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Abstract

Accurate estimates of the ordering and positioning of DNAkees (probes) on a chro-
mosome are valuable tools used, for example, to help rdsmarésolate genetic factors in
diseases. One such mapping technique, called fluoreiscgtt hybridization (FISH), obtains
approximate pairwise distance measurements betweenspoobe chromosome. We have de-
veloped two algorithms for computing least squares estisat the ordering and positions of
the probes: a branch and bound algorithm and a local seagohitam motivated by gradient
descent. Simulations demonstrate the effectiveness difrttreeh and bound pruning heuristic
and show that the local search algorithm is usually fast aedrate. The branch and bound
algorithm is able to solve to optimality problems of 18 prelieabout an hour, visiting about
10% nodes out of a search spacel6t® nodes. The local search algorithm usually was able to
find the global minimum of problems of 18 probes in about a i@nWe also investigate (via
simulation) the accuracy with which maps can be construitted FISH data.

1 Introduction

The problem of mapping genetic information has been thesstibf extensive research since
experimenters started breeding fruit flies for physicaratieristics. The goal is to determine
information about the sequence of DNA in chromosomes. Hfigiination is valuable in areas
such as determining genetic causes or predispositionsséasks. For a particular disease,
DNA structure information can be used to isolate defectagspin a chromosome, hopefully
allowing researchers to develop techniques to treat orepiethe disease. The chromosome
is a long chain molecule curving in three dimensions insidell Due to the small scale of
chromosomes, it has been difficult to obtain accurate inddion on their structure. Many
techniques relying on statistical inference of indirectadaave been applied to deduce this
information. Some examples are in [Bishop 94].
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1 INTRODUCTION

Van den Engh and Trask of University of Washington's Molac@liotechnology depart-
ment have developed a technique for obtaining estimatesiative DNA sequence positions
called fluorescernin situ hybridization (FISH)[van den Engh 92]. In this techniqueglges are
hybridized (attached) to different sites in the chromosopamal colored. A measurement be-
tween a pair of probes is made by measuring the distance &etive probes projected onto a
plane. If the experiment is repeated in many cells, the gémdistance can be estimated. In
[van den Engh 92], they propose that the distance betweetwtherobes follows a random
walk model, and they provide a distribution of the probapitif measuring a given physi-
cal distance R, between two probes given the actual number of genomic [iiles distance
between the two probes on a chromosome in DNA base pairsgparating the two probes:
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In Equation 1,L is a constant representing the average projected lengthsioigée ge-
nomic link. The measurements between multiple pairs of ggaln a chromosome can be
summarized as a matrix. In general, this matrix will be inptete since not all pairwise
measurements are made. The problem is thus:

Problem: Given an incomplete matrix of pairwise measurements betyweebes, determine
the best estimate as to the ordering and position of the probe line.

This problem is known to be NP-hard.

A solution should provide the correct ordering and reaskengbsition information. In
this domain, “reasonable” might mean accurate to within E@¥%ording to some measure of
similarity. One factor limiting the accuracy of any solutis the high variance of Equation 1.
Higher order structural elements in the chromosome canaaldonoise to Equation 1. The
effect of such structural elements is not known. Accuracy aiso be limited by the difficulty
of incorporating other physical or genetic mapping infotisraabout ordering and placement
into this framework. Examples of other information inclualéechnique to determine which
probe of two probes is closer to a particular end of the chswmee (resolution is about five
times worse than FISH), and a technique that places protiebamds (subdivisions of a chro-
mosome visible under a microscope; resolution is aboutré@giworse than FISH). Given
these sources of inaccuracy, any solution to this problesualdtinclude a list of the top order-
ings deemed most likely.

1.1 Previous Work

Brian Pinkerton previously investigated solving this pesh using the seriation algorithm of
[Buetow 87], and a branch and bound algorithm (personal conication, 6/96). The seriation
algorithm, which is a local search algorithm, was only matidy effective. The branch and
bound algorithm, using a simple bounding function, was é&bksolve problems involving up
to about 16 probes.

There has been extensive work on other algorithms to solwe gepping problems, but
they are based on distance estimates from techniques btreiFISH. The other algorithms
are tailored to the particular statistical properties ef distance measurements.



1.2 Work Presented in This Paper

One example is the distance geometry algorithm of [Newgll 8&sed on recombination
frequency data. Another example is [Boehnke 91], whichstigated branch and bound, sim-
ulated annealing, and maximum likelihood algorithms basediata from radiation hybrid

mapping.

1.2 Work Presented in This Paper

In this work, we chose a sum of squares cost function to etalddferent probe orderings
and positions. From this model, we develop and examine tfleet®eness of a branch and
bound and a local search technique. The branch and boundttagsearches through a tree
of all possible probe orderings. For each probe ordering,ostimal (in the least-squares
sense) positions of the probes are determined. We develimusaruning heuristics, extend-
ing the work of Brian Pinkerton by implementing a more cormgiéd pruning heuristic. We
also develop a local search algorithm motivated by gradiestent, and demonstrate that it
outperforms the branch and bound algorithms in executioe,teand is competitive with the
branch and bound algorithm in quality of solution producedrahe data sets we examine.
Exact solutions via branch and bound are feasible up to ab®ytrobes. Local search can
usually give optimal solutions within about a minute for gleim sizes up to 18 probes, which
was the maximize size we could verify with branch and bound.a(problem size of 50, it
produced an answer in about 15 minutes, but at that size @rigpatationally infeasible to
verify the optimality of the solution with the branch and bdualgorithm.

In the first section of the paper (Section 2) we describe thepeer science aspects of the
problem. Section 3 develops a cost function to evaluatdisoki Sections 4 and 5 outline the
branch and bound algorithm, and in Section 6 we describeotiad $earch algorithm. We then
present the results of simulations of the two algorithmsenot®n 7. Finally, we conclude and
offer suggestions for future work.

2 Description of the Problem Domain

2.1 |Initial Data Processing

The data returned by the FISH process is in the form of a phlydistance between two probes,
measured in micrometers. This physical distance is thdtreSmeasuring the distance be-

tween the two probes under a microscope. We are searchitigefgenomic distance between
the two probes which measures the number of base pairs sagahem on the chromosome.

Given the physical pairwise distance measurements, thetffis is to convert these measure-
ments into estimates of the genomic distance between prdlbesgenomic distances, rather
than the physical distance will be used when computing orgsrand positions of probes.

[van den Engh 92] provides an equation relating the expegikee of the measurements be-
tween a pair of probegR), to the genomic distance, between the probes:

(R) = /0 T AP(A)dA = Ly

where P is probability distribution of Equation 1. Thus, an approstion of the genomic
distance between the probes is:



2 DESCRIPTION OF THE PROBLEM DOMAIN

n="R /L )

whereR is the average of the measurements between a pair of prabesiot clear from the
distribution of Equation 1 whether, given a fixed number obm@ements between a pair of
probes, the: returned by Equation 2 is the best estimator of the genorstanite between the
pair. It would be interesting to investigate other estimatd» that may be more accurate. The
maximum likelihood estimator is one possibility. An invgstion of the maximum likelihood
estimators is beyond the scope of this paper.

