
Requirement Speci�cations For Real-Time Communication

�

Sean David Sandys Alan Shaw

Department of Computer Science & Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

fsds,shawg@cs.washington.edu

December 14, 1998

Abstract

Distributed communications are an essential part of many current and proposed real-time sys-

tems. However, no existing requirements speci�cation language provides explicit and general support

for distributed real-time communications (DRTC), most likely because of its diversity and complex-

ity. Through examples, we �rst justify the need for handling DRTC at the speci�cation level; an air

tra�c control application is discussed in some detail. A useful model for DRTC is then presented,

emphasizing real-time requirements and di�erences between DRTC and conventional communica-

tions; these di�erences include time and message constraints, as well as failure and reliability issues.

We then describe our approach to specifying the many kinds of send and receive actions, commu-

nications channels, and message types within a real-time framework. The speci�cation scheme is

currently under development and is an extension of a state machine language that has been used

successfully for some large applications.

1 Introduction

When expressing requirements on the behavior of real-time systems, it is not enough to de�ne the be-

havior of individual components in isolation; it is also important to describe the aggregate behavior of

the system. This includes not only the control and process behavior of the system, but also the commu-

�

The work was supported in part by the Army Research O�ce under grant number DAAH04-94-G-0226.

1

nication and interaction between components. In particular, Distributed Real-Time Communications

(DRTC) has become an essential element in current and proposed systems.

There has been much work in requirements speci�cation languages for real-time systems. Most of

these languages provide abstractions that are primarily process or component centered even if they

handle parallelism and o�er a basic communication facility. However, not much work has been done in

developing general methods for treating DRTC which, because of its diversity and complexity, poses

many challenging, interesting, and di�cult problems. Our contributions are to present the issues in

detail, provide a useful model for DRTC, and de�ne a research framework for DRTC speci�cations,

focusing on state-based methods.

The rest of the paper is organized as follows. Section 2 argues for the importance and variety of

distributed real-time communication by examples. Section 3 presents a model for DRTC. Section 4

surveys current speci�cation methods, examining how these methods support DRTC. Some of our work

on and ideas for achieving a general speci�cation mechanism for DRTC is discussed in Section 5.

2 Examples of Communications in Real-Time Systems

There exist a wide variety of complex computer controlled and monitored systems. Examples of larger

systems are air tra�c management (ATM), highway tra�c control, military command and control,

large medical systems such as radiation therapy equipment, and power generation. Some smaller

| although still complex | systems include medical devices like de�brillators,
ight management,

automobile control, and building monitoring and control.

Although these systems range from large loosely coupled multi-component systems to smaller tightly

coupled systems with fewer components, they do have a variety of features in common. They are all

distributed and they exhibit a diverse communication style, not only across systems but sometimes

even within a single system. These applications all have real-time constraints on their behavior and

the constraints also exist on communication. Finally, there is a growing number of these systems, and

they are becoming ubiquitous.

2

2.1 A Comprehensive Example: Air Tra�c Management Systems

We present an example of an air tra�c management system (ATM) to illustrate the variety of commu-

nication styles present in real-time systems. ATM systems were selected as an example for a number

of reasons. First, they are an important, widely known, and di�cult application [15]. Second, they

also contain examples of virtually every known communication styles. Finally, it is an application with

which we have some knowledge and experience, based on a recent safety study supported by NASA

[10] and several years of using these systems in research and educational exercises.

Overview of ATMs. Although there are many air tra�c management systems, the ATMs that are

outlined here are those that monitor aircraft
ying in United States airspace. Figure 1 shows the basic

control points in the U.S. air tra�c control environment. U.S. airspace is divided into volumes called

sectors. If a plane is
ying in a controlled airspace, there is a single air tra�c controller responsible

for that aircraft. As aircraft pass from one sector to another, control of that aircraft passes from

one controller to another. The sectors near airports are called Terminal Radar Approach Control

(TRACON) sectors; here, the air tra�c controller directs tra�c to the tower for landing and away

from the tower to En Route sectors after takeo�.

The main goals of these systems are safety, e�ciency, and performance. We want to avoid collisions

and other hazards. In order to accomplish this goal, air tra�c controllers need to maintain aircraft

separation, as well as avoid weather hazards, natural obstacles and restricted airspace. With respect to

e�ciency and performance, air tra�c controllers would like to maximize airspace capacity and airport

throughput, and minimize aircraft delays, while minimizing fuel consumption.

