltie cache line size, resulting
in improved cache performance.

Acknowledgments. We thank Sung-Eung Choi and Samuel Guyer for their comments on drdfts gfaper.
This research was supported by a grant of HPC time from the Arctic R&lipercomputing Center.

12

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Samithjerrold L. WageneFortran 90
Handbook McGraw-Hill, New York, NY, 1992.

[2] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Le®#lyin Lin, Lawrence Snyder, and W. Der-
rick Weathersby. ZPL's WYSIWYG performance model.Tinird International Workshop on High-Level
Parallel Programming Models and Supportive Environmepegjes 50-61. IEEE Computer Society Press,
March 1998.

[3] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lel&yrence Snyder, W. Derrick Weathersby,
and Calvin Lin. The case for high-level parallel programming in ZPEEE Computational Science and
Engineering 5(3):76—-85, July—September 1998.

[4] Bradford L. Chamberlain, E Christopher Lewis, Calvin Lin, andvtence Snyder. Regions: An abstrac-
tion for expressing array computation. Technical Report UW-CSE-98210Jniversity of Washington,
Department of Computer Science and Engineering, October 1998.

[5] W. Crowley, C. P. Hendrickson, and T. |. Luby. The SIMPLE codeechnical Report UCID-17715,
Lawrence Livermore Laboratory, 1978.

[6] High Performance Fortran Forurkligh Performance Fortran Langauge Specification, Version 2ahuary
1997.

[7] F. Thomas Leightonintroduction to Parallel Algorithms and Architectureshapter 1.2. Morgan Kaufmann
Publishers, San Mateo, California, 1992.

[8] E Christopher Lewis, Calvin Lin, and Lawrence Snyder. The im@etation and evaluation of fusion and
contraction in array languages. 3iGPLAN Conference on Programming Language Design and Implemen-
tation, pages 50-59, June 1998.

[9] C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S. Choi, G. FanmnE. Lewis, and W. D. Weathersby. ZPL
vs. HPF: A comparison of performance and programming style. Technicalf8pd 1-05, Department of
Computer Science and Engineering, University of Washington, 1994.

[10] Naomi H. Naik, Vijay K. Naik, and Michel Nicoules. Parallelization of ag$ of implicit finite difference
schemes in computational fluid dynamitrgternational Journal of High Speed Computjigg1):1-50, 1993.

[11] Ton A. Ngo. The Role of Performance Models in Parallel Programming and Laggs PhD thesis,
University of Washington, Department of Computer Science and Engirgg&997.

[12] Lawrence Snyder. The ZPL Programmer's Guide MIT Press (in press—available at
ftp://ftp.cs.washington.edu/pub/orca/docs/gpide.ps), 1998.

[13] Michael Wolfe.High Performance Compilers for Parallel Computingddison-Wesley, Redwood City, CA,
1996.

[14] ZPL Project. ZPL project homepage. http:/www.cs.washingtorfresi@arch/zpl.

13