Equation 2 is used to convert all physical distance measemesinto estimates of genomic
distance. For the rest of this paper, the “distance” betwwerprobes will refer to the genomic
distance between the probes.

2.2 Introduction to the Solution Space

Before explaining the development of the algorithms, itéfpful to gain some intuition about
the solution space. Given that the data is both noisy andriptate, the problem can be under-
constrained and/or over-constrained. In this domain, astaint” refers to a measurement
between two probes (since it constrains the placement qirtitzes).

An under-constrained problem instance is one in which agmight not have enough
measurements to other probes to uniquely determine itdgmasin the example of four probes
in Figure 1, probeB has only one measurement to prabeand so a location on either side of
probe A is consistent with the data. It is also important to note thatl solutions, left/right
orientation is arbitrary as is the absolute probe position.

B— C—D

Figure 1: An example of an under-constrained ordering (Pfban be placed on either side of probe
A). Aline between two probes indicates a measurement between the probes.

In a more extreme example, a set of probes could have no nesasnts to another set. In
Figure 2, probest and B have no measurements to prolééand D, and placement anywhere
relative to probeg’ and D is consistent with the data.

77N 77N
A B G P @ ACED
Figure 2: Another example of an under-constrained ordering

In the examples of Figures 1 and 2, not only are the positiohsmquely determined, but
different orderings are possible. When developing seagtrithms, we have to be careful



to recognize and treat such cases correctly. It appearsntiasl data such as from [Trask,
personal communication, 1996], there are no degrees afdreen the relative positioning of
probes due to the careful choice of pairs of probes to meaklaneever, under-constrained in-
stances do arise in the branch and bound algorithm desadrit&ettion 4 and in any algorithm
that solves the problem by examining instances with a redtlseeof constraints.

Due to the noise in the data, parts of a problem instance wither-constrained. For ex-
ample, as shown in Figure 3, if we examine three probes witivjs@ measurements between
them and there isn't an ordering such that the sum of two pEErmeasurements equals the
third pairwise measurement, there will be no way to placettihee probes on a line. In this
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Figure 3: There is no way to linearly place these probes on a line and redipbetmeasurements.

case, the distances between the probes in any linear platsvileunavoidably be different
from the measured distances.

Given the existence of over and under-constrained problérssnecessary to develop a
method of evaluating how well a solution conforms to the ddtais is covered in Section 3.
Once we define how to evaluate a solution, we will developrélyos to search for the best
solution.

3 How to Evaluate a Probe Placement

If we construct a cost function to evaluate the “goodnessi sblution then we can solve the
problem by finding the answer that has the best cost. Thisfgnstion will be a function of
an estimate of the positions of the probes. These estimatiesengenerated by the search
algorithms. One intuitive cost measure to use is the sumudres of the difference between
the measured distance between two probes and the distameebdhe probes in the estimated
linear placement of the probes. L&tbe the number of probes; be the position of probg
andd;; be the measured distance between probed probej (d;; = dj;). We can write the
sum of squares of differences (errors) as

Cost(zy,...,zN) = Z (| 2 =z | —dij)2 3)
i<j
d;; measured

This formulation of a cost function is appealing becauseaitlés off the different con-
straints (the pairwise measurements between probes).hAnativantage of this approach is
that we can develop a branch and bound pruning heuristiddb@sexplicitly solving for the
minimum of this cost function. It also is a straightforwarakis from which to build a gradient
descent based local search algorithm.



3 HOW TO EVALUATE A PROBE PLACEMENT

3.1 Is a Squared Error Cost Function Appropriate?

One important question to ask is if this cost function acwlyareflects good solutions, i.e.,

does a low cost correspond to a correct probe ordering wéthoreable positions. The proce-
dure of minimizing this cost function is an instance of Mpliti Linear Regression using Least
Squares. We will use this model to help assess the apprepesd of the cost function formu-

lated in Equation 3. The standard formulation of the Mudtiplnear Regression model can be
found in [Myers 1986] or any introductory statistics textdas:

yp = Po + Przip + Pozop + -+ Prap+ep 0=1,2,....m; m>k+1) (4)

wherem is the number of observations akds the number of estimators. This equation is
used to model a series of observations of a vglae a linear combination of input parameters.
In Equation 4y, is termed the measured response variable and is the resuitaifservation.
Thez;,'s are the regressor variables and the parameters of avatiser If we consider each
observation as an experiment, then #hés the measured result of the experiment, and:the
are the control variables of the experiment.

The g, are estimators that represent our theory as to how the psees1té an experiment
are related to the measured result. Th@sare optimized (by the least-squares method) to best
fit the observations. Since this model may not model the ebtiens perfectlyg, is included
as the model error, is the difference between the result of the experiment ptediby the
model and the measured result.

In our application, an experiment is a measuring of the digdetween a pair of probes.
Sop will correspond to a specific pair of probes being measurggdwill be the distance
measured between the pair of probes. In our case, the inpampéers of the experiment;,,
are values specifying which probes are measured.5fveill be estimators of the coordinates
of each probe.

Let us consider a concrete example of this model for an exyeti measuring the distance
between two probesi and B. We will specialize Equation 4 for this experiment. Sinces
an index of the measured values in the experiment, we wilhoep with AB in the equation
modeling this experimenty,, the measured result, will be denotégg, the measured distance
between probegl and B. 54 and g are estimators of the positions of probésand B, and
we will denote themx 4 andz . Thez;, are values specifying which probes were measured to
produce the valué 4 . Since the measurement between profdesd B does not involve any
other probes, alt;, except for thez;, of the terms forr 4 andz g will be 0. We will write the
zjp Of these two non-zero terms as, ,, andzp,,,. Lastly, the model errog,, will be written
ase 4 g for this experiment. Thus, the model formulation for thisekvation becomes:

dAB = ZA,pTA + 2B,z TB + EAB

We now set the value of the's so that the sum of the, and zp terms becomes the
distance between the estimators of the positions of prabasd B. Thee 45 thus becomes
the error due to sampling from the distribution of EquatioTa substitute values for thes,
we must assume an ordering of the two probésnd B. We will suffer the same restriction
of having to specify the order of the probes when solving trablem explicitly in the cost
function computation in the branch and bound algorithm &estion 3.4). Let us assume that



3.2

Improving the Sum of Squares Cost Function by Including Weights

probe A is to the right of probeB. In this case the model of the observation of the distance
between probed and B becomes:

daB =2A —Tp +€aB

There will be an equation similar to this for each pair of @elmeasured.

The objective of regression in our application is to find that minimize;;, the difference
between the measured and estimated distances betwees.pt@ast squares is one method
used to solve this problem.

The estimators provided by a linear regression model usasf lsquares have nice proper-
ties like being maximum-likelihood estimators and havirigimum variance over all unbiased
estimators provided a few assumptions hold:

1. The mean of the model errey; for the measurement between probesid; is 0.
2. Thee;; are uncorrelated.

3. The variance of;; is constant (homogeneous variances).

4. Theg;; are distributed normally.

In our domain, the distribution of;; is determined by Equation 1. Unfortunately, this
means the sum of squares formulation violates the last taanagtions. A check in a statis-
tics text such as [Mood 63] will reveal the probability distition of Equation 1 to be the
Weibull distribution, violating assumption 4. Howevemee the estimated distance between
two probes is based on an average of 100 to 200 measurenteatdistribution ofe;; ap-
proaches the normal distribution, which is closer to sgtigf assumption 4.

