
1

Efficient Predicate Dispatching

Craig Chambers and Weimin Chen

Department of Computer Science and Engineering
University of Washington

Technical Report UW-CSE-98-12-01

Abstract

The speed of method dispatching is an important issue in the overall performance of object-oriented programs. We

have developed an algorithm for constructing efficient dispatch functions for the generalpredicate dispatching

model, which generalizes single dispatching, multiple dispatching, predicate classes and classifiers, and pattern-

matching. Our algorithm generates alookup DAGeach of whose nodes represents anN-way test of the class or value

of a formal or other expression. Our algorithm implements each of theseN-way tests with abinary decision tree

blending class identity tests, class range tests, and table lookups. Our algorithm exploits any available static

information (from type declarations or class analysis) to prune unreachable paths from the lookup DAG, and uses

any available dynamic profile information to minimize the expected time to traverse the binary decision trees. We

measure the effectiveness of our dispatching algorithms on a collection of large Cecil and Java programs, compiled

by the Vortex optimizing compiler, showing improvements of up to 40% over already heavily optimized baseline

versions.

1 Introduction

The speed of method dispatching is an important issue in the overall performance of object-oriented programs.
Previous work on techniques for efficient dispatching has typically focused on singly dispatched languages; a
handful of techniques have been proposed for multiply dispatched languages, and almost none for languages with
other kinds of dispatching semantics such as predicate classes [Chambers 93b] or classifiers [Hamer et al. 90,
Mugridge et al. 91]. Additionally, previous work has focused on applying particular techniques universally to all
dispatches in a program.

Recently, a more general model of dispatching,predicate dispatching, was introduced [Ernst et al. 98]. Predicate
dispatching associates each method with adispatching predicate, a boolean formula over subclass and value tests of
the method’s formals and expressions derived from the formals. A method is applicable to a given message if its
dispatching predicate evaluates to true after binding the message’s actuals to the method’s formals, and one method
overrides another if the first’s predicate logically implies the other’s. Static typechecking can guarantee that a
program can have no message-not-understood or message-ambiguous errors at run-time. Predicate dispatching
includes most previous dispatching mechanisms as special cases, including single dispatching, symmetric multiple
dispatching, predicate classes, classifiers, modes, and pattern-matching as found in most functional programming
languages, shedding light on the relationships between these mechanisms. Additionally, new kinds of dispatching
idioms and new combinations of existing idioms are possible with predicate dispatching. However, because of its
greater expressive power, it was not clear how to implement predicate dispatching efficiently.

In this paper we present an algorithm for constructing efficient dispatch functions for the predicate dispatching
model. The generality of the predicate dispatching model does not reduce the effectiveness of our algorithm on the
special cases, however; for multiple dispatching and predicate classes, our dispatch functions are more efficient than
previously described dispatch techniques. Our algorithm consists of two main components, one computing the high-
level structure of the dispatch function and the other computing the low-level implementation of the individual

2

single-dispatches chosen by the high-level component. The high-level algorithm takes the set of methods in a
particular generic function (collection of dynamically overloaded methods with the same name, number of
arguments, and static argument types) and any available static information about the possible classes of arguments
and generates alookup DAG, a rooted directed acyclic graph. Each interior node in the lookup DAG represents a test
of the class or value of a formal or derived expression, with the node’sN outgoing edges representing the different
possible outcomes of the test. Each leaf node represents the target method (or system-generated error method) to
invoke for the various combinations of test outcomes that lead to that leaf. Each interior node acts like a single
dispatch, and overall dispatching is made up of combinations of these individual single dispatches. Compared to
previous algorithms for multimethod dispatching, our algorithm handles the more general predicate dispatching
model, can select an appropriate order in which to test the classes of dispatched formals (not just left-to-right), can
skip tests of formals along those paths where their dynamic class does not affect the outcome of dispatching (not
just testing all formals along all paths), and can exploit available static information to skip tests whose outcomes are
statically determined.

Each interior node in the lookup DAG conceptually represents anN-way branch on a single value or class. This
single dispatch can be implemented in many different ways; different techniques may be best for different single
dispatches, depending on the number of target nodes, the number, spread, and relative likelihood of possible values
of the expression being tested, the execution frequency of the test itself, and the relative importance of dispatcher
space versus dispatch speed. In fact, some combination of techniques may be best for a given single dispatch. Our
algorithm implements each of theseN-way tests with a binary decision tree blending class identity tests, class
identifier inequality tests, and one-dimensional array lookups. The appropriate blend of these three kinds of tests is
guided by dynamic profile information or static estimates of the relative likelihood of the possible classes or values
of the expression being tested.

We have implemented several variations on our algorithm in the context of the Vortex optimizing compiler [Dean et
al. 96, Chambers et al. 96], and we applied our algorithm to generate dispatch functions at link-time, one dispatcher
per generic function. For a set of large benchmark programs written in Cecil [Chambers 92, Chambers 93a] (a purely
object-oriented language including multimethods and predicate classes, a large subset of the predicate dispatching
model) and Java [Gosling et al. 96] (a hybrid language with only single dispatching), we measured the speed of
execution and the space consumed by dispatch functions, comparing different variations of our algorithm and the
previous dispatch implementation based on dynamically generated call-site-specific polymorphic inline caches
[Hölzle et al. 91]. We observed speed-ups in Cecil programs of up to 30%, with greater speed-ups for larger
programs, and speed-ups for Java programs of up to 40%. In all our experiments, we applied Vortex’s full range of
optimizations, so that the benefits we observe for our dispatch algorithm are in addition to the benefits obtained by
optimizing dispatches through other optimizations.

In the next section, we describe the predicate dispatching model. In section 3 we describe our algorithm for
determining the high-level organization of the lookup DAG, and compare our algorithm to related work at this level.
In section 4 we describe our algorithm for determining the low-level implementation of each node of the lookup
DAG, and compare our algorithm to related work at this level. Section 5 presents our experimental assessment of
the time and space costs of our algorithm. We conclude with a discussion of contributions and future work in section
6.

2 Model of Dispatching

In the predicate dispatching model, ageneric functionincludes a collection of dynamically overloaded methods. For
simplicity, we assume all the methods use the same names for their formals, given as part of the generic function

3

declaration. Each method is defined by a predicate expression giving the method’s applicability and specificity and
a method body specifying the code to run if the method is invoked. The following grammar defines the structure of
a generic function, as viewed by the compiler after collecting together all the methods in that generic function in the
program and renaming the formal parameters of all methods in the generic function to be the same:

GF ::= gf Name(Name1,... ,Namek) Method 1 ... Method n
Method ::= when Pred { Body }
Pred ::= Expr@Class test whetherExpr is an instance ofClass or a subclass

| test Expr test whetherExpr (a boolean-valued expression) is true
| Name := Expr bindName toExpr, for use in later conjuncts and the method body
| not Pred the negation ofPred
| Pred 1 and Pred 2 the conjunction ofPred1 andPred2
| Pred 1 or Pred 2 the disjunction ofPred1 andPred2
| true the always-true default predicate

Expr ::= host language expression; assumed to have no externally visible side-effects
Class ::= host language class name
Name ::= host language identifier

When a generic function is applied to a tuple of argument objects, the predicate of each method in the generic
function is evaluated, in an environment binding the generic function’s formals to the argument objects, to determine
if that method applies to the arguments. The different kinds of predicates are evaluated as follows:

• Expr@Class is true iff evaluation ofExpr in the current environment yields an object that is an instance of
Class or some subclass ofClass .

• test Expr is true iff evaluation ofExpr in the current environment yields thetrue object.

• Name := Expr is always true, but updates the current environment to bindNameto the result of evaluating
Expr .

• not Pred is true iffPred is not. Any updates to the environment byPred are ignored.

• Pred 1 and Pred 2 is true iff Pred 1 is true (yielding an enhanced environment ifPred 1 contains any name
bindings) andPred 2 is true in the enhanced environment.Pred 2 is only evaluated ifPred 1 is true, allowing
expressions inPred 2 to be defined only for cases wherePred 1 succeeds. For example,test x != 0 and

test y/x > 5 exploits the required evaluation order, as doeslist @Cons and list.head @Int .

• Pred 1 or Pred 2 is true iff Pred 1 is true orPred 2 is true. There are no constraints on the evaluation order
of Pred 1 andPred 2, and any updates to the environment byPred 1 or Pred 2 are invisible outside ofPred 1

or Pred 2, respectively.

• true is always true.

After collecting the set of applicable methods, the unique most-specific method is identified and then invoked. One
methodm1 is deemed at least as specific as another methodm2, writtenm1 ≤Method m2, exactly whenm1’s predicate
impliesm2’s. The different cases in which one predicate implies another, determined statically based on the structure
of the two predicates, are as follows:

• Expr 1@Class 1 implies Expr 2@Class 2 iff Expr 1 is the same asExpr 2 and Class 1 is equal to or a
subclass ofClass 2. Two expressions are the same if their abstract syntax trees are isomorphic; this conservative
definition of equivalence retains decidability of predicate dispatching.

• test Expr 1 impliestest Expr 2 iff Expr 1 is the same asExpr 2.

• Since it is always true, any predicate impliesName := Expr .

• not Pred 1 impliesnot Pred 2 iff Pred 2 impliesPred 1.

• Pred 1 and Pred 2 implies bothPred 1 andPred 2.

• A predicatePred implies bothPred or Pred 2 andPred 1 or Pred .

4

• Any predicate impliestrue.

(To be complete up to equivalence of expressions, predicates should be converted into disjunctive normal form
before applying the rules fornot , and , andor .) It is a message-not-understood error if no applicable methods are
found, and it is a message-ambiguous error if no applicable method is the unique most-specific one. A sound and
complete static typechecking algorithm exists for determining whether invocation of any given generic function can
ever lead to a message-not-understood or message-ambiguous error. Formal rules for the static and dynamic
semantics of the predicate dispatching model are given in the earlier paper introducing predicate dispatching [Ernst
et al. 98].

The predicate dispatching model includes most existing dispatch mechanisms as restricted cases, and consequently
our algorithm for constructing efficient dispatchers applies to all these other models. Every object-oriented language
includes the notion of generic function, either explicitly (as in Common Lisp [Bobrow et al. 88, Steele Jr. 90] and
Dylan [Shalit 96]) or implicitly (as in Cecil, Smalltalk [Goldberg & Robson 83], C++ [Stroustrup 91], Java, Eiffel
[Meyer 92], and Modula-3 [Nelson 91]). In Cecil and Smalltalk, a generic function corresponds to all the methods
having the same message name and number of arguments. In C++, Java, Eiffel, and Modula-3, a generic function
roughly corresponds to all the methods having the same name, number of arguments, and static argument types;
more precisely, a generic function is created whenever a class contains a method declaration that doesn’t override
any inherited method declaration, and all methods that override the introducing method declaration are included in
that method’s generic function. Each dynamically dispatched call site applies a particular generic function to its
arguments, selecting the single most-specific method in the generic function to invoke.

Most previous dispatching models correspond to special idiomatic uses of predicates:

• With single dispatching, a methodm in a classCmwould be modeled with a predicate of the formself @Cm,
whereself is the name of the generic function’s first formal.