Distributed Communications in ATMs. At each individual center, there may be a conventional

distributed system with workstations and servers, running a set of di�erent processes that exchange

information. There are also many forms of communication between centers. For instance, when an

aircraft passes from one sector to another, control of the aircraft is passed from one air tra�c controller

to another. This hand-o� procedure, whether automated or manual, requires one-to-one, synchronous

communication with strict time deadlines. Proposed changes in ATM systems include the ability for

controllers to send
ight plans directly from ground ATM systems to
ight management systems on-

3

TRACON

On-Ground

Computers
Control Tower

En Route Control

Control Tower
Computers

Communications Satellites
GPS

On-Ground Control

TRACON Control

Radars

Figure 1: A simple view of the various components and control points in modern air tra�c control

board aircraft. Radar will be augmented by aircraft that can report their position | determined

through broadcast communication with global positioning systems { directly to ground control. An-

other interesting communications aspect of the system is that many of the components in the system

are mobile.

As illustrated by the ATM example, real-time systems can exhibit a wide variety of communication

styles and many of the communication instances have real-time constraints. In our view, a speci�cation

language should provide abstractions that support the description of all forms of DRTC.

3 Communications Model

We present a model of real-time communication that is useful for expressing requirements. Our concern

is not necessarily with particular protocols or individual physical interconnects between components;

it is with the requirements on how various components exchange information.

For these purposes, several elements of communicating components are identi�ed (Figure 2). Each

4

communication involves a sending process P

s

, and one or more receiving process(es) P

r

, which determine

or specify what information is exchanged. Each process also has an interface between the process and

the channel, pcI

s

and pcI

r

, which acts as a layer between the communicant and the transmission

medium. Finally, the channels C

s

and C

r

describe the mediums over which information is passed.

C

s

and C

r

represent logical channels of communication. When implemented, these channels may be

realized by the same physical channel, but they still could have di�erent logical properties depending

on the requirements imposed by the sender and receiver.

P
s

P
r

CC

s

s r

r
pcI pcI

Figure 2: The Participants in inter-component communication

3.1 Characteristics of DRTC

There are a few distinctions between DRTC and conventional distributed communication. It is these

distinctions that make the speci�cation of DRTC a particularly di�cult problem.

One main characteristic of DRTC is the existence of timing constraints and timing properties. The

most basic constraints are timing restrictions on the end-to-end path:

P

s

! pcI

s

! C

s

! C

r

! pcI

r

! P

r

These end-to-end constraints are most often expressed as worst case deadlines on the time from P

s

to

P

r

. It is also possible to have constraints on the minimum time allowed to transmit information along

that path, for example, to prevent the overloading of the receiving component.

The timing properties of channels usually are expressed by bounds on the time for accepting and

moving information across the channel, speci�cally, propagation delays and bandwidth. In the case of

5

process-channel interfaces and processes, we can look at the overhead that the interface or the process

adds to communication. In many systems, we �nd processes that are mobile or can migrate. Here, the

bounds on the channel are not solely a product of the medium but also a function of the location of

the processes.

It is also useful sometimes to talk about message priority and quality of service. For example,

missing a deadline may not be a failure as long as a certain percentage of our deadlines are met. In

this case, a failure is not determined by a simple local decision but is instead based on the history of

system behavior.

Failures and reliability issues are also integral to DRTC. From the perspective of a receiver, possible

failure modes include:

1. received a message not intended for this process.

2. did not receive a message intended for this process.

3. received a message but data is incorrect/corrupt.

4. received a message but message violates some constraints (real-time message deadlines, wrong

message size, . . .)

A third distinctive component of DRTC is the nature of the message contents. Time-stamping of

messages is often needed when writing requirements in order to specify behavior that is based on the

age of the data being used as well as to allow system decisions about data validity. Time stamping

may occur not only on a message send but also on a message receipt; given a single time stamp on

receipt and constraints on maximum transmission time, it is possible to place conservative bounds on

the time the message was sent. Placing bounds on message size may be necessary. It may be useful to

have typed messages. Messages with no value, sometimes called signals, are also convenient.

It is convenient to distinguish between event and state messages. Event messages have semantics

close to those of message passing systems, while state message have semantics similar to those of shared

memory system with the exception that writes are atomic and there is a single sender [9].

6

3.2 A Brief Taxonomy of DRTC

The taxonomy that we use is similar to that given for conventional distributed communication [1]. The

classi�cation is divided into three categories: Properties of the sending side, the receiving side, and the

communication channel. The properties of the sending and receiving side will include the properties of

both their respective components (P

s

; P

r

) and interfaces (pcI

s

; pcI

r

).