The variance of the Weibull distribution is not constangl&iing assumption 3. Since each
measurement is an independent sampling of the Weibulllaision, thes;;'s are uncorrelated,
supporting assumption 2. Finally, to judge the validity ebamption 1, we note that our
distance measurements are computed from Equation 2. Thatieq estimates the genomic
distance by approximating the expected value of the medsrgsical distance by averaging
the measurements made between two prohess the deviation from this average, and so the
mean ofe;; is 0, supporting assumption 1.

The fact that the Weibull distribution violates the assuiomg above does not mean that it
is inappropriate to use a sum of squares cost function, lbigeis alert us to weaknesses of the
model. In the Section 3.2 we discuss how to improve the cogttion to compensate for the
violation of the homogeneous variance assumption.

3.2 Improving the Sum of Squares Cost Function by Including
Weights

One improvement to the cost function is to modify it to congzgr for the violation of the
constant variance assumption of the multiple linear resgpasmodel of Section 3.1. The
variance of the distribution function of Equation 1 is:

o? = ((4—7)L2> n



3 HOW TO EVALUATE A PROBE PLACEMENT

We can see that the variance of measurements between a paibek is directly propor-
tional to the genomic distance, separating the probes. This means that the terms in the cost
function for probes separated by long distances will haviglagn variance. If we are optimiz-
ing using least squares then, intuitively, the proporti®masiance means that we will be putting
too much weight on terms for measurements between probearthéar apart. Luckily, it is
not difficult to compensate for inhomogeneous variancesubkiple linear regression model.
If we were performing a standard least squares optimizatiavhich the only assumption of
the standard multiple linear regression model that we wakating was the homogeneous
variance assumption, then the correct way to modify the stsguwares would be to weight
each term byw = 1/0%. This would preserve the property that the estimators avérman
likelihood estimators and have minimum variance over abiased estimators. Weighting
each term in this way intuitively compensates for the extisen in terms for measurements
between probes that are far apart.

Unfortunately, since the model errors are not normallyritiisted, we can not make such
guarantees. The strongest claim we can make is that if we ensape for the variances by
weighting each term withw = 1/¢2, the estimators will have minimum variance over all
linear unbiased estimators.

The distribution of Equation 1 has a high variance and a lailg Even compensating
for the inhomogeneous variances will not prevent inacdasadue to the non-normal shape of
the distribution. However, compensating for the inhomagers variances does improve the
accuracy of the estimators as is demonstrated in SectioesylR. Inserting the weights into
the cost function of Equation 3 produces:

1
COSt(Q?l, e ,a:N) = Z wij(| Ty — Ty | —dij)z where Wij X d_ (5)
i< ij
dij rrllea?sured
Equation 5 is the cost function used in all the experimentp®ed in this work. Having
examined the weaknesses of the sum of squares cost funegamw examine the benefits.

3.3 Benefits of a Sum of Squares Cost Function

Computationally, the least squares approach is very &ttealbecause of its simplicity. An-
other nice property is that the cost of an optimal solutiondaeduced set of constraints
(measurements) is a lower bound on the cost of the optimafisolof the same problem with
additional constraints. Adding an additional constraina {problem simply adds another term
to the summation of Equation 3. Since each term in the suromeginonnegative, the addition
of another term cannot reduce the sum of terms corresponalihg original set of constraints.

3.4 Finding Least Squares Solutions

Given the sum of squares formulation, one approach is tedbkxplicitly. We can take the
partial derivative of the sum of squares with respect to edche z;'s, set them equal to,

and solve. In order to take the derivative of Equation 3, wedn® eliminate the absolute
value signs. The only way to do this is to assume an orderirigeoprobes. Without loss of



3.4 Finding Least Squares Solutions

generality, assume; < z, < --- < xy. Then for a given probé:

0
. S wi(lmi—w | —=d)® [ = > 2wk — i — dig)
Lk i<j 1<i<k-1
d;; measured d;; measured
— Y 2wpi(mi —zp —dy)  (6)
k+1<i<N

dy; measured

Separating the terms and setting equal to 0, we geg%er

e Yy, (wa)+ Y (twam) = Y (wadg) — Y (wridg)
1<i<N 1<i<N 1<i<k—1 k+1<i<N @)
d;, measured d;r measured d;, measured d;), measured

We can transform Equation 7 to the form
Mx=r (8)

wherex is the vector ofr;'s, M is the matrix defined as:

—W;j © # j, d;j measured
M;j = { Zi<jen, ji(wig) i =, 9)
d;j measured
0 otherwise

andr; is a vector formed from the right hand side of Equation 7. Thomgmatrix form,
Equation 7 can be written as:

—wp Mg —wpy | | 2 > i<i<k-1 (Wikdik) — 20 kr1<isn (Wkidgi)
d; measured d; measured

where My, the summation term in Equation 9, represents the sum of ¢ights of the mea-
surements from probk to other probes. If we solve for we can find the optimal positioning
(in the least-squares sense) of the probes. We compute shduotion by computing the
sum of squares (Equation 3) using the optimal positionsdoltote that there is no guarantee
in the solution ofMx = r that the resulting ordering of the probes will respect trdedng
used to construct the linear system. This does not affeatdirectness of the algorithm, as is
discussed in Section 5.1. Thus, the problem has been retlutieat of computing the matrix
solution over all probe orderings and choosing the ordeuniitly the lowest cost among those
whose solution respects the ordering. (Quadratic Progiagiis a technique that will find an
optimal solution with respect to an ordering, and is desttiim Section 5.2.)

One nice feature of the matrix formulation is tiet is independent of the ordering of the
probes. When solving this system by LU decomposition (aPrags 92]), this means that we



4 THE BRANCH AND BOUND ALGORITHM

can find a solution it (N?) time per ordering once we perform an init@(N?) operation on
M. We can take advantage of this time savings in our local beslgorithm and at leaf nodes
in the branch and bound algorithm, but we must perform the®gIV?) LU decomposition
at every interior node of branch and bound since Miematrix varies with the number of
measurements considered, which is different for each nadeitional time savings may be
possible by caching the different LU decompositiondvbfat nodes above the leaf nodes in
the tree. For example, in a problem &fprobes, there will béV different M matrices at the
level above the leaf nodes in the search tree. The construetithe search tree in branch and
bound is discussed in Section 4.

4 The Branch and Bound Algorithm

To construct a branch and bound search, we need to chooserapresentation. Since com-
puting the matrix solution of Section 3.4 requires an ortgof the probes, a search tree over
probe orderings is one natural approach. In this case, #wedewill be complete orderings
and the interior nodes will be a partially specified orderifibere are two basic approaches to
structuring the search tree. In the first approach, showrnguaré 4, the children of a node

in the tree will be the ordering of probes at nad@eaugmented with a new probe in all possible
positions among the probes orderedat

A

/\

AB BA

I

CAB ACB ABC CBA BCA BAC

Figure 4: At a node, the children are orderings in which an additiortddepis placed in all possible
positions with respect to the ordered probes.

