
Algorithms for Ordering
DNA Probes on Chromosomes

Joshua Redstone
Walter L. Ruzzo

Technical Report UW-CSE-98-12-04
December, 1998

Department of Computer Science & Engineering
University of Washington

Seattle, WA 98195





Algorithms for Ordering DNA Probes on Chromosomes

Joshua Redstone and Walter L. Ruzzo
Department of Computer Science & Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

fredstone,ruzzog@cs.washington.edu

December 31, 1998

Abstract

Accurate estimates of the ordering and positioning of DNA markers (probes) on a chro-
mosome are valuable tools used, for example, to help researchers isolate genetic factors in
diseases. One such mapping technique, called fluorescentin situ hybridization (FISH), obtains
approximate pairwise distance measurements between probes on a chromosome. We have de-
veloped two algorithms for computing least squares estimates of the ordering and positions of
the probes: a branch and bound algorithm and a local search algorithm motivated by gradient
descent. Simulations demonstrate the effectiveness of thebranch and bound pruning heuristic
and show that the local search algorithm is usually fast and accurate. The branch and bound
algorithm is able to solve to optimality problems of 18 probes in about an hour, visiting about
10

6 nodes out of a search space of10

16 nodes. The local search algorithm usually was able to
find the global minimum of problems of 18 probes in about a minute. We also investigate (via
simulation) the accuracy with which maps can be constructedfrom FISH data.

1 Introduction
The problem of mapping genetic information has been the subject of extensive research since
experimenters started breeding fruit flies for physical characteristics. The goal is to determine
information about the sequence of DNA in chromosomes. This information is valuable in areas
such as determining genetic causes or predispositions to diseases. For a particular disease,
DNA structure information can be used to isolate defective parts in a chromosome, hopefully
allowing researchers to develop techniques to treat or prevent the disease. The chromosome
is a long chain molecule curving in three dimensions inside acell. Due to the small scale of
chromosomes, it has been difficult to obtain accurate information on their structure. Many
techniques relying on statistical inference of indirect data have been applied to deduce this
information. Some examples are in [Bishop 94].

1



2 1 INTRODUCTION

Van den Engh and Trask of University of Washington's Molecular Biotechnology depart-
ment have developed a technique for obtaining estimates of relative DNA sequence positions
called fluorescentin situ hybridization (FISH)[van den Engh 92]. In this technique, probes are
hybridized (attached) to different sites in the chromosome, and colored. A measurement be-
tween a pair of probes is made by measuring the distance between the probes projected onto a
plane. If the experiment is repeated in many cells, the genomic distance can be estimated. In
[van den Engh 92], they propose that the distance between thetwo probes follows a random
walk model, and they provide a distribution of the probability of measuring a given physi-
cal distance,R, between two probes given the actual number of genomic links(the distance
between the two probes on a chromosome in DNA base pairs),n, separating the two probes:

P (R) =

�

�R

2nL

2

�

e

��R

2

=(4nL

2

) (1)

In Equation 1,L is a constant representing the average projected length of asingle ge-
nomic link. The measurements between multiple pairs of probes on a chromosome can be
summarized as a matrix. In general, this matrix will be incomplete since not all pairwise
measurements are made. The problem is thus:

Problem: Given an incomplete matrix of pairwise measurements between probes, determine
the best estimate as to the ordering and position of the probes on a line.

This problem is known to be NP-hard.
A solution should provide the correct ordering and reasonable position information. In

this domain, “reasonable” might mean accurate to within 10%according to some measure of
similarity. One factor limiting the accuracy of any solution is the high variance of Equation 1.
Higher order structural elements in the chromosome can alsoadd noise to Equation 1. The
effect of such structural elements is not known. Accuracy may also be limited by the difficulty
of incorporating other physical or genetic mapping information about ordering and placement
into this framework. Examples of other information includea technique to determine which
probe of two probes is closer to a particular end of the chromosome (resolution is about five
times worse than FISH), and a technique that places probes into bands (subdivisions of a chro-
mosome visible under a microscope; resolution is about 60 times worse than FISH). Given
these sources of inaccuracy, any solution to this problem should include a list of the top order-
ings deemed most likely.

1.1 Previous Work

Brian Pinkerton previously investigated solving this problem using the seriation algorithm of
[Buetow 87], and a branch and bound algorithm (personal communication, 6/96). The seriation
algorithm, which is a local search algorithm, was only moderately effective. The branch and
bound algorithm, using a simple bounding function, was ableto solve problems involving up
to about 16 probes.

There has been extensive work on other algorithms to solve gene mapping problems, but
they are based on distance estimates from techniques other than FISH. The other algorithms
are tailored to the particular statistical properties of the distance measurements.



1.2 Work Presented in This Paper 3

One example is the distance geometry algorithm of [Newell 92], based on recombination
frequency data. Another example is [Boehnke 91], which investigated branch and bound, sim-
ulated annealing, and maximum likelihood algorithms basedon data from radiation hybrid
mapping.

1.2 Work Presented in This Paper

In this work, we chose a sum of squares cost function to evaluate different probe orderings
and positions. From this model, we develop and examine the effectiveness of a branch and
bound and a local search technique. The branch and bound algorithm searches through a tree
of all possible probe orderings. For each probe ordering, the optimal (in the least-squares
sense) positions of the probes are determined. We develop various pruning heuristics, extend-
ing the work of Brian Pinkerton by implementing a more complicated pruning heuristic. We
also develop a local search algorithm motivated by gradientdescent, and demonstrate that it
outperforms the branch and bound algorithms in execution time, and is competitive with the
branch and bound algorithm in quality of solution produced over the data sets we examine.
Exact solutions via branch and bound are feasible up to about18 probes. Local search can
usually give optimal solutions within about a minute for problem sizes up to 18 probes, which
was the maximize size we could verify with branch and bound. On a problem size of 50, it
produced an answer in about 15 minutes, but at that size it is computationally infeasible to
verify the optimality of the solution with the branch and bound algorithm.

In the first section of the paper (Section 2) we describe the computer science aspects of the
problem. Section 3 develops a cost function to evaluate solutions. Sections 4 and 5 outline the
branch and bound algorithm, and in Section 6 we describe the local search algorithm. We then
present the results of simulations of the two algorithms in Section 7. Finally, we conclude and
offer suggestions for future work.

2 Description of the Problem Domain

2.1 Initial Data Processing

The data returned by the FISH process is in the form of a physical distance between two probes,
measured in micrometers. This physical distance is the result of measuring the distance be-
tween the two probes under a microscope. We are searching forthe genomic distance between
the two probes which measures the number of base pairs separating them on the chromosome.
Given the physical pairwise distance measurements, the first step is to convert these measure-
ments into estimates of the genomic distance between probes. The genomic distances, rather
than the physical distance will be used when computing orderings and positions of probes.
[van den Engh 92] provides an equation relating the expectedvalue of the measurements be-
tween a pair of probes,hRi, to the genomic distance,n, between the probes:

hRi =

Z

1

0

AP (A)dA = L

p

n

whereP is probability distribution of Equation 1. Thus, an approximation of the genomic
distance between the probes is:



4 2 DESCRIPTION OF THE PROBLEM DOMAIN

n = R

2

=L

2 (2)

whereR is the average of the measurements between a pair of probes. It is not clear from the
distribution of Equation 1 whether, given a fixed number of measurements between a pair of
probes, then returned by Equation 2 is the best estimator of the genomic distance between the
pair. It would be interesting to investigate other estimators ofn that may be more accurate. The
maximum likelihood estimator is one possibility. An investigation of the maximum likelihood
estimators is beyond the scope of this paper.

Equation 2 is used to convert all physical distance measurements into estimates of genomic
distance. For the rest of this paper, the “distance” betweentwo probes will refer to the genomic
distance between the probes.

