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Abstract

In this paper we present o�ine algorithms for determining the optimal sequence of

loads, superloads and bypasses for direct-mapped caches. We evaluate potential gains

in terms of miss rate and bandwidth and �nd that in many cases optimal superloading

can noticeably reduce the miss rate without appreciably increasing bandwidth. We also

present an online algorithm for determining the sequence of loads and superloads. This

algorithm operates by monitoring the reuse and conicts of cache lines. Experimental

results show comparable improvements to the optimal algorithm in terms of miss rates.

1 Introduction

Since their introduction over thirty years ago, caches have become ubiquitous as components

of the memory hierarchy. All modern microprocessors have on-chip, or level one, instruction

and data caches and a large majority of these level one caches are backed up by second level

caches. Caches have been successful because programs exhibit locality: spatial locality, i.e.,

the tendency for neighboring memory locations to be referenced close together in time, and

temporal locality which is the tendency for referencing in the future those locations that have

been referenced in the recent past. However, as the speed of processors increases much faster

than the decrease in memory latency, the e�ciency of caches has received more scrutiny.

Many techniques, either hardware or software oriented or both, have been proposed and

often implemented to improve locality and to reduce or tolerate memory latency. The basic

goal is to reduce cache miss rates without unduly increasing the amount of bytes transferred

between levels of the memory hierarchy. When couched in terms of improving spatial locality

for data caches, the main theme of this paper, the usual policy is to support larger cache

lines. Potential detrimental e�ects of this policy are a possible increase in cache miss rate

because of more frequent conict misses and the lack of reuse of portions of the larger lines,

and to lengthen the occupancy of the bus between levels of the memory hierarchy servicing

the miss. In order to palliate these e�ects and to take advantage of large lines, when deemed

pro�table, the cache controller can be implemented such that on a miss, either the missing

regular size line is loaded { hereafter called the base case { or the line is superloaded, i.e.,

the missing line and surrounding lines are brought into the cache. The cache controller can

also be directed not to load the line in the cache at all, i.e., bypass the cache and bring the

data directly into a register. Note that the advantages of superloading and bypassing depend

on the cost model for the level of the memory hierarchy under investigation. Of particular

importance are the relative costs of a load, a bypass, and a superload.

Although the impact of these techniques has been investigated using heuristics and software

or hardware assists, how much can be gained if these techniques were used optimally is not

known. The contributions of this paper are to: (1) present optimal o�ine algorithms for these

two techniques in the case of direct-mapped caches for cost models that provide tradeo�s

between the reduction of cache misses and memory bandwidth, (2) empirically evaluate how
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much could be gained if one were able to use the optimal algorithms rather than the base case

of cache operation, i.e., provide the margin of improvement, and (3) analyze the performance

of an online algorithm that monitors the reuse and conicts of cached lines when compared

to the optimal and to the base cases.

The rest of the paper is as follows. In section 2, we present the motivation for this study, our

basic terminology, the cost functions that the optimal algorithms will minimize, and a brief

summary of related work. Section 3 is devoted to the description of the optimal algorithms

for superloading and bypassing. Section 4 describes the proposed online algorithm. The

methodology that we used for simulating the performance of the various algorithms is given

in Section 5. Results of the simulations, and their analysis, are given in Section 6. Section 7

concludes and suggests further study.

2 Motivation

2.1 Terminology and cost model

There exists a large body of work devoted to the analysis of the numerous trade-o�s involved

in the design of e�cient caches [?]. For a given real estate, i.e., cache capacity, and target cycle

time, i.e., access time to the on-chip cache, one has to decide on line size, set-associativity, and

various latency tolerance techniques. Under the simplifying assumption of a cache backed-up

by main memory, the main metrics that relate to the contribution of the memory hierarchy

to the execution time of a program are the cache miss rate and the time to transfer a line

from memory to cache, i.e., factors closely related to latency and bandwidth.

