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Abstract

Decision making in dynamic, uncertain environments has traditionally been a rich

source of many important mathematical and computational problems. In this report,

I will describe three models of control in dynamic systems consisting of a �nite set of

states where decisions inuence state transitions. I will explain control objectives and

motivations for the models, and will discuss open problems on computational complexity

and algorithmic issues and possibilities for hybrid models.

1 Introduction

Problems in control and decision making in a dynamic environment have been a source of rich

theoretical and practical research in several disciplines [NM80, DW91]. A good portion of this

work has traditionally focused on understanding models and model consequences. Recently

many researchers, interested in implementing systems based on such models, are paying more

attention to related computational tractability issues. The growing power of our information

processing systems is providing ample opportunity and motivation to re�ne and extend the old

models and explore new ones in order to achieve more sophistication in system behavior.

Dynamic decision making models and related problems have had an impressive record in

stimulating fruitful research, as the following quote by George Dantzig, one of the pioneers of

the widely applicable linear programmingmodel, suggests in reference to the model [Dan91]: \...

it is interesting to note that the original problem that started my research is still outstanding

| namely the problem of planning or scheduling dynamically over time, particularly planning

dynamically under uncertainty. If such a problem could be successfully solved it could eventually

through better planning contribute to the well-being and stability of the world." At this point,

the �eld is rich with a variety of models that have their own characteristics and application

areas.

I will describe a few such models in this report. The models share several characteristics that

are roughly as follows. Control is exerted in a system given as part of the problem statement.

The system is characterized by a set of states and transitions between them. In this report,
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we will always assume that the set of states is �nite

1

. At each point in time the system is in

exactly one state and the system may make transitions from one state to another at discrete

time intervals. We assume that the system characteristics are known. Each model includes one

or more decision makers, sometimes referred to as controllers or players when appropriate, who

can exert control by a�ecting system transitions. In several of the models the transitions can

solely be caused by the controller and in one model some transitions can only be prevented.

The objectives of the control problems are numerous and can range from reducing the cost

of the system operations, guiding the system towards a designated target state, or ensuring

desirable properties such as safety.

One popular genre of models with a rich mathematical theory and broad applicability is

the classic Markov Decision Process (MDP) models. The concepts behind these models date

as far back as the calculus of variations problems of the 17th century. Many researchers in-

cluding Masse, Walde, Bellman, Shapley and Karlin conducted the research that originated the

�eld in the forties and �fties (see [Put94] for a historical background). Applications of MDPs

are diverse: MDPs are used to model problems in inventory management, highway pavement

maintenance, quality control and more (see for example [Put94] and [Whi88]). The partially

observable MDP (POMDP) is an important generalization where the decision maker has only

partial information on the current state of the system. Applications of such models are again

diverse and include medical decision making, design of teaching systems, cost control in ac-

counting and equipment maintenance and replacement [Put94, Mon82]. Recently, computer

scientists have looked at these models as a framework for planning under uncertainty [BDH95]

and the models �nd applications in areas such as robot navigation [BRS96, KGS95] and medical

decision making [Hau97].

There are several modeling questions and open algorithmic problems about MDPs and their

generalizations. The computational complexity of solving MDP problems was addressed only

relatively recently beginning with the work in [PT87]. POMDPs have been shown to be in-

tractable to solve in general [PT87, Lit96], which partially explains the limited use of these

models in practice so far. However we report on work in [BRS96] showing that studying re-

stricted models can be fruitful for designing approximation algorithms. There remain questions

on di�erent restrictions on partial observability and whether these restricted models and per-

haps their combinations are e�ective in modeling real world problems. In [Con92], Condon

investigates a two player game generalization of the MDP model. The research brings out sev-

eral outstanding open problems on the existence of polynomial time algorithms not only for the

game model but also for MDPs. Further work in this area may lead to novel and perhaps more

e�cient algorithms for MDPs and their many variants in addition to settling several theoretical

questions.

We will also look at a model of control called the discrete event system (DES) started and

mainly developed by Wonham and his students [RW87]. While in an MDP problem, the source
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However, many variations of the models have been investigated for which the state space is in�nite.
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of change in state is a controller, in a DES it is mostly the \outside" world independent of the

controller (e.g. the users of the system), and the controller takes the role of the supervisor of

these changes called events. The supervisor might intervene and prevent some of the changes

under its control. DES models have found practical control applications in areas such as pro-

tocol design for communications network and database operations. My treatment of the DES

formalism is brief. The hope is to understand enough of the model to be able to contrast the

MDP and DES models in their choice of objective criteria and solution characteristics.

1.1 Paper Overview

In Section 2, I will introduce several MDP model concepts as I report on the work in [BRS96].

In Section 3 I describe the game generalization of MDPs. Each of these sections concludes with

a discussion of related work and interesting open problems in the area. I present some basics of

DES systems in section 4 and will go over a variation called a discrete event stochastic system

(DESS) in 4.3. We will �nd out that the version of DESS treated in 4.3 can also be thought

of as a variation on an MDP problem. I will close with a discussion on relating the models in

Section 5 and conclude in Section 6.

2 MDPs and POMDPs

In this section, by going through the work in [BRS96] as an example, I will familiarize the reader

with important concepts in Markov decision process models (MDPs) and their generalization,

partially observable Markov decision processes (POMDPs). As su�cient background is built, I

will describe the problems that [BRS96] and others have addressed.

The problem, which I will subsequently refer to as the target problem, begins with the

following model description: given is a tuple S = (Q;C; clr;�; T; s; t) where Q is a set of n

states, C is a set of colors, jCj � n, clr : Q ! C is an onto (coloring) function, � is a �nite

set of actions, T = fT

a

ja 2 �g is a set of stochastic n� n transition matrices T

a

, one for each

action a 2 �, and s and t are start state and the target state respectively (s; t 2 Q). The

objective of the target problem is to come up with a strategy that maximizes the probability of

reaching the target state from the start state in no more than an speci�ed K number of action

execution steps.

Here is a description of how a problem of such nature may arise that will in addition make the

semantics of the transition matrices and the color set clear. Imagine that each state represents

a location of a robot, and the robot wants to go from the start location s to the target location

t. Note that the possible set of locations is modeled (perhaps approximated) by a �nite set.

The actions in � comprise the set of actions available to the robot, and the uncertainty of the

e�ects of these actions is reected in the stochasticity of the transition matrices in the set T .

There is an additional source of uncertainty. The robot may not know its exact location, i.e.
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two di�erent locations can give it the same color (sometimes called an observable or signal).

Each location (state) has a unique color, but each color may correspond to several locations.

The coloring function clr determines the mapping of locations to color.

If the robot is in state i and executes action a, then with probability T

a

[i; j], it will end

up in state j, where T

a

[i; j] is the entry in matrix T

a

appearing in the row i corresponding

to state i and in column j corresponding to state j. The fact that the next state is only a

probabilistic function of just the current state and the action executed in the current state (and,

for instance, not on how the current state was arrived at) is the so-called \Markov property",

and the name Markov decision process coined by Bellman (see [Put94]) originates from this

property. We are assuming that each state is observed only indirectly, through the color it

emits (partial observability). Hence to �nd out the probability that it is in state j, the robot

should make a Bayesian update depending on the color it sees: p(jji; a; c) =

p(jji;a)

�

q2Q;clr(q)=c

p(qji;a)

,

where p(jji; a; c) denotes the conditional probability that robot is in state j, given its previous

location (state) was i, it executed action a, and it is observing color c, and p(jji; a)= T

a

[i; j].

