
Array Language Support for
Wavefront and Pipelined Computations�

Bradford L. Chamberlain E Christopher Lewis Lawrence Snyder

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

October 29, 1998

Abstract

Array languages such as Fortran 90, High Performance Fortran and ZPL are convenient vehicles for ex-
pressing data parallel computation. Unfortunately, arraylanguage semantics prohibit the natural expression of
wavefront and pipelined computations, characterized by a sequential propagation of computed values across one
or more dimensions of the problem space. As a result, programmers scalarize (i.e., use loop nests and scalar
indexing instead of array operations) wavefront computations, sacrificing the benefits of the array language. We
propose an extension to array languages that provides support for wavefront computation without scalarization
and with minimal impact on the language. Our extension is particularly valuable in that it identifies parallelism
to both the programmer and compiler just as conventional array operations do. In this paper we motivate the
problem, introduce our language extension, describe its implementation in the ZPL data parallel array language
compiler, and experimentally evaluate the parallel performance improvement due to its optimization for paral-
lelism.

1 Introduction

Array languages such as Fortran 90 [1], High Performance Fortran (HPF) [6] and ZPL [12] have achieved success

in expressing and exploiting data parallelism. They are distinguished from scalar languages by their support of

operations on arrays as primitive entities, frequently obviating the need for explicit looping and element-wise

indexing. In addition to providing convenient and concise syntax, array operations enable programmer/compiler

collaboration, the basis of effective parallel computing. The programmerand compiler collaborate in the sense

that the programmer presents a representation of a particular computation and has certain expectations about its

eventual performance. If a programmer expresses a computation in terms forwhich the compiler is unable to

meet the performance expectations, collaboration does not exist. Effective programmer/compiler collaboration is

essential in the parallel domain, where orders of magnitudes of performancemay be lost when the compiler is

�This research was supported in part by DARPA Grant E30602-97-1-0152, NSF Grant CCR-9710284 and the Intel Corporation.

1

DO 100 i = 2 , n-1
DO 100 j = 2 , n-2

r=aa(j,i)*d(j-1,i)
d(j,i)=1.0/(dd(j,i)-aa(j-1,i)*r)
rx(j,i)=rx(j,i)-rx(j-1,i)*r
ry(j,i)=ry(j,i)-ry(j-1,i)*r

100 CONTINUE

(a)

DO 100 j = 2 , n-2
r(2:n-2)=aa(j,2:n-2)*d(j-1,2:n-2)
d(j,2:n-2)=1.0/(dd(j,2:n-2)-aa(j-1,2:n-2)*r(2:n-2))
rx(j,2:n-2)=rx(j,2:n-2)-rx(j-1,2:n-2)*r(2:n-2)
ry(j,2:n-2)=ry(j,2:n-2)-ry(j-1,2:n-2)*r(2:n-2)

100 CONTINUE

(b)

Figure 1: Fortran code fragments from SPECfp92 Tomcatv benchmark demonstrating a limitation of array lan-
guages. In order to represent the scalar code in (a) in an array language, a programmer must scalarize the first
dimension, as in (b).

unable to produce a parallel implementation of a code. Array languages enable effective collaboration by making

parallelism apparent to both the programmer and the compiler in array operations.

Unfortunately, array languages are limited in what computations they can express at the array level. This is

because an array language compiler generates a loop nest to implement one or morearray statements, and array

language semantics prohibit the loop from carrying true data dependences from one statement to its self or earlier

statements. If programmers want to express such a computation, they must scalarizeone or more dimensions

of the computation by using loops to explicitly iterate over elements of arrays. Clearly, scalarization is at odds

with the goals and benefits of array language programming. Computationscharacterized by a data dependent

flow of values across one or more dimensions of the problem space cannot beexpressed only via primitive array

operations. We call thesewavefrontcomputations, because waves of computed values wash across the problem

space. They can be thought of as a generalization of scan or prefix computations.