2.2 Introduction to the Solution Space

Before explaining the development of the algorithms, it is helpful to gain some intuition about
the solution space. Given that the data is both noisy and incomplete, the problem can be under-
constrained and/or over-constrained. In this domain, a “constraint” refers to a measurement
between two probes (since it constrains the placement of theprobes).

An under-constrained problem instance is one in which a probe might not have enough
measurements to other probes to uniquely determine its position. In the example of four probes
in Figure 1, probeB has only one measurement to probeA, and so a location on either side of
probeA is consistent with the data. It is also important to note thatin all solutions, left/right
orientation is arbitrary as is the absolute probe position.

A B C D A C DB

Figure 1: An example of an under-constrained ordering (ProbeB can be placed on either side of probe
A). A line between two probes indicates a measurement between the probes.

In a more extreme example, a set of probes could have no measurements to another set. In
Figure 2, probesA andB have no measurements to probesC andD, and placement anywhere
relative to probesC andD is consistent with the data.

A B C D A BC Dor

Figure 2: Another example of an under-constrained ordering

In the examples of Figures 1 and 2, not only are the positions not uniquely determined, but
different orderings are possible. When developing search algorithms, we have to be careful



5

to recognize and treat such cases correctly. It appears thatin real data such as from [Trask,
personal communication, 1996], there are no degrees of freedom in the relative positioning of
probes due to the careful choice of pairs of probes to measure. However, under-constrained in-
stances do arise in the branch and bound algorithm describedin Section 4 and in any algorithm
that solves the problem by examining instances with a reduced set of constraints.

Due to the noise in the data, parts of a problem instance will be over-constrained. For ex-
ample, as shown in Figure 3, if we examine three probes with pairwise measurements between
them and there isn' t an ordering such that the sum of two pairwise measurements equals the
third pairwise measurement, there will be no way to place thethree probes on a line. In this

BA C5 5

12

Figure 3: There is no way to linearly place these probes on a line and respectall the measurements.

case, the distances between the probes in any linear placement will unavoidably be different
from the measured distances.

Given the existence of over and under-constrained problems, it is necessary to develop a
method of evaluating how well a solution conforms to the data. This is covered in Section 3.
Once we define how to evaluate a solution, we will develop algorithms to search for the best
solution.

3 How to Evaluate a Probe Placement
If we construct a cost function to evaluate the “goodness” ofa solution then we can solve the
problem by finding the answer that has the best cost. This costfunction will be a function of
an estimate of the positions of the probes. These estimates will be generated by the search
algorithms. One intuitive cost measure to use is the sum of squares of the difference between
the measured distance between two probes and the distance between the probes in the estimated
linear placement of the probes. LetN be the number of probes,x

i

be the position of probei,
andd

ij

be the measured distance between probei and probej (d
ij

= d

ji

). We can write the
sum of squares of differences (errors) as

Cost(x

1

; : : : ; x

N

) =

X

i<j

d

ij

measured

(j x

i

� x

j

j �d

ij

)

2 (3)

This formulation of a cost function is appealing because it trades off the different con-
straints (the pairwise measurements between probes). Another advantage of this approach is
that we can develop a branch and bound pruning heuristic based on explicitly solving for the
minimum of this cost function. It also is a straightforward basis from which to build a gradient
descent based local search algorithm.



6 3 HOW TO EVALUATE A PROBE PLACEMENT

3.1 Is a Squared Error Cost Function Appropriate?

One important question to ask is if this cost function accurately reflects good solutions, i.e.,
does a low cost correspond to a correct probe ordering with reasonable positions. The proce-
dure of minimizing this cost function is an instance of Multiple Linear Regression using Least
Squares. We will use this model to help assess the appropriateness of the cost function formu-
lated in Equation 3. The standard formulation of the Multiple Linear Regression model can be
found in [Myers 1986] or any introductory statistics text, and is:

y

p

= �

0

+ �

1

z

1p

+ �

2

z

2p

+ � � � + �

k

z

kp

+ "

p

(p = 1; 2; : : : ;m; m � k + 1) (4)

wherem is the number of observations andk is the number of estimators. This equation is
used to model a series of observations of a valuey as a linear combination of input parameters.
In Equation 4,y

p

is termed the measured response variable and is the result ofan observation.
Thez

jp

's are the regressor variables and the parameters of an observation. If we consider each
observation as an experiment, then they

p

is the measured result of the experiment, and thez

jp

are the control variables of the experiment.
The�

k

are estimators that represent our theory as to how the parameters of an experiment
are related to the measured result. These�

k

are optimized (by the least-squares method) to best
fit the observations. Since this model may not model the observations perfectly,"

p

is included
as the model error."

p

is the difference between the result of the experiment predicted by the
model and the measured result.

In our application, an experiment is a measuring of the distance between a pair of probes.
So p will correspond to a specific pair of probes being measured.y

p

will be the distance
measured between the pair of probes. In our case, the input parameters of the experiment,z

jp

,
are values specifying which probes are measured. The�

k

will be estimators of the coordinates
of each probe.

Let us consider a concrete example of this model for an experiment measuring the distance
between two probes,A andB. We will specialize Equation 4 for this experiment. Sincep is
an index of the measured values in the experiment, we will replacep with AB in the equation
modeling this experiment.y

p

, the measured result, will be denotedd
AB

, the measured distance
between probesA andB. �

A

and�
B

are estimators of the positions of probesA andB, and
we will denote themx

A

andx
B

. Thez
jp

are values specifying which probes were measured to
produce the valued

AB

. Since the measurement between probesA andB does not involve any
other probes, allz

jp

except for thez
jp

of the terms forx
A

andx
B

will be 0. We will write the
z

jp

of these two non-zero terms asz
A

AB

andz
B

AB

. Lastly, the model error,"
p

, will be written
as"

AB

for this experiment. Thus, the model formulation for this observation becomes:

d

AB

= z

A

AB

x

A

+ z

B

AB

x

B

+ "

AB

We now set the value of thez's so that the sum of thex
A

andx
B

terms becomes the
distance between the estimators of the positions of probesA andB. The"

AB

thus becomes
the error due to sampling from the distribution of Equation 1. To substitute values for thez's,
we must assume an ordering of the two probes,A andB. We will suffer the same restriction
of having to specify the order of the probes when solving the problem explicitly in the cost
function computation in the branch and bound algorithm (seeSection 3.4). Let us assume that



3.2 Improving the Sum of Squares Cost Function by Including Weights 7

probeA is to the right of probeB. In this case the model of the observation of the distance
between probesA andB becomes:

d

AB

= x

A

� x

B

+ "

AB

There will be an equation similar to this for each pair of probes measured.
The objective of regression in our application is to findx's that minimize"

ij

, the difference
between the measured and estimated distances between probes. Least squares is one method
used to solve this problem.

The estimators provided by a linear regression model using least squares have nice proper-
ties like being maximum-likelihood estimators and having minimum variance over all unbiased
estimators provided a few assumptions hold:

1. The mean of the model error"
ij

for the measurement between probesi andj is 0.

2. The"
ij

are uncorrelated.

3. The variance of"
ij

is constant (homogeneous variances).

4. The"
ij

are distributed normally.

In our domain, the distribution of"
ij

is determined by Equation 1. Unfortunately, this
means the sum of squares formulation violates the last two assumptions. A check in a statis-
tics text such as [Mood 63] will reveal the probability distribution of Equation 1 to be the
Weibull distribution, violating assumption 4. However, since the estimated distance between
two probes is based on an average of 100 to 200 measurements, the distribution of"

ij

ap-
proaches the normal distribution, which is closer to satisfying assumption 4.

The variance of the Weibull distribution is not constant, violating assumption 3. Since each
measurement is an independent sampling of the Weibull distribution, the"

ij

's are uncorrelated,
supporting assumption 2. Finally, to judge the validity of assumption 1, we note that our
distance measurements are computed from Equation 2. That equation estimates the genomic
distance by approximating the expected value of the measured physical distance by averaging
the measurements made between two probes."

ij

is the deviation from this average, and so the
mean of"

ij

is 0, supporting assumption 1.
The fact that the Weibull distribution violates the assumptions above does not mean that it

is inappropriate to use a sum of squares cost function, but itdoes alert us to weaknesses of the
model. In the Section 3.2 we discuss how to improve the cost function to compensate for the
violation of the homogeneous variance assumption.