More generally, the robot may have a distribution over its current set of states, represented

by a vector of probabilities ~p, where ~p

i

is the probability that current state of the system is i.

Then p(jj~p; a; c) =

P

i2Q

~p

i

p(jji; a; c).

I briey address a few aspects of the model, including what we mean by a strategy for the

robot, before discussing the computational complexity and algorithms.

2.1 Observability

Two extreme cases of partial observability are when the system is fully observable, that is the

color function is bijective (jCj = n), and when the system is unobservable, when all states emit

the same color (jCj = 1 < n). In the classical MDP problem, the assumption has traditionally

been full observability, and I will refer to a fully observable model as an MDP, to distinguish it

from the more general partially observable model, the POMDP.

In the literature it is usually the case that the color is a probabilistic function of state (see

subsection 2.6 and Figure 2 for an example), however such a problem can be converted to a

POMDP with a deterministic color function where the new states are designate by (state, color)

pairs of the original problem: (i; c) has color c. Hence the new state space will have cardinality

at most njCj.

2.2 Finite vs. In�nite Horizon

For the above problem, we are asking for a strategy that maximizes the probability of reaching

the target state in no more than K ( generally a polynomial in n) steps. This is called a �nite

horizon criterion, and it is the problem treated in [BRS96]. Alternatively, we may ask for a

strategy that simply maximizes the probability of reaching the target, regardless of the number

of steps. This is an example of a problem with the in�nite horizon criterion. As we shall see,
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the open problem in Section 3 is an in�nite horizon criterion question. Choice of the horizon

criterion depends on the nature of model and perhaps other considerations such as tractability.

2.3 Types of Strategies

An important question in any control problem is the choice of the class of strategies to con-

sider, that is, on which aspects of the system should the decision maker base its decisions to

ensure optimal or near optimal behavior. Naturally, we want the class to be as restricted as

possible for the purposes of simplicity and tractability of computation. The type of strategies

considered depends on characteristics of the problem, optimality criteria, and in some cases on

the computational constraints.

Let us consider the fully observable (i.e. the MDP) case (when clr is bijective) in the above

model. It is not hard to see that in this case optimal strategies need be dependent on the state

of the system and the number of steps to completion (number of action executions remaining).

These types of strategies are called state-based or positional strategies. Figure 1a illustrates a

positional strategy.

Let v

k

(i) denote the maximum probability of reaching the target state in k or fewer steps

starting in state i. We refer to v

k

(i) as value of state i for k steps. These quantities are by

de�nition state dependent only and a dynamic programming algorithm for computing these

values readily suggests itself. We have v

0

(t) = 1, and v

0

(i) = 0 for i 6= t, and the algorithm

uses the update formula:

8i 2 Q; v

k

(i) = max

a2�

�

j2Q

p(jji; a)v

k�1

(j) (1)

An action is optimal for state i, with k steps to completion, if it maximizes the right hand side

of equation 1.

a
b

1

2
(b)

3

1  

2

3

a

b

a

(a)

Figure 1: (a) A positional strategy for a 3 stateMDP . At states 1 and 2 action a is prescribed,

and at state 3 action b. (b) A partition of a 3 dimensional unit simplex as a strategy for a 3

state POMDP . Action b is prescribed at distributions with a high probability for state 3.

Now let us consider the case of partial observability (m < n). In this case, to act optimally,

it is not enough to know the best action at each state since as we saw the decision maker
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may only have a distribution over states during the course of action executions. An inductive

argument similar to above shows that, for a given number of steps to completion, a mapping

from the unit simplex of distributions over states to optimal actions and values (mapping

from probability vectors to actions) su�ces. Though there are in�nitely many distributions

over actions (in�nitely many points in the simplex), it is not hard to show that the number of

connected regions where the same action is optimal is �nite in �nite horizon problems (see �gure

1b) and the borders between these regions are linear [SS73]. Figure 1b shows a 3 dimensional

unit simplex representing the set of probability distributions over 3 states. The simplex is

partitioned into two regions with a piecewise linear border. A dynamic programming algorithm

can compute optimal partitions but unfortunately it may run in exponential time. In fact, this

ine�ciency is likely to be an inherent property of the problem: POMDPs are hard to solve in

general (see below). The approximation algorithm in [BRS96] is based on an approximation of

the optimal partition of the simplex.

2.4 Computational Complexity

Substantial work on MDPs and POMDPs began in the 40's and the 60's respectively. However,

the computational complexity of the problems had not been addressed until recently. Even

today it is not known whether the widely used strategy improvement algorithm for (in�nite

horizon) MDPs runs in polynomial time. Lovejoy [Lov91] surveying computational aspects of

POMDPs notes, \The signi�cant applied potential for such processes remain largely unrealized,

due to an historical lack of tractable solution methodologies."

The study of computational complexity of MDPs and POMDPs began with the work in

[PT87] who show that many variants of the classical fully observable MDP problems, both for

the �nite and the in�nite horizon, can be solved in polynomial time using dynamic programming

or linear programming methods, and in fact the problems are P -complete, where the input

length consists of the number of states and actions and the encoded representation of the

entries in matrices. Unfortunately, in the case of partial observability, the problem becomes

very hard. In [PT87], it is shown that the problem of coming up with an optimal strategy for

partially observed problem is PSPACE-hard even when the �nite horizon is restricted to be

n. Furthermore, even if an optimal such strategy is constructed (perhaps o�-line given enough

time), unless PSPACE = �

p

2

, it is impossible to get a strategy of length polynomial in the

description of the MDP process, such that the decision maker, given the observation symbols

and the strategy, can compute what to do next in polynomial time.

With unobservability the problem seems to be slightly easier than partial observability: in

[PT87] it is shown that the unobservable problem with a horizon of n is NP -complete. Still,

perhaps surprisingly, even a weak approximation is hard, as is established in the following

theorem appearing in [BRS96], proved by using a reduction from the 3SAT problem. Notice

that in the unobservable case, we need only ask whether a sequence (string) of actions exists

that has su�cient probability of taking the system from the start state to the target.
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Theorem 2.1 The following problem is NP-hard: Given is an unobservable POMDP, with n

states, a starting state s and a target state t such that one of the following two cases is true:

1. There is a string of actions of length n or less that takes the system from state s to t with

probability 1, or

2. the probability is less than exp(�

q

(n)) for any such string.

Decide whether case 1 holds.

Given the hardness of these problems, one way to approach the problem of partial observ-

ability is to come up with plausible restrictions so that computing optimal or approximate

strategies become tractable. In the next section, I'll go over one such model investigated in

[BRS96].

2.5 A Restricted Problem and an Approximation Algorithm

The hardness results above show that unless we restrict the uncertainty in the unobservability

of the system, partially observable problems will very likely remain intractable. One plausible

assumption on a partially observable system is the following: during the course of execution,

the decision-maker may not know the exact system state, but the possible system choices (that

have high likelihood) may be few. For example, the decision-maker may always be able to

narrow down the choice of current system state to only 3 states. For such cases the following

restricted POMDP model is appropriate:

Assume that each color represents at most a constant m number of states: for any color c,

let Q

c

= fq 2 Qjclr(q) = cg, and we assume for any color c, jQ

c

j � m, for some constant m

independent of n. The number m is called the coloring multiplicity.