As an example, consider the scalar Fortran 77 code fragment in Figure 1(a); it is from the tridiagonal systems

solver component of the SPECfp92 Tomcatv benchmark. The inner loop carries a true data dependence from

the second statement to the first due to arrayd and from the third and fourth statements to themselves due to

arraysrx andry , respectively. An array language can not express these dependences without scalarizing the first

dimension of the problem space, calledpartial scalarization, as in the Fortran 90 array statements in Figure 1(b).

Clearly, scalarization sacrifices the benefits of array languages, corrupting thecollaboration between programmer

and compiler. The programmer must decide whether the partially scalarized wavefront computation is phrased in

terms that the compiler can recognize and parallelize. In addition, the scalarized code in Figure 1(b) has very poor

cache behavior because all the array references are to rows and the arrays are allocated in column-major-order.

The compiler might optimize the partially scalarized code for spatial locality and parallelism, but the programmer

is left to wonder and is ill-equipped to make implementation decisions. We will demonstrate in Section 5 that

the potential performance differential is enormous. The bottom line is that scalarization impedes effective col-

laboration between programmer and compiler. If a full array representation ofwavefront computations could be

expressed, it would regain the benefits of array language programming.

We propose an extension to array languages to directly support wavefront computations, eliminating the need

2

for partial scalarization, with minimal impact on the language. Though wavefront computations do not appear

in every array language program, they are sufficiently common that they warrant language support. There are

two components to our solution. First, we introduce a new array operator, called theprime operator, that al-

lows a programmer to refer to values written inside the loop nest that implements the statement containing the

prime. Second, we introduce a new compound statement, called thescan block, that groups statements in order to

establish the scope of the prime operator. These two new array language features permit full array statement rep-

resentation of codes like that of Figure 1, thereby restoring the benefitsof array languages and conveying the high

level nature of the computation to the compiler. Most importantly, the programmer need not speculate whether the

compiler is able to extract parallelism from the scalarized code. Just as parallelism is manifest in array operations,

it is manifest in scan blocks.

This paper is organized as follows. In the next section, we describe our array language extension to support

wavefront computations in ZPL. Sections 3 and 4 describe its implementation and optimization, respectively.

Performance data is presented in Section 5, and future work and conclusionsare given in the final section.

2 Array Language Support for Wavefront Computation

This section describes array language support for wavefront computationin the context of the ZPL parallel array

language [12]. We have demonstrated that our ZPL compiler is competitive with hand-coded C with MPI [3],

and it generally outperforms HPF [9]. The compiler is publicly available [14] for most modern parallel and

sequential platforms, including the Cray T3E, IBM SP2, SGI PowerChallenge, SGI Origin, and networked UNIX

workstations using MPI and PVM. The language is in active use by scientists in fields such as astronomy, civil

engineering, biological statistics, mathematics, oceanography, and theoretical physics. The first section below

gives a very brief summary of the ZPL language, only describing the features of the language immediately relevant

to this paper. Detailed coverage of the language may be found elsewhere [12]. After that, we introduce the prime

operator and scan blocks as a means of supporting wavefront computations in ZPL.

2.1 Brief ZPL Language Summary

ZPL is a data parallel array programming language. It supports all the usual scalar data types (e.g., integer ,

float , char), operators (e.g., math, logical, bit-wise), and control structures (e.g., for , while , function calls).