• With multiple dispatching, a multimethodmwith k arguments that specializes itsi ’th formal formal i to the
class Cmi would be modeled with a predicate of the formformal 1@Class m1 and ... and

formal k@Class mk. Omitting aformal i @Class mi conjunct leaves that argument position unspecialized for
that method; different methods can specialize on different argument positions.1

• With predicate subclasses [Chambers 93b], a predicate subclassPredClass can be declared that is in force
whenever instances of its superclassClass satisfy some additional boolean predicateTest (evaluated in an
environment where the identifierClass is bound to the instance being tested). A methodm whose formal
formal i specializes on the predicate classPredClass can be modeled by replacingformal i @PredClass

with formal i @Class and test Test’ , whereTest’ is the same asTest except that free references
in Test to Class are changed toformal i . Classifiers [Hamer et al. 90, Mugridge et al. 91] and modes
[Taivalsaari 93] can be modeled with similar techniques [Ernst et al. 98].

• With pattern-matching, as found in languages like ML [Milner et al. 97] and Haskell [Hudak et al. 92], a function
case can be defined for certain arguments based on their value or datatype structure, possibly examining the value
or structure of subcomponents. Conjunctions can be used to test the properties of multiple arguments, as with
multimethods. Tests on the arbitrarily nested subcomponentcomponentReferencePath of an argument
formal i can be modeled by usingformal i . componentReferencePath as the expression being tested.
Tests for an expressionExpr having a particular valueValue can be modeled either by adopting a prototype-
based language model (in which case “values” and “classes” are tested uniformly usingExpr @Value clauses),

1 This model for multimethods applies to languages like Cecil and Dylan that treat all argument positions uniformly, since implication
between conjuncts is symmetric. Languages like Common Lisp that prioritize earlier arguments over later arguments are not supported
directly by the predicate dispatching model.

5

or by using the conjunctionExpr @Class Value and test(Expr = Value) , whereClass Value is the

class ofValue . Name := Expr bindings can be used to give names to subcomponents, for use in the body of

the method. (Compared to pattern-matching like that in ML and Haskell, predicate dispatching confers the

additional benefits of inheritance of cases from superclasses to subclasses, the ability to add new cases to handle

new subclasses without modifying existing cases or declarations, automatic ordering of cases based on specificity

of patterns as opposed to textual order of cases, and the ability to reference a bound variable in later patterns (non-

linear patterns)).

• Boolean guards on patterns, as found in Haskell, correspond to additionaltest predicates, potentially over

multiple formals and local bindings.

In addition to modeling many previous dispatching mechanisms, new kinds of dispatching can be specified under

predicate dispatching, including general disjunctions and negations of tests as well as combinations of primitives

not previously supported, such as subclass testing combined with testing of arbitrary subcomponents.

3 Multiple Dispatch Implementation

Given a generic function, our algorithm first determines the high-level strategy for selecting the right method to

invoke, encoding its decisions in alookup DAG. Any available information about the possible classes of the

arguments to the generic function, such as determined by static type or class declarations [Johnson 86] or static class

analysis [Johnson et al. 88, Chambers & Ungar 90, Plevyak & Chien 94, Fernandez 95, Agesen 95, Dean et al. 95,

Grove et al. 97, DeFouw et al. 98], is exploited to produce a faster, smaller lookup DAG.

The next subsection defines the lookup DAG structure. Subsections 3.2 through 3.6 present the steps in our

algorithm to construct the lookup DAG. Subsection 3.7 compares our algorithm with other algorithms for

multimethod dispatching. Throughout this section we use the running example shown in Figures 1 and 2.

3.1 The Lookup DAG

A lookup DAG G=(N, E⊆N×N, n0∈N) is a rooted, directed acyclic graph, representing a decision “tree” but with

identical subtrees shared to save space. Each interior noden∈N in the lookup DAG has a set of outgoing edges

n.edges={(n,n’)∈E} and is labeled (n.expr) with an expressionExpr i , while each leaf noden∈N in the lookup

DAG is labeled (n.target) with either a user-specified methodmj or one of the two error methodsmnot-understood

andmambiguous . Each edgee=(nsource,ntarget)∈E in the lookup DAG has a source nodee.source=nsource, a target

nodee.target=ntarget, and is labeled (e.class) with a classClass k. Figure 2 shows a lookup DAG for the running

example, where a circle represents an interior noden (labeled withn.expr), a box represents a leaf noden (labeled

with n.target), an arrow represents a set of edges{e1,...,ek} all of which have the same source and target nodes

(labeled with the variousei.class values of the edgesei), and the entry arrow marks the root noden0. (The sets

subscripting nodes and the dashed circle are used during construction of the lookup DAG, as described later.)

To perform dispatching using a lookup DAG, evaluation follows a path through the DAG, beginning with the root

noden0, in an environment where the names of the generic function’s formals are bound to the corresponding actuals

for the call being dispatched. To evaluate an interior noden, its expressionn.expris evaluated to produce a resultv,

the node’s outgoing edgesn.edgesare searched for the unique edgeewhose labele.classis the class ofv (evaluation

fails if no such edge is found), and the selected edge’s target nodee.targetis evaluated recursively. To evaluate a leaf

noden, its methodn.target is returned.

6

3.2 Canonicalization of Dispatching Predicates

The first step in constructing the lookup DAG from a generic function is to canonicalize and simplify the form of
the predicates of the methods in the generic function. The following grammar defines this canonical form:

DF ::= df Name(Name1,... ,Namek) Case 1 or ... or Case p

Case ::= Conjunction => Method 1 ... Method m

Conjunction ::= Atom 1 and ... and Atom q

Atom ::= Expr @Class | Expr @!Class

In essence, this grammar represents all the predicates of all the methods of a generic function in disjunctive normal
form, i.e., a disjunction of conjunctions, whose atomic predicates are class tests (Expr @Class) and negated class
³tests(Expr @!Class). To represent the connection between the original predicates and their associated methods,
each conjunction in the canonical form maps to a set of one or more methods,Conjunction => Method 1 ...

Method m.

Our algorithm converts a regular generic functionGFinto a canonical dispatch functionDF in the following steps:1

Assumed class hierarchy:
object A;
object B isa A;
object C;
object D isa A, C;

Assumed source generic function:
gf Fun(f1, f2)
when f1 @A and t := f1.x and t @A and (not t @B) and

f2.x @C and test(f1.y = f2.y) { ... m1... }
when f1.x @B and ((f1 @B and f2.x @C) or (f1 @C and f2 @A)) { ... m2... }
when f1 @C and f2 @C { ... m3... }
when f1 @C { ... m4... }

Assumed static class information for expressions (StaticClasses):
f1: C − {D} = {A,B,C}
f2: C = {A,B,C,D}
f1.x: C = {A,B,C,D}
f2.x: Subclasses(C) = {C,D}
f1.y=f2.y: bool = {true ,false }

Canonicalized dispatch function:
df Fun(f1, f2)

(f1 @A and f1.x @A and f1.x @!B and (f1.y=f2.y) @true) => m1 {c1}
or (f1.x @B and f1 @B) => m2 {c2}
or (f1.x @B and f1 @C and f2 @A) => m2 {c3}
or (f1 @C and f2 @C) => m3 {c4}
or (f1 @C) => m4 {c5}

Canonicalized expressions and assumed evaluation costs:
e1=f1 (cost=1)
e2=f2 (cost=1)
e3=f1.x (cost=2)
e4=f1.y=f2.y (cost=3)

Constraints on expression evaluation order:
e1 ➔Expr e3; e3 ➔Expr e1; e1, e3 ➔Expr e4
e1, e3 ≤Expr e4

Figure 1: Example for Lookup DAG Construction, Part 1

7

1. Replace alltest Expr clauses withExpr @True clauses, whereTrue is the (possibly artificial) class of
thetrue object. (In a prototype-based language, this test simply becomesExpr @true .)

2. Remove allName := Expr clauses and replace references toNamein laterExpr’ expressions withExpr .
(This replacement can be done by sharing the singleExpr parse tree in all referencingExpr’ trees, so this
rewriting does not increase the size of the predicate expressions.)

3. Convert each method’s predicate into disjunctive normal form, i.e., a disjunction of conjunctions of possibly
negatedExpr @Class atomic clauses, using a standard algorithm. (It is possible for this conversion to grow
the size of the predicates exponentially, but we do not expect this in practice, nor can it happen for the
restricted case of single or multiple dispatching and predicate classes.)

4. Replacenot(Expr @Class) clauses withExpr @!Class clauses.

1 The original generic functionGFhas already been canonicalized somewhat by renaming formals so that all methods in the generic function
have the same formal names.

Constructed Lookup DAG:

Figure 2: Example for Lookup DAG Construction, Part 2

e1

cs= {c1,c2,c3,c4,c5}
es= {e1,e2,e3,e4}

e3

{c1}
{e3,e4}

e3

{c1,c2}
{e3,e4}

e2

{c3,c4,c5}
{e2,e3}

e4

{c1}
{e4}

e3

{c3,c5}
{e3}

m2

{c2}
{}

m4

{c5}
{}

mnot-understood

{}
{}

m3

{c4,c5}
{}

mambiguous

{c3,c4,c5}
{}

m2

{c3,c5}
{}

m1

{c1}
{}

A

B

C

A,B

C

D

B

A,C,D

B,C

A,D

A,D

B

false

true

C

8

5. Place each methodm’s predicate into canonical form by replacing each conjunctionConjunction with
Conjunction => m .

6. Form the disjunction of all the individual methods’ canonicalized predicates, flattening out any resulting
disjunctions of disjunctions to recover disjunctive normal form.

Our algorithm exploits available static information about the possible classes of expressions to reduce the size of the
canonicalized dispatching predicate. Available static information is represented by a functionStaticClasses:E→2C

that represents for each expressione∈E (whereE is the set of expressions occurring in the predicates of the methods
in the generic function) the set of possible classes (a subset ofC, the set of all classes in the program) of which the
result of evaluatinge may be a direct instance.StaticClasses can be derived from static type declarations (if in a
statically typed language) and/or from automatic static class analysis. For a dynamically typed language with no
static analysis, a trivialStaticClasses function that maps each expression to the set of all classesC can be used. The
following canonicalization steps exploit static class information:

7. Remove all atomic tests that are guaranteed to be true by static class information. In particular, remove atoms
of the formExpr @Class whereStaticClasses(Expr) ⊆ Subclasses(Class), the set of all subclasses ofClass

(including Class itself). Similarly, remove all atoms of the formExpr @!Class where
StaticClasses(Expr) ∩ Subclasses(Class) = ∅.

8. Remove all conjunctions containing atomic tests that are guaranteed to be false by static class information. In
particular, remove all conjunctions containing atoms of the formExpr @Class where
StaticClasses(Expr) ∩ Subclasses(Class) = ∅. Similarly, remove all conjunctions containing atoms of the
form Expr @!Class whereStaticClasses(Expr) ⊆ Subclasses(Class).

A final clean-up step merges any duplicate conjunctions:

9. Replace the set of all cases of the formConjunction i => mij having the sameConjunction i with
the single caseConjunction i => m i1 ... m in .

Figure 1 gives an example input inheritance graph, generic function, andStaticClasses mapping, and shows the
canonical dispatch function derived from this generic function. As part of this canonicalization process, the binding
of t is eliminated by replacing references to it with its value, the negated subclass test is replaced with a single
atomic test, thetest clause is rewritten using a dummytrue class, the nested disjunction is moved to the outer
level (as a result, two different cases now map to the same source methodm2), and the subclass tests onf2.x are
eliminated as their outcomes are implied by statically known class information.