Let us consider the target problem with the above restriction. The complexity of exactly

solving the problem remains NP -hard for m � 3, shown by a nontrivial reduction from the

partition problem

2

[BRS96]:

Theorem 2.2 Constructing an optimal strategy for the target problem with coloring multiplicity

3 is NP -hard.

However partial observability with constant multiplicity admits a polynomial time approxi-

mation algorithm in the following sense: the strategy � output by the algorithm is ��optimal,

i.e. the probability of reaching the target using � in a speci�ed number of steps is at most �

less than the probability of using the optimal strategy. The approximation algorithm runs in

time polynomial in n, 1=� and horizon K. I will next describe the algorithm in [BRS96].

Without loss of generality, assume each color has multiplicity exactly m. Enumerate the

states in Q by two indices, the �rst index being a color, so that (c; i) 2 Q

c

denotes the ith state

2

The case of m = 2 is open.
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with color c, where 1 � c � jCj, and 1 � i � m. The set of distribution vectors over each Q

c

forms an m dimensional unit simplex denoted by X here. For a color c, by ~x=Q

c

, I mean the

probability distribution ~x 2 X over states of Q

c

, in which case ~x

i

is the probability of being in

state (c; i). Let v

k;c

(~x) be the maximum probability of reaching target t starting with ~x=Q

c

in

no more than k steps. Let k:k denote the l

1

metric for X: k~xk = �j~x

i

j, for ~x 2 X. Call a real

valued function over X Lipschitz-1 if jf(~x)� f(~y)j � k~x� ~yk, for any ~x; ~y 2 X. The following

result follows from the intuitive fact that changing the probability of any state by some amount

� can change the maximum proability of reaching the target by at most �.

Lemma 2.3 [BRS96] All v

k;c

are Lipschitz-1 functions.

The functions v

k;c

satisfy the following recurrent system of equations similar to equation 1:

v

k;c

(~x) = max

a2�

�

m

c

0

=1

p(c

0

j~x=Q

c

; a)v

k�1;c

0

(T

c;c

0

(~x; a));

where p(c

0

j~x=Q

c

; a) denotes the probability that color c

0

is observed given that action a is

executed with a prior ~x=Q

c

, and T

c;c

0

(~x; a) is the conditional distribution over states in Q

c

0

given that c

0

is observed. They are computed as follows:

p(c

0

j~x=Q

c

; a) =

m

X

i=1

m

X

j=1

~x

i

p((c

0

; j)j(c; i); a)

and

(T

c;c

0

(~x; a))

j

=

P

m

i=1

~x

i

p((c

0

; j)j(c; i); a)

p(c

0

j~x=Q

c

; a)

Now let � =

�

2K

, where K is the speci�ed number of steps and � is the chosen approximation

precision. Let M be the smallest integer greater than 1=�. The algorithm subdivides X into

M

m�1

equal simplexes by hyperplanes parallel to the faces of X. Consider the class V of

continuous real-valued functions onX whose restriction on every tiny simplex of the X partition

is linear. For a real-valued function f on X, denote by sample(f) the unique function from

V that coincides with f on all the vertices of the simplexes of the partition. Let k:k be the

supremum norm on real valued functions on X : kfk = sup

~x2X

jf(~x)j. We note that if f is a

Lipschitz-1 function then kf � sample(f)k � �.

The algorithm: De�ne the value functions

~

f

k;c

: X ! R; 0 � k � K, and the decision

functions d

k;c

: X ! �, k � 1, as follows.

~

f

0;c

(~x) = 0 if target t 62 Q

c

, otherwise if t is denoted

by (c; j) in Q

c

, then

~

f

0;c

(~x) = ~x

j

. For k > 0, let

^

f

k;c

(~x) = max

a2�

m

X

c

0

=1

p(c

0

j~x=Q

c

; a)

~

f

k�1;c

(T

c;c

0

(~x; a)); (2)

and let

~

f

k;c

= sample(

^

f

k;c

). The functions

~

f

k;c

is the value functions that the algorithm uses

to approximate the optimal value functions v

k;c

. Note that in the algorithm only

~

f

k;c

need to

be computed at the vertices of the small simplexes and

^

f

k;c

is for ease of notation. Finally, let
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d

k;c

(~x) be an element of � maximizing the right-hand side of 2. It's not hard to see that only

polynomially many point-value pairs (in the number of states, the horizon and the approxi-

mation precision �) are to be stored in order to �nd near optimal actions during the course of

action execution.

The following claim, shown by an induction on k and using the Lipschitz-1 properties of

the functions v

k;c

, establishes the approximation claim:

Claim 2.4 [BRS96] kv

k;c

�

~

f

k;c

k � k�, for all k � 0 and 1 � c � jCj.

To summarize, the algorithm keeps track of piecewise linear value functions on X for each

color c, for each stage up to K. These functions are used to approximate optimal k step value

functions, 1 � k � K. The authors, using the Lipschitz-1 properties of the optimal value

functions v

k;c

, show that the increase in approximation error from step k�1 to k remain within

appropriate bounds, so that the approximation result holds.

2.6 Discussion

Given the hardness of POMDPs, it is unlikely that exact methods without any assumption of

extra structure in a POMDP problem will be e�cient in practice. Therefore it is advisable

to look for plausible structural properties and settle for approximation algorithms that take

advantage of such properties and do well on problems with those properties. One structural

property is the connectivity of the underlying graph representation of the system state and

transitions. This property applies to MDPs as well and I will address it in the next section.

We saw that introducing partial observability, uncertainty over the current system state, makes

the MDP problem computationally intractable as the hardness results of 2.4 suggest. Hence

imposing natural restrictions on partial observability can be promising. The work we went over

is one example of such an approach wherein the uncertainty about the current state is over a

bounded number of states (the bounded-state model).

There are other interesting restrictions on partial observability. Consider situations where

each state has its own signal (color), but with some probability (the error probability) the

signaler may malfunction and for instance may not emit any thing (or emit the color of another

state). In a POMDP model, with criteria such as above (�nite horizon, reach a target state),

are there e�cient approximation algorithms if we bound the error probability from above by

a constant (e.g. at least half the time the signaler works)? Call such a POMDP model the

bounded-error model. An example is given in Figure 2a: each state (circled) emits its true color

half of the time, and a generic color (the question mark) the rest of the time. The bounded-

error restriction can be appropriate for modeling unreliable signalers or sensors. There are

other plausible models with restrictions on unobservability: we may assume for example that

information on the current state could be \late," it is received after a �xed k � 0 steps of

execution (a bounded-lag restriction).

We may also want to consider combining POMDP models with restrictions on partial ob-

servability to get models which yield more e�cient algorithms. The approximation algorithm
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in Section 2.5 runs in exponential time as a function of color multiplicity. Is there an approxi-

mation algorithm with a lower run time complexity if in addition we also assume the problem is

a bounded-error one? Figure 2b shows a combination of the bounded-error and bounded-state

models. For POMDPs with large state spaces, it may be the case that di�erent portions of the

state space may exhibit di�erent structural properties, each with their own e�cient approxi-

mation algorithms. Can these algorithms be combined to solve large problems e�ciently? For

systems on which we have some control on choice of sensor capabilities, knowledge of tradeo�s

in partial observability and e�cient computation of optimal or near optimal strategies may help

us in a better system design (see Section 4.3 for a similar situation).
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Figure 2: (a) Each state has its own color (distinguished by the numbers in the squares) but

the color signaler has a �xed (independent of n) error rate of 0.5. (b) A combination of the

bounded-error and the bounded-state models. At each execution step, the uncertainty is on at

most two of states, and half the time there is no uncertainty.