We distinguish between blocking (synchronous with the corresponding receive) and non-blocking

sends. A send can be either directed where the destination(s) of the send are known, or undirected

where the receiver or destination is not known. Additionally, sends may be parameterized by the

number of recipients of the message, i.e. whether the send is a unicast, multicast, or broadcast.

Examples: Synchronous sends include commands for immediate action where the sender needs assur-

ance that the message was received; e.g., activating a brake or closing a value. These examples are also

suited as directed sends to a single destination (unicast) . Non-blocking sends include some continuous

service providers, e.g. a process sending reactor temperatures or a radar reporting aircraft positions. A

process sending aircraft positions to any number of ground stations could use an undirected, broadcast

mechanism to send this information.

The taxonomy for receives is slightly di�erent to that for sends. They can be either blocking, non-

blocking, or synchronous. Blocking implies that the receiver blocks until the receive gets a message.

A non-blocking receive is one that returns immediately, either with the message (if it is available) or

an indicator that no message was present. A synchronous receive is a receive that is matched with a

blocking send.

Receives can also be directed or undirected. An undirected receive implies the destination compo-

nent does not know from which component it expects a message, directed receive means the sender is

known beforehand. Instances of real-time interfaces also include ports and mailboxes.

Examples: The real-time send examples have counterparts in real-time receives. A server may block

for a new command or request for service (an undirected and blocking receive), or a process may poll

periodically for information from a bank of sensors.

7

A channel can be viewed from both the perspective of the sender or the receiver. There can be

unicast, multicast, or broadcast channels, as well as uni-directional or bi-directional. Probably the most

interesting parameterizations of channels for DRTC their timing properties. This includes bounds on

propagation delay and bandwidth.

3.3 Compatibility Constraints

The elements of the classi�cation described in the previous sections are not completely independent.

Although one must combine features to describe a communication system, it is not possible to combine

features arbitrarily. For example, a synchronous send needs to be matched with a synchronous receive,

and a non-blocking send is compatible only with either a non-blocking or a blocking receive. Another

area where compatibility is an issue is channels. A channel's propagation delay needs to be compatible

with the message deadlines imposed by the receiver. Some of these compatibility constraints, e.g.

matching synchronous sends with synchronous receives), can be enforced, by a speci�cation language,

syntactically. Others, such as the channel compatibility requirements mentioned above, would need

some analysis to verify.

4 A Short Survey of Current Methods

Our discussion will be restricted to state-machine and programming language-based requirements lan-

guages. In particular, we are not covering assertional logic methods, algebraic schemes, or Petri net

based notations. First these systems are examined with respect to their general communication facili-

ties; then DRTC support is covered.

4.1 Communications Mechanisms in Current Speci�cation Schemes

Three classes of languages are presented: CSP-based, state machine, and other programming language

methods. Communication in CSP is done over typed 1-1 channels; sends and receives are both syn-

chronous. Most examples of CSP communication are used in a programming language framework to the

describe the behavior of systems. Examples of languages with a CSP style of communication includes

CSP [8], timed CSP [16], CRSMs [18], CSRs [5] and LOTOS [4].

8

Communication in most state-machine based languages occurs through the use of messages or

events. Messages are mainly broadcast and often the communication is implicit. These schemes tend

to use the same mechanism for exchanging intra-component information as they use for exchanging

inter-component information. As such, it is not clear that communication in these systems can be

distributed | the style is more akin to shared memory. Systems that �t in this category include:

Statecharts [6, 7], RSML [11], SpecTRM-RL [12], and ROOM [17]. SpecTRM-RL does not use events

as the basis for communication | it has state message semantics. However, its limitations are similar

to those discussed above for other state-machine based systems.

Among these systems, ROOM is the only one o�ering more than one explicit communication ab-

straction. It supports both synchronous (blocking) and asynchronous (non-blocking) communication.

In ROOM, communication is based on message passing. Messages can be typed as well as have priorities

associated with them.

Our third category of schemes include Esterel [2], Spec [3], and PSDL [13]. Communication

in Esterel is done through signals (messages with no values). All sends are explicit through an

emit command. Esterel uses non-blocking, broadcast sends and blocking receives. The Spec and PSDL

languages are designed for distributed systems. They support typed message passing with either single-

bu�ered event messages or sampled state messages. Component objects, called operators, are described

by state machines and can be de�ned with many timing and other constraints. Message declarations

for both inputs and outputs appear in operator interface declarations, but the possible communication

abstractions are unspeci�ed.