3.2 Improving the Sum of Squares Cost Function by Including
Weights

One improvement to the cost function is to modify it to compensate for the violation of the
constant variance assumption of the multiple linear regression model of Section 3.1. The
variance of the distribution function of Equation 1 is:

�

2

=

 

(4� �)L

2

�

!

n



8 3 HOW TO EVALUATE A PROBE PLACEMENT

We can see that the variance of measurements between a pair ofprobes is directly propor-
tional to the genomic distance,n, separating the probes. This means that the terms in the cost
function for probes separated by long distances will have a higher variance. If we are optimiz-
ing using least squares then, intuitively, the proportional variance means that we will be putting
too much weight on terms for measurements between probes that are far apart. Luckily, it is
not difficult to compensate for inhomogeneous variances in amultiple linear regression model.
If we were performing a standard least squares optimizationin which the only assumption of
the standard multiple linear regression model that we were violating was the homogeneous
variance assumption, then the correct way to modify the sum of squares would be to weight
each term byw = 1=�

2. This would preserve the property that the estimators are maximum
likelihood estimators and have minimum variance over all unbiased estimators. Weighting
each term in this way intuitively compensates for the extra noise in terms for measurements
between probes that are far apart.

Unfortunately, since the model errors are not normally distributed, we can not make such
guarantees. The strongest claim we can make is that if we compensate for the variances by
weighting each term withw = 1=�

2, the estimators will have minimum variance over all
linear unbiased estimators.

The distribution of Equation 1 has a high variance and a long tail. Even compensating
for the inhomogeneous variances will not prevent inaccuracies due to the non-normal shape of
the distribution. However, compensating for the inhomogeneous variances does improve the
accuracy of the estimators as is demonstrated in Section 7, Results. Inserting the weights into
the cost function of Equation 3 produces:

Cost(x

1

; : : : ; x

N

) =

X

i<j

d

ij

measured

w

ij

(j x

i

� x

j

j �d

ij

)

2 where w

ij

/

1

d

ij

(5)

Equation 5 is the cost function used in all the experiments performed in this work. Having
examined the weaknesses of the sum of squares cost function,we now examine the benefits.

3.3 Benefits of a Sum of Squares Cost Function

Computationally, the least squares approach is very attractive because of its simplicity. An-
other nice property is that the cost of an optimal solution for a reduced set of constraints
(measurements) is a lower bound on the cost of the optimal solution of the same problem with
additional constraints. Adding an additional constraint to a problem simply adds another term
to the summation of Equation 3. Since each term in the summation is nonnegative, the addition
of another term cannot reduce the sum of terms correspondingto the original set of constraints.

3.4 Finding Least Squares Solutions

Given the sum of squares formulation, one approach is to solve it explicitly. We can take the
partial derivative of the sum of squares with respect to eachof thex

i

's, set them equal to0,
and solve. In order to take the derivative of Equation 3, we need to eliminate the absolute
value signs. The only way to do this is to assume an ordering ofthe probes. Without loss of



3.4 Finding Least Squares Solutions 9

generality, assumex
1

< x

2

< � � � < x

N

. Then for a given probek:

@

@x

k

0

B

B

B

@

X

i<j

d

ij

measured

w

ij

(j x

i

� x

j

j �d

ij

)

2

1

C

C

C

A

=

X

1�i�k�1

d

ik

measured

2w

ik

(x

k

� x

i

� d

ik

)

�

X

k+1�i�N

d

ki

measured

2w

ki

(x

i

� x

k

� d

ki

) (6)

Separating the terms and setting equal to 0, we get for@

@x

k

:

x

k

X

1�i�N

d

ik

measured

(w

ik

) +

X

1�i�N

d

ik

measured

(�w

ik

x

i

) =

X

1�i�k�1

d

ik

measured

(w

ik

d

ik

)�

X

k+1�i�N

d

ik

measured

(w

ki

d

ki

)

(7)

We can transform Equation 7 to the form

Mx = r (8)

wherex is the vector ofx
i

's,M is the matrix defined as:

M

ij

=

8

>

>

>

<

>

>

>

:

�w

ij

i 6= j; d

ij

measured;
P

1�j�N; j 6=i

d

ij

measured

(w

ij

) i = j;

0 otherwise;

(9)

and r
k

is a vector formed from the right hand side of Equation 7. Thus, in matrix form,
Equation 7 can be written as:

0

B

B

B

B

B

@

: : :

�w

k1

: : :M

kk

: : : �w

kN

: : :

: : :

: : :

1

C

C

C

C

C

A

0

B

B

B

B

B

@

: : :

x

k

: : :

: : :

: : :

1

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

: : :

P

1�i�k�1

d

ik

measured

(w

ik

d

ik

)�

P

k+1�i�N

d

ik

measured

(w

ki

d

ki

)

: : :

: : :

: : :

1

C

C

C

C

C

C

A

whereM
kk

, the summation term in Equation 9, represents the sum of the weights of the mea-
surements from probek to other probes. If we solve forx we can find the optimal positioning
(in the least-squares sense) of the probes. We compute the cost function by computing the
sum of squares (Equation 3) using the optimal positions found. Note that there is no guarantee
in the solution ofMx = r that the resulting ordering of the probes will respect the ordering
used to construct the linear system. This does not affect thecorrectness of the algorithm, as is
discussed in Section 5.1. Thus, the problem has been reducedto that of computing the matrix
solution over all probe orderings and choosing the orderingwith the lowest cost among those
whose solution respects the ordering. (Quadratic Programming is a technique that will find an
optimal solution with respect to an ordering, and is described in Section 5.2.)

One nice feature of the matrix formulation is thatM is independent of the ordering of the
probes. When solving this system by LU decomposition (as in [Press 92]), this means that we



10 4 THE BRANCH AND BOUND ALGORITHM

can find a solution inO(N2

) time per ordering once we perform an initialO(N

3

) operation on
M. We can take advantage of this time savings in our local search algorithm and at leaf nodes
in the branch and bound algorithm, but we must perform the full O(N3

) LU decomposition
at every interior node of branch and bound since theM matrix varies with the number of
measurements considered, which is different for each node.Additional time savings may be
possible by caching the different LU decompositions ofM at nodes above the leaf nodes in
the tree. For example, in a problem ofN probes, there will beN differentM matrices at the
level above the leaf nodes in the search tree. The construction of the search tree in branch and
bound is discussed in Section 4.

4 The Branch and Bound Algorithm
To construct a branch and bound search, we need to choose a tree representation. Since com-
puting the matrix solution of Section 3.4 requires an ordering of the probes, a search tree over
probe orderings is one natural approach. In this case, the leaves will be complete orderings
and the interior nodes will be a partially specified ordering. There are two basic approaches to
structuring the search tree. In the first approach, shown in Figure 4, the children of a nodeP
in the tree will be the ordering of probes at nodeP augmented with a new probe in all possible
positions among the probes ordered atP .

CAB ACB ABC CBA BCA BAC

AB BA

A

Figure 4: At a node, the children are orderings in which an additional probe is placed in all possible
positions with respect to the ordered probes.

For the second approach, in Figure 5, the ordering of a child of an interior nodeP will be
the ordering ofP augmented by a probe placed adjacent to the rightmost ordered probe inP .

In this work, we choose the second approach. The primary reason is that we are able to
devise a better pruning heuristic if we know that the unordered probes are to the right of the
ordered probes at interior nodes in the tree. This allows us to include constraints between
ordered probes and unordered probes in the cost function.