An important question is whether real world problems with a POMDP avor exhibit special

structures like the kinds mentioned above. The work in [BRS96] was motivated by a robot

navigation problem. Unfortunately, I don't have information on whether the model was useful

for the problem and whether the algorithm was implemented. Works on a similar problem of

robot navigation [KGS95] and medical decision making [Hau97] do not reference this work, and

rely on heuristics or worst-case exponential time exact algorithms to solve their problems.

To conclude, there remains several interesting open problems with regards to �nding plau-

sible restricted POMDP problems that yield to e�cient approximation. A major motivating

factor for studying these problems further would be real world problems that can be satisfac-

torily solved utilizing such models.
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3 Simple Stochastic Games

Simple stochastics games (SSGs) are a special kind of two player stochastic games, also referred

to as Markov games, introduced by Shapley [Sha53]. Numerous variations of Shapley's model

have been studied and many algorithms have been proposed (see [Con93] for references). Con-

don in [Con92] investigates the computational complexity of a decision problem associated with

SSGs.

A signi�cant motivation for studying the SSG model is best stated in [Con93]: \it is the

simplest possible restriction of Shapley's games which retains just enough complexity so that

no polynomial time algorithm for the problem is known." As we will see, the study of SSGs

further motivates investigation of outstanding open problems regarding algorithms for MDPs

(the one player game versions). From a computational complexity point of view, the SSG

value problem, to be de�ned below, is complete for the class of languages accepted by log-space

bounded alternating Turing machines that can also choose moves randomly (see [Con92] for

details). If the value problem is in P , then randomizing does not add (signi�cant) power to log-

space bounded alternating machines: such alternating Turing machines already accept exactly

the languages in P . From an application viewpoint, a variation on SSGs, called mean-payo�

games in [ZP96], arise naturally in the analysis of worst case behavior of algorithms for several

on-line problems, for example �nite-window string matching and metrical task systems.

In the following sections, I will de�ne the problem, explain in some detail the path to showing

that the problem lies in NP\ co-NP , and conclude with a discussion of proposed algorithms

and related open problems.

3.1 Problem De�nition

A simple stochastic game (SSG) is a directed graph G = (V;E) with three kinds of vertices

(states), min, max, and average along with two sink vertices, the 0-sink and the 1-sink (Figure

3a). Let V

min

and V

max

be the set of min and max vertices, respectively. Each vertex has

two outgoing edges (possibly to the same vertex), except for the sink vertices, which have no

outgoing edges. One of the vertices is a start vertex s. The game is a contest between two

players, player 0 and player 1. The game begins by placing a token on the start vertex s (the

initial state). When the game is on a max vertex i, player 1 moves it along one of the outgoing

edges of vertex i. When the game is on a min vertex j, player 0 moves it along one of the

outgoing edges of j. When the token is on an average vertex, the edge along which the token is

moved to is determined by the toss of a fair coin. The game ends when one of the sink vertices

is reached. Player 1 wins if the token reaches the 1-sink, and player 0-wins otherwise, that is,

if the token reaches the 0-sink or the game never ends.

Just as in Section 2.3, the question of what strategies are su�cient for optimality arises here

too. Informally, a strategy is a rule that tells a player which edge to pick when it is the player's

turn to play. The rule may be randomized and it may use any information about the state and

11



the history of the game. However, here we restrict outselves to pure stationary and positional

strategies to be de�ned below. Condon in [Con92] shows that for a restricted but important

class of SSGs, we do not lose generality in restricting to these types of strategies.

A strategy � of player 1 is one in which for each max vertex i the player always chooses the

same edge whenever the token is placed on that vertex. A strategy � of player 0 is de�ned in a

similar way. Such a strategy is called pure because the player need not pick the edge randomly

and it is called stationary because the choice of the edge is dependent only on the vertex and

does not change with other information such as how the vertex is reached or the number of

game steps played up to that point. Notice that these strategies are positional in the sense of

Section 2.3 as well, where the states of the system are the vertices.

max

avg

avgmax avg

avg max min
1-sink

0-sink

max

avg

avgmax avg

avg max min
1-sink

0-sink

start

1

2 3 4

5 6 7

8
9

10

(2/3) (2/3)

(1/3)

(0) (0)

(1)

(1)

(1)

(1/3)

(a) (b)

1

2 3 4

5 6 7

8
9

10

(0)

Figure 3: (a) A simple stochastic game. (b) Optimal values and an optimal pair of strategies

for the game in (a).

We de�ne the value v

�;�

(i) of each vertex i of G with respect to strategies � and � to be

the probability that player 1 wins the game (i.e. the token reaches the 1 sink) if the start

vertex is i and the players use the strategies � and � . We de�ne the value of the game G to be

max

�

min

�

v

�;�

(s). Informally, the value of the game is the maximum probability that player 1

wins if it reveals its best strategy to player 0 at the start of the game, and player 0 plays its

best strategy against the strategy chosen by player 1. Note that since the number of strategies

is �nite, we can use max and min instead of sup and inf.

The SSG value problem is the decision problem, given a SSG, is its value greater than

1=2? Of course, another problem is to �nd an optimal strategy �

�

for player 1 so that

max

�

min

�

v

�;�

(s) = min

�

v

�

�

;�

(s).

3.2 Membership in NP \ co-NP

In this section, I will describe several important and conceptually simplifying properties of

SSGs proven in [Con92]. A notable property is the fact that both players possess \optimal"

strategies that guarantee the best possible outcome regardless of the start vertex or the other

12



player's choice of strategy. Condon uses these properties to show that the SSG value problem

is in NP\ co-NP .

Corresponding to a strategy � for player 1 is a graph G

�

, which is the subgraph of G obtained

by removing from each max vertex the outgoing edge that is not in the strategy �. Similarly,

corresponding to a pair of strategies � and � (for the 1 and 0 players respectively) is a graph

G

�;�

, obtained from G

�

by removing from each min vertex the outgoing edge that is not in the

strategy � . Note that G

�;�

can be considered a Markov chain. We say that a SSG halts with

probability one if for all pairs of strategies � and � , G

�;�

has a path to a sink vertex. Lemmas

3.1, 3.2, and 3.3 are proved in [Con92] for SSGs that halt with probability 1 for simplicity, and

I report them in their general form here. Some of the results have appeared in earlier literature

on games (see for example [PV87]) and Condon includes them for completeness and, in some

cases, proves stronger versions of them for SSGs.

Recall that in the SSG value problem, we are interested in the value of the start vertex of

the graph. For a strategy � of player 1, it is conceivable that any strategy of player 0 that

minimizes the value of the start vertex may depend on the start vertex. The next lemma shows

that this is not the case. For any strategy � of player 1, there is some strategy of player 0 that

achieves the best possible at any min vertex.

Lemma 3.1 Let G be any SSG. Let � be any strategy of player 1. There is some strategy � of

player 0 such that for each vertex i 2 V

min

with neighbors j and k, v

�;�

(i) = min[v

�;�

(j); v

�;�

(k)].