4.2 Special DRTC Features

In Section 3.1, we described a set of features particular to DRTC. In this section, we discuss the various

levels of support that di�erent systems listed in the last section provide for DRTC.

Timing Facilities. Almost all the systems permit the expression of timing constraints, indirectly

through the use of timeouts at either the send or receive end of the communication. CRSMs also have

direct support for timing constraints on communication, it is possible to express both lower and upper

bounds on state transitions. This makes it possible to specify more detailed bounds on communication

9

in these systems.

Failure Detection and Handling. If a failure can be expressed as a timeout, it is then possible

to de�ne failure mode behavior based on the occurrence of that timeout. However, explicit and more

direct support for failure detection and handling does not exist in any system.

Message Properties. With the exception of Spec, none of the systems in this survey provide auto-

matic time stamping of messages. Without timestamps it may be possible for a receiver to determine

data age, for example, through the use of timeouts and channel properties; however, these methods

are awkward and approximate. Two of these systems, Statecharts and CSR, lack direct mechanisms

for passing message data; they communicate using signals with no data.

As noted above, all the schemes except one use at most one communications method. To describe

an unsupported type of communication, it is necessary to build other abstractions from scratch or

simulate them. Abstractions for DRTC are almost non-existent, and many languages have only implicit

communication. In general, distributed real-time communication is not fully supported or developed

in any existing scheme.

5 Towards a Speci�cation Framework For DRTC

There is an important distinction to be made between an implementation and a requirements speci-

�cation. One purpose of a speci�cation is to provide a high-level de�nition for a class of acceptable

system behaviors. This description can then be evaluated using a variety of di�erent criteria. This

di�ers from an implementation which details a particular behavior that must satisfy the speci�cation.

One of our goals is to develop abstractions for communication that operate at an appropriate level for

speci�cation. We are not interested in providing a mechanism for describing communication protocols

(e.g. FDDI) but rather a framework for describing a class of communication behaviors that a set of

components need to satisfy for system correctness, regardless of which protocol will eventually be used.

10

5.1 Language Support for DRTC

The goal is to produce a language that supports the features of DRTC described in Section 3. A

general speci�cation language should exhibit a number of properties. It should aid the writing and the

understanding of a speci�cation. The language should support DRTC explicitly; it is not enough to just

provide the ability to express communication implicitly. Speci�cation documents are not written by

computer scientists but by engineers with domain speci�c expertise. With that in mind, it is important

to design speci�cation languages for the applications engineer and requirements writer in mind and to

provide abstractions that are useful to them.

Composability is another key feature of a good speci�cation system. The facility to e�ectively

combine and reuse components naturally is important, especially when systems are upgraded and

requirements evolve. Additionally, it is essential that a requirements language have a well understood

formal basis. This make is possible to simulate a speci�cation as well as allow the development and

use of both automated and semi-automated analysis techniques.

5.1.1 Overview of SpecTRM-RL

The basis for our research is RSML and its successor SpecTRM-RL. SpecTRM-RL is a state-based

speci�cation language that is currently under development as part of a CAD system for digital automa-

tion [12]. We made this choice because of our familiarity with the language and its associated tools.

1

In addition, this family of languages has been used to specify a number of large systems [10, 11, 14].

A SpecTRM-RL description of a system consists of a set of components. It is possible to de�ne two

types of components corresponding to a standard model of control process systems shown in Figure 3:

� Control Components: These specify the computer systems that provide monitoring and control.

� Process Components: These describe the process being controlled.

The control and process components represent \templates" that provide a framework for the spec-

i�cation writer. Both of these templates give de�nitions for Inputs, Outputs, and a State Model.

In addition, control components are augmented with de�nitions for both Operating Modes and

1

As one of the developers of the SpecTRM toolkit, Sandys built a simulator for SpecTRM-RL.

11

Control Component

Process Component

Inputs
(From Actuators)
Output

(From Sensors)

Process Model
Controlled

Figure 3: A control-theorist view of control systems

a Controlled Process Model. Requirements are then expressed as hierarchical state machines,

where the Outputs, State Model, Operating Modes, and Controlled Process Model all

form parallel state machines.

Communication occurs implicitly using state messages. In general, the state of one component is

not directly visible in another component. Communication between two components can currently be

understood in two steps:

1. Any data (state information) that a component wants to be visible (sent) to other components

needs to be a part of the Outputs state hierarchy.