As an array language, it also offers array data types and operators. ZPL is distinguished from other array languages

by its use ofregions[4]. A region represents an index set, and may precede a statement, specifyingthe extent of

the array references within its dynamic scope. By factoring the indices that are to be computed on into the region,

the use of regions eliminates the need to index arrays. For example, thefollowing Fortran 90 (slice-based) and

ZPL (region-based) array statements are equivalent.

a(n/2:n,n/2:n) = b(n/2:n,n/2:n) + c(n/2:n,n/2:n) [n/2..n,n/2..n] a = b + c;

3

for j := 2 to n-2 do
[j,2..n-1] begin

r = aa * d@north;
d = 1.0 / (dd - aa@north * r);
rx = rx - rx@north * r;
ry = ry - ry@north * r;

end;
end;

(a)

[2..n-2,2..n-1] scan
r = aa * d'@north;
d = 1.0 / (dd - aa@north * r);
rx = rx - rx'@north * r;
ry = ry - ry'@north * r;

end;

(b)

Figure 2: ZPL representations of the Tomcatv code fragment from Figure1. The first code fragment (a) uses
scalarization to express the wavefront, while the second (b) uses a scan block and the prime operator.

Regions can be named and used symbolically to further improve readabilityand conciseness. When a compu-

tation requires that not all array references refer to exactly the same set of indices, array operators are applied to

individual references, selecting some function of the applicable region's indices from the the operators' operands.

ZPL provides a number of array operators (e.g., reductions, parallel prefix operations, broadcasts, general per-

mutations), but for this discussion, we will only discuss the shift operator. The shift operator, represented by the

@symbol, shifts the indices of the covering region by some offset vector, called adirection, to determine the

indices of its argument array that are involved in the computation. For example, the following Fortran 90 and

ZPL statements perform the same stencil computation. Note thatnorth , south , west , andeast represent the

programmer defined vectors(�1;0), (1;0), (0;�1), and(0;1), respectively.

a(2:n+1,2:n+1) = (b(1:n,2:n+1)+b(3:n+2,2:n+1)+b(2:n+1,1:n)+b(2:n+1,3:n+2))/4.0

[2..n+1,2..n+1] a := (b@north+b@south+b@west+b@east)/4.0;

Figure 2(a) contains a ZPL code fragment representing the same computation as the Tomcatv Fortran 90 code

fragment in Figure 1(b). The use of regions improves code clarity andcompactness. Though the scalar variable

r is promoted to an array in the array codes, we have previously demonstrated compiler techniques by which this

overhead may be eliminated via array contraction [8].

2.2 Wavefront Computation in ZPL

Array language semantics dictate that the right-hand side of an array statement is evaluated before the result is as-

signed to the left-hand side. As a result, the compiler will not generatea loop that carries a true data dependence.

For example, the ZPL statement in Figure 3(a) is implemented by the loopnest in 3(b). The compiler determines

that thei-loop iterates from high to low indices in order to ensure that the loopdoes not carry a true data de-

pendence. If arraya contains all 1s before the statement in 3(a) executes, it will have the values in Figure 3(c)

afterward.

In wavefront computations, the programmer wants the compiler to generate a loop nest with loop carried

true data dependences. We introduce a new operator, called theprime operator, that allows a programmer to

reference values written in previous iterations of the loops that containthe primed reference. For example, the

4

[2..n,1..n] a := 2 * a@north;

(a)

for i n downto 2do
for j 1 to n do

ai; j 2�ai�1; j

(b)

1 1 1 1 1
2 2 2 2 2

a = 2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

(c)

[2..n,1..n] a := 2 * a'@north;

(d)

for i 2 to n do
for j 1 to n do

ai; j 2�ai�1; j

(e)

1 1 1 1 1
2 2 2 2 2

a = 4 4 4 4 4
8 8 8 8 8

16 16 16 16 16

(f)

Figure 3: ZPL array statements (a and d) and the corresponding loop nests(b and e) that implement them. The
arrays in (c and f) illustrate the result of the computations if arraya initially contains all 1s.

ZPL statement in Figure 3(d) is implemented by the loop nest in 3(e). Inthis case, the compiler must ensure that

a loop carried true data dependence exists due to arraya, thus thei-loop iterates from low to high indices. If array

a contains all 1s before the statement in 3(d) executes, it will have the values in Figure 3(f) afterward. In general,

the direction on the primed array reference defines the orientation of the wavefront.