The first approach is also worth consideration, although it isn' t investigated in this work.
The first approach has a lower branching factor at the top of the tree. (In general, the branching
factor isl + 1 at levell in the tree where level 1 is the root as in Figure 4.) A further possible
advantage of the first approach is that we can specify the order in which the probes are ordered
during the search. On the other hand, since the unordered probes may be placed at any location



11

ABC ACB BAC BCA CAB CBA

AB AC BA BC CA CB

A B C

Figure 5: At a node, the children are orderings in which each of the unordered probes has been placed
to the right of the rightmost ordered probe.

relative to the ordered probes, we are unable to include constraints between the ordered probes
and the unordered probes in the cost function. It may or may not be the case that the penalty of
the weaker cost function of the first approach is offset by thebenefit of a lower branching factor
higher in the search tree. As a first approximation, we can perform some simple measurements
on the search tree generated by each approach to try to ascertain which might allow a better
search. One measure we can look at is to fix the number of nodes visited by a breath first
search in the tree from each approach and try to estimate how well we are able to prune. One
coarse measure of pruning effectiveness at a node might be the number of constraints used in
computing the cost of a node, based on the idea that a greater number of constraints would
lead to a cost that is a tighter lower bound. If we assume that all constraints contribute equally
to the cost function, then calculations on the search tree from a problem of size 12 indicate
that the second approach averages more constraints per nodeat the higher levels in the tree.
This would suggest that we might be more effective pruning a tree generated by the second
approach. However, one could imagine that constraints fromordered probes to unordered
probes in the second approach might not contribute as much tothe lower bound since the
unordered probes are relatively unconstrained. A more thorough investigation to compare the
two approaches seems warranted.

We now turn to details of the branch and bound algorithm.

5 Executing Branch and Bound
In this section we will describe details of the branch and bound algorithm including the struc-
ture of nodes in the search tree and argue the correctness of the pruning heuristic.

Our branch and bound algorithm searches through nodes in a tree, pruning a node if its
cost is greater than the lowest cost found in a leaf node so far. At a leaf node in the tree, we
compute the cost of the ordering as described in Section 3.4.At an interior node, the cost
function must be a lower bound on the cost of all nodes in the subtree to allow us to possibly
prune the subtree. We would like to find a function that provides the greatest lower bound to
improve pruning. In this section, we describe a simple cost function based on least squares.

Consider an interior node such as that in Figure 6. In this picture of an interior node,
the circles represent probes, and the edges represent the existence of a measurement between



12 5 EXECUTING BRANCH AND BOUND

Unordered
Ordered Probes Probes

CBA D

E

F

Figure 6: An Interior Node

two probes. ProbesA, B, C, andD have been ordered (in that order). ProbesE andF are
unordered with respect to each other, but both will appear tothe right of probeD. One way
of computing a lower bound on the cost for this node is to consider only the measurements
between the ordered probes. In this case, we compute the costfunction by computing the
matrix solution (as described in Section 3.4) using a matrixbuilt from only measurements
between the ordered probes. This is done by simply pretending the other measurements do not
exist, i.e., the terms inM of Equation 8 for measurements that we are not considering are 0,
and there is no contribution from them in ther vector.

The cost of an interior node computed in this way will be a lower bound on the cost of all
nodes in the subtree. Consider the hypothetical case of a nodeQ in the subtree of a nodeP ,
whereQ has a lower cost thanP . SinceQ is a descendant ofP , we know it has a superset
of the constraints (pairwise measurements) of nodeP . Since each constraint yields a non-
negative term in the cost function, ifQ has a lower cost thanP then the cost of the set of
constraints thatQ shares withP is lower than the cost ofP . This would mean that the cost
computed at nodeP was not the minimum for the set of constraints atP , which is impossible
since computing the matrix solution returns the minimum cost for an ordering.

Note that since we are changing the set of constraints (measurements) that we are solving
for in the subtree of nodeP (by adding constraints from additional probes that become ordered
in the subtree), theM matrix at each node is different which means that we must perform the
O(N

3

) LU decomposition to solve the matrix at each interior node. However, the cost function
described here is a lower bound, and establishes the basic branch and bound algorithm. In
general, this lower bound holds for the solution to the sum ofsquares for a set of constraints
S with respect to the solution for any set of constraintsT whereT is a superset ofS. We can
use this fact to improve the cost function computed at a node.

We note that the cost function described here is ineffectiveat high levels in the tree (where
nodes will reflect probe orderings with few constraints). This negative impact on pruning per-
formance is compounded by the fact that the upper nodes in thetree have the highest branching
factor. The cost function described evaluates to zero for the first and second level in the tree
(when only one or two probes are ordered) because we are minimizing a cost function con-



5.1 Details of Performing Least Squares in the Search Tree 13

sisting only of terms involving probes that are ordered. However, consider the measurement
in Figure 6 between probeD, that is ordered, and probeE, that is unordered. Even though
the position ofE is undetermined, due to the structure of the tree, we know that E will be to
the right ofD. This allows us to remove the absolute value sign in the sum ofsquares term of
Equation 5 for this measurement and include the term in the cost function computation. Thus,
for an interior node, as well as considering all edges between ordered nodes, we can consider
edges between ordered nodes and unordered nodes when constructing the cost function for the
node. This improvement allows us to compute a non-zero cost function for nodes at the second
level in the tree (when two probes are ordered). With this improvement, the only constraints we
are not considering at a node are those between unordered probes. The cost function described
here is the cost function we use in the simulations reported in Section 7, Results.

We now address concerns of correctness about the branch and bound algorithm.

5.1 Details of Performing Least Squares in the Search Tree

There are four details to address to obtain a working branch and bound algorithm. The first
completes the specification of the algorithm, and the next three address correctness issues.

First, we need to modify the construction of theM of Equation 8. As it stands, the linear
systemMx = r of Section 3.4 is under-constrained (the rank of the null-space ofM is non-
zero). Because the system is constructed from relative orderings between the probes, there is
one degree of freedom: the absolute position of the probes. This is remedied by replacing the
top row of theM matrix with (1 0 0 : : : 0) and setting the first element ofr to 0, which has
the effect of arbitrarily placing probe 1 at locationx = 0.

To understand why there is a degree of freedom in the matrixM, consider a graph in which
the nodes are the probes and an edge(i; j) exists if there is a measurement between probesi

andj, and further assume there is only one connected component inthe graph. The sum of the
rows of theMmatrix constructed from these measurements is0. To see this, consider the sum
of a columnj of M. Probej is in the connected component, so entryj in columnj will be
the sum of the weights of measurements from probej to all other probes. Furthermore, entry
M

ij

of M for i 6= j is �w
ij

if there is a measurement of weightw
ij

between probesi andj.
Thus, the sum of columnj is 0, and the rows ofM are linearly dependent. Thus, we are free
to replace one row with the corresponding row from the identity matrix, which removes the
degree of freedom in the system.

In general, there will be a degree of freedom in the systemMx = r for each connected
component in the graph. The argument above can be extended tothe case in which there are
multiple connected components in the graph. Nodes in the search tree with multiple connected
components can occur commonly in the interior of the tree where there are only a limited
number of constraints (i.e., only between probes ordered ata node). In this work, for all
connected components of the graph associated withM, we apply the procedure described
above, replacing the row of the lowest numbered probe in eachconnected component with the
corresponding row from the identity matrix with the effect that the indicated probe is assigned
to an arbitrary coordinatex

i

= i. The arbitrary positioning may violate the probe ordering
but it does not affect the value of the cost function. This is discussed further at the end of this
section.