This canonicalization process in effect reduces the problem of the general predicate dispatching model to the simpler
multimethod dispatching model; indeed, canonicalization is largely the identity function on the subset of predicate
dispatching corresponding to multimethod dispatching (conjunctions of subclass tests). EachCase disjunct in the
canonical dispatch tree is analogous to a multimethod, and eachExpr being tested by the case is analogous to one
of the multimethod’s formals. Consequently, many of the previous techniques for multimethod dispatching should
be applicable to the predicate dispatching model by exploiting this analogy, and conversely our algorithm for
constructing dispatch functions for canonicalized dispatch predicates applies to the special case of multimethod
dispatching as well.

3.3 Constraints on Expression Evaluation

The second step of our algorithm is to determine minimal constraints on the order of evaluation of theExpr s in the
canonical dispatch predicate.Expr s are not allowed to have externally visible side-effects, and disjuncts can be
evaluated in any order or even have their evaluations interleaved, but programmers are allowed to depend on order
of evaluation of conjuncts where successful outcomes of earlier conjuncts ensures that later conjuncts do not

9

encounter errors, as described in section 2. Our algorithm could be conservative and assume that all conjunctions
must be evaluated left-to-right, but our algorithm will be able to produce faster, smaller dispatch functions if it can
reorder conjuncts.

To represent a conservative approximation to the minimal constraints on evaluation order that the lookup DAG must
respect, our algorithm computes a partial order≤Expr over E, the set of allExpr s in the canonical dispatch
predicate;e1 ≤Expr e2 if e1 may need to be evaluated beforee2 to ensure thate2 does not fail unexpectedly. This
partial order is built in two steps. First, a preorder1 ➔Expr overE is defined as the reflexive, transitive closure of
basic orderingse1 ➔Expr e2 created ife1 ande2 both appear in some conjunction,e1 appears beforee2 in that
conjunction, and the compiler cannot prove that evaluation ofe2 would not encounter an error even if the test ofe1

is false (for example, simple references to formals are known statically to be evaluable in any order). A cycle can be
formed ife1 is evaluated beforee2 in one conjunction, bute2 is evaluated beforee1 in some other conjunction.

The partial order≤Expr is derived from the preorder➔Expr by ignoring any non-reflexive cyclic orderings:e1 ≤Expr

e2 iff e1 = e2 ore1 ➔Expr e2 but note2 ➔Expr e1. It is safe to ignore cycles because the orderings computed in➔Expr

are only conservative approximations to the real constraints, and if in different conjunctions expressionse1 ande2

are evaluated in different orders, it must be safe to evaluate them in either order, and hence the cyclic ordering
constraints must be unnecessary.

Figure 1 shows the initial preorder and final partial order over expression evaluation for the running example. The
preorder is derived from the order of expression evaluation in the various cases of the canonicalized dispatch
function, ignoring orderings between tests of independent formals. Becausef1 ’s class is testedbeforef1.x is
evaluated in one case, butafterwardsin another case, they can legally be evaluated in either order (semantically,
disjuncts can be evaluated in any order), and the final partial order reflects ignoring the cyclic constraints in the initial
preorder.

3.4 Construction of Lookup DAG

Our algorithm for constructing the lookup DAG for a canonicalized dispatching functionDF is given in Figures 3
and 4. The heart of the algorithm is the functionbuildSubDag which builds a node and all its subnodes, given a
set of candidate cases (cs) and a set of expressions in the candidate cases remaining to be evaluated (es). The root

1 A preorder is a reflexive, transitive, but not necessarily antisymmetric binary relation. A partial order is an antisymmetric preorder.

function Cases(df Name(Name1,... ,Namek) Case 1 or ... or Case p) = {Case1, ..., Casep}
function Methods(Conjunction => Method 1 ... Method m) = {Method 1, ..., Method m}
function Atoms(Conjunction => Method 1 ... Method m) = Atoms(Conjunction)

function Atoms(Atom 1 and ... and Atom q) = {Atom1, ..., Atomq}
function Expr(Expr @Class) = Expr
function Expr(Expr @!Class) = Expr
function Classes(Expr @Class) = Subclasses(Class)
function Classes(Expr @!Class) = C - Subclasses(Class)
function Subclasses(Class) = set of all subclasses ofClass , including Class itself
value C = set of all classes in program

function Exprs(cs) =

function Exprs(c) = { Expr(atom) | �atom ∈ Atoms(c) }

Figure 3: Helper Functions

Exprs c()
c cs∈
∪

10

function buildLookupDag(DF) =
create empty lookup DAG G
create empty table Memo
cs := Cases(DF)
G.root := buildSubDag(cs, Exprs(cs))
return G

function buildSubDag(cs,es) =
if (cs,es) →n ∈ Memo then return n
if es= ∅ then

n := create leaf node in G
n.target := computeTarget(cs)

else
n := create interior node in G
expr := pickExpr(es, cs)
n.expr := expr
for each class ∈ StaticClasses(expr) do

cs’ := targetCases(cs, expr, class)
es’ := (es - {expr}) ∩ Exprs(cs’)
n’ := buildSubDag(cs’, es’)
e := create edge from n to n’ in G
e.class := class

end for
end if
add (cs,es) →n to Memo
return n

function computeTarget(cs) =

methods :=

if |methods | = 0 then return mnot-understood
if |methods | > 1 then return mambiguous
return single element m of methods

function pickExpr(es, cs) =

legal_es :=

discriminating_es := { expr ∈ legal_es | avgNumTargetCases(cs, expr) is minimal }
cheap_es := { expr ∈ discriminating_es | expr has minimal evaluation cost }
return any member expr of cheap_es

function avgNumTargetCases(cs, expr) =

function targetCases(cs, expr, class) = { c ∈ cs | class ∈ testedClasses(c, expr) }

function testedClasses(c, expr) =

if expr ∈ Exprs(c) then return

else return C

Figure 4: Lookup DAG Construction Algorithm

min≤Method
Methods c()

c cs∈
∪()

min≤Expr
es()

testedClasses c expr,()
c cs∈
∑

StaticClasses expr()
--

Classes atom()
atom Atoms c() Expr atom(),∈ expr=

∩

11

node of the DAG corresponds to the set of all cases inDF and the set of all expressions in these cases. The table
Memomemoizes calls tobuildSubDag so that at most one node for a given set of cases and remaining expressions
will ever be constructed, with that node and its successors shared by all earlier nodes leading to it.

When building a new node for a particular set of cases and remaining expressions, if the set of remaining expressions
is empty, then the outcome of method lookup has been determined. A leaf node is constructed, and its target (or
error) method computed (usingcomputeTarget) from the most specific method(s) (under the method overriding
partial order≤Method) in the set of methods associated with the cases that reach the leaf. If, on the other hand, the
set of remaining expressions is not empty, then more dispatching is necessary. An interior node is constructed, and
one of the remaining expressions selected (viapickExpr) as the next to evaluate at this interior node. For each of
the possible classes resulting from this evaluation, the subset of the input cases is computed whose atomic tests on
the selected expression all succeed for that class (bytargetCases), the set of expressions for that subset is
computed by restricting the set of unevaluated remaining expressions to those mentioned in the computed subset of
cases, a sub-DAG for the reduced set of cases and remaining expressions is constructed recursively, and finally an
edge is created to connect the interior node to the target sub-DAG.

The pickExpr function is responsible for selecting the next expression to evaluate from the set of remaining
expressions. The one correctness constraint onpickExpr ’s behavior is that it can only pick expressions that are
not required to follow (according to the≤Expr partial order constructed as described in section 3.3) any other
expressions still remaining to be evaluated; these allowed choices are collected intolegal_es . Within this
constraint, we wish to select an expression that will minimize the expected time to proceed through the rest of the
lookup DAG. As a heuristic approximation, we pick an expression whose average number of remaining cases in
successor nodes is minimized (discriminating_es); nodes with no remaining cases are leaves, and nodes with
fewer remaining cases are more likely to have shorter paths to leaves than nodes with more remaining cases. If ties
still remain, we select an expression that is cheapest to evaluate, using some static estimate of the cost of expression
evaluation (cheap_es). pickExpr is the one place in our high-level algorithm that uses heuristics, and
alternative heuristics could be substituted for these without affecting the correctness of our algorithm.

Figure 2 shows the lookup DAG constructed by our algorithm for the running example; the two sets below each node
correspond to the (cs ,es) pair mapping to that node in theMemotable. At the start of the example, expressione1 is
picked as the first to evaluate, as it is the most discriminating of the legal expressions{e1,e2,e2} (e4 is not legal as it
must follow evaluation of other unevaluated expressions). Each of the possible classes fore1 considered, computing
the subset of cases that apply to that outcome (cs’) and the set of expressions remaining to be evaluated to
distinguish those applicable cases (es’). For this example, all three possible classes lead to distinct nodes, which
are then processed recursively and independently. Two of the nodes choose to evaluate expressione3 next, while the
third chooses to evaluatee2. During subsequent recursive construction, the node labeled ({c1},{e4}) is analyzed
twice, and the sub-DAG starting with that node is shared. When reaching a leaf node, the set of cases reaching that
node is used to determine the set of applicable methods for that node, which in turn determines the target or error
method to invoke for that leaf. If no applicable methods remain (i.e., if no cases reach that leaf node), the message-
not-understood error method is used. If several applicable methods remain but one is more specific than all others
(as in the nodes labeled{c3,c5} and{c4,c5}), then the most-specific method is selected as the target method. If
multiple applicable methods remain but none is most-specific (as in the node labeled{c3,c4,c5} wherem2 andm3

are applicable and most-specific), then the message-ambiguous error method is used.

An important feature of our algorithm is that the order of evaluation of expressions can be selected according to
heuristics, inpickExpr . Some previous work only considered left-to-right evaluation of multimethod arguments
[Dussud 89, Chen et al. 94], but alternate orders of evaluation can produce smaller, faster dispatchers. Another

12

important feature of our algorithm is that each of a node’s successor subtrees is computed independently, with
different subsets of expressions evaluated along different paths, possibly in different orders, as opposed to previous
work which examined the dynamic classes of all formals in all cases. By picking expression evaluation order
intelligently in order to reduce average path length, we can produce faster dispatch functions, as occurred in the
example in Figure 2.

The complexity of building the lookup DAG, assuming that calls totestedClasses are memoized, is
O(D ⋅ (C⋅P + C⋅E + P⋅E + M)), whereD is the number of nodes in the constructed lookup DAG,C is the number of
concrete classes in the program,P is the size of the predicates (cs is O(P)), E is the number of expressions in the
predicates (es is O(E)), andM is the number of target methods in the generic function. The number of nodes in the
DAG, D, is no worse than exponential in the number of classes in the programC and the number of expressions in
the predicateE, and this situation can occur ifM or E is also exponential inC, but we do not know if a tighter bound
exists on the size of the lookup DAG if we assume thatC, P, E, andM are all O(N).1

3.5 Postprocessing

Memoization of calls tobuildSubDag ensures that no two nodes in the lookup DAG have the same set of cases
and remaining expressions. However, it is possible that two leaf nodes with different sets of cases still have the same
target (or error) method, and these nodes can be safely merged without affecting correctness. After merging all leaf
nodes having the same target method, if a merged leaf node’s predecessor now has only a single successor node, it
can be eliminated. Similarly, if merging leaf nodes into one causes two or more predecessor nodes to have the same
successors (and edge labels leading to those successor), the predecessors can be merged. These removing and
merging transformations can ripple backwards through the lookup DAG. It is difficult to perform these clean-ups
proactively as the lookup DAG is being constructed because it is hard to predict for two different sets of cases and
remaining expressions whether the sub-DAGs constructed from them will be isomorphic and lead to the same target
methods. Our algorithm instead performs these kinds of clean-up transformations in a single backwards pass over
the lookup DAG after construction.