It is well known [?] that for a given application and set-associativity, there exists an optimal

cache line that will minimize the cache miss rate. This optimal cache line size depends not

only on the cache size but also on the application. Applications that have a fair amount of

spatial locality will favor large lines while others will behave better with smaller lines. In

this paper we are presenting algorithms that, on a cache miss to line a

i

of size l, determine

the choice between loading a

i

or loading the superline of size L which consists of a

i

and its

(L=l) � 1 relatives, i.e., those lines that would have been loaded on a cache miss to a

i

if the

cache had a line size of L (in the remainder of this paper, we use l = 1; L = 4). A line residing

in the cache at the same superline as a

i

which is not a relative of a

i

will be called a neighbor

of a

i

. In o�ine algorithms we will also consider the possibility of bypassing, i.e., on a cache

miss we bring directly the missing data to a register without modifying the contents of the

cache.

We use a simpli�ed model of memory access that o�ers a tradeo� between bandwidth and

latency e�ects, while remaining tractable. We assign a cost to each cache miss with the cost

of a superload being a multiple of the cost of a load and ignore the cost of cache hits since

they do not contribute more to the execution time than any other instruction. In the case
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where we decide that the cost of a superload is the same as the cost of a load (denoted 1:1, i.e.,

we normalize to the cost of a load) the bandwidth e�ect of superloads is e�ectively ignored;

in the optimal case, minimizing the cost is equivalent to minimizing the miss rate. At the

other extreme, a cost of L=l : 1 that assigns to a superload a cost equal to the number of lines

in the superline corresponds to focusing solely on bandwidth e�ects. With our choice of L

and l, we will consider costs of 1:1, 2:1,and 3:1 with the increase in the ratio indicating that

bandwidth e�ects are taken more in consideration.

We will use the following notation. The execution of a program is represented by a stream

� = �

1

; : : : ; �

n

of memory references. A cache hit is satis�ed at no cost; a cache miss can be

satis�ed either by a cache load of a single line, at cost C

1

, or a cache superload of k consecutive

lines that comprise a single superline, at cost C

2

. The optimal o�ine strategy described in the

next section minimizes the aggregate cost of satisfying cache misses through a combination

of loads and superloads, taking the entire reference stream � into account. For simplicity, we

assume that the cost of a bypass is also C

1

, the same as the cost of a miss, and that there is

no possible reuse of bypassed references through a bypass bu�er.

2.2 Related work

Belady's MIN algorithm is the most well-known o�ine algorithm for the study of memory

hierarchies [?]. Developed in the context of paging systems, MIN gives the minimum number

of page faults for a given program. Until recently, e�cient implementations of MIN required

two passes over the input string. A good example is the OPT stack algorithm [?]. By

using limited look-ahead windows and correcting the contents of the stack when necessary, a

\one-pass" optimal algorithm can be devised for fully associative and set-associative caches

[?].

Heuristics and hardware mechanisms to explore the possibility of using dynamic page sizes

(page and superpage with a size a power of two of the page size) for the interface between

main and secondary memories, and of having lines and superlines for the cache - main memory

interface have been investigated by a number of authors. For example, page promotion policies

from a page to a superpage have been proposed with the goal of either facilitating superpage

management [?] or to have better TLB coverage [?].

Closer to our study is the work of Johnson et al. [?, ?] that investigates hardware assists, a

Spatial Locality Detection Table (SLT) and a Memory Address Table (MAT), for dynamic

fetch size choices. The goals of our study di�er from theirs in two ways. First, we are

interested in how much the superline concept can improve performance in the optimal case

and thus we restrict ourselves, at this time, to the study of direct-mapped caches. Second, our

online algorithm focuses on the tradeo� between cache misses and bytes transferred between

memory and cache while, because the machine simulated in [?, ?] has ample bandwidth, their

emphasis is principally on the reduction of cache misses.

Superlines are one mechanism to improve spatial locality. As we shall see, our proposed
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online algorithm monitors the reuse of lines in superlines in order to decide whether loads

or superloads should be performed. Taking advantage of reuse information is at the heart of

other methods aimed at improving cache e�ciency via bypassing [?], or at having two data

caches one of which is devoted especially for those data that exhibit spatial locality[?, ?]. Of

course the SLT and MAT schemes cited previously also monitor the same type of information.