For the second approach, in Figure 5, the ordering of a cligchanterior nodeP will be
the ordering ofP augmented by a probe placed adjacent to the rightmost argeobe inP.

In this work, we choose the second approach. The primarpneiasthat we are able to
devise a better pruning heuristic if we know that the un@dgsrobes are to the right of the
ordered probes at interior nodes in the tree. This allowsousadiude constraints between
ordered probes and unordered probes in the cost function.

The first approach is also worth consideration, althougsnittiinvestigated in this work.
The first approach has a lower branching factor at the topedtréfe. (In general, the branching
factor is/ + 1 at levell in the tree where level 1 is the root as in Figure 4.) A furthessible
advantage of the first approach is that we can specify the ordéhich the probes are ordered
during the search. On the other hand, since the unorderbgproay be placed at any location
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ABC ACB BAC BCA CAB CBA

Figure 5: At a node, the children are orderings in which each of the enetlgprobes has been placed
to the right of the rightmost ordered probe.

relative to the ordered probes, we are unable to includeti@nts between the ordered probes
and the unordered probes in the cost function. It may or mapethe case that the penalty of
the weaker cost function of the first approach is offset byoirgefit of a lower branching factor
higher in the search tree. As a first approximation, we cafoparsome simple measurements
on the search tree generated by each approach to try toasoshich might allow a better
search. One measure we can look at is to fix the number of ndagiésdvby a breath first
search in the tree from each approach and try to estimate fedwwe are able to prune. One
coarse measure of pruning effectiveness at a node mighebauthber of constraints used in
computing the cost of a node, based on the idea that a graatdsan of constraints would
lead to a cost that is a tighter lower bound. If we assume thep@astraints contribute equally
to the cost function, then calculations on the search tram fa problem of size 12 indicate
that the second approach averages more constraints perahdue higher levels in the tree.
This would suggest that we might be more effective pruningea generated by the second
approach. However, one could imagine that constraints foodered probes to unordered
probes in the second approach might not contribute as muthetdower bound since the
unordered probes are relatively unconstrained. A moreotlgir investigation to compare the
two approaches seems warranted.
We now turn to details of the branch and bound algorithm.

5 Executing Branch and Bound

In this section we will describe details of the branch andriabalgorithm including the struc-
ture of nodes in the search tree and argue the correctndss pfuning heuristic.

Our branch and bound algorithm searches through nodes eeagruning a node if its
cost is greater than the lowest cost found in a leaf node sdtaa leaf node in the tree, we
compute the cost of the ordering as described in Section Bt4an interior node, the cost
function must be a lower bound on the cost of all nodes in tinrsa to allow us to possibly
prune the subtree. We would like to find a function that presithe greatest lower bound to
improve pruning. In this section, we describe a simple aasttion based on least squares.

Consider an interior node such as that in Figure 6. In thisupcof an interior node,
the circles represent probes, and the edges representistener of a measurement between



5 EXECUTING BRANCH AND BOUND

Unordered
Ordered Probes Probes

E

Figure 6: An Interior Node

two probes. Probed, B, C, and D have been ordered (in that order). Prolieand F' are
unordered with respect to each other, but both will appe#énaaight of probeD. One way
of computing a lower bound on the cost for this node is to @ersonly the measurements
between the ordered probes. In this case, we compute thdurmsion by computing the
matrix solution (as described in Section 3.4) using a mditiit from only measurements
between the ordered probes. This is done by simply pretgriisnother measurements do not
exist, i.e., the terms i of Equation 8 for measurements that we are not considerm@, ar
and there is no contribution from them in theector.

The cost of an interior node computed in this way will be a Iobveund on the cost of all
nodes in the subtree. Consider the hypothetical case of @@ad the subtree of a nodg,
where(@ has a lower cost thaR. Since( is a descendant dP, we know it has a superset
of the constraints (pairwise measurements) of nbdeSince each constraint yields a non-
negative term in the cost function, @ has a lower cost tha#® then the cost of the set of
constraints that) shares withP is lower than the cost aP. This would mean that the cost
computed at nod® was not the minimum for the set of constraintd?atwhich is impossible
since computing the matrix solution returns the minimunt émsan ordering.

Note that since we are changing the set of constraints (maasuts) that we are solving
for in the subtree of nod® (by adding constraints from additional probes that becordered
in the subtree), thd&/1 matrix at each node is different which means that we musbperthe
O(N3) LU decomposition to solve the matrix at each interior nodewkeler, the cost function
described here is a lower bound, and establishes the basictband bound algorithm. In
general, this lower bound holds for the solution to the suragpfares for a set of constraints
S with respect to the solution for any set of constraifitsvhere7 is a superset of. We can
use this fact to improve the cost function computed at a node.

We note that the cost function described here is ineffeetivagh levels in the tree (where
nodes will reflect probe orderings with few constraints)isTiegative impact on pruning per-
formance is compounded by the fact that the upper nodes tredave the highest branching
factor. The cost function described evaluates to zero ffitist and second level in the tree
(when only one or two probes are ordered) because we are imingra cost function con-
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sisting only of terms involving probes that are ordered. Eesy, consider the measurement
in Figure 6 between prob®, that is ordered, and prok@, that is unordered. Even though
the position ofFE is undetermined, due to the structure of the tree, we knotwAhaill be to
the right of D. This allows us to remove the absolute value sign in the susguaédres term of
Equation 5 for this measurement and include the term in teefoaction computation. Thus,
for an interior node, as well as considering all edges batveedered nodes, we can consider
edges between ordered nodes and unordered nodes whemctmgtthe cost function for the
node. This improvement allows us to compute a non-zero aastibn for nodes at the second
level in the tree (when two probes are ordered). With thisowpment, the only constraints we
are not considering at a node are those between unordereelsprbhe cost function described
here is the cost function we use in the simulations reporte&ection 7, Results.

We now address concerns of correctness about the branctoand blgorithm.

5.1 Details of Performing Least Squares in the Search Tree

There are four details to address to obtain a working branchbaund algorithm. The first
completes the specification of the algorithm, and the negetiaddress correctness issues.

First, we need to modify the construction of thé of Equation 8. As it stands, the linear
systemMx = r of Section 3.4 is under-constrained (the rank of the nudlespofM is non-
zero). Because the system is constructed from relativeriogfebetween the probes, there is
one degree of freedom: the absolute position of the probleis.i¥ remedied by replacing the
top row of theM matrix with (1 0 0 ... 0) and setting the first element ofto 0, which has
the effect of arbitrarily placing probe 1 at locatien= 0.

To understand why there is a degree of freedom in the mfrikonsider a graph in which
the nodes are the probes and an edgg) exists if there is a measurement between prabes
andj, and further assume there is only one connected compontrg graph. The sum of the
rows of theM matrix constructed from these measuremen@s i see this, consider the sum
of a columnj of M. Probej is in the connected component, so enirin columnj will be
the sum of the weights of measurements from prpbeall other probes. Furthermore, entry
M;; of M for i # j is —w;; if there is a measurement of weighy; between probesand;.
Thus, the sum of columpis 0, and the rows oM are linearly dependent. Thus, we are free
to replace one row with the corresponding row from the idgntiatrix, which removes the
degree of freedom in the system.