In the lookup DAG shown in Figure 2, there are two leaf nodes (circled with a dotted line) that are labeled with
different cases but that both invoke methodm2. Postprocessing would merge these two nodes into a single node. For
this example, no additional nodes can be merged.

3.6 Factoring Common Subexpressions

The final step in constructing an efficient lookup DAG is to factor common subexpressions in the expressions being
evaluated in the lookup DAG. Common subexpressions across expressions may have been created as a result of
eliminatingName := Expr clauses during initial canonicalize of predicates as described in section 3.2. They may
also have appeared naturally in the original predicate expressions; since predicate expressions are written separately
for separate methods, there may not have been any obvious source-level common subexpressions within individual
method declarations, but rather subexpressions may have been common only across method declarations.

Our algorithm applies a variant of partial redundancy elimination (a well-studied traditional compiler technique
[Morel & Renvoise 79]) to identify common subexpressions and to place computations of those subexpressions in
the lookup DAG (possibly creating new intermediate nodes in the graph whose sole purpose is to evaluate some
subexpression). Our variant of partial redundancy elimination can ensure that each subexpression is evaluated at
most once along any path through the DAG. In effect, this transformation reinserts a minimal number ofTemp :=

1 E could even be treated as bounded by a small constant, as is commonly assumed about the number of arguments to a function.

13

SubExpr clauses into the lookup DAG for any common subexpressions. (To save space in this paper, we do not
describe this final step in our algorithm further.)

3.7 Comparison with Previous Work

Only a few approaches have previously been devised for efficient multimethod dispatching. Kiczales and Rodriguez
[Kiczales & Rodriguez 90] describe a strategy where each generic function has a corresponding hash table, mapping
from the tuple of the dynamic classes of the specialized message arguments to the target multimethod. Dussud
[Dussud 89] describes a strategy for TICLOS using a tree of hash tables per generic function, each hash table
mapping the dynamic class of a particular argument to a nested subtree of hash tables that collectively test the
remaining arguments, with leaf tables mapping to the target method. Dussud’s tree of single-dispatching hash tables
can be viewed as a restricted, less optimized version of our lookup DAG, similar in that it factors out the results of
tests of earlier arguments, but different in restricting each lookup DAG node to be implemented with a hash table
(our algorithm can customize the implementation of each node separately, as discussed in section 4), producing
distinct subtables for each class index in a table (unlike the sharing of successors by multiple class indices of a node
and even across nodes), and requiring all dispatched arguments to be evaluated along all paths in a fixed left-to-right
order. Kiczales and Rodriguez’s algorithm computes a single hash over a tuple of classes rather than a series of
hashes over single classes as does our and Dussud’s algorithms; a single hash over a tuple may be faster if all
arguments need to be tested, but if different methods test different numbers of arguments, then our more selective
algorithm may perform better. Both hash-table-based schemes are intended to work on-line, filling the hash tables
as the program runs and only recording entries for combinations of classes that occur in the actual program run. The
first time a particular combination of argument classes is seen, a more expensive lookup algorithm is performed to
fill in the table(s). In contrast, our algorithm computes a single dispatch function for all possible combinations of
arguments in one step, in some cases producing a bigger and slower dispatch function than the hash-table-based
approaches. We expect our algorithm to be applied off-line at static compile or link time, incurring no run-time cost
as a result. The space cost of both of these dynamically filled hash-table-based schemes is proportional to the number
of combinations of argument classes used during program execution, which in the worst case isNk, whereN is the
number of classes in the program andk is the number of specialized argument positions; the sharing of subtrees in
our approach is likely to produce much more compact dispatchers in the common case. Only microbenchmark
performance results were reported for these implementations.

Chen and colleagues [Chen et al. 94] developed an approach based on a decision DAG (which they describe as a
finite-state automaton) per generic function. Each node in the decision DAG represents a test of a particular
argument’s dynamic class, with each outgoing edge representing a different outcome; multiple dynamic classes can
be represented by a single edge, if they invoke the same set of target methods under the same conditions. By sharing
nodes, the space cost of this approach can be much lower than the hash-table-based approaches. Our algorithm was
inspired by this earlier work, sharing its underlying DAG-based approach. Our algorithm generalizes Chen’s
algorithm to support the predicate dispatching model, to test the class of formals in any order (not just left-to-right1),
to allow testing the classes of different subsets of formals on different paths through the DAG, and to allow the
implementation of each node in the DAG to be customized independently (as discussed in section 4). Additionally,
Chen’s algorithm was not empirically assessed on any benchmarks, while our algorithm is assessed on a collection
of large Cecil and Java programs (as described in section 5).

1 The Chen decision DAG was aimed at Common Lisp-like languages with left-to-right argument prioritization, so a fixed left-to-right
evaluation order made sense for the underlying dispatching model. Our predicate dispatching model and lookup DAG algorithm does not
directly handle Common Lisp-like dispatching rules.

14

In general, multimethod dispatching for a generic function ofk dispatched arguments can be viewed as indexing into
a k-dimensional matrix whose elements are the target (or error) methods to invoke for a lookup, assuming that the
class of an object is represented by an integer in the range [0..N-1]. Since this matrix consumesNk words of space,
this approach to dispatching is not directly practical. To reduce the space costs, Amielet al. [Amiel et al. 94]
developed techniques for compressing the matrix by finding and merging identical submatrices of the matrix, at the
cost of introducing an additionalN-long helper array per dispatched argument. The end result is a system that
performsk one-dimensional array index operations and onek-dimensional matrix index operation for each dispatch,
and consumingk⋅N+O(Nk) space for each generic function. The size of the asymptotically exponential term in the
space complexity is critically dependent on the effectiveness of compression. In many situations compression can
be good, but for binary methods likeequal where most classesc define ac×c multimethod case, the diagonal of the
matrix is filled with mostly distinct entries, causing most planes to be unique and preventing effective compression.
Amiel’s algorithm originally was only assessed in terms of space cost, and then only for randomly generated generic
functions. Randomly generated generic functions may not resemble real-world generic functions; for example, the
all-diagonal matrix is unlikely to be generated randomly, but quite common in practice. Later work [Dujardin et al.
98] used data taken from the Cecil system, but again only space costs were studied.

Dujardin [Dujardin 96] developed an approach using decision DAGs similar to Chen’s algorithm and our algorithm.
Unlike Chen’s algorithm, Dujardin’s algorithm targeted unordered multimethods as in Cecil, Dylan, and the
multimethod subset of predicate dispatching (not multimethods that prioritize arguments left-to-right as in Common
Lisp), which mainly simplifies the algorithm. Dujardin discussed selecting an testing order other than left-to-right,
but did not present any specific heuristics. Dujardin’s algorithm implements each node’s dispatch with two array
lookups, using oneN-long helper array per dispatched argument and one compressed array per dispatch node, using
the same kinds of table compression ideas as in Amiel’s algorithm. Dujardin used data from the Cecil system to
compare the space cost of his decision DAGs against Amiel’s multidimensional matrix-based scheme. His algorithm
produces trees with the same space cost as matrices for generic functions specialized on fewer than three arguments,
but for generic functions with three or four specialized arguments (the maximum in his data set), dispatch DAGs are
roughly half the size of the corresponding compressed matrices. There was no study of the impact on speed of the
different dispatching mechanisms.

4 Individual Dispatch Implementation

The lookup DAG constructed by our high-level algorithm leaves unspecified how each interior node is to be
implemented. Conceptually, each interior node performs anN-way switch over theN possible classes of the
expression being tested by the node. Several different techniques have been used previously to implement thisN-
way switch:

• In many systems, including most statically typed singly dispatched languages,N-way switches are implemented
as lookups in anN-long array, assuming that the class of an object is encoded as an integer in the range [0..N-1].1

This strategy is most efficient ifN is large, most entries of the array are different, and the dynamic frequency
distribution over the possible classes is flat.

• In some systems, typically early dynamically typed systems,N-way switches are implemented as dynamically
filled hash table lookups [Kiczales & Rodriguez 90, Dussud 89, Kaehler & Krasner 83]. This strategy is efficient
if it is hard to predict statically what classes will be used, and the dynamic frequency distribution over the
possible classes is flat.

1 Most singly dispatched languages implement tables stored with each class indexed by an integer identifier of the generic function being
invoked. In this paper we consider only the transposed organization: tables stored with the generic function indexed by integer identifiers
of the class.

15

• In some systems, including several more recent dynamically typed systems,N-way switches are implemented as
linear searches through the possible classes, as in polymorphic inline caches [Hölzle et al. 91]. To make the linear
search effective, dynamic profile information is used to order the tests in decreasing order of likelihood, typically
by constructing the linear search code dynamically as the program runs. This strategy is efficient if the frequency
distribution is highly skewed toward a few classes, as are many call sites in practice. Indeed, linear searching can
outperform table-based lookups for highly skewed frequency distributions, since the code for comparing a
register against a series of small integer constants is quick while the memory loads and indirect jumps of the
table-based schemes can incur expensive pipeline stalls [Driesen et al. 95].

• In some systems,N-way switches are implemented as a linear search through subclass tests [Chen et al. 94].
Instead of testing for individual classes, the set of all subclasses of a given class are tested as a unit, where all
those subclasses branch to the same target node. Overlapping subclass tests must be performed bottom-up. This
approach performs fewer tests in the worst case than linear search through individual classes, but the cost of a
single subclass test is more expensive than a single class identity test (e.g., requiring at least an extra load
instruction under the various strategies described by Viteket al. [Vitek et al. 97]) and it is difficult to test for
commonly occurring classes early if they have (perhaps infrequently occurring) subclasses that branch to
different target nodes.

• In a few systems,N-way switches are implemented using balanced binary search through the integer encodings
of the possible classes [Nakamura et al. 96, Zendra et al. 97]. By taking only logarithmic time rather than linear
time, worst-case dispatching is sped up, but previous systems have not exploited profile data to make expected
time be better than logarithmic. Space costs can also be reduced over linear search or table lookups, if the number
of target nodes is much smaller than the number of possible classes.

None of these techniques dominates all others under all circumstances, and most techniques are the best choice for
some commonly occurring circumstance. Despite this mixed result, previous systems have picked a single
dispatching mechanism and applied it universally to all dispatches in the system.