Loading and superloading start from the premise that one should look at multiples of the

default line size. Another approach is to start with a very large line size and be able to load

only sub-lines when it appears that this is e�cient. The �rst cache implementation, named

sector cache [?], did in fact use this principle. Predictors for sub-lines have been studied in [?]

and several schemes for sub-line invalidation in the context of cache coherent multiprocessors

have been proposed [?, ?].

3 Algorithms for computing the optimal costs

3.1 Description of the algorithm

We note �rst that the optimal cost of satisfying a sequence in the absence of superloads is, for

a direct-mapped cache without bypassing, immediately determined by direct simulation. For

a direct-mapped cache with bypassing, the optimal cost is readily determined by adapting

the MIN algorithm of Belady[?], here phrased as

On a miss to block b, conicting with a currently in the cache, fetch b; replace

a if b will next be referenced before a will, and bypass otherwise.

For superloads, the optimal algorithm is more complex. Interestingly, straightforward o�ine

strategies such as majority voting (superload if the majority of the relatives will be next

referenced before neighbors mapping to the same location) fail to be optimal, and relatively

simple counterexamples su�ce to demonstrate this [?]. For our optimal algorithm, we �rst

decompose the optimal cost determination into separate computations for each superline,

adding each of them together at the end to reconstruct the cost for the entire cache. In the

discussion below, we abuse notation and use � to denote just those references that map to

some particular superline in the cache. For the rest of this section, we restrict our attention

to computing the optimal cost on just these references.

We use the following notation:

� Opt(j): the optimal cost of satisfying the reference stream � up through and including

reference �

j

;

� P (j): the optimal cost of satisfying the reference stream � through and including �

j

,

assuming a superload at time j;
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� c(i; j): the optimal cost of satisfying references �

i+1

; : : : ; �

j

, assuming a superload on

�

i

, and loads or bypasses on all remaining references (computed as discussed in the �rst

paragraph of this section);

� ~c(i; j): the optimal cost of satisfying references �

i+1

; : : : ; �

j�1

, assuming a superload on

�

i

, loads or bypasses on all references up to the (j � 1)st, and that a superload on �

j

is

possible. If the superload is not possible, ~c(i; j) =1. (What it means for the superload

to be possible is discussed below.)

We note that once an algorithm performs a superload, the contents of that superline are

entirely replaced. Thus any optimal sequence of loads and superloads that ends in such a

superload can be substituted for any other. This observation is the foundation for a dynamic

programming approach, which results in a simple and e�ective algorithm for superloads. In

particular, we observe that in any optimal sequence for satisfying all of � there is one last

superload time, that the superline at that time is completely determined by the reference that

is superloaded, and that { by the dynamic programming observation above { the optimal cost

can be obtained by minimizing over all such last superload times. Hence, we have

Opt(n) = min

j<n

(P (j) + c(j; n)): (1)

Similarly, for the computation of P (j), we observe that

P (j) = min

i<j

(P (i) + ~c(i; j) + C

2

): (2)

We now discuss the computation of ~c(i; j). For this, we distinguish between three cases, based

on the hardware design:

Case 1: Superloads can be performed regardless of the state of the superline:

In this case ~c(i; j) = c(i; j).

While this case is easy to analyze, superloading in the case of a cache hit is in e�ect a form

of prefetching, and outside the scope of this paper.

Case 2: Loads and superloads can be performed only on a miss (and no bypassing is allowed):

In this case, it is possible that the superline state resulting from a superload at time i, together

with the simulation from i+ 1 to j � 1, would lead to a hit at time j and hence a superload

at time j is not possible. In this case, we compute ~c(i; j) = c(i; j � 1) if the result would lead

to a miss at time j and set ~c(i; j) =1 otherwise.