The prime operator alone cannot represent a complex wavefront such as the Tomcatv code fragment in Fig-

ure 2(a), because alone it only permits loop carried true dependences from a statement to itself. We introduce a

new compound statement, called ascan block, to allow for more complex wavefronts. Primed array references

in a scan block refer to values written by any statement in the block, not justthe statement that contains it. For

example, the ZPL code fragment in Figure 2(b) uses scan blocks and the prime operator to realize the computation

in Figure 2(a) without partial scalarization. The array referenced'@north refers to values from the previous

iteration of the loop that iterates over the first dimension. Thus the primed@north references imply a wavefront

that travels from north to south. Non-primed references have the usualmeaning. In scan blocks, they refer to the

values in the array before the scan block was entered.

The scan blocks we have looked at thus far contain only cardinal directions (i.e., directions in which only

one dimension is nonzero, such as north, south, east and west). When noncardinal directions appear with primed

references, there are nested wavefronts. In this situation, multiple loops carry dependences due to the primed

array. This is a logical extension of wavefronts as we have described them. Because nested wavefronts appear far

less frequently and they are not a source of significant parallelism, we donot consider them further in this paper.

There are a number of statically checked legality conditions. (i) Primed arrays in a scan block must also be

defined in the block; (ii) the directions on primed references may not overconstrain the wavefront (e.g., primed

@north and@south references are not permitted because they imply both north-to-south and south-to-north

wavefronts, which are contradictory); (iii) all statements in a scan blockmust have the same rank (i.e., are imple-

mented by a loop nest of the same depth)—this precludes the inclusion ofscalar assignment in a scan block; and

(iv) array operands to parallel operators other than the shift operator may not be primed; this is essential because

array operators are pulled out of the scan block during compilation (see Section 3).

5

The prime operator and scan blocks can be added to a language such as Fortran 90 in an analogous way. Again,

the wavefront orientation is defined by primed shifted array references. Though it is somewhat less obvious to a

programmer how arrays are shifted in slice notation versus a region-based approach, the compilation approach is

the same, which we discuss in the next section.

3 Implementation

This section describes our approach to implementing primed array references and scan blocks in the ZPL compiler.

First, we show how data dependences determine loop structure in the ZPLcompiler. Next, we show how to

leverage this infrastructure to determine the loop structure of scan blocks. Finally, we describe the compiler's

approach to communication insertion.

3.1 Deriving Loop Structure in ZPL

The ZPL compiler identifies groups of statements that are to be implementedas a single loop nest, essentially per-

forming loop fusion. The data dependences (true, anti and output) that exist between these statements determine

the structure of the resulting loop nest. Specifically, they determinewhat loop iterates over each array dimension

and in what direction (e.g., from high to low indices). The ZPL and scalar code fragments in Figure 3(a) and (b)

illustrate this. Notice that thej-loop has to iterate from high to low indices in order to preserve the loop carried

anti-dependence from the statement to itself.

We have developedunconstrained distance vectorsto represent these array-level data dependences [8]. Un-

constrained distance vectors are analogous to conventional distance vectors [13] except that they are independent

of the iteration space. This is essential in an array language compiler because analyses are performed before

the array statements have been converted to loop nests, thus before an orderediteration space exists. The un-

constrained representation is enabled by the regularity of the loop neststhat are generated for array statements.

An unconstrained distance vector associated with a particular dependence is simply the vector difference of the

direction at the source and target of the dependence. For example, the unconstrained distance vector due to the

anti-dependence from referencea@north to a in Figure 3(a) is simply(�1;0)� (0;0) = (�1;0). We have

previously developed an algorithm that computes a legal loop structure given a list of the unconstrained distance

vectors associated with the data dependences between the statements that the loopis to contain [8]. In the event

that the unconstrained distance vectors do not uniquely determine a loopstructure, cache issues are considered in

order to improve spatial locality. In the event that the unconstrained distance vectors over-constrain the loop and

no loop structure can be found, all the statements cannot appear in a singleloop. Some of them must be placed in

separate loops thereby eliminating some dependences and their associated unconstrained distance vectors.