Our algorithm instead crafts anN-way dispatching code sequence for each node in the lookup DAG individually.
We assume that an object represents its class using an integer value, unique to that class, which we call theclass ID.
The code sequence constructed for an interior node first evaluates the node’s expression, then loads the result
object’s class ID, and then performs anN-way branch through a combination of equality tests (as in linear searches),
less-than tests (as in binary searches), and one-dimensional array lookups, all based on the class ID. Our algorithm
attempts to minimize the expected time to perform theN-way branch, based on the expected cost in cycles of the
different instructions making up the dispatch and the expected frequency distribution of the possible classes, derived
either from dynamic profiles [Grove et al. 95] or simple static estimates. Our algorithm also attempts to balance
speed against space, avoiding choices that incur great space cost with only minimal speed benefit. By customizing
the dispatch implementation to the individual characteristics of each node, we attempt to gain the advantages of most
of the above approaches, often in combination, without suffering their disadvantages. This approach applies to any
dispatch, including traditional single dispatching.

Hyafil and Rivest have shown than constructing an optimal decision tree with arbitrary tests is NP-complete [Hyafil
& Rivest 76]. Hu and Tucker have an O(N log N) algorithm for constructing optimal decision trees using only less-
than tests [Hu & Tucker 71], and optimal decision trees using only equality tests or array lookups are easy to
construct in linear time. Our problem mixing threes kinds of restricted tests lies in between these extremes; we do
not know the whether our problem admits a polynomial-time optimal algorithm.

16

4.1 Class IDs and Frequencies

We assume that each class has a single associated integer class ID, unique over all classes, stored in each object that
is an instance of the class. Our algorithm works correctly for any such assignment, but it will work better if the class
IDs of all subclasses of a class are contiguous. If they are, then a pair of comparison operations can be used to
implement a subclass test cheaply without additional memory operations. For systems with single inheritance, it is
possible to arrange for this contiguity, but for multiple inheritance it is not always possible. In our implementation
in Vortex, we simply assign class IDs to classes in a preorder top-down traversal of the inheritance graph; for tree-
structured subgraphs of the inheritance graph, class IDs are assigned contiguously, but in the parts of the graph with
multiple inheritance, the set of subclasses of a node may have class IDs interleaved with the class IDs of subclasses
of other nodes. Our algorithm will simply produce somewhat larger binary trees if this is the case.

Our algorithm is parameterized by a frequency distributionFrequency:ClassID →Number mapping each class ID
to its expected frequency. The distribution can be derived from dynamic profile data or from some static estimate.
In the absence of dynamic profile data, our implementation uses a static estimate that treats all class IDs leading to
non-error states as equally likely, and class IDs guaranteed to lead to error states as 1000 times less likely than non-
error IDs.

Figure 5 gives an example of a sequence of class IDs, the target lookup DAG nodes (identified by number) for each
class ID, and the relative frequency of each class ID. We will use this as a running example through the rest of this
section.

4.2 Dispatch Tree Construction

The interior node’sN-way branch maps each of theN possible class IDs (the labels on the node’s outgoing edges)
to a target node. Our dispatch tree construction algorithm conceptually partitions this mapping into a set ofintervals.
An interval is a maximal subrange of integer class identifiers[lo.. hi] such that all IDs in the interval map to the
same target state or are undefined (i.e., are not in the set of possible classes for this interior node). The intervals for
the example class IDs and targets are shown at the bottom of Figure 5.

4.2.1 Binary Tree Construction

The first step of our algorithm, shown in Figure 6, constructs a binary tree over intervals, guided by the expected
frequency distribution, in an effort to minimize expected execution time for traversing the binary tree. The resulting
binary tree is either a leaf node containing a target lookup DAG node, or an internal node containing a test and two
subtrees. The test in an internal node is either an equality or less-than test against a fixed class ID.

The heart of the algorithm,buildDispatchSubTree , operates recursively, given a mapping from class IDs to
target lookup DAG nodes (map), a list of the class IDs sorted in decreasing order of frequency (sorted_ids), and
the total frequency of the class IDs in the mapping (frequency). The algorithm checks for three possible cases at
each recursive step:

• If all class IDs map to the same target node, i.e., the map is a single interval, then a leaf node is returned.

• If the most frequent class ID has a relative frequency above some threshold (Threshold, set to 40% in our current
implementation), then an equality test against this ID is constructed, with a subtree constructed recursively for
the remaining IDs if the equality test fails.

• Otherwise, the class ID starting an interval is selected (bypickDivider) that most closely divides execution
frequency in half [Knuth 68]. A less-than test against this ID is constructed, with the left and right subtrees
constructed recursively from the class IDs less-than and greater-than-or-equal-to this ID, respectively. To make
thepickDivider calculations efficient, our implementation maintains an array of intervals for the class IDs

17

in the domain ofmap, with each interval recording the prefix sum of the execution frequencies of all IDs less
than or equal to its high ID.1

This algorithm attempts to blend the strengths of linear searching and binary searching. Linear searching works well
if the execution profile is strongly peaked, while binary searching works well when the profile is flat. When doing
binary searching, by dividing the execution frequencies nearly in half, we hope to balance the weighted expected

1 As an additional case, our implementation also checks for the case where all but one class ID maps to a given target, and the oddball class
ID breaks up the other IDs into two disconnected pieces. In this situation, an equality test for the oddball class ID is constructed, selecting
between two leaf nodes. If this special case were not included, and the oddball class ID wasn’t very frequent, then two less-than tests would
be needed to isolate the three intervals.

Class IDs, Targets, and Frequencies:

Dispatch Tree and Intervals:

Figure 5: Example for Dispatch Tree Construction

Class ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Target 1 2 3 1 4 2 5 6 1 7 8 8 8 8 8 8 8 9 9 9 9 8 8 8 8

Freq. 6 7 7 6 8 8 7 6 8 7 10 11 10 9 500 9 10 10 8 15 17 7 8 15 10

Class ID 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Target 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11

Freq. 1 2 2 1 2 2 100 1 2 2 2 1 1 1 2 1 3 3 3 3 3 3 3 3 3

=14

<21

<10

<17

=0 =6

<2

<5

0 1 2 3 4 5 6 7 8 9 10 .. 16 17 .. 20 21 .. 24 25 .. 40 41 .. 49

=3 <6 =8

<8<3

<41

<25

=31

31

14

18

execution time of traversing the two subtrees and thereby minimize the total expected execution time for the whole
tree.

The time to construct the binary decision tree using our algorithm is O(C2), whereC is the number of possible
classes of the expression being tested.

Figure 5 shows the results of this phase of the algorithm on the running example. In the first call to
buildDispatchSubTree, class ID 14 has more than 40% of the total frequency, and so an equality test is created for
it, and the remaining IDs processed recursively. In the remaining IDs, no single ID has more than 40% of the total
frequency, and so the interval boundary that most evenly divides the remaining execution frequency is identified
(21), a less-than test created at this ID, and the two subranges processed recursively. Within the right subrange, ID
31 now has more than 40% of the frequency within that subrange, and so another equality test is inserted. Binary
tree construction proceeds in this manner, until ranges made up of a single interval are encountered and represented
by leaves in the binary tree.

function buildDispatchTree(n) =
map := { id →target | e ∈ n.edges ∧ ClassID(e.class) = id ∧ e.target = target }
sorted_ids := list of all id ∈ dom(map), sorted in decreasing order ofFrequency(id)

frequency :=

return buildDispatchSubTree(map, sorted_ids, frequency)

function buildDispatchSubTree(map, sorted_ids, frequency) =
if |range(map) | = 1 then

return new leaf(target) where target is single element ofrange(map)
best_id := first id ∈ sorted_ids
if Frequency(best_id) > frequency * Threshold then

best_target := map(best_id)
true_subtree := new leaf(map(best_id))
false_subtree := buildDispatchSubTree(map - {best_id →best_target },

sorted_ids - best_id,
frequency - Frequency(best_id))

return new node(new test(=,best_id), true_subtree, false_subtree)
divide_id, frequency_below, frequency_above := pickDivider(map)
true_subtree := buildDispatchSubTree(map whose domain is restricted to those< divide_id,

sorted_ids restricted to those < divide_id,
frequency_below)

false_subtree := buildDispatchSubTree(map whose domain is restricted to those≥ divide_id,
sorted_ids restricted to those ≥ divide_id,
frequency_above)

return new node(new test(<,divide_id), true_subtree, false_subtree)

function pickDivider(map) =
return id ∈ dom(map), frequency_below, frequency_above such that

id’ ∈ dom(map) is maximum such that id’ < id,
map(id) != map(id’),

frequency_below :=

frequency_above :=

|frequency_below - frequency_above | is minimal

Figure 6: Dispatch Tree Construction Algorithm

Frequency id()
id dom map()∈

∑

Frequency id()
id dom map()∈ id divide_id<,

∑
Frequency id()

id dom map()∈ id divide_id≥,
∑

19

4.2.2 Lookup Array Construction

After constructing the binary tree, our algorithm attempts to find subtrees in the binary tree that are more profitably
represented by array lookups. Any subtree can be replaced by an array lookup leaf node by allocating an array with
index domain equal to[lo..hi] wherelo andhi are the smallest and greatest class IDs handled by that subtree,
filling in the defined array elements with the corresponding target lookup DAG node. (In our implementation, if the
target lookup DAG node is itself a leaf DAG noden holding a target methodn.target , we store the address of
n.target in the array element.)

Our algorithm works bottom-up over the binary tree, computing for each interior node in the tree the expected
traversal time and actual space costs for that subtree when represented as a binary tree and when represented as an
array. The time and space costs are computed based on constants specifying the time and space costs for the various
machine instructions and data space using in the implementation of the subtree, with the frequency distribution
being used to weight different paths through the decision tree. For each node, we make a decision between
implementing the decision as a binary tree or as an array, comparing the expected speedup against the expected space
increase for switching to an array. Our current implementation uses the following comparison, switching to an array-
based implementation if the comparison is true:

In this equation,ttreeandtarray are the expected time to traverse the tree and array, respectively, andstreeandsarray

are the cost in space to represent the tree and array, respectively.frequencyrepresents the sum of the frequencies of
the class IDs tested by the subtree relative to the sum of the frequencies of all class IDs, and it weights the expected
time overhead of trees vs. arrays.space-speed-tradeoff is used to convert overhead in terms of space into equivalent
units of time overhead, representing the balance between the importance of saving time vs. the importance of saving
space. In our implementation,space-speed-tradeoff is 0.15, indicating that an incremental increase in space cost of a
factor ofX is matched by an incremental increase in speed of a factor of 0.15X; speed benefits are nearly 7 times
more important than space costs in our system.

The results of this second phase of the tree-construction algorithm are shown in Figure 5, where the largest subtree
replaced by a single array lookup is circled, for some assumptions about the relative time and space costs of equality
and less-than tests versus array lookups.

This bottom-up postpass over the binary tree constructed by the previous phase, selectively replacing subtrees by
arrays, has the advantage of always improving the implementation of the dispatch tree (under assumptions of
correctness of the time and space estimates) and taking time linear in the size of the original binary tree. However,
it only considers those few subranges of class IDs that correspond to subtrees, and many subranges that could make
better arrays are not considered. Future work includes studying algorithms that better integrate selection of good
array subranges with decision tree construction.

4.3 Comparison with Previous Work

We are not aware of any previous work that blends any combination of linear searching, binary searching, and array
lookups in a single dispatching strategy. All previous work studied a single strategy, applied universally across all
dispatch sites.