Next, we allay a few potential concerns about the correctness of the algorithm. The first



14 5 EXECUTING BRANCH AND BOUND

concern is the case in which the matrix solution of a leaf node, P , returns a positioning of
probes that is inconsistent with the ordering of the probes at nodeP . For example, one pos-
sibility is that there is a probe for which there are no measurements between it and any other
probe. It is not surprising that the matrix solution for the ordering at nodeP might return a
solution in which this probe is placed somewhere else, resulting in a solution with a different
ordering than the ordering at nodeP . However, the matrix solution can produce a different
ordering even in the case where every probe has been measuredsufficiently to eliminate such
degrees of freedom (as is described in Section 2.2) in the solution. Is the cost of the solution
in such cases an attainable lower bound on the cost of the ordering of P? The cost is a lower
bound, but it is not attainable. The cost function minimizedat nodeP is the sum of squares
cost function with the absolute value signs removed according to the ordering of probes at
P . The matrix solution minimizes the cost function over allx, not just the region in whichx
respects the ordering atP . A minimum over allx is a lower bound on the minimum of the
cost function over the region in whichx respects the order atP . The effect of computing a
cost function that minimizes over allx rather thanx that are consistent with the ordering atP

is that if we are searching for nodes that have a cost within 10% of the minimum cost, then we
might erroneously report nodeP as having a cost within 10% of the minimum when the real
minimum of any solution respecting the ordering atP is not within 10% of the minimum cost.
This does not affect the correctness of the search for the global minimum since if the ordering
returned by the matrix solution computed at nodeP disagrees with the ordering at nodeP , the
global minimum can' t be the ordering of nodeP .

One other potential concern is if there is a probeA for which there is only one measurement
to another probe, sayB. In this case,A could be placed on either side ofB with the same cost.
One might be concerned that this means that the matrix solution of a leaf node of an order in
whichA is to the left ofB might be an ordering in whichA is to the right ofB and that the cost
of the two orderings might be the same. This is impossible since the removal of the absolute
value signs in the sum of squares removed the symmetry in the placement of probeA.

To understand this better, consider the case of a leaf nodeP with orderingO
P

including
adjacent probesA andB in which the matrix solution respects the orderingO

P

. Now consider
an orderingO

Q

at nodeQ that is identical toO
P

except that the two adjacent probes,A and
B, have been flipped. The original cost function will have the same value for the orderings
O

P

andO
Q

, but the cost function used at leaf nodeP won' t. The only term that would change
in the cost function between the two orderings is the term involving the measurement between
the two probesA andB. At leaf nodeP we have replaced this term with a simple quadratic.
Let's say that at this leaf node, the ordering specifies thatA is to the right ofB, (x

A

> x

B

).
The cost function for the term is(j x

A

� x

B

j �d

AB

)

2, which becomes(x
A

� x

B

� d

AB

)

2 at
nodeP . If we fix x

B

and plot this term of the cost function versusx
A

, we obtain the parabola
on the right side of Figure 7.

While the original cost function would return equal values for probeA positioned on either
side of probeB, with the absolute value removed from the term in the cost function, the
minimum of the cost function at nodeP is fixed withA to the right ofB (the parabola on the
right in Figure 7). The equal cost solution withA placed to the left ofB will be found when
exploring orderings withA to the left ofB.

The final concern is minimizing the cost function at a node in which there are two sets of
probes that have no measurements between them. This is depicted in Figure 8.



5.1 Details of Performing Least Squares in the Search Tree 15

B dAB xB xB dABx

A

 - +

Cost

Position of x

Figure 7: The solid line is(j x
A

� x

B

j �d

AB

)

2. The parabola on the right is the term used at node
P , (x

A

� x

B

� d

AB

)

2.

C D

5

A B

10

C D
5

BA

10

Figure 8: The correct cost for the orderCABD is non-zero. We can see from the drawing on the right
that there is no way to respect the pairwise measurements between probesA;B andC;D in
this ordering. However, the matrix solution will return a zero cost and positions similar to
the drawing on the left.

At the leaf node for the orderingCABD, the method we use will compute a cost of0 for
the ordering. However, we can see that the cost is non-zero asthere is no way to place the
probes on a line respecting both the ordering and the measurements between the probes.0 is a
lower bound on the cost for the ordering, but is not an attainable cost for the ordering. As with
the previous example, this does not affect the correctness of the search for the global minimum.
However, since this is the only node where this ordering is considered, we will report this node
as having a cost within 10% of the global minimum (since the cost function can not be less than
0), when in fact the cost of any solution respecting the ordering might have a cost greater than
10% of the minimum. In general this means that we might erroneously report some nodes as
having a cost within 10% of the global minimum in the cases when the matrix solution returns
a ordering that does not respect the ordering of the node at which it was evaluated.

In this section we have seen that the matrix solution is stilla lower bound on the cost for a
node in the case of leaf nodes. The arguments can easily be generalized for interior nodes in
the search tree. Although the algorithm described does provide a lower bound, we would like
a tighter lower bound. The problems described in this section have been due to the fact that
the matrix solution is a minimum over allx when we are really searching for a minimum over



16 6 LOCAL SEARCH

x that respect the ordering of the node at which it is evaluated. In the next section we describe
quadratic programming, a technique that finds such minimum over restricted domains.

5.2 Improving the Least Squares Approach With Quadratic Pro-
gramming

Quadratic Programming is an optimization method that minimizes a quadratic function subject
to a set of linear inequalities. In our case, inequalities specify the probe ordering. The prob-
lem has been studied extensively. See, for example, [Goldfarb 93] for a brief description of
quadratic programming and an algorithm to solve it.

By using quadratic programming instead of computing a matrix solution for a nodeP , we
would obtain the lowest cost solution to the sum of squares that respects the ordering ofP . This
improved lower bound could potentially improve the effectiveness of the pruning. Whether this
potential improvement is sufficient to offset its extra computational cost is unclear. Quadratic
programming was not considered in this work due to lack of time.

6 Local Search
We now describe the local search algorithm. The idea of the local search algorithm is fairly
straightforward. It is motivated by a gradient descent algorithm with random starts. The algo-
rithm is:

1. Pick a random starting position for each of theN probes.

2. For each probei, construct a signed integer,�x
i

:

�x

i

=

X

8j; x

j

>x

i

d

ij

measured

w

ij

((x

j

� x

i

)� d

ij

)�

X

8j; x

j

<x

i

d

ij

measured

w

ij

((x

i

� x

j

)� d

ij

)

The vector�x comprised of these�x
i

's is the gradient vector derived from the cost
function in Equation 5 (see Equation 6).

3. Adjust�x
i

by performing:

�x

i

= �x

i

=

X

8j

d

ij

measured

w

ij

The summation term can be thought of as the number of measurements from probei to
other probes compensated by the weight of each measurement.

4. Attenuate�x
i

by dividing by a constant factor,. Initially, this constant is 1, and is
increased to 2 if the local search has not converged after 1000 iterations.

5. Update the position of probei by�x
i

.

6. Repeat from step 2 until�x
i

� " (to integer precision) for alli. Since�x
i

is an integer,
" can be 0, and that is the value we use in our algorithm.



17

One way of interpreting this algorithm is to think of the measurement between two probes
as a spring separating them that has a relaxed length equal tothe measured distance between
the probes. Under this model, the algorithm simulates the movement of the probes attached to
each other by these springs. Note that the adjustment in step3 to the gradient vector computed
in step 2 will most likely not result in a vector pointing in the direction of the gradient. The
adjustment in step 3 isad hoc, and while in early experiments it seemed to be beneficial,
later experiments cast doubt on its utility. However, in theinterests of consistency of the
experimental results, it was retained in all experiments.

To compete the specification of this algorithm, we need to specify how a random start is
constructed. Ideally, we would like to choose initial positions for the probes randomly over
an interval that approximately matches the interval over which the probes are actually located.
This interval is estimated by estimating the average distance between adjacent probes and then
multiplying by the number of probes. The average distance between probes is estimated by
computing the average pairwise measurement and dividing itby one plus the expected value
of the number of probes separating a measurement between twoprobes. If we approximate the
distribution of probe measurements as uniformly random over all possible pairs, then:

E(Number of probes separating two randomly chosen probes) =

N + 1

3

� 1

In the algorithm, the expected distance between two adjacent probes is multiplied by(N +

3), notN , to obtain the estimation of the interval. The reason is thata few problem instances
arose in which using(N + 3) significantly reduced the number of random starts required by
local search to find the global minimum. The choice of(N + 3) is ad hoc and seemed to
improve the performance of the local search in some cases while not hurting it in general.