In general, there will be a degree of freedom in the syshMm = r for each connected
component in the graph. The argument above can be extended tase in which there are
multiple connected components in the graph. Nodes in threlsé@e with multiple connected
components can occur commonly in the interior of the treeratieere are only a limited
number of constraints (i.e., only between probes orderes radde). In this work, for all
connected components of the graph associated Mithwe apply the procedure described
above, replacing the row of the lowest numbered probe in eashected component with the
corresponding row from the identity matrix with the effdeait the indicated probe is assigned
to an arbitrary coordinate; = i. The arbitrary positioning may violate the probe ordering
but it does not affect the value of the cost function. Thisissulssed further at the end of this
section.

Next, we allay a few potential concerns about the correstogéshe algorithm. The first
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concern is the case in which the matrix solution of a leaf ndedlereturns a positioning of
probes that is inconsistent with the ordering of the proltesde P. For example, one pos-
sibility is that there is a probe for which there are no measuants between it and any other
probe. It is not surprising that the matrix solution for thelering at node” might return a
solution in which this probe is placed somewhere else, tiaguh a solution with a different
ordering than the ordering at node However, the matrix solution can produce a different
ordering even in the case where every probe has been measiiiegently to eliminate such
degrees of freedom (as is described in Section 2.2) in theigol Is the cost of the solution
in such cases an attainable lower bound on the cost of theilgdef P? The cost is a lower
bound, but it is not attainable. The cost function minimizédodeP is the sum of squares
cost function with the absolute value signs removed acngrtlh the ordering of probes at
P. The matrix solution minimizes the cost function oversalinot just the region in whick
respects the ordering &. A minimum over allx is a lower bound on the minimum of the
cost function over the region in which respects the order d&. The effect of computing a
cost function that minimizes over atlrather tharnx that are consistent with the ordering/at

is that if we are searching for nodes that have a cost withfa @0the minimum cost, then we
might erroneously report node as having a cost within 10% of the minimum when the real
minimum of any solution respecting the orderingrais not within 10% of the minimum cost.
This does not affect the correctness of the search for tHmbtinimum since if the ordering
returned by the matrix solution computed at ndtidisagrees with the ordering at noffethe
global minimum can't be the ordering of nofte

One other potential concern is if there is a prabr which there is only one measurement
to another probe, sa§. In this caseA could be placed on either side Bfwith the same cost.
One might be concerned that this means that the matrix eolafi a leaf node of an order in
which A is to the left of B might be an ordering in whicH is to the right of B and that the cost
of the two orderings might be the same. This is impossibleesthe removal of the absolute
value signs in the sum of squares removed the symmetry inidicerpent of probe.

To understand this better, consider the case of a leaf fodéh orderingOp including
adjacent probed and B in which the matrix solution respects the ordering. Now consider
an orderingO, at node() that is identical taOp except that the two adjacent probesand
B, have been flipped. The original cost function will have thene value for the orderings
Op andOg, but the cost function used at leaf naltevon't. The only term that would change
in the cost function between the two orderings is the terraliirg the measurement between
the two probesd and B. At leaf nodeP we have replaced this term with a simple quadratic.
Let's say that at this leaf node, the ordering specifies Ahiatto the right of B, (x4 > zp).
The cost function for the term {$ x4 — 2 | —dap)?, which become$z 4 — x5 — dap)? at
nodeP. If we fix xz and plot this term of the cost function versus, we obtain the parabola
on the right side of Figure 7.

While the original cost function would return equal valuesgrobeA positioned on either
side of probeB, with the absolute value removed from the term in the costtfan, the
minimum of the cost function at node is fixed with A to the right of B (the parabola on the
right in Figure 7). The equal cost solution withplaced to the left o8 will be found when
exploring orderings witt to the left of B.

The final concern is minimizing the cost function at a node Iriclh there are two sets of
probes that have no measurements between them. This isatkjpid-igure 8.
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Figure 8: The correct cost for the ordérd BD is hon-zero. We can see from the drawing on the right
that there is no way to respect the pairwise measurements between grabasdC, D in
this ordering. However, the matrix solution will return a zero cost pasitions similar to
the drawing on the left.

At the leaf node for the ordering AB D, the method we use will compute a costidor
the ordering. However, we can see that the cost is non-zetioeas is no way to place the
probes on a line respecting both the ordering and the measuts between the probdkis a
lower bound on the cost for the ordering, but is not an attdénaeost for the ordering. As with
the previous example, this does not affect the correctrfabe gearch for the global minimum.
However, since this is the only node where this ordering isimered, we will report this node
as having a cost within 10% of the global minimum (since thst nction can not be less than
0), when in fact the cost of any solution respecting the orgenight have a cost greater than
10% of the minimum. In general this means that we might ewasky report some nodes as
having a cost within 10% of the global minimum in the casesmihe matrix solution returns
a ordering that does not respect the ordering of the nodeiahvittwas evaluated.

In this section we have seen that the matrix solution isa&titiwer bound on the cost for a
node in the case of leaf nodes. The arguments can easily leeatjead for interior nodes in
the search tree. Although the algorithm described doedqeaviower bound, we would like
a tighter lower bound. The problems described in this sedi@ve been due to the fact that
the matrix solution is a minimum over allwhen we are really searching for a minimum over

15
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x that respect the ordering of the node at which it is evaludtethe next section we describe
guadratic programming, a technique that finds such minimuen @estricted domains.

5.2 Improving the Least Squares Approach With Quadratic Pro-
gramming

Quadratic Programming is an optimization method that mizéisia quadratic function subject
to a set of linear inequalities. In our case, inequalitiesci#p the probe ordering. The prob-
lem has been studied extensively. See, for example, [QbI&3] for a brief description of
guadratic programming and an algorithm to solve it.

By using quadratic programming instead of computing a matlution for a node?, we
would obtain the lowest cost solution to the sum of squar@s éspects the ordering £f This
improved lower bound could potentially improve the effeetiess of the pruning. Whether this
potential improvement is sufficient to offset its extra cangional cost is unclear. Quadratic
programming was not considered in this work due to lack oétim

6 Local Search

We now describe the local search algorithm. The idea of tbal lsearch algorithm is fairly
straightforward. It is motivated by a gradient descent @ilgm with random starts. The algo-
rithm is:
1. Pick a random starting position for each of ffigorobes.
2. For each probé construct a signed integekz;:
Azp= Y wi((ej—z) —dij) = Y wi((zi —z5) — dij)

Vj, xj >4 Vi, wj<z4
d;; measured d;; measured

The vectorAx comprised of thesé\z;'s is the gradient vector derived from the cost
function in Equation 5 (see Equation 6).

3. AdjustAz; by performing:
Az =Az; / Z Wij

vj
d;; measured

The summation term can be thought of as the number of measuatsiitom probé to
other probes compensated by the weight of each measurement.