Some previous work has used subclass tests in dispatching [Chen et al. 94]. Our algorithm does not use subclass
tests, but instead uses combinations of less-than tests on class IDs to approximate combinations of subclass tests.
Subclass tests appear to require linear time to dispatch over a set ofN subclass tests, while less-than tests can require
only logarithmic time over the set ofM intervals by exploiting binary search.M is at least as big asN, but in our

ttree

tarray
------------- 1– 

  frequency⋅
sarray

stree
------------- 1– 

  space-speed-tradeoff⋅>

20

practical experience, the ratio ofM to N averages less than two, even in the presence of complex multiple inheritance
hierarchies. Additionally, simple comparison tests are significantly faster than subclass tests, and so binary search
over class IDs at least is competitive in performance with and probably much faster than linear search through
subclass tests. Finally, our algorithm can mix in class equality tests to speed the handling of commonly occurring
classes.

Some previous work dispatches on several multimethod arguments simultaneously, including Amielet al.’s
multidimensional matrix lookup scheme [Amiel et al. 94, Dujardin et al. 98] and Kiczales and Rodriguez’s hash
table scheme [Kiczales & Rodriguez 90], while our algorithm only considers compositions of single dispatches. It
would be interesting to see whether there exist cases where it would be profitable to extend our algorithm to support
dispatch nodes that branch on the classes of multiple expressions simultaneously.

5 Experimental Assessment

We implemented our algorithm in the context of the Vortex optimizing compiler for object-oriented languages [Dean
et al. 96, Chambers et al. 96]. Our algorithm can be invoked to construct dispatchers for generic functions for a
variety of static class information and dynamic profile information, but in our current implementation we apply our
algorithm to each generic function once to compute a single dispatching function valid for and shared by all possible
call sites of that generic function. (Our algorithm could alternatively be used to create multiple dispatch functions
for a single generic function, each specialized to different static class information and dynamic profiles and used for
a subset of the possible call sites of the generic function.) We also implement the lookup DAGs and dispatch trees
directly as executable code.1 (Alternatively one could build a data structure representing the lookup DAG and
dispatch trees and then interpret these data structures at run-time, perhaps more compactly but much more slowly.)

In assessing the effectiveness of our algorithm, we are primarily concerned with how well our algorithm performs
in practice on large, real programs. We applied our algorithm to the collection of benchmark programs described in
Table 1.

1 We have implemented translations from the constructed lookup DAGs directly into C or SPARC assembly code and indirectly through
Vortex intermediate code. This last option supports applying Vortex’s optimizations to the dispatch functions themselves, enabling for
example inlining of short callee methods into the dispatching function itself.

Table 1: Benchmarks

Language Benchmark
Size

(app. lines + library lines)
Description

Cecil

instr-sched 2,400 + 10,700 global instruction scheduler

typechecker 20,000 + 10,700 typechecker for old Cecil type system1

tc2 23,500 + 10,700 typechecker for new Cecil type system1

compiler 50,000 + 10,700 old version of Vortex optimizing compiler

Java

cassowary 3,400 + 16,400 incremental constraint solver

toba 3,900 + 16,400 Java-bytecode-to-C translator

java-cup 7,800 + 16,400 parser generator

espresso 13,800 + 16,400 Java compiler2

javac 25,500 + 16,400 Java compiler2

pizza 27,500 + 16,400 Pizza compiler

javadoc 29,000 + 16,400 documentation generator

21

The Cecil programs make heavy use of multiple dispatching and light use of predicate classes; Cecil is the language
supporting the largest subset of the predicate dispatching model in which large benchmark programs are available.
The Java programs use only single dispatching, but the dispatch tree implementation techniques of section 4 apply
to singly dispatched languages as well.

5.1 Lookup DAG Results

Our first experiment studies the structure of lookup DAGs produced for the generic functions in Cecil and Java
programs. We examine only the two largest Cecil and Java programs,compiler and javadoc ; the smaller
programs produced simpler lookup DAGs. For each generic function, we computed the number of methods in the
generic function, the number of tested expressions (dispatched formals and predicate class test expressions) in the
generic function, the number of interior nodes, the number of edges (merging edges with the same source and target
node), and the average (not weighted by frequency) and maximum path length through the lookup DAG to a non-
error leaf node; where sensible, we also computed the total of these values across all generic functions. We simulated
two versions of each program: one where no static class information was available (all type declarations are ignored,
and all classes are assumed possible at all tested expressions, except for predicate class test expressions which are
known to return a boolean) and one where static class information is assumed to be sufficient to ensure that no
message-not-understood errors can occur.

The results for the Cecil benchmark are shown in Table 2. This program has 861 concrete classes (57% of which
had multiple inheritance somewhere in their ancestry) and 6,860 generic functions. Most generic functions are small,
with a couple of methods and typically a single dispatched expression. But some generic functions are quite large
(5 generic functions have more than 100 methods in them) and some generic functions have several dispatched
expressions (312 generic functions have two tested expressions, 63 have three, 11 have four, and three have five
tested expressions). The number of interior states and edges in the constructed DAGs correlates with the structure
of the generic functions; the statically typed versions for small generic functions are simplified by ruling out the
message-not-understood error case. For the more complex generic functions, the average path length is below the
maximum path length, showing benefits for not dispatching on all tested expressions.

1. The two typecheckers are separate pieces of code, using different data structures and algorithms, and were
written by different people
2. The two Java compilers are separate pieces of code, using different data structures and algorithms, and were
written by different people.

Table 2: Lookup DAG Measurements (Cecil)

compiler minimum median average maximum total

of methods per generic function 0 1 1.8 542 12,412

of expressions per generic function 0 1 0.96 5 6,556

dynamically typed # of interior nodes 0 1 1.1 172 7,299

of edges 0 2 3.0 793 20,555

avg. path length 0 1 0.95 4.0

max. path length 0 1 0.96 5

statically typed # of interior nodes 0 0 0.33 167 2,248

of edges 0 0 1.3 616 8,713

avg. path length 0 0 0.22 3.0

max. path length 0 0 0.23 5

22

The results for the Java benchmark are shown in Table 3. This program has 271 concrete classes (57% of which had
multiple inheritance or subtyping from interfaces somewhere in their ancestry) and 3,916 generic functions. From
this data, we conclude that this largest Java program is much less complicated and less object-oriented than the
largest Cecil program; the statically typed version has only 190 generic functions requiring dynamic dispatching in
the whole program.

5.2 Dispatch Tree Results

Our second experiment studies the structure of the dispatch trees produced for the interior nodes in the lookup DAGs
for the Cecil and Java programs. Again, we examine only the two largest Cecil and Java programs,compiler and
javadoc . To compare the effectiveness of our algorithm mixing array lookups, equal tests, and less-than tests
(named=, <, [] in tables) against simpler, less flexible algorithms, we also implemented four restricted versions of
our algorithm, using only array lookups (named[]), only equal tests (implementing linear search as in polymorphic
inline caches [Hölzle et al. 91]) (named=), only less-than tests (implementing binary search as in TWiST
[Nakamura et al. 96] and SmallEiffel [Zendra et al. 97]) (named<), and only equal and less-than tests (implementing
the binary tree subpart of our algorithm from section 4.2.1 without the array replacement subpart from section 4.2.2)
(named=, <). We studied both dynamically and statically typed versions of the Cecil and Java programs. We also
studied deriving class frequency distributions from both dynamic profile data and static estimates.

For each dispatch tree to be constructed, we compute the range of class IDs, the number of mapped class IDs in this
range (ignoring impossible class IDs), the number of intervals, and ratio of the number of intervals to the number of
target nodes mapped by these class IDs. For each of the five construction algorithms (our full algorithm and the four
restrictions), we compute the number of test nodes in the constructed dispatch tree (broken down into the number
of equal, less-than, and array-lookup test nodes in the tree), the size in bytes of the machine code and data to
represent the dispatch tree, and the expected average time cost in cycles for dispatching. We also compute the total
number of the different kinds of tests and the total space cost over all dispatch trees in the program.

The results for the Cecil benchmark are shown in Table 4. In the dynamically typed versions, all expressions
corresponding to predicate class boolean tests have only 2 possible classes, while all formal expressions have all 861
possible classes. The total space cost for the 7299 decision trees (the vast majority of the overall space cost of the
dispatch functions) in the dynamically typed versions is usually near 200KB, but pure linear search consumes over
1MB of space and pure arrays consume over 6MB of space (pure arrays include no compression techniques to
reduce the cost of the arrays; in our system, mixing equal and less-than tests with array lookups supports more

Table 3: Lookup DAG Measurements (Java)

javadoc minimum median average maximum total

of methods per generic function 1 1 1.2 35 3,916

of expressions per generic function 0 1 0.73 1 2,875

dynamically typed # of interior nodes 0 1 0.73 1 2,875

of edges 0 2 1.7 36 6,535

avg. path length 0 1 0.71 1

max. path length 0 1 0.71 1

statically typed # of interior nodes 0 0 0.049 1 190

of edges 0 0 0.26 35 998

avg. path length 0 0 0.024 1

max. path length 0 0 0.024 1

23

Table 4: Dispatch Tree Measurements (Cecil)

compiler minimum median average maximum total

dy
na

m
ic

al
ly

 ty
pe

d

range of class IDs 2 861

count of class IDs 2 861

of intervals 2 3 4.8 585

intervals per target 1 1.5 1.8 9.5

es
tim

at
ed

 p
ro

fil
es

=, < , [] # of = tests 0 2 2.2 17 16,305

of < tests 0 1 1.5 23 10,771

of [] tests 0 0 0.046 4 333

size 2 18 26. 867 192,772

avg. dispatch time1 2.5 10. 9.2 17.

=, < # of = tests 1 2 2.5 237 17,906

of < tests 0 1 1.8 345 12,950

size 2 18 26. 867 192,772

avg. dispatch time 2.5 10. 9.2 17.

= # of = tests 1 3 31. 859 224,545

size 2 18 167. 867 1,217,230

avg. dispatch time 2.5 8.0 8.9 29.

< # of < tests 0 2 3.8 583 27,837

size 2 18 29. 867 211,820

avg. dispatch time 2.5 9.8 10. 17.

dy
na

m
ic

 p
ro

fil
es

=, < , [] # of = tests 0 2 2.5 24 18,218

of < tests 0 1 1.4 22 10,151

of [] tests 0 0 0.42 4 305

size 2 18 26. 867 190,054

avg. dispatch time 2.5 8.5 8.9 17.

=, < # of = tests 1 2 2.8 269 20,364

of < tests 0 1 1.6 325 11,680

size 2 18 26. 867 190,054

avg. dispatch time 2.5 8.5 8.9 17.

= # of = tests 1 3 29. 859 213,553

size 2 18 138. 883 1,008,595

avg. dispatch time 2.5 8.0 8.7 25.

< # of < tests 0 2 3.8 583 27,837

size 2 18 28. 867 205,610

avg. dispatch time 2.5 9.8 10. 17.

[] # of [] tests 1 7299

size 8 867 6,136,676

avg. dispatch time 8.0

24

st
at

ic
al

ly
 ty

pe
d

range of class IDs 2 64 254. 861

count of class IDs 2 8 126. 861

of intervals 2 3 4.7 585

intervals per target 1 1 1.2 8.5

es
tim

at
ed

 p
ro

fil
es

=, < , [] # of = tests 0 1 0.69 5 1,561

of < tests 0 1 1.3 16 2,858

of [] tests 0 0 0.15 4 347

size 2 13 20. 867 44,008

avg. dispatch time 2.5 6.3 6.7 13.