Let us denote a strategy � with the above property by � (�), i.e. for each vertex i 2 V

min

with neighbors j and k, v

�;�(�)

(i) = min[v

�;�(�)

(j); v

�;�(�)

(k)]. It is not hard to show, using

some monotonicity properties, that in fact � (�) is optimal with respect to �, i.e. v

�;�(�)

(i) =

min

�

v

�;�

(i);8i 2 V .

The fact that both players have \optimal" strategies is a consequence of the next lemma.

Lemma 3.2 Let G be any SSG. Then there is a strategy � of player 1 such that, for some

optimal strategy � = � (�) of player 0 with respect to strategy �, for all vertices i 2 V

max

, with

neighbors j and k, v

�;�

(i) = max[v

�;�

(j); v

�;�

(k)]

It is not hard to show using Lemma 3.2 that for any SSG, there is a strategy � for player 1

which is the best that player 1 can do, in the sense that player 1 need not change its strategy

assuming that player 0 plays one of its best strategies against strategy � of player 0. In that

sense � is optimal for player 1, and Lemma 3.2 states that at least one such strategy exists for

player 1 for any SSG. A similar result holds for player 0. A pair of strategies � and � with the

above properties are called a pair of optimal strategies.

Finally Condon shows that the following minimax property holds for games that halt with

probability 1. Similar results had been proven before for various stochastic games models.

However, the restriction to pure strategies (for SSGs) is new in her paper:

Lemma 3.3 Let G be any SSG that halts with probability 1. Then for any vertex i of G,

max

�

min

�

v

�;�

(i) = min

�

max

�

v

�;�

(i).
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An n vector ~x is called a �xed-point of a game SSG G if

~x

i

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

maxf~x

j

; ~x

k

g; if i is a max vertex of G with neighbors j, k;

minf~x

j

; ~x

k

g; if i is a min vertex of G with neighbors j, k;

1=2(~x

j

+ ~x

k

); if i is an average vertex of G with neighbors j, k;

0; if i is the 0-sink;

1; if i is the 1-sink;

Think of the functions v

�;�

as n-vectors as well, so that v

�;�

(i) is the ith coordinate of the

corresponding vector. Lemma 3.2 shows that for any optimal pair of strategies � and � (�), v

�;�

is a �xed-point of G when G halts with probability 1.

In general, a SSG may not have a unique �xed-point. However, a stopping SSG does.

A stopping SSG is a SSG such that with any move of either player there is some nonzero

probability that the game ends in the 0-sink before it gets to the next non-average vertex.

Clearly a stopping SSG halts with probability 1 (hence the above lemmas apply). Furthermore,

Shapley in [Sha53] shows that stopping SSGs have unique �xed-points

3

.

cn 0-sink

j

i e e e1 2  

Figure 4: Adding extra average vertices to convert to a stopping game.

Condon shows that any SSG G can be converted in polynomial time to a special kind of a

stopping SSG G

0

such that the value of G is greater than 1=2 if and only if the value of the

corresponding stopping game G

0

is greater than 1=2. The basic conversion method is to replace

each edge (i; j) of G by cn many average vertices in the way shown in Figure 4, where c is a

constant (5 is provably enough) and n is the number of vertices of G.

The following property is one more important step for showing that the problem lies in both

NP and co-NP .

Lemma 3.4 [Con92] The value of a simple stochastic game with n vertices is of the form p=q,

where p and q are integers, 0 � p; q � 4

n�1

.

The following theorem follows easily from the above properties of stopping SSGs and the

conversion procedure mentioned above:

Theorem 3.5 The SSG value problem is in NP\ co-NP .

Proof. Construct the 1=2

cn

-stopping game G

0

as outlined above. G

0

is a stopping game, so it

must have a unique �xed-point, and by Lemma 3.2 the values of the vertices are the entries of

3

This result holds for SSGs that halt with probability 1 in general.
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the unique �xed-point vector for G

0

. Guess a ~x where each component of ~x is rational in the

range given in Lemma 3.4, and verify that ~x is a the �xed-point of G

0

. If so and if the value of

the start vertex, ~x(s); is greater 1=2 then accept, else reject. For membership in co-NP do the

same except output the opposite. 2

3.3 Open Algorithmic Problems

In the previous section, we went over several properties of SSGs, eventually establishing that

the SSG value problem is in NP\ co-NP . Next, I will describe some of the algorithmic aspects

of the problem and touch on interesting open problems. I will �rst place SSGs in the context

of MDPs and Shapley's stochastic games.

Note that the SSG model is basically a special two player in�nite-horizon MDP, where

states are called vertices, and there are two actions available to each player. Condon in [Con92]

shows that the problem remains in NP \ coNP with natural extensions to the model such as

presence of multiple edges (actions) at each vertex, extending the transition probabilities to be

rational fractions other than 1=2 or associating rewards with edges or vertices and modifying

the objective criteria for each player accordingly (see also [ZP96]). Hence we note that simple

stochastic games, are a generalization of fully observable MDPs where there are two decision

makers instead of one. In Shapley's games model, the players simultaneously choose an action at

each state of the game. SSGs are a special case because at each state at most one of the players

has more than one alternative. It is not hard to see that in Shapley's general case, optimal

strategies may need to be randomized (mixed), so these games are probably more complex to

solve. The value of a simultaneous stochastic game need not be rational (see [PV87]), and as a

consequence, the corresponding value problem is unlikely to be in NP \ coNP .

SSGs have just enough complexity so that no polynomial time algorithm for the problem is

known. If we restrict the states of the SSG to be only max and random or min and random, then

we get a one person game or the classical in�nite-horizon MDP problem solvable in polynomial

time by use of linear programming. Without loss of generality, assume the SSG is a stopping

one. Then the following linear program does the job: minimize

P

n

i=1

x

i

subject to the constraints

x

i

� x

j

if i is a max vertex of G with neighbor j;

x

i

� 1=2(x

j

+ x

k

) if i is an average vertex of G with neighbors j, k;

x

i

= 0 if i is the 0-sink;

x

i

= 1 if i is the 1-sink;

x

i

� 0 1 � i � n:

(3)

The solution to the linear program is the unique �xed-point of the game, which, by the results

of the previous section, is su�cient for �nding the value of the game and an optimal strategy

for the player.
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If we restrict the vertices to be only max and min, that is if we take the stochastic nature

of the game out, then the problem is solvable in polynomial time and a simple algorithm for

such appears in [Con92] (also follows from an algorithm in [ZP96]).

Next, I will describe an algorithm for SSGs, called the Ho�man-Karp algorithm [HK66],

which is based on the strategy improvement method attributed to Howard and Bellman for

in�nite-horizon MDPs (see [Put94]). The algorithm is conceptually simple, and can be thought

of as a local search in the space of strategies. It is a good candidate for being a polynomial

time algorithm for SSGs.

We assume that the SSG given is a stopping one so that a unique and optimal �xed-point

value function exists. Given a pair of strategies � and � , we say that a vertex i with children j

and k is v

�;�

switchable if when i is a max node v

�;�

(i) < max(v

�;�

(j); v

�;�

(k)), and if i is a min

node v

�;�

(i) > min(v

�;�

(j); v

�;�

(k)). Switching a switchable vertex means changing the choice

of its outgoing edge.

algorithm Ho�man-Karp

let � and � be arbitrary max and min strategies, respectively.

repeat

let �

0

be obtained from � by switching all v

�;�

switchable vertices.

let �

0

 � (�

0

).

let � �

0

; �  �

0

until v

�;�

is the �xed-point.