6

3.2 Deriving Loop Structure of Scan Blocks

In order to simplify analysis, all potentially parallel array operators (except shifted primed arrays) are removed

from scan blocks via the insertion of temporary arrays. These temporary arrays will be subsequently eliminated

via array contraction if possible [8].

Though all the statements in a scan block are implemented by a single loop nest, we cannot simply calculate

unconstrained distance vectors as described above, because primed references have adifferent meaning. For

example, consider the scan block in Figure 2(b). Normal unconstrained distance vector calculation creates an

anti-dependence from the first to the second statement due to arrayd. But because the reference tod is primed,

there should actually be a true data dependence from the second statement to the first. We represent this by simply

negating the unconstrained distance vector between the two statements. Note that primed array references only

appear on the right-hand side of array statements, so only unconstrained distance vectors due to anti-dependences

need to be negated when the apparent source of the dependence is primed. Finally, we use our existing algorithm

to derive loop structure from the unconstrained distance vectors associated with inter scan block dependences.

3.3 Communication

Next, we consider the issues of generating communication for scan blocks when the arrays they contain are

distributed. ZPL aligns interacting arrays so that interprocessor communication is apparent to the programmer

and the compiler from the parallel array operators, such as the shift operator [2]. Because only the shift operator

on primed arrays may appear in scan blocks, we need only describe its implementation here.

Recall that shifted primed arrays imply that there is a wavefront moving across the arrays in a scan block. In a

naive implementation, each scan block is preceded by a message receive and followed by a message send. Thus,

a particular processor will not enter the loop nest that computes its portion of a scan block until the data from

the previous processors becomes available. When a processor completes thisloop nest, it sends the data required

by subsequent processors to them. The communication has the effect of serializing all the computation along the

direction of the wavefront, which is the intended meaning of the wavefront computation. Figure 4(a) illustrates

this interprocessor communication. This simplistic implementationdoes not exploit any parallelism along the

wavefront dimension. The next section discusses optimizations for parallelism.

4 Optimization

This section discusses a number of optimizations that improve the parallel performance of scan blocks.

4.1 Pipelining

In the implementation described above, a processor finishes computing on its entire portion of a scan block before

data is sent on to later processors in the wavefront computation. As a result, there is no parallelism along the

wavefront dimension—the dimension across which the wavefront travels. The computation is sequential and

7

➊

➍➌

➋

(a)

➊

➍➌

➋

(b)

Figure 4: Illustration of the data movement and parallelism characteristics of wavefront computations (a) without
and (b) with pipelining.

processors sit idle. Suppose a north-to-south wavefront computation is performed on ann�n array distributed

across a 2�2 processor mesh as in Figure 4(a). Processors 3 and 4 must wait for processors 1 and 2 to compute

onn2
=4 elements each before they may proceed. Furthermore, processors 1 and 2 will have to wait for the others

to complete if they depend on the global result of the wavefront computation.

Alternatively, the wavefront computation may bepipelined in order to exploit parallelism. Specifically, a

processor may compute a small slice of its portion of a scan block, send onsome of the data needed by subsequent

processors, then continue to execute its next slice. The benefit of this approach is that it allows multiple processors

to become involved in the computation as soon as possible, greatly improving parallelism. Figure 4(b) illustrates

this. Processors 3 and 4 only need to wait long enough for processors 1 and2 to compute a single slice (n=4�

1=4= n=16 elements) each. They can then immediately begin computing slices of their portions of the scan

block. By the time they are finished with a slice, the next bit of data has been passed on by the preceding

processor. Parallel implementation of seemingly sequential wavefront computations is not a new idea [10, 11],

but providing direct array language support for it is.