Case 3: Loads, bypasses or superloads can be performed, but only on a miss:
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In this case, a slightly more complex computation is required for ~c(i; j). First, note that

the costs ~c can for this purpose be computed individually for each line m within the given

superline, ~c(i; j) =

P

m

~c(i; j;m), since the only e�ect one line's reference stream has on

another arises through superloads, and they occur here only at times i and (perhaps) j.

Next suppose, without loss of generality, that �

j

= b, and that b maps to line m in the

superline. A superload at time j is possible only if some line c 6= b mapping to line m is

referenced at some time between i + 1 and j � 1 inclusive or, failing that, if the superline

referenced at time i does not contain b.

Let k be the index of the last reference between i and j such that �

k

maps to line m and

�

k

6= b (k could be i if �

i

is not a relative of b). Then all references after index k and up to

index j that map to line m are to b. In order for �

j

to be a miss, the contents of line m after

the reference to �

k

must not be b, and all subsequent references after �

k

that map to line m

(all references to b) must be misses { any other possibility results in a hit on �

j

. We claim

that this implies that

~c(i; j;m) = c(i; k;m) + rC

1

;

where r is the number of references between k and j that map to m. The validity of the

equation is straightforward in the case that during the computation of c(i; k;m), the reference

�

k

was a hit. In this case, in order for �

j

to be a miss, all subsequent references to b must

be bypassed (at a cost of C

1

each), and the equation follows. On the other hand, if reference

�

k

was a miss, performing a load on this reference (instead of a possible bypass) does not

increase the cost c(i; k;m) of servicing this part of the sequence, and is the only way (with

bypasses on subsequent references to b) to end up in the state where �

j

is a miss and hence

can be superloaded. If there is no such k � i, ~c(i; j;m) is set to 1.

All of the given recurrence relations (for Opt, P , ~c(i; j) and c(i; j)) can be readily converted

into dynamic programming computations.

3.2 Implementation issues

At each j, the space requirement for computing P (j) in terms of P (0); P (1); : : : ; P (j � 1) is

no worse than linear in j, hence O(n) in all. To analyze time complexity, we note that the

values c(i; j) and ~c(i; j) can be updated in constant time from c(i; j � 1) and ~c(i; j � 1). Thus

the time bound is worst-case quadratic in n (corresponding to a linear number of updates at

each reference �

j

).

One observes that not all values of P (i) need be maintained at each step. If for any i

1

; i

2

we have P (i

1

) + c(i

1

; j) < P (i

2

) + c(i

2

; j), we know that Opt(n) need not take i

2

; P (i

2

)

into account; and similarly, if P (i

1

) + ~c(i

1

; j) < P (i

2

) + ~c(i

2

; j), the computation of P (j)

need not take i

2

into account. We observe that if the simulated superlines are identical, and

c(i

1

; j) � c(i

2

; j), then not only P (j) but P (k), k > j need not take i

2

into account. By

maintaining a list of superline states, we can eliminate all but a few from consideration as
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Application Number of references Maximum pst

compress 7.5 18

gcc 20.0 31

go 20.0 15

ijpeg 20.0 9

li 20.0 14

m88ksim 23.2 12

perl 11.6 18

vortex 20 41

Table 1: Maximum number of previous superload times (pst) considered in the calculation of P (j)

(see text). Number of references in millions. Cache size 16K, line size 32 bytes.

previous superload times. In practice, this optimization is hugely successful; the maximum

number of potential previous superload times at any point in the algorithm is small, as

compared to the number of references. By way of illustration, we measured the maximum

number of previous superload times considered in a simulation of our sample workload at a

single cache con�guration; the results are displayed in Table ??.

3.3 An alternative algorithm for superloads without bypassing.

We have also implemented a linear time, constant space algorithm for computing the optimal

cost in the case of superloads without bypassing. This algorithm is based on a dynamic

programming paradigm applied to the su�x of the reference stream. It calculates optimal cost

by classifying all possible cache con�gurations, de�ning each optimal cost as a minimum over

possible cache operations of the sum of (1) the cost of the operation and (2) the optimal cost

of satisfying the su�x from the resulting state. In the case of superloads without bypassing,

the number of distinct states for one superline is a constant depending only on the size of the

superline, and is small for direct-mapped caches. This method readily generalizes to n�way

set-associative caches that follow LRU replacement, though the value of the constant grows

rapidly with n.