Note that �nding � (�

0

) is solving a one player game and can be achieved in polynomial

time by a solving a linear program similar to the one in 3. The correctness of the algorithm

follows from the fact that v

�

0

;�

0

(i) � v

�;�

(i) and if i is a switchable max node, the inequality is

strict. Surprisingly, slight variations in the algorithm can make the algorithm incorrect. For

example either of the following two changes can cause the algorithm to go into an in�nite loop

on some graph instances: (1) instead of switching in the �rst assignment of loop, we modify

the algorithm so that �

0

= �(� ), i.e. �

0

is optimal with respect to � (this would seem to be

an improvement!), or (2) instead of �nding �

0

(�

0

), switch all min vertices that are switchable.

Counterexamples showing that the resulting algorithms and several other plausible algorithms

are incorrect can be found in [Con93].

It is not known whether the Ho�man-Karp algorithm �nds optimal strategies in polynomial

time or there are graphs and starting points where it can take exponentially many iterations to

converge. Interestingly, a similar question can be asked of the strategy improvement algorithm

of Howard for (in�nite-horizon) MDPs. Assume there are only max and average vertices in the

graph, and that G is stopping. The strategy improvement algorithm for the one player game

is basically the above algorithm with � or � �xed:

algorithm strategy-improvement

let � be an arbitrary max strategy.

repeat
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let �

0

be obtained from � by switching all v

�

switchable vertices.

let � �

0

until v

�

is the �xed-point.

This algorithm has excellent performance in practice. However [MC94] show that restrictions

on the algorithm where only one switchable vertex is switched at each iteration

4

can go through

exponentially many strategies before �nding an optimal one. Does the nonrestricted ( \parallel"

switching) strategy improvement avoid this?

A subexponential randomized algorithm for SSGs was proposed by Ludwig in [Lud95].

Ludwig adapts methods used by Kalai [Kal92] who develops a subexponential randomized

simplex method for linear programming. In Ludwig's algorithm, if G has no max vertices,

then an optimal strategy for player 0 can be computed in polynomial time. Otherwise, a max

vertex u is uniformly chosen at random, and one of the edges e from u is picked. The original

graph G is reduced to

~

G = (

~

V ;

~

E), where

~

V = V � fug, and

~

E := E � f(i; j)ji = u or

j = ug [ f(i; j)j(i; u) 2 E and e = (u; j)g. The algorithm is applied recursively to

^

G to get a

pair of optimal strategies � and �. If � and � with addition of e form an optimal pair for G

the algorithm stops. Otherwise the other edge from u must be optimal, so the graph is reduced

by one vertex, and the algorithm repeats. The algorithm runs in O(2

p

n

) � poly(n) expected

time. Ludwig's algorithm could probably be improved if information from one iteration could

be used in later iterations.

It is perhaps the case that both the stochastic aspects of the game and the the 2-player

aspects are not understood well enough to devise polynomial time algorithms for the problem.

The deterministic version of SSGs (i.e. no average vertices) with weights, rewards or costs,

associated with edges is relatively hard too. Zwick and Paterson investigate a version of de-

terministic 2-player games called mean-payo� games which arise in the study of some online

problems [ZP96]. These are basically the deterministic version of SSGs with edges having payo�

(rewards or costs) associated with them and one player (player 1) wants to maximize the aver-

age payo� obtained per move over the in�nite horizon, while the adversary (player 0) wants to

minimize it. Again, the vertex set is partitioned into two subsets of max vertices where player

1 chooses an edge, and min vertices where player 0 chooses an edge. The authors reduce their

problem to SSGs and devise a pseudo-polynomial time dynamic programming-based algorithm

running in O(n

3

jEjjW j) for �nding the in�nite horizon values of the vertices, where jW j is the

maximum edge reward. The algorithm �nds v

k

(i), by using dynamic programming k many

times, each iteration taking O(jEj) time. They show that k = 4n

3

jW j iterations is su�cient

and necessary (by showing an example) to �nd the average costs of each vertex using their

algorithm.

Condon investigates several correct algorithms for SSGs in [Con93] including one based on a

quadratic program. Although any of the proposed algorithms in [Con93] and others for 2 player

games may run in polynomial time, it would perhaps be more insightful to take a more direct

4

Several vertex selection strategies are investigated.
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approach to solving these games models that would utilize more of the structural properties of

MDPs, speci�cally the graph theoretic properties. [PT87] note that the problem of deriving

a \clean" polynomial time algorithm for MDPs, without using general linear programming or

approximate techniques, is an important open question that has not been emphasized in the lit-

erature. Current methods do not take advantage of the MDP directed graph representation. In

deterministic MDPs, utilizing graph properties (�nding cycles, shortest paths, etc.) is relatively

natural and polynomial time graph-theoretic algorithms are known that are a function of the

number of states and actions only. Similar to the case of moving from stochastic to determinis-

tic transitions in MDPs, the mean-payo� game restricted to one player has strongly polynomial

time algorithms because the problem reduces to �nding minimum or maximum mean weight

cycle in a graph. We should note however that both the (stochastic) MDP problem and the two

player game, when payo�s are constants (0 or 1 say), are P -complete, whereas the determin-

istic MDP problem and the one player mean-payo� game are in NC (see [PT87] and [Lit96]),

so the deterministic versions are very likely strictly easier. We may still ask whether graph

theoretic properties and methods based on them should be abandoned when we move from

one player to two players in mean payo� games or from deterministic transitions to stochastic

transitions in MDPs. It is the presence of cycles in SSGs that makes the analysis of algorithm

for them relatively hard. SSGs with no cycles can be solved in polynomial time using dynamic

programming.

We see that there are a few related open problems regarding existence of algorithms for the

in�nite-horizon MDP problems and their variations. For example, strategy improvement may

run in polynomial time for MDPs, and in that case the insights in the analysis may also show

that the Ho�man-Karp algorithm is a polynomial time algorithm for SSGs. Condon suggests

that solving the following problem may be fruitful: Consider two classes of SSGs, one is the set

of all SSGs where the value of start vertex is greater than 3=4 and another where the value is less

than 1=4. Is there a polynomial time algorithm that distinguishes the two classes? A slightly

more general requirement would be to seek a polynomial time approximation in a sense of

approximation similar to subsection 2.5. Can Ho�man-Karp, with polynomiallymany iterations

on n or the length of the input, or �nite-horizon dynamic programming algorithms, with a

horizon polynomial in n or the length of the input, serve as polynomial time approximation

algorithms for SSGs? A similar question can be asked for approximating MDPs as well, which

might be simpler to answer and can provide important insights.

4 Discrete Event Systems

We saw in the previous problems that the main source of change in the modeled systems are

one or more decision makers. System or environmental inuences on state changes can only be

modeled through the presence of probabilistic e�ects in state transitions. Here we briey study

another extreme, the discrete event system (DES), where state transitions are caused by events
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occurring independent of the decision maker. We say that the events are system generated.

The role of the decision maker in this case is mostly limited to a supervisor, inuencing state

transitions only through \disabling" some subsets of the events, the so-called controllable events,

at various states of the system. In general, the control objective is to preserve desirable system

properties and can range from preventing unwanted sequences of events in order to ensure safety

(e.g. avoid dangerous states) to liveness (i.e. guarantee a minimum level of performance).