=, < # of = tests 0 1 1.3 237 2,820

of < tests 0 1 2.4 345 5,432

size 2 13 20. 867 44,008

avg. dispatch time 2.5 6.3 6.7 13.

= # of = tests 0 3 81. 859 182,796

size 2 13 139. 867 312,721

avg. dispatch time 2.5 8.0 7.3 22.

< # of < tests 0 2 3.6 583 8,179

size 2 13 20. 867 45,285

avg. dispatch time 2.5 6.6 6.8 13.

dy
na

m
ic

 p
ro

fil
es

=, < , [] # of = tests 0 1 1.4 17 3,084

of < tests 0 1 1.2 16 2,616

of [] tests 0 0 0.15 5 326

size 2 13 21. 867 47,152

avg. dispatch time 2.5 5.8 6.5 12.

=, < # of = tests 0 1 2.3 269 5,094

of < tests 0 1 2.0 325 4,429

size 2 13 21. 867 47,152

avg. dispatch time 2.5 5.8 6.5 12.

= # of = tests 0 3 76. 859 171,456

size 2 16 122. 883 274,916

avg. dispatch time 2.5 7.2 6.9 22.

< # of < tests 0 2 3.6 583 8,179

size 2 13 19. 867 43,322

avg. dispatch time 2.5 6.4 6.7 13.

[] # of [] tests 1 2248

size 8 70 260. 867 584,305

avg. dispatch time 8.0

1. Average dispatch time for versions with estimated profiles uses the estimate, not the dynamic profile, to weight the
cost of the various paths through the decision tree.

Table 4: Dispatch Tree Measurements (Cecil)

compiler minimum median average maximum total

25

selective use of arrays). The total space cost for the 2248 decision trees in the statically typed versions is usually
under 50KB, but again pure linear search and pure arrays perform relatively poorly.

The results for the Java benchmark are shown in Table 5. Java results are similar to Cecil results, but scaled down
reflecting the smaller number of dispatch trees in the benchmark program.

5.3 Performance Results

Our final experiment assesses the bottom-line impact of our dispatching algorithm on the execution speed of all of
our benchmark programs. To gain a realistic estimate of the impact of our optimizations, we first apply all of Vortex’s
aggressive static and profile-guided optimizations to try to optimize dynamic dispatches without recourse to the run-
time dispatching mechanism; only those dispatches that could not otherwise be optimized invoke our generated
dispatch functions. We measure the performance of each of our benchmarks under each of our five construction
algorithms, with static and dynamic typing, and with profile-driven and estimated frequency distributions. As a point
of rough comparison, we also report the performance of Vortex’s existing polymorphic inline cache-based
dispatchers (PICs). Vortex’s PICs have an advantage over our new generated dispatchers by being constructed for
each call site separately, specialized to the classes occurring at run-time at each call site, but they are worse at
handling multiple dispatching and predicate classes than our new generated dispatchers.

The results for the Cecil benchmarks are presented in Table 6, as speed-ups relative to the PIC-based
implementation.1 Our dispatching functions yield speed improvements over the previous PIC strategy (despite PIC’s
advantage in producing call-site-specific, on-line profile-guided dispatchers) of up to 30%, with bigger speed-ups
accruing to bigger programs. (The biggest speed-ups are due in part to the PIC strategy’s poorer handling of multiple
dispatching.) Our flexible dispatching strategy mixing equal, less-than, and array-based lookups generally produces
the best speed-ups, although purely binary search using less-than tests works nearly as well. Linear search using
equal tests performs poorly without dynamic profile information, as expected, but the other techniques are less
dependent on dynamic profile guidance. Purely array-based lookups were worse than the other techniques.
Assuming static type checking had some benefit, particularly in thetc2 benchmark.

The results for the Java benchmarks are presented in Table 7. Some Java programs were relatively unaffected by
switching from PICs to our new dispatching functions (toba , java-cup , pizza , javadoc), some saw
moderate speed-ups (cassowary , espresso), and one saw large speed-ups of around 40% (javac). Unlike the
Cecil results, purely array-based lookups performed competitively with other configurations. Also, assumptions of
static type checking did not help speed dispatch. Caching conflicts must be responsible for certain unexpected slow-
downs, such as the fact that array-based lookups in the dynamically typed model almost always outperformed,
sometimes dramatically, those in the statically typed model, even though the only difference in the two versions is
that the arrays in the statically typed version are smaller.

6 Conclusions and Future Work

We have developed a new algorithm for building message dispatch functions. Our algorithm handles the general
predicate dispatching model, which includes multiple dispatching, predicate classes and similar constructs, and
pattern matching as special cases; our algorithm produces dispatch functions for the special cases of multimethods
and predicate classes that usually are more efficient than previous algorithms tailored for that special case. We have
also developed a new algorithm for implementing a single dispatch that constructs a blend of array lookups, class
equality testing, and class ID less-than testing tailored to the characteristics of each dispatch separately. We have

1 Execution times were measured on UltraSPARC-1/170 workstations with ~200MB RAM, taking the median time of 11 runs of the
benchmark. On this hardware, median times still vary by a few percent, so small differences in computed speed-up should not be considered
significant.

26

Table 5: Dispatch Tree Measurements (Java)

javadoc minimum median average maximum total

dy
na

m
ic

al
ly

 ty
pe

d

range of class IDs 271

count of class IDs 271

of intervals 1 3 3.4 54

intervals per target 1.0 1.5 1.5 2.5

es
tim

at
ed

 p
ro

fil
es

=, < , [] # of = tests 0 1 1.1 7 3,090

of < tests 0 0 0.39 10 1,124

of [] tests 0 0 0.014 2 39

size 3 8 13. 277 36,213

avg. dispatch time 3 5.5 6.2 12.

=, < # of = tests 0 1 1.2 17 3,344

of < tests 0 0 0.55 39 1,593

size 3 8 13. 277 36,213

avg. dispatch time 3 5.5 6.2 12.

= # of = tests 0 1 5.7 270 16,479

size 3 8 30. 277 86,792

avg. dispatch time 3 5.5 6.3 15.

< # of < tests 0 2 2.4 53 7,002

size 3 13 16. 277 46,939

avg. dispatch time 3 7.6 7.7 12.

dy
na

m
ic

 p
ro

fil
es

=, < , [] # of = tests 0 1 1.1 9 3,134

of < tests 0 0 .40 10 1,159

of [] tests 0 0 0.016 3 47

size 3 8 12. 277 35,145

avg. dispatch time 3 5.5 6.2 12.

=, < # of = tests 0 1 1.2 17 3,366

of < tests 0 0 0.55 39 1,576

size 3 8 12. 277 35,145

avg. dispatch time 3 5.5 6.2 12.

= # of = tests 0 1 5.7 270 16,479

size 3 8 30. 287 86,195

avg. dispatch time 3 5.5 6.3 15.

< # of < tests 0 2 2.4 53 7,002

size 3 13 16. 277 45,964

avg. dispatch time 3 7.6 7.7 12.

[] # of [] tests 1 2,875

size 277 796,375

avg. dispatch time 8.0

27

st
at

ic
al

ly
 ty

pe
d

range of class IDs 2 20 48. 271

count of class IDs 2 4 29. 271

of intervals 2 3 6.5 54

intervals per target 1.0 1.0 1.2 2.0

es
tim

at
ed

 p
ro

fil
es

=, < , [] # of = tests 0 1 0.56 2 107

of < tests 0 0 0.57 4 110

of [] tests 0 0 0.29 1 55

size 8 8 24. 277 4,602

avg. dispatch time 5.5 5.5 6.5 9.7

=, < # of = tests 0 1 1.9 13 369

of < tests 0 1 3.4 39 643

size 8 8 24. 277 4,602

avg. dispatch time 5.5 5.5 6.5 9.7

= # of = tests 1 2 23. 270 4,445

size 8 10 36. 277 6,833

avg. dispatch time 5.5 7.5 6.9 12.

< # of < tests 1 2 5.5 53 1,049

size 8 10 25. 277 4,742

avg. dispatch time 5.5 5.7 6.6 9.7

dy
na

m
ic

 p
ro

fil
es

=, < , [] # of = tests 0 1 0.69 4 131

of < tests 0 0 0.74 9 140

of [] tests 0 0 0.32 3 60

size 8 8 22. 242 4,140

avg. dispatch time 5.5 5.5 6.4 9.7

=, < # of = tests 0 1 2.0 13 388

of < tests 0 1 3.3 39 626

size 8 8 22. 242 4,140

avg. dispatch time 5.5 5.5 6.4 9.7

= # of = tests 1 2 23. 270 4,437

size 8 10 36. 287 6,903

avg. dispatch time 5.5 7.0 6.8 12.

< # of < tests 1 2 5.5 53 1,049

size 8 10 23. 277 4,338

avg. dispatch time 5.5 5.7 6.6 9.7

[] # of [] tests 1 190

size 8 26 54. 277 10,216

avg. dispatch time 8

Table 5: Dispatch Tree Measurements (Java)

javadoc minimum median average maximum total

28

assessed our work on a collection of large benchmark programs, using a compiler incorporating a suite of static and
profile-guided message optimizations, to demonstrate the bottom-line impact of our new algorithms.

Our current experiments have studied the problem of constructing a dispatch function given complete knowledge of
each generic function and the program’s whole class hierarchy, as would occur in a link-time whole-program
optimizer or dynamic compiler. In the future we plan to study constructing dispatchers by quickly splicing together
fragments computed from partial views of the program (such as could be done in a separate-compilation-based
environment), to study constructing and adapting dispatching functions on-line as the program runs (exploiting on-
line rather than off-line knowledge of the program’s execution profile), and to study selective specialization of
dispatch functions for the more specific characteristics found at particular call sites. We also wish to rewrite Vortex’s
static optimizations of dynamic dispatches to be guided directly by a lookup DAG constructed for that call site’s
static argument class information instead of its currentad hoc and restricted approach.