We have no proof of the convergence of the local search algorithm, but empirically, it does
converge. One nice property of the local search algorithm isthat the value it converges to is the
minimum value of the cost function for some ordering (the same value as the matrix solution
of that ordering). This is because the algorithm iterates until �x

i

= 0 (to integer precision) for
all i. Since the adjustments to the components of the gradient vector computed in step 2 are
by non-negative constant factors, all�x

i

's will be 0 only when the gradient vector is0. This
occurs when the cost function is at a minimum value for some ordering of the probes.

However, in practice, the accuracy of the solution to which it converges is limited by the
convergence criterion (the test in step 6 above). To obtain convergence to a local minimum of
the cost function, the�x

i

would have to be floating point precision and the algorithm would
have to be run until it converged to machine precision. Our experience is that the algorithm
does not obtain additional digits of precision in the answerquickly. For this reason, once the
�x

i

's converge to0 (to integer precision), the resulting ordering of the probes is used as input
to compute a matrix solution to refine the precision of the result. Since computing the matrix
solution finds the minimum cost of an ordering, theoretically, the local search algorithm only
needs to iterate until the positions of the probes settle into an order, not until they converge.
It appears that a fair number (maybe1=2) of the iterations of the local search occur after
the probes have settled into an order. This suggests that we could speed up the local search
procedure if we could stop it when we knew the order of the probes had stopped changing, and
then compute the matrix solution to return the minimum cost for the ordering. Unfortunately,
it is difficult to make such a prediction about the movement ofthe probes.



18 7 RESULTS

We now present the results of experiments performed on the local search and branch and
bound algorithms.

7 Results
We ran multiple simulations to assess the performance of thetwo algorithms and also to gauge
the sensitivity of the algorithms to different parameters.The branch and bound algorithm
evaluates the weighted sum of squares cost function, and initializes the lower bound on the cost
function to the results of a local search. It also searches for the global minimum only, rather
than orderings with a cost within 10% of the global minimum. The local search algorithm
performs a constant number (300) of random starts.

We describe the data over which the simulations were run and present the results of the
simulations categorized by the type of simulation.

7.1 Synthetic Data Generation

All of the simulations of the algorithms were on synthetic data. We attempted to create syn-
thetic data that produces performance similar to the performance of the algorithm on real data.
To create a problem instance, we first created a set of probes and positioned them on a line.
We then simulated performing measurements on various pairsof probes. In this section we
describe this process. We define “Problem Size” to be the number of probes in a problem
instance.

7.1.1 Generating the Probe Distribution

The first step in data generation is to place the probes on a line. We model the placement of
probes by placing them randomly over an interval while limiting the minimum and maximum
separation between adjacent probes. Although the abstractmodel of the problem presented in
Section 1 regards the probes as points, they are in fact DNA segments of about 40,000 base
pairs in length. Consequently, since probes can not overlapon a chromosome (otherwise they
will not hybridize), the centers of adjacent probes must be separated by at least this length.
In addition, it appears that in some examples of real data, a majority of the measurements
between presumed adjacent probes were performed, meaning that those probes are separated
by the minimum resolution of FISH, and no further apart than the maximum resolution. To
better understand the utility of these observations, we perform two experiments to gauge the
effect of limiting probe separation on the performance of the branch and bound algorithm.
First, we fix the maximum separation and graph the branch and bound performance versus
the minimum separation of the probes. Then we perform the same experiment, but without
limiting the maximum separation between probes. The results are presented in Figure 9.

The units of the graph of Figure 9 are arbitrary. The important point is that the performance
appears not to be sensitive to the maximum probe separation.It also does not seem to be sensi-
tive to non-zero minimum probe separations. However, performance does seem to deteriorate
when the minimum separation is 0. It's intuitively plausible that the search algorithms will
have trouble handling cases of near-zero separation between probes. We choose a minimum



7.1 Synthetic Data Generation 19

0

20000

40000

60000

80000

100000

120000

140000

0 5000 10000 15000 20000 25000

N
um

be
r 

of
 N

od
es

 V
is

ite
d 

by
 B

ra
nc

h 
an

d 
B

ou
nd

Minimum Probe Separation

Maximum Separation of 75000
No Maximum Separation

Figure 9: The two lines show the median number of nodes visited by thebranch and bound algorithm
as the minimum separation of the probes was changed. The median is over 20 problem
instances of size 10, and the range over which probes where placed is 75000 units � the
number of probes.

separation of 1250 units and arbitrarily set the maximum to 75000. The distance is chosen
uniformly over this interval. Scaled to genomic distance, the minimum separation corresponds
roughly to the minimum resolution of FISH.

Having established the generation of probe positions, we now discuss the simulation of
measurements.

7.1.2 Generation of Measurements

When synthesizing measurements, the three parameters to specify are the number of repeated
measurements performed between a specific pair of probes, the percentage of different pairs
measured, and the distribution of the pairs chosen.

The first parameter considered is the effect of the number of measurements for each pair
of probes on the quality of the solution returned. This simulation was run on problems of size
10 and 16. We measure all possible pairs of probes and for eachpair of probes perform the
same constant number of measurements. To assess the qualityof the solution returned, we
used the metric of the square root of the mean squared error ofthe probe positions as returned
by the branch and bound. This metric compares the calculatedposition of the probes to the
true positions from which the synthetic data was generated.In the graph in Figure 10, we plot
the quality of solution returned for a problem size of 10. A similar graph for a problem size of
16 is shown in Figure 11.

Judging from the curves, it appears that doubling the numberof measurements between



20 7 RESULTS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 1000 10000

S
qr

t o
f M

ea
n 

S
qu

ar
ed

 E
rr

or
 o

f R
es

ul
t

Number of Measurements per Pair of Probes

Median Error

Figure 10: Quality of solution found versus number of measurements made for each probe pair. Prob-
lem size is 10.

0

2000

4000

6000

8000

10000

12000

14000

100 1000 10000

S
qr

t o
f M

ea
n 

S
qu

ar
ed

 E
rr

or
 o

f R
es

ul
t

Number of Measurements per Pair of Probes

Median Error

Figure 11: Quality of solution found versus number of measurements made for each probe pair. Prob-
lem size is 16.



7.1 Synthetic Data Generation 21

each pair of probes reduces the error by about 25% for the datatested. Note the median RMS
error is about 13% of the average spacing between adjacent probes (approximately 37,000
units) for experiments of 100 measurements between probes,and decreases as the number
of measurements increases. The data presented in [van den Engh 92] is based on 100 - 200
measurements per probe pair, and so we simulate 100 measurements per pair of probes in the
experiments reported below.

Another concern is the distribution of pairs of measurements to be made. [van den Engh 92]
and [Trask, personal communication, 1996] present matrices of pairwise measurements where
the columns (and rows) of a matrix reflect the presumed ordering of the probes. If pairs of
probes chosen to be measured were selected at random, we would expect the matrix to be uni-
formly randomly populated. However, in practice, the experimenters seem to perform more
measurements on nearby pairs than distant ones, presumablyby choosing pairs to measure at
least partially based on tentative ordering obtained from early measurements. This bias is evi-
dent in the matrices of data as clustering along the diagonal. To evaluate the sensitivity of the
performance of the branch and bound algorithm to distribution of pairs of probes measured,
we examine two methods to choose probe pairs on a few test cases.

In the first method, we attempt to duplicate the distributionof measured pairs of probes
as observed in real data. To duplicate the clustering of measurements along the diagonal, we
choose a pair to measure with probability inversely relatedto its distance from the diagonal.
This probability function is constructed from the real dataavailable. For a each problem in-
stance, the matrix of all probes, ordered in their actual order, is constructed, and the pairs to be
measured are chosen using this probability function.