4. AttenuateAz; by dividing by a constant factory. Initially, this constant is 1, and is
increased to 2 if the local search has not converged aftd) it®&@tions.

5. Update the position of proligoy Az;.

6. Repeat from step 2 unilz; < ¢ (to integer precision) for all. SinceAz; is an integer,
e can be 0, and that is the value we use in our algorithm.
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One way of interpreting this algorithm is to think of the mesnent between two probes
as a spring separating them that has a relaxed length eqtied toeasured distance between
the probes. Under this model, the algorithm simulates theement of the probes attached to
each other by these springs. Note that the adjustment irBdtethe gradient vector computed
in step 2 will most likely not result in a vector pointing inetldirection of the gradient. The
adjustment in step 3 iad hoc, and while in early experiments it seemed to be beneficial,
later experiments cast doubt on its utility. However, in thierests of consistency of the
experimental results, it was retained in all experiments.

To compete the specification of this algorithm, we need tei§pbow a random start is
constructed. Ideally, we would like to choose initial pmsis for the probes randomly over
an interval that approximately matches the interval ovaciwthe probes are actually located.
This interval is estimated by estimating the average digtéetween adjacent probes and then
multiplying by the number of probes. The average distanded®n probes is estimated by
computing the average pairwise measurement and dividibg éne plus the expected value
of the number of probes separating a measurement betwegaes. If we approximate the
distribution of probe measurements as uniformly randonm aitgpossible pairs, then:

. N+1
E(Number of probes separating two randomly chosen pwsﬁesgL -1

In the algorithm, the expected distance between two adjgrebes is multiplied by N +
3), not N, to obtain the estimation of the interval. The reason is &f&w problem instances
arose in which usingN + 3) significantly reduced the number of random starts requised b
local search to find the global minimum. The choice(df + 3) is ad hoc and seemed to
improve the performance of the local search in some casds wndti hurting it in general.

We have no proof of the convergence of the local search @hgoribut empirically, it does
converge. One nice property of the local search algorithttmaisthe value it converges to is the
minimum value of the cost function for some ordering (the samue as the matrix solution
of that ordering). This is because the algorithm iterates ta:; = 0 (to integer precision) for
all 7. Since the adjustments to the components of the gradietdrveesmputed in step 2 are
by non-negative constant factors, Alk;'s will be 0 only when the gradient vector (s This
occurs when the cost function is at a minimum value for sorderang of the probes.

However, in practice, the accuracy of the solution to whiotoinverges is limited by the
convergence criterion (the test in step 6 above). To obtainergence to a local minimum of
the cost function, thé\z; would have to be floating point precision and the algorithnuldo
have to be run until it converged to machine precision. Opedrnce is that the algorithm
does not obtain additional digits of precision in the answéckly. For this reason, once the
Az;'s converge to (to integer precision), the resulting ordering of the pslseused as input
to compute a matrix solution to refine the precision of theltesSince computing the matrix
solution finds the minimum cost of an ordering, theoreticdte local search algorithm only
needs to iterate until the positions of the probes settle ant order, not until they converge.
It appears that a fair number (maylb¢2) of the iterations of the local search occur after
the probes have settled into an order. This suggests thabuld speed up the local search
procedure if we could stop it when we knew the order of the psdiad stopped changing, and
then compute the matrix solution to return the minimum costtie ordering. Unfortunately,
it is difficult to make such a prediction about the movemerthefprobes.
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We now present the results of experiments performed on tta search and branch and
bound algorithms.

7 Results

We ran multiple simulations to assess the performance dfwtbelgorithms and also to gauge
the sensitivity of the algorithms to different parametefighe branch and bound algorithm
evaluates the weighted sum of squares cost function, atieliires the lower bound on the cost
function to the results of a local search. It also searchethfoglobal minimum only, rather
than orderings with a cost within 10% of the global minimumheTocal search algorithm
performs a constant number (300) of random starts.

We describe the data over which the simulations were run aggept the results of the
simulations categorized by the type of simulation.

7.1 Synthetic Data Generation

All of the simulations of the algorithms were on syntheti¢cadaWe attempted to create syn-
thetic data that produces performance similar to the paidoce of the algorithm on real data.
To create a problem instance, we first created a set of protzbpasitioned them on a line.

We then simulated performing measurements on various phjpsobes. In this section we

describe this process. We define “Problem Size” to be the purobprobes in a problem

instance.

7.1.1 Generating the Probe Distribution

The first step in data generation is to place the probes orea We model the placement of
probes by placing them randomly over an interval while lingithe minimum and maximum
separation between adjacent probes. Although the abst@®| of the problem presented in
Section 1 regards the probes as points, they are in fact Digfkeets of about 40,000 base
pairs in length. Consequently, since probes can not overieggchromosome (otherwise they
will not hybridize), the centers of adjacent probes mustdgarated by at least this length.
In addition, it appears that in some examples of real dataagjarity of the measurements
between presumed adjacent probes were performed, me&ainthose probes are separated
by the minimum resolution of FISH, and no further apart tHag taximum resolution. To
better understand the utility of these observations, wépartwo experiments to gauge the
effect of limiting probe separation on the performance & linanch and bound algorithm.
First, we fix the maximum separation and graph the branch aodd performance versus
the minimum separation of the probes. Then we perform theesaperiment, but without
limiting the maximum separation between probes. The resuét presented in Figure 9.

The units of the graph of Figure 9 are arbitrary. The impdnpamnt is that the performance
appears not to be sensitive to the maximum probe separét@so does not seem to be sensi-
tive to non-zero minimum probe separations. However, perdmce does seem to deteriorate
when the minimum separation is 0. It's intuitively plausilthat the search algorithms will
have trouble handling cases of near-zero separation betprebes. We choose a minimum
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Figure 9: The two lines show the median number of nodes visited byréivech and bound algorithm
as the minimum separation of the probes was changed. The median is ovexbd&hpr
instances of size 10, and the range over which probes where placed is 75608 time
number of probes.

separation of 1250 units and arbitrarily set the maximum300D. The distance is chosen
uniformly over this interval. Scaled to genomic distante, minimum separation corresponds
roughly to the minimum resolution of FISH.

Having established the generation of probe positions, we discuss the simulation of
measurements.

7.1.2 Generation of Measurements

When synthesizing measurements, the three parametersdifysgre the number of repeated
measurements performed between a specific pair of prolegeticentage of different pairs
measured, and the distribution of the pairs chosen.

The first parameter considered is the effect of the numberezfsurements for each pair
of probes on the quality of the solution returned. This satiah was run on problems of size
10 and 16. We measure all possible pairs of probes and forpsiclof probes perform the
same constant number of measurements. To assess the gfidhigy solution returned, we
used the metric of the square root of the mean squared ertioe girobe positions as returned
by the branch and bound. This metric compares the calcufasition of the probes to the
true positions from which the synthetic data was generdtethe graph in Figure 10, we plot
the quality of solution returned for a problem size of 10. Aigr graph for a problem size of
16 is shown in Figure 11.