2. Inputs for a destination component C are just a mapping from a state in the Outputs state

hierarchy of the source component, to a local name in C.

In the next section, we illustrate SpecTRM-RL and some ideas on DRTC extensions through an

example.

5.1.2 Extensions: Rod Controller Example

The application is a rod controller, the computer control component that commands a rod inside a

nuclear reactor to move up { to slow down the reaction, or down { to speed up the reaction, based

on the temperature inside the reactor. The communication is illustrated in Figure 4, where the rod

12

controller is sending commands to the rod in the reactor and is receiving updates from a sensor.

Rod Controller

R
O
D

commands to rod

readings from
sensor

Reactor
Sensor

Figure 4: Communication Diagram for the Reactor System

In Figure 5, we present a partial speci�cation in a variant of SpecTRM-RL of a simple version of

a rod controller for a reactor system. In this speci�cation, the Operating Modes, State Model,

Controlled Process Model, and Outputs are simple hierarchical state machines, and Inputs

describes a mapping from a numeric value in the Sensor component to a local name in the RodController

component.

Rod_Status

Stationary

Moving_Up Moving_Down

Rod_Down

Rod_Up

Rod_Level Rod_Unknown

Rod_Position

Rod_Position_Known

RodController

State ModelInputs

Temperature from Sensor.Temp

Operating Modes

On Off Stand By Shutdown

Outputs

Rod_Command

Move Up Move Down

Temp_UnknownTemp_OK

Temp_LowTemp_High

Controlled Process Model

Figure 5: Partial Speci�cation of a Rod Controller

13

The abstraction that we are going to use to specify communication is an interface de�nition. By

carefully de�ning an interface scheme it should be possible to express a complete range of styles and

constraints. Our interface de�nitions contain the properties of all three elements of our communication

model, i.e. the process, the process-channel interface, and the channel. Figure 6 and Figure 7 are

examples of input and output interfaces for the rod controller.

There are two parts to the output interface (Figure 6), a condition and a communication de�nition.

In most state-based languages, each transition has some enabling condition that can lead to a state

change. A similar mechanism is needed for indicating the potential start or end of a send or receive.

These conditions are speci�ed using an and-or table, where if any of the columns evaluate to true, the

table evaluates to true. The second part of the interface de�nes the communication itself. The output

interface for the rod controller describes a single output: a send of the message Rod Command to the

rod component. This send is a blocking, directed, unicast send. The minimum response time for this

send is 0 seconds; the maximum response time is 10 seconds; i.e. after the enabling condition becomes

true, a rendezvous occurs within the bounds [0; 10].

Output Interface Name: Issue-Command

Value: Rod Command

Destination: Rod (* directed and unicast *)

Send Type: Blocking

Minimum Response Time: 0 seconds

Maximum Response Time: 10 seconds

Condition:

A

N

D

OR

In (Rod Status.Stationary) � T �

In (Temp Ok) � F �

In (Off) � F �

In (Shutdown) � � F

In (Standby) T � �

Figure 6: Output Interface De�nitions for the Rod Controller

The input interface (Figure 7) de�nes how the rod controller receives information from the sensor.

14

This receive is a non-blocking, directed receive. A condition is used to de�ne how often the receive is

polled; in this case the interface is polled every 10 seconds. Here, Poll is a predicate that returns true

when the interface is being polled. There are also data constraints; this example has a time constraint

on the maximum age of the data read which can be determined by a time stamp. Other possible data

constraints are value range and granularity, as well as value type.

Input Interface Name: Read-Temperature

Value: Temperature

Source: Sensor

Receive Type: Non-Blocking

Data Constraints:

Maximum Age: 20 seconds

Condition:

Duration(Not(Poll(Read-Temperature))) > 10s) T

Figure 7: Input Interface De�nitions for the Rod Controller

Note that the sensor can be a distributed component with decision making. The internal behavior

of the sensor would then be described by a component de�nition. This interface describes how the

Rod-Controller communicates with the Sensor without describing its internal behavior.

5.2 Research Issues

The last section outlined a DRTC addition to a state-based language, using the idea of a component

interface containing an enabling condition or trigger and a communication de�nition for each input

and output. We have started developing this idea and various research issues remain.

First, the elements of the interfaces need to be de�ned more precisely, particularly the options

related to timing and data constraints. The interface de�nitions will lead to additional predicates (e.g.

the Poll predicate used in the input interface), and other mechanisms may be necessary to allow the

interface and component speci�cations to interact.