The compiler performs this optimization by generating a loop to iterateover slices of a processor's portion of

a scan block. As in the unpipelined case, communication routines and a loop nest to iterate over the slice appear

in the loop body. In each iteration of this loop, each processor only computes on a slice of its portion of the

scan block. This slice includes the processor's entire range of the wavefront dimension, but only part of the other

dimensions. The size of the slice in the non-wavefront dimensionsare determined by factors such the relative cost

of communication versus computation and cache characteristics.

Clearly, the number of slices impact parallelism. Ignoring communicationcosts, we expect better parallelism

for a larger number of slices (i.e., smaller slices). In reality, at some point the overhead of increased communi-

cation overshadows the benefit of increased parallelism. We have developed a simple model to demonstrate this

8

0

1

2

3

4

5

6

7

0 200 400 600 800 1000

S
pe

ed
up

Number of Slices

Modeling Speedup on Cray T3E

experimental
model

Figure 5: Modeled versus experimental speedup due to pipelining. The data comes from a single 2048�2048
wavefront computation in the Tomcatv benchmark on 8 nodes of the Cray T3E.

tradeoff. This model can be used to determine the optimal number of slices.The following equation models the

speedup of pipelining versus not performing pipelining on an�n array. Letc be the number of slices by whichn

is divided andp be the number of processors, arranged in a row or column.

Speedup=
Tbase

comp+Tbase
comm

Tpipe
comp+Tpipe

comm

Tbase
comp= n2

Tpipe
comp=

n2

p
+

n2

cp
(p�1)

Tbase
comm= (α+βn)(p�1)

Tpipe
comm= (α+β

n
c
)(c+ p�2)

Without pipelining the compute time,Tbase
comp, is simply a function of the total number of array elements. With

pipelining, the compute time,Tpipe
comp, is the sum of the time to compute one processor's data (n2

=p) and a slice of

the data. Without pipelining, communication is necessaryp�1 times (Tbase
comm). The cost of each communication

has a constant startup cost,α, and a per transmitted data element cost,β. The pipelined communication cost

(Tpipe
comm) is similar except that there are more messages, and each message sends fewer dataelements. Note that

the total number of messages for the pipelined case isc+ p�2 rather thanc(p�1). This is because most of the

communication proceeds in parallel. Figure 5 contains a graph that plots modeled and experimental speedup due

to pipelining as a function of the number of slices,c, into which the arrays are divided. One slice implies that

there is no pipelining, thus the speedup 1. The model closely tracks theexperimental data. In future work, the

compiler will use this model to find the optimal number of slices for a particular computation and machine.

4.2 Other Optimizations

There are a number of other possible optimizations that may improve performance of certain codes.

9

Array Contraction. The ZPL compiler fuses statements in an effort to enable the contraction of arrays to

scalars [8]. Normally, the compiler does not fuse statements if the fusion introduces a loop carried flow depen-

dence, for this would prohibit parallelism in one or more dimensions. Because scan blocks are inherently sequen-

tial in the wavefront dimension, we may extend our implementation of array contraction to allow contraction of

arrays resulting in loop carried true data dependences along the wavefront dimension.

Associativity Detection. In the event that scan block computations are associative, more efficient parallel prefix

implementations exist [7]. As an optimization, the compiler could recognize this and use the more efficient

implementation.

Broadcast Detection. Similarly, scan blocks can be used to copy values across an array. This code is best

implemented as a broadcast, rather than the more general serial scheme presented.

5 Performance Evaluation

In this section we demonstrate the potential performance benefits of providing scan blocks in an array language.

Though it is possible that a compiler for a language without scan blocks could achieve this same level of per-

formance, by providing explicit language support for wavefront computation, a programmer is ensured that the

compiler is aware of the high-level structure of the computation and is thus likely to optimize it. This is an exam-

ple of programming language design facilitating programmer/compiler collaboration. Alternatively, a compiler

could recognize wavefront idioms in partially scalarized code. The problem with this approach is that it is difficult

for programmers to know whether they have expressed their programs interms that the compiler can optimize,

and often the success of the compiler is sensitive to small changes in sourceprogram.