Judging from the curves, it appears that doubling the nurobemeasurements between
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Figure 10: Quality of solution found versus number of measuremeaderfor each probe pair. Prob-

lem size is 10.
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each pair of probes reduces the error by about 25% for thetelstied. Note the median RMS
error is about 13% of the average spacing between adjacebepr(approximately 37,000
units) for experiments of 100 measurements between pramesdecreases as the number
of measurements increases. The data presented in [van darBEhis based on 100 - 200
measurements per probe pair, and so we simulate 100 measuseper pair of probes in the
experiments reported below.

Another concern is the distribution of pairs of measuresiembe made. [van den Engh 92]
and [Trask, personal communication, 1996] present mato€eairwise measurements where
the columns (and rows) of a matrix reflect the presumed ordesf the probes. If pairs of
probes chosen to be measured were selected at random, wekexpeict the matrix to be uni-
formly randomly populated. However, in practice, the ekpenters seem to perform more
measurements on nearby pairs than distant ones, presulmabhposing pairs to measure at
least partially based on tentative ordering obtained franlyeneasurements. This bias is evi-
dent in the matrices of data as clustering along the diagdiaévaluate the sensitivity of the
performance of the branch and bound algorithm to distrioutf pairs of probes measured,
we examine two methods to choose probe pairs on a few tes.case

In the first method, we attempt to duplicate the distributidrmeasured pairs of probes
as observed in real data. To duplicate the clustering of unrea®ents along the diagonal, we
choose a pair to measure with probability inversely relateitis distance from the diagonal.
This probability function is constructed from the real datailable. For a each problem in-
stance, the matrix of all probes, ordered in their actua¢ipiid constructed, and the pairs to be
measured are chosen using this probability function.

In the second method, we randomly choose the pairs to meadgtra fixed probability.
To allow comparison with the first method, this probabilisychosen such that the number of
pairs of probes measured will be about the same in both metheat each problem instance,
we compare the performance of the branch and bound algotiging data generated by the
two methods.

The branch and bound algorithm visits about twice as mangsiechen executed on a
problem where the probes to be measured where chosen ranftbensecond method). Thus,
to be conservative, in the experiments performed in thiskybre pairs to be measured are
chosen randomly. The number of pairs chosen is determined $o be consistent with the
real data. We did not investigate the effect of the distiilbubf the chosen probe pairs on the
quality of the solution obtained, although this is an in$éirg question.

Each problem instance generated is screened to removadasta which there could be
multiple global minima. For example, a set of probes with reasurements to another set of
probes would result in multiple global minima. Other casew/hich the problem instance is
under-constrained (as is described in Section 2.2) ardilitxed out. The reason for filtering
out such instances is that it appears that such patternsasurements do not appear in real
problem instances such as described in [van den Engh 92]Taadk], personal communica-
tion, 1996].

The algorithm to test if an instance has multiple global miniis conservative in that it
could flag an instance as having multiple global minima whefact it is sufficiently con-
strained. The algorithm constructs sets of probes for witielsub-problem consisting of only
those probes has a single global minimum. Each probe iallgipplaced into its own set. The
problem instance is declared to have a single global minirfuhere is only one remaining
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set when all possible merges have been performed. The mmwdiinder which two sets are
merged are as follows:

1. If both sets are singletons and there is a measuremengéetivem.

2. If only one set is a singleton and there are at least two nneagnts from it to the other
set.

3. If one of the sets has two probes with the property that eabephas at least one mea-
surement to the second set and the other probe has at least@agurements to the
second set.

The experiments described in this section by no means epras exhaustive exploration
of the proper way to synthesize data. As mentioned aboveaniestion of data provide by
Prof. Trask suggests that successive probes to be measeradlaenced by some form of
ordering analysis on data accumulated so far. Prof. Traskrakntioned that it is not known
what the best method to perform real data collection is. Mlaide interesting to investigate
ways of integrating ordering analysis like branch and bosedrch into data collection to
improve both the efficiency of collection and the perfornentthe branch and bound search.

7.2 Timing Results

The first performance metric used is total CPU time taken kg bee branch and bound and
the local search algorithms. CPU time is an appropriateop@dnce measure to gauge the
running time of the algorithms. All experiments reportin@\€time where performed on a
100 MHz DEC AlphaStation 200 4/100 with 96MB of memory. Thedde was not optimized
beyond the optimizations described in this work. In paféiguhe LU decomposition routine
was copied without modification from [Press 92]. The runninges of these algorithms could
vary by as much as a small constant factor if optimized. Sihegurpose of the simulations
was to examine characteristics of performance that are afged magnitude than a small
constant factor, extensive optimization of the simulatode was deemed unnecessary.

The final performance note to consider is that CPU time igcffit from wall clock time
by the time spent doing non-computational tasks (such asgagdSince the process size for
these algorithms was around 3 MB, since the simulation co@PU intensive, and since the
unoptimized C code contributes a small constant factordddtal CPU time, the time due to
non-CPU activities does not significantly affect the resahiown.

We present the total time for the branch and bound algoritimguveighted least-squares
in Figure 12, and the total time for local search in Figure E&ch point in the graph is a
problem instance.

We can see that the running time of the branch and bound #igois exponential, as is
expected, with time increasing roughly8” . Note that at the far right of the graph, the most
time taken to solve a problem of 18 probes was about 70 min8iese the number of nodes
in a search tree of a problem that size is arouttf, we can see that the pruning heuristic is
quite effective; in fact it visited on the order d8° nodes.

The performance of local search is a little more difficult$sess. For a problem size of 18,
the local search took about 40 seconds. It is difficult to sssénether or not the time taken is
increasing exponentially. Data from much larger problestances might help clarify. Since



7.2 Timing Results

10000

1000

100

10

Seconds per Problem Instance

0.1

0.01

10000

1000

100

10

Seconds per Problem Instance

0.1

0.01

Median Time to Perform Branch and Bound -+«
¢
L o ©
o / <&
N
o /% ¢
L g 8
s . 8
o ; g Py
o
- Tl
A
. L% e
- 'S 8% 4
s pr
<>//
- <&
- 34
g
! 8.// ! ! ! ! ! !
4 6 8 10 12 14 16 18
Problem Size
Figure 12: Time for Branch and Bound.

Median Time to Perform Local Search --+--
<&
<&

L 8 & o
RS ==
S ¢ D <
o $ §/‘§ € o o
o o S 8 ”/8 > 8
_ RPE=
& L e b4 4 S
8 be <>/'/ 8 o °
o L o
° //g’//%
SO
e
4 6 8 10 12 14 16 18

Figure 13: Time for Local Search (300 random starts).

Problem Size

23



24

7 RESULTS

the local search is a gradient descent algorithm and we kheuhction that it is minimizing,
it also might be possible to analyze the running time. See%¢tion 7.4.

7.3 Simulations of Branch and Bound

In this section, we examine the effect on branch and bourfdnpeance of various parameters
of the algorithm. We consider the effect of performing a lagarch to find a good lower
bound on cost when starting the branch and bound search hangetformance penalty of
expanding the search to find orderings of cost within 10% efdwest cost.