In the second method, we randomly choose the pairs to measurewith a fixed probability.
To allow comparison with the first method, this probability is chosen such that the number of
pairs of probes measured will be about the same in both methods. For each problem instance,
we compare the performance of the branch and bound algorithmusing data generated by the
two methods.

The branch and bound algorithm visits about twice as many nodes when executed on a
problem where the probes to be measured where chosen randomly (the second method). Thus,
to be conservative, in the experiments performed in this work, the pairs to be measured are
chosen randomly. The number of pairs chosen is determined soas to be consistent with the
real data. We did not investigate the effect of the distribution of the chosen probe pairs on the
quality of the solution obtained, although this is an interesting question.

Each problem instance generated is screened to remove instances in which there could be
multiple global minima. For example, a set of probes with no measurements to another set of
probes would result in multiple global minima. Other cases in which the problem instance is
under-constrained (as is described in Section 2.2) are alsofiltered out. The reason for filtering
out such instances is that it appears that such patterns of measurements do not appear in real
problem instances such as described in [van den Engh 92] and [Trask, personal communica-
tion, 1996].

The algorithm to test if an instance has multiple global minima is conservative in that it
could flag an instance as having multiple global minima when in fact it is sufficiently con-
strained. The algorithm constructs sets of probes for whichthe sub-problem consisting of only
those probes has a single global minimum. Each probe is initially placed into its own set. The
problem instance is declared to have a single global minimumif there is only one remaining



22 7 RESULTS

set when all possible merges have been performed. The conditions under which two sets are
merged are as follows:

1. If both sets are singletons and there is a measurement between them.

2. If only one set is a singleton and there are at least two measurements from it to the other
set.

3. If one of the sets has two probes with the property that one probe has at least one mea-
surement to the second set and the other probe has at least twomeasurements to the
second set.

The experiments described in this section by no means represent an exhaustive exploration
of the proper way to synthesize data. As mentioned above, examination of data provide by
Prof. Trask suggests that successive probes to be measured are influenced by some form of
ordering analysis on data accumulated so far. Prof. Trask also mentioned that it is not known
what the best method to perform real data collection is. It would be interesting to investigate
ways of integrating ordering analysis like branch and boundsearch into data collection to
improve both the efficiency of collection and the performance of the branch and bound search.

7.2 Timing Results

The first performance metric used is total CPU time taken by both the branch and bound and
the local search algorithms. CPU time is an appropriate performance measure to gauge the
running time of the algorithms. All experiments reporting CPU time where performed on a
100 MHz DEC AlphaStation 200 4/100 with 96MB of memory. The C code was not optimized
beyond the optimizations described in this work. In particular, the LU decomposition routine
was copied without modification from [Press 92]. The runningtimes of these algorithms could
vary by as much as a small constant factor if optimized. Sincethe purpose of the simulations
was to examine characteristics of performance that are of a larger magnitude than a small
constant factor, extensive optimization of the simulationcode was deemed unnecessary.

The final performance note to consider is that CPU time is different from wall clock time
by the time spent doing non-computational tasks (such as paging). Since the process size for
these algorithms was around 3 MB, since the simulation code is CPU intensive, and since the
unoptimized C code contributes a small constant factor to the total CPU time, the time due to
non-CPU activities does not significantly affect the results shown.

We present the total time for the branch and bound algorithm using weighted least-squares
in Figure 12, and the total time for local search in Figure 13.Each point in the graph is a
problem instance.

We can see that the running time of the branch and bound algorithm is exponential, as is
expected, with time increasing roughly as2:8

N . Note that at the far right of the graph, the most
time taken to solve a problem of 18 probes was about 70 minutes. Since the number of nodes
in a search tree of a problem that size is around10

16, we can see that the pruning heuristic is
quite effective; in fact it visited on the order of106 nodes.

The performance of local search is a little more difficult to assess. For a problem size of 18,
the local search took about 40 seconds. It is difficult to assess whether or not the time taken is
increasing exponentially. Data from much larger problem instances might help clarify. Since



7.2 Timing Results 23

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18

S
ec

on
ds

 p
er

 P
ro

bl
em

 In
st

an
ce

Problem Size

Median Time to Perform Branch and Bound

Figure 12: Time for Branch and Bound.

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18

S
ec

on
ds

 p
er

 P
ro

bl
em

 In
st

an
ce

Problem Size

Median Time to Perform Local Search

Figure 13: Time for Local Search (300 random starts).



24 7 RESULTS

the local search is a gradient descent algorithm and we know the function that it is minimizing,
it also might be possible to analyze the running time. See also Section 7.4.

7.3 Simulations of Branch and Bound

In this section, we examine the effect on branch and bound performance of various parameters
of the algorithm. We consider the effect of performing a local search to find a good lower
bound on cost when starting the branch and bound search, and the performance penalty of
expanding the search to find orderings of cost within 10% of the lowest cost.

First, we present data showing the effectiveness of using local search to provide a starting
cost for branch and bound. Without local search, the branch and bound algorithm must start
with a pessimistic assumption of a lower bound on the cost function. Since the lower bound
on the cost used in pruning is taken only over leaf nodes, witha pessimistic assumption of the
lowest cost, the branch and bound algorithm is not able to prune any nodes until it reaches a
leaf node. Even then, the pruning will not become effective until the search reaches a leaf node
with a relatively low cost. The result is that the side of the search tree where the branch and
bound algorithm begins will be fairly heavily visited. The graph in Figure 14 shows the factor
of reduction in the number of nodes visited by the branch and bound when the lower bound on
cost is initialized to the result of a local search.

1

10

100

1000

10000

100000

2 4 6 8 10 12 14

F
ac

to
r 

R
ed

uc
tio

n 
in

 N
um

be
r 

of
 N

od
es

 V
is

ite
d

Problem Size

Median Local Search Effectiveness in Branch and Bound

Figure 14: Factor reduction in the number of nodes visited by branch and bound when the lower bound
on cost is initialized to the result of a local search (300 random starts).

Previously, we suggested searching for leaf nodes with a cost within 10% of the minimum
as a technique to compensate for the inaccuracies of the least squares approach and the noisy
data. To ascertain the penalty on pruning effectiveness of this alternative goal, we plotted the



7.3 Simulations of Branch and Bound 25

factor reduction in nodes visited in a search for the global minimum only versus a search for
nodes costing within 10% of the minimum. This is plotted versus problem size in Figure 15.

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12 14 16 18

F
ac

to
r 

R
ed

uc
tio

n 
in

 N
um

be
r 

of
 N

od
es

 V
is

ite
d

Problem Size

Median Performance Improvement Without 10% Buffer

Figure 15: Factor reduction in the number of nodes visited by branch and bound in a search for the
global minimum only versus a search for nodes costing within 10% of the minimum.

From the graph we can see that searching for nodes of cost within 10% of the minimum
causes branch and bound to explore many more nodes in the search tree. For example, at a
problem size of 18, the search found only about three or four nodes of cost within 10% of
the node with the globally minimum cost. Those nodes tend to be similar to the ordering of
the node with the minimum cost except for a few, mostly adjacent, pairs of probes transposed.
Of course, these results are dependent on the factor 10%. If we increased that percentage, we
would see a greater number of nodes returned, but also a significantly larger fraction of the tree
searched. One reason that a large portion of the tree is searched may be due to the limits of the
cost function calculation at interior nodes in the tree. At high levels in the search tree, it is not
able to produce a tight lower bound, which makes the pruning heuristic sensitive to the 10%
limit. Unfortunately, given the high variance of the probability distribution of Equation 1, even
10% might be an unreasonably strict limit (i.e., not reporting nodes that could be the correct
ordering). Further investigation might suggest a more appropriate limit. Another possible
approach to avoid the performance penalty of this limit would be to run the branch and bound
algorithm searching only for the global minimum so as to maximize its performance, and then
develop a method to tweak the ordering produced to try to generate other orderings with similar
cost.