We conduct experiments on the Cray T3E and the SGI PowerChallenge usingthe Tomcatv and Simple [5]

benchmarks. For each experiment, we consider each program as a whole, and we consider two components of

each that contain a single wavefront computation. Our extensions drastically improve the performance of the two

wavefront portions of code in each benchmark, which results in significantoverall performance enhancement.

First, we demonstrate the potential cache performance benefits of scan block versus partially scalarized array

code even without the optimizations presented in Section 4. Next, we measure the additional improvement in

parallelism of pipelining.

5.1 Cache Benefits

Consider the code fragment without scan blocks in Figure 2(a). A naive implementation of this code iterates over

the rows of each array. If the arrays are allocated in column-major-order, performance will be limited by poor

cache behavior. The scan block version of this code in Figure 2(b), however, does not specify an iteration order at

the source level. This gives the compiler the freedom to choose the most appropriate way by which loops iterate

10

Tomcatv Simple
0

2

4

6

8

10

sp
ee

d
u

p

Cray T3E

Tomcatv Simple
0

1

2

3

4

sp
ee

d
u

p

SGI PowerChallenge

whole application

wavefront 1

wavefront 2

Figure 6: Potential speedup due to scan blocks from improved cache behavior.

over arrays for good cache performance. Though a compiler can optimize the codein Figure 2(a), the better code

is much more likely to be generated when it is a by-product of the compilation process, rather than a specific

optimization.

With this in mind, we experimentally compare the performance of partially scalarized and scan block exploit-

ing implementations of identical computations. Figure 6 graphs the speedup of the former over the latter. Because

these experiments are on a single node of each machine, the speedup is entirely due to caching effects. On the

Cray T3E, the wavefront computations alone (the two grey bars) speedup by up to a factor of 8.5, resulting in

an overall speedup (black bars) of a factor of 3 for Tomcatv and 7% for Simple. Tomcatv experiences such a

large overall speedup, because the wavefront computations represent significant portions of the program's total

execution time. The SGI PowerChallenge graph has a similar character except that the speedups are more modest

(up to a factor of 4). This is because the PowerChallenge has a much slower processor than the T3E, thus the

relative cost of a cache miss is less, so it is less sensitive to cache performance than the T3E.

5.2 Optimization Benefits

We are in the process of implementing the optimizations described in Section 4 in the ZPL compiler. In the

meantime, we have performed the pipelining transformations by hand ona number of programs to assess its

impact. Figure 7 presents speedup data due to pipelining alone. The basisfor calculating the speedup is a fully

parallel version of the code without the pipelining transformation.Thus the bars representing whole program

speedup (black bars) are speedup beyond an already highly parallel code. The barsrepresenting speedup of the

wavefront computations (grey bars) are serial without pipelining, so the baseline in their case does not benefit from

parallelism. We would like the grey bars to achieve speedup as close to the number of processors as possible. In

all cases the speedup of the wavefront segments approaches the number of processors, and the overall program

improvements are very large in several cases (up to a factor of 3). The smallest overall performance improvements

are still greater than 5 to 8%. Though the absolute speedup improves as the number of processors increases, the

efficiency decreases. This is because we have kept the problem size constant, sothe relative cost of communication

increases with the number of processors.

11

Tomcatv Simple
0

1

2

3

4

sp
ee

d
u

p

Cray T3E (p=4)

Tomcatv Simple
0

2

4

6

8

sp
ee

d
u

p

Cray T3E (p=8)

whole application

wavefront 1

wavefront 2

Tomcatv Simple
0

1

2

3

4

sp
ee

d
u

p

SGI Power Challenge (p=4)

Tomcatv Simple
0

2

4

6

8

sp
ee

d
u

p

SGI Power Challenge (p=8)

Figure 7: Speedup due to pipelining optimization.