Acknowledgments

Michael Ernst in particular but also Craig Kaplan, David Grove, Todd Millstein, Jonathan Nowitz, and Jonathan
Aldrich contributed to this work in early discussions about more general and flexible dispatching algorithms. Vassily
Litvinov provided useful comments on a draft of this paper. Richard Ladner developed several optimal polynomial-

Table 6: Benchmark Performance Measurements (Cecil)

language benchmark version

dynamically typed statically typed

estimated
profiles

dynamic
profiles

estimated
profiles

dynamic
profiles

Cecil instr-sched = , < , [] 1.08 1.09 1.11 1.12

=, < 1.09 1.10 1.06 1.12

= 0.86 1.05 0.94 1.12

< 1.12 1.09 1.09 1.14

[] 1 1.00 1.10

typechecker = , < , [] 1.12 1.12 1.12 1.14

=, < 1.11 1.08 1.11 1.13

= 0.81 0.96 0.81 0.95

< 1.12 1.11 1.11 1.14

[] 1.06 1.10

tc2 = , < , [] 1.13 1.16 1.22 1.23

=, < 1.14 1.17 1.15 1.15

= 0.85 1.10 0.87 1.12

< 1.16 1.18 1.14 1.19

[] 1.08 1.15

compiler = , < , [] 1.28 1.26 1.32 1.29

=, < 1.21 1.28 1.30 1.33

= 0.75 1.26 0.76 1.28

< 1.26 1.27 1.32 1.31

[] 1.16 1.25

1. Profile information has no effect on purely array-based lookups.

29

Table 7: Benchmark Performance Measurements (Java)

language benchmark version

dynamically typed statically typed

estimated
profiles

dynamic
profiles

estimated
profiles

dynamic
profiles

Java cassowary = , < , [] 1.05 1.08 1.07 1.09

=, < 1.08 1.07 1.08 1.08

= 1.06 1.08 1.05 1.07

< 1.09 1.08 1.08 1.09

[] 1.06 1.07

toba = , < , [] 0.97 1.01 0.94 0.93

=, < 0.99 0.98 0.97 0.97

= 0.90 0.93 0.89 0.91

< 0.98 0.99 0.91 0.99

[] 0.95 0.93

java-cup = , < , [] 1.01 1.00 1.07 1.12

=, < 1.01 1.00 1.01 1.13

= 0.97 1.02 0.98 0.96

< 0.97 1.00 1.12 1.07

[] 1.05 0.95

espresso = , < , [] 1.11 1.15 1.08 1.08

=, < 1.14 1.14 1.13 1.12

= 1.07 1.13 1.09 1.14

< 1.12 1.11 1.12 1.12

[] 1.20 1.08

javac = , < , [] 1.40 1.41 1.33 1.36

=, < 1.38 1.39 1.33 1.33

= 1.11 1.30 1.10 1.34

< 1.26 1.26 1.28 1.28

[] 1.45 1.35

pizza = , < , [] 1.05 1.04 1.03 0.95

=, < 1.03 1.05 0.98 1.00

= 0.99 1.01 0.98 1.04

< 1.04 1.04 1.02 1.03

[] 1.07 1.03

javadoc = , < , [] 1.00 1.03 1.01 1.03

=, < 1.01 1.01 1.01 1.03

= 0.97 1.00 0.98 1.01

< 1.01 1.01 1.01 1.01

[] 1.20 1.01

30

time algorithms for restricted cases of the dispatch tree construction problem. Jonathan Bachrach and Wade Holst
discussed with us general issues and techniques for multimethod dispatching.

This research is supported in part by an NSF grant (number CCR-9503741), an NSF Young Investigator Award
(number CCR-9457767), and gifts from Sun Microsystems, IBM, Xerox PARC, Object Technology International,
Edison Design Group, and Pure Software.

References
[Agesen 95] Ole Agesen. The Cartesian Product Algorithm: Simple and Precise Type Inference of Parametric Polymorphism.

In Proceedings ECOOP ’95, Aarhus, Denmark, August 1995. Springer-Verlag.
[Amiel et al. 94] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing Multi-Method Dispatch Using Compressed Dispatch

Tables. InProceedings OOPSLA ’94, pages 244–258, Portland, OR, October 1994.
[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A. Moon. Common Lisp

Object System Specification X3J13.SIGPLAN Notices, 28(Special Issue), September 1988.
[Chambers & Ungar 90] Craig Chambers and David Ungar. Iterative Type Analysis and Extended Message Splitting: Optimiz-

ing Dynamically-Typed Object-Oriented Programs. InProceedings of the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, pages 150–164, June 1990.

[Chambers 92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In O. Lehrmann Madsen, editor,Proceedings
ECOOP ’92, LNCS 615, pages 33–56, Utrecht, The Netherlands, June 1992. Springer-Verlag.

[Chambers 93a] Craig Chambers. The Cecil Language: Specification and Rationale. Technical Report UW-CSE-93-03-05, De-
partment of Computer Science and Engineering. University of Washington, March 1993. Revised, March 1997.

[Chambers 93b] Craig Chambers. Predicate Classes. In O. Nierstrasz, editor,Proceedings ECOOP ’93, LNCS 707, pages 268–
296, Kaiserslautern, Germany, July 1993. Springer-Verlag.

[Chambers et al. 96] Craig Chambers, Jeffrey Dean, and David Grove. Whole-Program Optimization of Object-Oriented Lan-
guages. Technical Report UW-CSE-96-06-02, Department of Computer Science and Engineering. University of Washing-
ton, June 1996.

[Chen et al. 94] Weimin Chen, Volker Turau, and Wolfgang Klas. Efficient Dynamic Look-up Strategy for Multi-Methods. In
M. Tokoro and R. Pareschi, editors,Proceedings ECOOP ’94, LNCS 821, pages 408–431, Bologna, Italy, July 1994.
Springer-Verlag.

[Dean et al. 95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented Programs Using Static Class
Hierarchy Analysis. InProceedings ECOOP ’95, Aarhus, Denmark, August 1995. Springer-Verlag.

[Dean et al. 96] Jeffrey Dean, Greg DeFouw, Dave Grove, Vassily Litvinov, and Craig Chambers. Vortex: An Optimizing Com-
piler for Object-Oriented Languages. InOOPSLA’96 Conference Proceedings, San Jose, CA, October 1996.

[DeFouw et al. 98] Greg DeFouw, David Grove, and Craig Chambers. Fast Interprocedural Class Analysis. InConference
Record of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 222–236, Jan-
uary 1998.

[Driesen et al. 95] Karel Driesen, Urs Hölzle, and Jan Vitek. Message Dispatch on Pipelined Processors. InProceedings
ECOOP ’95, Aarhus, Denmark, August 1995. Springer-Verlag.

[Dujardin 96] Eric Dujardin. Efficient Dispatch of Multimehtods in Constant Time with Dispatch Trees. Technical Report 2892,
INRIA, Rocquencourt, France, 1996.

[Dujardin et al. 98] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for compressed multimethod dispatch table gen-
eration.ACM Transactions on Programming Languages and Systems, 20(1):116–165, January 1998.

[Dussud 89] Patrick H. Dussud. TICLOS: An Implementation of CLOS for the Explorer Family. InProceedings OOPSLA ’89,
pages 215–220, October 1989. Published as ACM SIGPLAN Notices, volume 24, number 10.

[Ernst et al. 98] Michael D. Ernst, Craig S. Kaplan, and Craig Chambers. Predicate Dispatching: A Unified Theory of Dispatch.
In Proceedings ECOOP ’98, Brussels, Belgium, July 1998. Springer-Verlag.

[Fernandez 95] Mary F. Fernandez. Simple and Effective Link-Time Optimization of Modula-3 Programs. InProceedings of
the ACM SIGPLAN ’95 Conference on Programming Language Design and Implementation, pages 103–115, June 1995.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and its Implementation. Addision-
Wesley, Reading, MA, 1983.

[Gosling et al. 96] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification. Addison-Wesley, Reading, MA,
1996.

[Grove et al. 95] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. Profile-Guided Receiver Class Prediction.
In OOPSLA’95 Conference Proceedings, pages 108–123, Austin, TX, October 1995.

[Grove et al. 97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call Graph Construction in Object Oriented

31

Languages. InOOPSLA’97 Conference Proceedings, Atlanta, GA, October 1997.

[Hamer et al. 90] J. Hamer, J.G. Hosking, and W.B. Mugridge. A Method for Integrating Classification Within an Object-Ori-
ented Environment. Technical Report Auckland Computer Science Report No. 48, Department of Computer Science, Uni-
versity of Auckland, October 1990.

[Hölzle et al. 91] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed Object-Oriented Languages
With Polymorphic Inline Caches. In P. America, editor,Proceedings ECOOP ’91, LNCS 512, pages 21–38, Geneva, Swit-
zerland, July 15-19 1991. Springer-Verlag.

[Hu & Tucker 71] T. C. Hu and A. C. Tucker. "Optimal Computer Search Trees and Variable-Length Alphabetical Codes.
SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

[Hudak et al. 92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, Maria Guzman,
Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Re-
port on the Programming Language Haskell, Version 1.2.SIGPLAN Notices, 27(5), May 1992.

[Hyafil & Rivest 76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is NP-complete.Infor-
mation Processing Letters, 5(1):15–17, May 1976.

[Johnson 86] Ralph E. Johnson. Type-Checking Smalltalk. InProceedings OOPSLA ’86, pages 315–321, November 1986.
Published as ACM SIGPLAN Notices, volume 21, number 11.

[Johnson et al. 88] Ralph E. Johnson, Justin O. Graver, and Lawrence W. Zurawski. TS: An Optimizing Compiler for Smalltalk.
In Proceedings OOPSLA ’88, pages 18–26, November 1988. Published as ACM SIGPLAN Notices, volume 23, number
11.

[Kaehler & Krasner 83] Ted Kaehler and Glenn Krasner. LOOM — Large Object-Oriented Memory for Smalltalk-80 Systems.
In G. Krasner, editor,Smalltalk-80 — Bits of History, Words of Advice, chapter 14, pages 251–270. Addison-Wesley, 1983.

[Kiczales & Rodriguez 90] Gregor Kiczales and Luis Rodriguez. Efficient Method Dispatch in PCL. In1990 ACM Conference
on Lisp and Functional Programming, pages 99–105. ACM, ACM Press, June 1990.

[Knuth 68] Donald E. Knuth.The Art of Computer Programming, Volume 3. Addison-Wesley, Reading, Mass., 1968.

[Meyer 92] Bertrand Meyer.Eiffel: the language. Prentice-Hall, 1992.

[Milner et al. 97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of Standard ML (Revised).
MIT Press, Cambridge, MA, 1997.

[Morel & Renvoise 79] Etienne Morel and Claude Renvoise. Global Optimization by Suppression of Partial Redundancies.
Communications of the ACM, 22(2):96–103, February 1979.

[Mugridge et al. 91] Warwick B. Mugridge, John Hamer, and John G. Hosking. Multi-Methods in a Statically-Typed Program-
ming Language. In P. America, editor,Proceedings ECOOP ’91, LNCS 512, pages 307–324, Geneva, Switzerland, July
15-19 1991. Springer-Verlag.

[Nakamura et al. 96] Hiroaki Nakamura, Tamiya Onodera, and Mikio Takeuchi. Message dispatch using binary decision trees.
Technical Report RT0137, IBM Research, Tokyo Research Laboratory, Kanagawa, Japan, March 1, 1996.

[Nelson 91] Greg Nelson.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Plevyak & Chien 94] John Plevyak and Andrew A. Chien. Precise Concrete Type Inference for Object-Oriented Languages.
In Proceedings OOPSLA ’94, pages 324–340, Portland, OR, October 1994.

[Shalit 96] Andrew Shalit, editor.The Dylan Reference Manual. Addison-Wesley, Reading, MA, 1996.

[Steele Jr. 90] Guy L. Steele Jr.Common Lisp: The Language. Digital Press, Bedford, MA, 1990. Second edition.

[Stroustrup 91] Bjarne Stroustrup.The C++ Programming Language (second edition). Addision-Wesley, Reading, MA, 1991.

[Taivalsaari 93] Antero Taivalsaari. Object-oriented programming with modes.Journal of Object-Oriented Programming, pag-
es 25–32, June 1993.

[Vitek et al. 97] Jan Vitek, Nigel Horspool, and Andreas Krall. Efficient Type Inclusion Tests. InProceedings OOPSLA ’97,
Atlanta, GA, October 1997.

[Zendra et al. 97] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient Dynamic Dispatch Without Virtual Func-
tion Tables: The SmallEiffel Compiler. InOOPSLA’97 Conference Proceedings, Atlanta, GA, October 1997.