15

A major problem is to describe the semantics of the DRTC interface de�nitions in combination with

the semantics of SpecTRM-RL, possibly in terms of a conventional state machine or a well understood

operational scheme. This is necessary to perform any formal analysis of a speci�cation, either manual

or automated, and in order to simulate or execute a speci�cation.

The role of time needs to be handled carefully. One appealing approach is to use the synchrony hy-

pothesis [2] (zero time transitions) for the conventional component state machines, with time increasing

only as a result of explicit timing statements or communication.

Much work and testing is necessary to determine the expressiveness, completeness, and convenience

of the notation, no doubt resulting in many changes. The goal is to produce a language that meets the

conditions of section 5.1.

6 Conclusions

This work has several themes and contributions. We have argued that distributed communications in

all its diversity is an essential and complex part of real-time systems. It has been further noted that

languages for requirements have emphasized the description of components but have provided little

support for distributed real-time communication (DRTC). Our principal contributions are to de�ne a

useful model for examining DRTC requirements and to outline a speci�cation approach that handles

the full generality of DRTC features within a state-based notation.

Acknowledgements

We would like to thank Jon Damon Reese for his helpful discussions and his for comments on earlier

drafts of this paper.

References

[1] Andrews, G. R. Concurrent Programming - Principles and Practice. Benjamin/Cummings,

Redwood City, CA, 1991.

16

[2] Berry, G., and Georges, G. The esterel synchronous programming language: design, se-

mantics and implementation. Science of Computer Programming 19, 87-152 (1992).

[3] Berzins, V., and Luqi. Software Engineering with Abstractions. Addison-Wesley, Reading,

Massachucetts, 1991.

[4] Bolgnesi, T., and Brinksma, E. Introduction to the ISO speci�cation language LOTOS.

Computer Networks and ISDN systems 14 (1987), 25{59.

[5] Gerber, R., and Lee, I. A layered approach to automating the veri�cation of real-time systems.

IEEE Transactions on Software Engineering 19, 9 (September 1992), 768{784.

[6] Harel, D. Statecharts: A visual formalism for complex systems. Science of Computer Program-

ming, 8 (1987), 231{274.

[7] Harel, D., and Naamad, A. The statemate semantics of statecharts. ACM Transactions on

Software Engineering and Methodology 5, 4 (October 1996), 293{333.

[8] Hoare, C. A. R. Communication sequential processes. Communication of the ACM 21, 8 (August

1978), 666{677.

[9] Kopetz, H. Real-Time Systems, Design Principles for Distributed Embedded Applications. Kluwer

Academic Publisher, Boston, 1997.

[10] Leveson, N., Alfaro, L., Alvarado, C., Brown, M., Hunt, E. B., Jaffe, M., Joslyn,

S., Pinnel, D., Reese, J., Samarziya, J., Sandys, S., Shaw, A., and Zabinsky, Z. Demon-

stration of a safety analysis on a complex system. In Software Engineering Laboratory Workshop

(December 1997), NASA Goddard.

[11] Leveson, N. G., Heimdahl, M. P. E., Hildreth, H., and Reese, J. D. Requirements

speci�cation for process-control systems. IEEE Transactions on Software Engineering (September

1994), 684{707.

[12] Leveson, N. G., Reese, J. D., and Heimdahl, M. SpecTRM: A cad system for digital

automation. In Digital Avionics System Conference (November 1998).

17

[13] Luqi. Computer-aided prototyping for a command-and-control system using caps. IEEE Software

(January 1992), 56{67.

[14] Modugno, F., Leveson, N. G., Reese, J. D., Partridge, K., and Sandys, S. Integrated

safety analysis of requirements speci�cations. In IEEE International Symposium on Requirements

Engineering (1997), pp. 148{159.

[15] Perry, T. In search of the future of air tra�c control. IEEE Spectrum (August 1997), 18{35.

[16] Reed, G., and Roscoe, A. A timed model for communicating sequential processes. In Interna-

tional Colloquium on Automata, Languages and Programming (1986), Springer-Verlag, pp. 314{

323.

[17] Selic, B., Gullekson, G., and Ward, P. T. Real-Time Object-Oriented Modeling. John

Wiley & Sons, Inc., New York, 1994.

[18] Shaw, A. C. Communicating real-time state machines. IEEE Transactions on Software Engi-

neering 18, 9 (September 1992), 805{816.

18