We now examine the performance of the local search algorithm.



26 7 RESULTS

7.4 Local Search

In all the previous experiments involving local search, thenumber of random starts has been
fixed at 300. To gauge how many random starts were on average required for local search to
find the global minimum, we performed a two stage experiment.First, branch and bound was
run on a problem instance to determine the global minimum. Then, local search was run on
the same instance to measure the number of random starts required for local search to find the
global minimum. The results are shown in Figure 16.

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18

N
um

be
r 

of
 R

an
do

m
 S

ta
rt

s 
to

 fi
nd

 G
lo

ba
l M

in
im

um

Problem Size

Median Random Starts Required

Figure 16: Number of random starts before local search found the global minimum. Wider points
refer to multiple problem instances for which local search performed similarly.

Although the number of random starts has a high variance, it seems that the average number
is increasing slowly, but exponentially. It is surprising that the median number of random starts
for a problem size of 17 was under 300. The high variance of theresults suggest that the local
search algorithm is very sensitive to certain characteristics of problem instances. It would be
interesting to investigate this further.

The final test of local search performed was to measure the time for a single random start.
This was done by measuring the number of iterations for the algorithm in Section 6 to converge
per random start. The results are shown in Figure 17. The number of iterations to converge
appears to be growing polynomially in the problem size, but it is difficult to judge due to the
increasing variance in the data for larger problem sizes. Remember that each iteration of the
algorithm in Section 6 involves anO(N2

) computation of�x.



7.5 Performance Improvements in Branch and Bound Due to a Weighted Cost Function27

10

100

1000

2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 N
um

be
r 

of
 It

er
at

io
ns

 p
er

 R
an

do
m

 S
ta

rt

Problem Size

Iterations per Random Start

Figure 17: Number of iterations for local search to converge (per random start).

7.5 Performance Improvements in Branch and Bound Due to a
Weighted Cost Function

In this section, we compare the accuracy and performance of branch and bound when the terms
in the cost function are weighted to compensate for the inhomogeneous variances. The graph
in Figure 18 shows the fractional reduction in the square-root of the mean squared error of
probe positions found when weights, as described in Section3.2, are applied to the terms in
the cost function. Specifically, the value on the y axis is:

RMS Errorno weights� RMS Errorwith weights

RMS Errorno weights

We can see that for most of the problem instances, using the weighted cost function produces
significantly more accurate results. Instances in which an unweighted cost function performs
better might be due to noise in the data as well as to the fact that the distributions of the
measurements are violating the normality assumption of multiple linear regression.

The second experiment was to measure the impact on performance of using the weighted
cost function. Figure 19 is a graph of the factor reduction inthe number of nodes visited
when using a weighted cost function versus the original unweighted cost function. It shows
a substantial improvement in performance. Perhaps this is because the cost function with
weighted terms is providing a tighter lower bound, improving the pruning on interior nodes in
the tree.



28 7 RESULTS

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

F
ra

ct
io

na
l R

ed
uc

tio
n 

of
 E

rr
or

Problem Size

Median Reduction of Error

Figure 18: Fractional reduction in the square root of the mean squared error due to a weighted sum of
squares cost function.

1

10

100

1000

2 4 6 8 10 12 14

F
ac

to
r 

R
ed

uc
tio

n 
in

 N
um

be
r 

of
 N

od
es

 V
is

ite
d

Problem Size

Median Performance Improvement

Figure 19: Factor Reduction in number of nodes visited with a weighted cost function versus an un-
weighted cost function in branch and bound.



29

8 Conclusions
In this work, we have developed two search algorithms, a branch and bound algorithm and a
gradient descent based local search algorithm, both of which attempt to minimize a weighted
least-squares cost function. We have examined the effectiveness of different techniques to im-
prove the performance of the branch and bound algorithm, andcharacteristics of performance
of the local search algorithm.

The simulations show that a weighted cost function improvesthe quality of the result and
the performance of the branch and bound algorithm. Due to theexponential nature of the
branch and bound algorithm, it is unlikely that it will scaleto larger problem sizes. However,
it does provide good performance on problems of 18 probes or less. Since it finds the global
minimum, it is useful as a benchmark against which to compareother algorithms.

The local search algorithm performed surprisingly well. For problem sizes of 17 or less,
the median number of random starts required was under 300. A more thorough investigation
of the local search algorithm could produce an algorithm competitive with brand and bound.

9 Future Work
Here are some ideas for future work:

� Further improve the least squares model for branch and bound. There are more advanced
statistical methods to compensate for a non-normal distribution. Compensation might
lead to a faster algorithm with better results.

� It would be interesting to investigate improvements to the algorithm to find a tighter
lower bound on the cost function for interior nodes in the search tree of the branch
and bound algorithm. A tighter bound would improve pruning.One possible way to
improve the cost function would be to include some contribution from measurements
among unordered probes.

� More thorough exploration of the properties of the local search algorithm. As it was
designed mostly to assist the branch and bound algorithm, wehave not yet explored
many directions to improve its performance.

For example, it would be useful to ascertain the exact performance characteristics of
the algorithm, especially the optimum value(s) of the attenuation factor. In addition to
providing a starting cost for the branch and bound, it may have significant usefulness as
a stand alone algorithm for larger problem sizes.

� Apply the method of maximum likelihood. There has been much work on applying max-
imum likelihood to genetic mapping data obtained through other techniques and proba-
bility distributions. It would be nice to see how far the maximum likelihood techniques
could be developed in this domain. A maximum likelihood approach could provide an-
swers with greater accuracy as it derives directly from the Weibull distribution. This
may be more effective than a least-squares approach since the Weibull distribution has a
non-normal shape.



30 REFERENCES

10 Acknowledgments
We would like to thank the Statistics Consulting Group for their generous assistance.

References
[Bishop 94] Bishop, Timothy. Linkage analysis: progress and problems.Phil. Trans. R.

Soc. Lond., 344:337-343, 1994.

[Boehnke 91] Boehnke, Michael, Lange, Kenneth, and Cox, David. Statistical Methods
for Multipoint Radiation Hybrid Mapping.Am. J. Hum. Genet., 49:1174-
1188, 1991.

[Buetow 87] Buetow, Kenneth H., and Chakravarti, Aravinda.Multipoint Gene Map-
ping Using Seriation. I. General Methods.Am. J. Hum. Genet., 41:180-
188, 1987.

[Goldfarb 93] Goldfarb, Donald, and Liu, Shucheng. AnO(n3L) primal-dual potential
reduction algorithm for solving convex quadratic programs. Mathematical
Programming, 61:161-170, 1993.

[Lathrop 84] Lathrop, G.M., Lalouel, J.M., Julier, C., and Ott, J. Strategies for multilo-
cus linkage analysis in humans.Proc. Natl. Acad. Sci. USA, 81:3443-3446,
June 1984.

[Mood 63] Mood, Alexander M., Graybill, Franklin A., and Boes, Duane.Introduc-
tion to the Theory of Statistics. McGraw-Hill Book Company, pp. 542-543,
1963.

[Myers 1986] Myers, Raymond.Classical and Modern Regression with Applications.
Duxbury Press, 1986.

[Newell 92] Newell, William R., Mott, Richard, Beck, S., andLehrach, Hans. Con-
struction of Genetic Maps Using Distance Geometry.Genomics, 30:59-70,
1995.

[Press 92] Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flan-
nery, Brian.Numerical Recipes in C. Cambridge University Press, 1992.

[Thompson 87] Thompson, E.A. Crossover Counts and Likelihood in Multipoint Linkage
Analysis. IMA Journal of Mathematics Applied in Medicine & Biology,
4:93-108, 1987.

[van den Engh 92] van den Engh, Ger, Sachs, Rainer, and Trask,Barbara J. Estimating Ge-
nomic Distance from DNA Sequence Location in Cell Nuclei by aRandom
Walk Model.Science, 257:1410-1412, 4 September 1992.