I will cover two control problems in this area. The �rst appears in [RW87] which introduced

the formalism of DES. The second appearing in [ML97] has a stochastic avor and is closer to

MDPs. The main goal here is to understand the concepts behind the modeling, how they arise,

and some of the issues involved, in the course of which di�erences with the above models and

possible ways of combining the models may suggest themselves.

4.1 The Abstract System

In this report we assume the underlying system is an automaton, though other models such

as petri nets and process algebras have also been investigated. We are given a system G =

(Q;�; d; s) traditionally referred to as a plant in control theory literature. G is an automaton:

Q is a set of states, � is a �nite set of symbols called the event alphabet, d : Q � � ! Q is

a partial state transition function (i.e. d(i; a) may not be de�ned), s is the initial state. We

view the system G as a \generator" of sequences of events: Extend d to a function on strings

in the usual way, and let L(G) = fw 2 �

�

; d de�ned on wg denote the set of any sequence of

events that can be \generated" by G. We should view L(G) as the set of \physically" possible

sequences of events.

4.2 The Supervisory Synthesis Problem

The general problem is to �nd a supervisor (controller) that inuences the behavior of the plant

in such a way that it meets the objectives of the control problem. Practical control problems

for which control of discrete event systems has been analyzed include database operations and

communication networks.

In this section we assume that we are given the speci�cation of a legal or permissible sequence

of events in terms of the set of strings accepted by an automaton E. The language accepted

by the automaton E, L(E), is exactly the set of permissible sequence of events. Without loss

of generality, we may assume L(E) � L(G). In the paper [RW87], the sought after supervisor

is also a language recognizer (a �nite automaton here), a natural choice, since we want the

supervisor to recognize some subset of sequences of event. The means of inuence of the

supervisor is blocking or permitting events. An event a is blocked in state i of the supervisor if

the transition function of the supervisor is unde�ned for a at state i. In many situations, some

events are simply uncontrollable, and if the supervisor does not want such an event to occur

in a given state, then it has to make sure that the state is not reached. To model controllable
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and uncontrollable events, the event set � is partitioned into two sets of controllable, �

c

, and

uncontrollable, �

u

, events. We assume that the supervisor cannot block an uncontrollable

event.

The control problem, referred to as the supervisory control synthesis, is thus: Given the sys-

temG, and a speci�cationE of the desired behavior, synthesize an automaton S = (Q

S

;�; d

S

; s

0

),

called a supervisor, such that the composition of S with G (the product automaton) denoted

by SkG here, behaves as desired, i.e. L(SkG) = L(E), where L(SkG) is the set of strings of

events on which the transition function for the composite automaton SkG is de�ned.

The following example appearing in [RW87] should make a few of the concepts more con-

crete. Consider two users of a single resource, each modeled as in Figure 5a. The combined

system which is the generator G to supervise is shown in Figure 5b. Here, state 0 is the start

state, which corresponds to both users being their Idle state. The objective of supervisory con-

trol is to enable or disable the controllable events b

1

and b

2

(�

c

= fb

1

; b

2

g) in order to satisfy

the following synchronization requirement:

1. Mutual exclusion: g

1

and g

2

never simultaneously occupy their respective Use states.

2. Fair Usage: The Use states of g

1

and g

2

are occupied according to the �rst-come-�rst-

served discipline.

It is not hard to verify that the desired behavior L(E) is realized by the automaton in �gure

5.c. Hence there is a supervisor S such that L(SkG) = L(E) and, a supervisor S for which

L(SkG) = L(E) is also given by the same automaton in �gure 5c (However there is in fact a

supervisor with only 5 states that meets the requirements). Note how event blocking occurs in

the supervisor of 5c. For example in states 2 or 3 of S event b

2

cannot occur (it is blocked).

Note furthermore that such blocking of events could not be speci�ed as a function of states

in G solely, without violating the fairness speci�cation (for example, which of b

1

or b

2

if any

should be blocked at state 4 of G?). Naturally, sequences of events are signi�cant for control

in this model, unlike the case with fully observable MDP problems where control need only be

state dependent. On the other hand, we note that the control is state dependent in a sense, in

that the supervisor looks at its own internal state (distinct from the system state) to determine

whether to block an event or not.

Given a system G and a speci�cation E, where L(E) � L(G), a supervisor does not nec-

essarily exist. It is shown in [RW87] that a supervisor exists only if the plant cannot generate

a sequence of events w that is legal, followed by a sequence u composed of uncontrollable

events only, that makes the whole sequence, wu, illegal, i.e. wu 62 L(E). To formalize the

characterization we need the following two de�nitions:

For a language K, denote by

�

K the pre�x closure of K de�ned as:

�

K = fw 2 �

�

j9v 2

�

�

; wv 2 Kg.

De�nition 1 : Let G be a plant and �

u

the set of uncontrollable events. The language K is

said to be controllable if

�

K�

u

\ L(G) �

�

K, where

�

K�

u

= fs� 2 �

�

js 2

�

k; � 2 �

u

g.
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Theorem 4.1 Let G be a plant and E a speci�cation of the legal behavior, with L(E) � L(G).

There exists a supervisor, S, such that L(GkS) = L(E) i� the language L(E) is controllable.

If the language L(E) is not controllable, then there exists no supervisor such that SkG

generates exactly all legal strings. But in this case, we may be content with the relaxed control

objective that the system generate no illegal strings. Then a supervisor is looked for such that

L(GkS) � L(E).

Theorem 4.2 Let G be a plant and E a speci�cation of the legal behavior, with L(E) � L(G).

There exists a supervisor S, such that L(GkS) � L(E) i� there exists a pre�xed-closed and

controllable language contained in L(E).

In fact, in this case, we rather seek a supervisor that allows a maximal set of of legal

behavior without allowing any nonlegal sequence of events to occur. We can do better: [RW87]

show that the set of languages that are pre�x-closed, controllable and contained in L(E) is

closed under arbitrary unions. This implies a unique supremal element in that set such that

the supremal element is controllable and any other controllable language that is a subset of

L(E) is a subset of this language. Now, since we are assuming that both L(G) and speci�cation

L(E) are regular languages, then from lattice theory, a �xed point polynomial time algorithm

is known that computes the supremal language. The algorithm runs in polynomial time in the

the size of the state sets of the automata G and E.

The theory above is of course much more extensive than what I presented. Some extensions

include requiring further desirable properties from the supervisor, �nding the minimum size

supervisor (\e�cient" synthesis), extensions of the system model (nondeterminism, petri nets,

etc.) and adding timing considerations into the model. Next, I will describe a DES model that

is closer conceptually to the MDP framework.

4.3 A Discrete Event Stochastic System

Maimon et al present a version of a DES system called a Discrete Event Stochastic System

(DESS) in [ML97] which trades o� the value of the information against the cost of gathering

information. Here, the similarities to Markov decision processes are apparent. As we shall

see, the similarities include, stochasticity in state transitions, presence of values/costs obtained

for reaching some of the states, and the fact that the supervisor takes more of an active role

in controlling the evolution of the system. Applications of such models arise in the design of

automatic supervisors in manufacturing, safety, and maintenance problems. See below for an

example application.