6 Conclusion

We have extended array languages to support wavefront computations without scalarization, thus reclaiming the

benefits of representing computations via high level array operations. Inaddition to its convenient and concise

syntax, our extension enhances programmer/compiler collaboration. As a result, programmers' expectations of

their codes' performance are likely to be met by the compiler, equipping programmers to make informed imple-

mentation decisions. We have described our approach to compiling the newlanguage extension, and we have

proposed several optimizations. In addition, we have shown that both full array and optimized implementations

result in significant speedup versus naive scalarized and unoptimized implementations, respectively.

The experiments in this paper demonstrating pipelining benefit were optimized by hand. We will next fully

mechanize this process, using the speedup model presented in Section 4 in order to automatically select the

appropriate number of pipeline slices. We must decide how to parameterize the model given the characteristics

of a particular machine and wavefront computation. Furthermore, we mustaddress the issue of the appropriate

slice size when the slice is perpendicular to the closely allocated array elements. In this case, the ideal slice size

may need to be slightly increased or decreased so that the slice size is a multiple of the cache line size, resulting

in improved cache performance.

Acknowledgments. We thank Sung-Eung Choi and Samuel Guyer for their comments on drafts ofthis paper.

This research was supported by a grant of HPC time from the Arctic Region Supercomputing Center.

12

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith,and Jerrold L. Wagener.Fortran 90
Handbook. McGraw-Hill, New York, NY, 1992.

[2] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis,Calvin Lin, Lawrence Snyder, and W. Der-
rick Weathersby. ZPL's WYSIWYG performance model. InThird International Workshop on High-Level
Parallel Programming Models and Supportive Environments, pages 50–61. IEEE Computer Society Press,
March 1998.

[3] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis,Lawrence Snyder, W. Derrick Weathersby,
and Calvin Lin. The case for high-level parallel programming in ZPL.IEEE Computational Science and
Engineering, 5(3):76–85, July–September 1998.

[4] Bradford L. Chamberlain, E Christopher Lewis, Calvin Lin, and Lawrence Snyder. Regions: An abstrac-
tion for expressing array computation. Technical Report UW-CSE-98-10-02, University of Washington,
Department of Computer Science and Engineering, October 1998.

[5] W. Crowley, C. P. Hendrickson, and T. I. Luby. The SIMPLE code. Technical Report UCID-17715,
Lawrence Livermore Laboratory, 1978.

[6] High Performance Fortran Forum.High Performance Fortran Langauge Specification, Version 2.0. January
1997.

[7] F. Thomas Leighton.Introduction to Parallel Algorithms and Architectures, chapter 1.2. Morgan Kaufmann
Publishers, San Mateo, California, 1992.

[8] E Christopher Lewis, Calvin Lin, and Lawrence Snyder. The implementation and evaluation of fusion and
contraction in array languages. InSIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 50–59, June 1998.

[9] C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S. Choi, G. Forman, E. Lewis, and W. D. Weathersby. ZPL
vs. HPF: A comparison of performance and programming style. Technical Report 95–11–05, Department of
Computer Science and Engineering, University of Washington, 1994.

[10] Naomi H. Naik, Vijay K. Naik, and Michel Nicoules. Parallelization of a class of implicit finite difference
schemes in computational fluid dynamics.International Journal of High Speed Computing, 5(1):1–50, 1993.

[11] Ton A. Ngo. The Role of Performance Models in Parallel Programming and Languages. PhD thesis,
University of Washington, Department of Computer Science and Engineering, 1997.

[12] Lawrence Snyder. The ZPL Programmer's Guide. MIT Press (in press—available at
ftp://ftp.cs.washington.edu/pub/orca/docs/zplguide.ps), 1998.

[13] Michael Wolfe.High Performance Compilers for Parallel Computing. Addison-Wesley, Redwood City, CA,
1996.

[14] ZPL Project. ZPL project homepage. http:/www.cs.washington.edu/research/zpl.

13