First, we present data showing the effectiveness of usice kearch to provide a starting
cost for branch and bound. Without local search, the branchbaund algorithm must start
with a pessimistic assumption of a lower bound on the costtion. Since the lower bound
on the cost used in pruning is taken only over leaf nodes, aviihssimistic assumption of the
lowest cost, the branch and bound algorithm is not able togany nodes until it reaches a
leaf node. Even then, the pruning will not become effectivil the search reaches a leaf node
with a relatively low cost. The result is that the side of tkareh tree where the branch and
bound algorithm begins will be fairly heavily visited. Theagh in Figure 14 shows the factor
of reduction in the number of nodes visited by the branch anoh when the lower bound on
cost is initialized to the result of a local search.
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Figure 14: Factor reduction in the number of nodes visited by branchanttwhen the lower bound
on cost is initialized to the result of a local search (300 random starts).

Previously, we suggested searching for leaf nodes with tawatdgn 10% of the minimum
as a technique to compensate for the inaccuracies of theslgaares approach and the noisy
data. To ascertain the penalty on pruning effectiveneski®fdternative goal, we plotted the
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factor reduction in nodes visited in a search for the globiaimum only versus a search for
nodes costing within 10% of the minimum. This is plotted wsrproblem size in Figure 15.
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Figure 15: Factor reduction in the number of nodes visited by branch @amdbin a search for the
global minimum only versus a search for nodes costing within 10%eoffrtimimum.

From the graph we can see that searching for nodes of coshwi@§6 of the minimum
causes branch and bound to explore many more nodes in thehdesg. For example, at a
problem size of 18, the search found only about three or fadies of cost within 10% of
the node with the globally minimum cost. Those nodes tencktsifmilar to the ordering of
the node with the minimum cost except for a few, mostly adjgqgeairs of probes transposed.
Of course, these results are dependent on the factor 10% itiskeased that percentage, we
would see a greater number of nodes returned, but also dic@ntiy larger fraction of the tree
searched. One reason that a large portion of the tree isnesbneay be due to the limits of the
cost function calculation at interior nodes in the tree. iyhHevels in the search tree, it is not
able to produce a tight lower bound, which makes the prungngiktic sensitive to the 10%
limit. Unfortunately, given the high variance of the probi#pdistribution of Equation 1, even
10% might be an unreasonably strict limit (i.e., not repgythodes that could be the correct
ordering). Further investigation might suggest a more @mpate limit. Another possible
approach to avoid the performance penalty of this limit wddag to run the branch and bound
algorithm searching only for the global minimum so as to maze its performance, and then
develop a method to tweak the ordering produced to try torgémether orderings with similar
cost.

We now examine the performance of the local search algorithm
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7.4 Local Search

In all the previous experiments involving local search, nkenber of random starts has been
fixed at 300. To gauge how many random starts were on averggeeae for local search to
find the global minimum, we performed a two stage experimginst, branch and bound was
run on a problem instance to determine the global minimunenTkocal search was run on
the same instance to measure the number of random starteedetpr local search to find the
global minimum. The results are shown in Figure 16.
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Figure 16: Number of random starts before local search found the glabahom. Wider points
refer to multiple problem instances for which local search performed signilar

Although the number of random starts has a high varianceeins that the average number
is increasing slowly, but exponentially. It is surprisitigit the median number of random starts
for a problem size of 17 was under 300. The high variance ofdbelts suggest that the local
search algorithm is very sensitive to certain charactesisif problem instances. It would be
interesting to investigate this further.

The final test of local search performed was to measure thefoma single random start.
This was done by measuring the number of iterations for éperdthm in Section 6 to converge
per random start. The results are shown in Figure 17. The auoflterations to converge
appears to be growing polynomially in the problem size, big difficult to judge due to the
increasing variance in the data for larger problem sizesnd®eber that each iteration of the
algorithm in Section 6 involves a@(N?) computation ofAx.
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Figure 17: Number of iterations for local search to converge (per randot. st

7.5 Performance Improvements in Branch and Bound Due to a
Weighted Cost Function

In this section, we compare the accuracy and performance@on€h and bound when the terms
in the cost function are weighted to compensate for the irdgEneous variances. The graph
in Figure 18 shows the fractional reduction in the square-of the mean squared error of

probe positions found when weights, as described in Seétidnare applied to the terms in

the cost function. Specifically, the value on the y axis is:

RMS Err0Oho weights— RMS EITOKith weights
RMS EIMogo weights

We can see that for most of the problem instances, using tightee cost function produces
significantly more accurate results. Instances in whichrameighted cost function performs
better might be due to noise in the data as well as to the fatttkie distributions of the
measurements are violating the normality assumption ofiphellinear regression.

The second experiment was to measure the impact on perfoenwdrusing the weighted
cost function. Figure 19 is a graph of the factor reductiorthiea number of nodes visited
when using a weighted cost function versus the original ugited cost function. It shows
a substantial improvement in performance. Perhaps thigdause the cost function with
weighted terms is providing a tighter lower bound, impravthe pruning on interior nodes in
the tree.
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Figure 18: Fractional reduction in the square root of the mean squardles to a weighted sum of
squares cost function.
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8 Conclusions

In this work, we have developed two search algorithms, adbramd bound algorithm and a
gradient descent based local search algorithm, both ofhwdtiempt to minimize a weighted
least-squares cost function. We have examined the eféaess of different techniques to im-
prove the performance of the branch and bound algorithmgcharhcteristics of performance
of the local search algorithm.

The simulations show that a weighted cost function imprdakesyuality of the result and
the performance of the branch and bound algorithm. Due teetipenential nature of the
branch and bound algorithm, it is unlikely that it will scatelarger problem sizes. However,
it does provide good performance on problems of 18 probesssr ISince it finds the global
minimum, it is useful as a benchmark against which to comptrer algorithms.

The local search algorithm performed surprisingly wellr pmoblem sizes of 17 or less,
the median number of random starts required was under 300or& thorough investigation
of the local search algorithm could produce an algorithm petitive with brand and bound.

9 Future Work

Here are some ideas for future work:

e Further improve the least squares model for branch and bhdurete are more advanced
statistical methods to compensate for a non-normal digidb. Compensation might
lead to a faster algorithm with better results.

e It would be interesting to investigate improvements to tlgothm to find a tighter
lower bound on the cost function for interior nodes in thercedree of the branch
and bound algorithm. A tighter bound would improve prunir@ne possible way to
improve the cost function would be to include some contiilufrom measurements
among unordered probes.

e More thorough exploration of the properties of the localrelealgorithm. As it was
designed mostly to assist the branch and bound algorithmhave not yet explored
many directions to improve its performance.

For example, it would be useful to ascertain the exact perdoce characteristics of
the algorithm, especially the optimum value(s) of the atétion factor. In addition to
providing a starting cost for the branch and bound, it maetsgnificant usefulness as
a stand alone algorithm for larger problem sizes.

e Apply the method of maximum likelihood. There has been muearkwn applying max-
imum likelihood to genetic mapping data obtained throudteotechniques and proba-
bility distributions. It would be nice to see how far the nraxim likelihood techniques
could be developed in this domain. A maximum likelihood aagh could provide an-
swers with greater accuracy as it derives directly from thedbll distribution. This
may be more effective than a least-squares approach sia&etioull distribution has a
non-normal shape.
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