A DESS is modeled as a 6-tuple G = (Q;�; p; s;Q

m

; v), where � is the �nite event set, Q

is the �nite state set. As in the previous section the event alphabet � is partitioned into two

sets of controlled events �

c

and uncontrollable events �

u

, where �

c

\ �

u

= �. The di�erence

from the above is that the state set is also partitioned into Q

c

, states having controlled events

de�ned only (hence controllable), and Q

u

, states having uncontrolled events de�ned only. p
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Figure 5: (a)Users of a single resource. (b) The combination of the 2 systems. (c) The

speci�cation automaton and the supervisor.

characterizes both the probability of uncontrolled event occurrences and state transitions: p(ajq)

is the probability of an uncontrolled event a occurring in state q 2 Q

u

, and p(jji; a) denotes the

probability of a transition from state i to state j given event a, controllable or uncontrollable,

occurring in state i. s is the initial state of the system. Q

m

� Q is a set of \marked" states.

A sequence of activities from the start state to a marked state represents a �nished cycle of

activity. For q 2 Q

m

, we regard v(q) as the cost charged if q is reached. The goal is to minimize

expected costs subject to constraints described below.

The key concept here is the notion of the information set. An information set w is a subset

of Q

c

with the following properties:

1. w has more than one state in it.

2. All states in w have the same set of controlled events.

3. All states in w have a common uncontrollable origin state o(w), such that the probability

of a transition to any state of w from o(w) is greater than zero, while no state out of w
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can be reached directly from o(w). No other state in Q has a transition to any state in

w.

From the above properties, it follows that information sets cannot overlap. Therefore the

number of information sets is always less then the number of states in the DESS (in fact, at

most jQ

c

j=2). An example of an information set is given in Figure 6, where there are two

possible states in the information set, each having the same controllable event set fa; bg de�ned

on them.

a

b

s o(w)

a

b

a

b

  aggregation

w

s o’

Figure 6: An information set with two states in it.

Now, the problem here is whether to treat an information set w as an aggregate state, or

detect each state in w individually. Let  (w) = 0 when we choose to aggregate states, and

 (w) = 1, otherwise, i.e. when the supervisor chooses to detect the states in the aggregate set

individually (the case of perfect information).

In the case of aggregation on w, we can imagine replacing states in w together with o(w)

with one controllable state o

0

with the same set of controllable events de�ned for states of w.

Assume event a is de�ned on q

i

2 w, and let p(o(w); q

i

) denote the probability of a transition

from o(w) to q

i

. Then p(jjo

0

; a) =

P

q

i

2w

p(o(w); q

i

)p(jjq

i

; a).

An information vector

~

F denotes the vector of choices  (w

i

) on the information states w

i

:

8i : F

i

=  (w

i

). Note that when we �x an information vector

~

F , the problem of �nding the

best controllable events (actions) becomes an MDP problem, and an optimal strategy �

�

can be

computed in polynomial time. For a state q 2 Q

m

, denote by p

�

�

(qj

~

F ) the probability that state

q is reached from the initial state q

0

, if the information vector

~

F is used, and an optimal control

�

�

is applied, i.e. optimal events are chosen on any controllable state that is not aggregated. The

expected cost of the system denoted by EC(

~

F) is de�ned to be EC(

~

F) = �

q2Q

m

v(q):p

�

�

(qj

~

F).

The problem of designing an information e�cient supervisor can then be stated as follows:

minEC(

~

F ); (4)

subject to the constraint that �

m

i=1

y

i

F

i

� K, where m is the number of information sets, y

i

is a

weight factor which is a cost measure for obtaining perfect information on information set w

i

,

and K is an upper-bound on the total cost of sets observed prefectly in

~

F .

I will briey go over one example application appearing in [ML97] to further illustrate the

concepts. In [ML94] an aircraft maintenance application is presented.
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Imagine a robot that is in charge of testing several barrels of chemicals containing dangerous

material. The danger is that uncontrolled sequence of chemical events can evolve suddenly

and rapidly that may lead to explosion and damage. There are costs associated with leaving

a barrel in dangerous state and also removing a barrel. The robot has at its disposal two

main types of measurement: one being a crude but fast and cheap measurement action and

another more elaborate but more costly measurement. There are constraints on the frequency of

performing the second measurements. The problem is after measurement 1 (whose outcome is

an uncontrolled event) whether to take measurement 2 (the perfect information case), and then

choose the best control action (leave or take out a barrel) based on the result, or choose the best

control action without performing measurement 2 (aggregation). Given the event probabilities

and costs associated with the di�erent outcomes, the problem is when to take measurement 2

as a function of the outcome of measurement 1.

Problem 4 is clearly in NP , and the authors claim that the problem is NP -complete in

[ML94] (no proof is provided) and present a heuristic algorithm to solve the problem. The

question of existence of appropriate approximation algorithms is open.

5 Discussion

Figure 7 gives an overview of the MDP related family of problems that appeared in this report.

As expected, the problems get harder computationally with generalizations: The deterministic

MDP problems can be solved using graph based algorithms such as shortest path or minimum

weight cycles depending on the objective criteria, while, on another extreme, in�nite horizon

POMDPs are undecidable in general. We discussed the relations between the game models

and MDPs in section 3. Research on alternative algorithms for deterministic 2 player games

(mean payo�) and for (stochastic) MDPs, might prove useful not only for SSGs, but also for

POMDPs.

In many cases, problems may best be approached by using a combination of models. The

SSG model can be thought of as a combination of the stochastic MDP and the deterministic

2 player games. We covered several possible restrictions to partial observability in POMDPs

and conjectured that presence of multiple types of restrictions might lead to more e�cient

algorithms. The original discrete event systems of [RW87] seemed to be an entirely di�erent

model of control due to its assumptions and objective criteria. However, with the introduction

of stochastic transition and a more active control, the DESS model obtained was basically a

variation on the MDP problem: The problem to solve, due to constraints on monitoring a

system, was which MDP system to choose from a set of feasible MDPs implicit in the problem

statement, so that expected costs are minimized. Other hybrid models of discrete event systems

and MDPs are conceivable and it is plausible that in many applications modeling both external

events and active control may be more appropriate than considering either model in isolation.

Real applications are needed to justify the study of potential hybrid systems in the abstract.
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Figure 7: A family of MDP related problems.

Likewise, models of 2 player or multiplayer stochastic games where players have imperfect

information on the state of the game (e.g. consider Shapley's simultaneous stochastic games

with partial observability) are conceivable, but the existence of real applications of such models

is questionable. We should note however that the investigation of the combined models may

lead to a better understanding of interactions of the multi-player aspects of the games and the

partial observability aspects, and in addition superior algorithm may be discovered.

6 Conclusions

There remain many interesting open problems regarding problems of control that have an MDP

avor. Generalizations, such as 2-player games, motivate the study of simpler one player MDPs

more closely. This could lead to new algorithmic or analytic techniques. POMDPs have been

shown to be hard to solve in general. Can we restrict the partial observability without losing

applicability and at the same time obtain e�cient algorithms? We saw that this is a possiblility

and described one approach in Section 2. Finally, there are models of discrete control that

emphasize the occurrence of state changes which are not controllable. Possibilities exist for

hybrid models as described in subsection 4.3 in case of a DESS system.

While many of the remaining open problems are theoretically well-motivated, and answers

to some may spawn new applications of their own, e�ort should also be spent on looking at

existing potential application areas for a source of new challenges and to further justify the

study of model variations, especially in the case of restricted POMDPs.
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