4 Online algorithm

Moving from o�ine to online algorithms presents the signi�cant restriction that we can no

longer use future information when making a decision. Instead, we must rely solely on previous

behavior, associating past patterns with the desired outcome and assuming that this is the

correct behavior the next time the pattern occurs. This moves us into the area of hardware

predictors.
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4.1 Predictor Anatomy

Fundamentally, the e�ectiveness of any predictor will be limited by the intrinsic usefulness of

past information in predicting the future. Practical considerations such as limited knowledge

(feedback) and limited storage space will further inhibit this e�ectiveness.

Limited knowledge is a problem inherent in line size prediction. Speci�cally, after a prediction

is made, one must provide \correct" feedback, which is incorporated in the history information

of the predictor. In the case of branch prediction, this is a simple matter, as the result of

the branch is known within a few cycles, and more importantly, is absolutely correct. Since

optimal line size prediction requires future knowledge, providing absolutely correct feedback

online is not possible. Instead, the predictor must rely on some form of independent knowledge

mechanism, which evaluates the situation and provides (imperfect) feedback.

Limited space in which to store information introduces aliasing e�ects, which can distort

the perception of the past. Aliasing can have a signi�cant e�ect on prediction performance,

usually negative.

Thus our prediction scheme, the Line Size Predictor (LSP), contains two distinct components,

the Operation Counter Table (OCT), a lookup table which determines whether a load or

superload is performed, and the Line Size Detector (LSD), a knowledge mechanism which

attempts to determine in retrospect what the correct line size of a load operation should have

been.

Overall, our strategy on a miss to a particular line is to consider the reference stream since

the previous miss to that particular line. Given this segment of the reference stream, we

determine, approximately, if it would have been pro�table to perform a superload on the

previous miss. If so, we'd like to superload on the current miss, on the theory that the

recent past is a good predictor of the future. If, on the other hand, a superload would not

have been pro�table on the previous miss, we'd like to load on the current miss. In fact,

LSP incorporates hysteresis so that the decision is a�ected to some extent also by reference

behavior prior to the last miss.

4.2 Operation Counter Table

While developing an e�ective lookup table is an important and interesting issue, well under-

stood in the context of branch predictors, it is not the focus of our current e�orts. To this

end, we use unlimited space to uniquely record each load by both its program counter (PC)

and e�ective address (EA). This should reduce most harmful aliasing.

For hysteresis, the OCT contains a 2-bit saturating counter for each reference. This counter

corresponds to the following states and operations: 00 SL (Strong Load), 01 WL (Weak

Load), 10 WSL (Weak Superload), 11 SSL (Strong Superload).
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The OCT di�ers from Tyson [?], which just used parts of the PC, and Johnson's MAT [?],

which just used the upper bits of the EA as the index in their lookup tables. Kumar's SHT [?]

considered several possible combinations of PC and EA with both in�nite and �nite storage.

4.3 Line Size Detector

For the line size predictor, our knowledge mechanism will be called the Line Size Detector

(LSD). Its role is to determine whether a particular reference should have been a load or a

superload. Our approximation of this question is to ask \How many of the neighbors of the

line were referenced between the time the line was loaded and the time the line was evicted?"

Based on this result, the OCT (prediction table) is updated. Generally speaking, if this

number is su�ciently large, we estimate that the reference should have been a superload.

Each line tracks itself and its three neighbors. For each of these it associates one of four

possible states R,C,H,X. This reference pattern reects the condition of a line's neighbors

since the time the line was brought into the cache. An H is a hit, the result of the neighbor

being a relative at the time the line is loaded. An R indicates a reuse, the next miss to that

neighbor loaded a relative. The C represents a conict, the next miss to that neighbor was

a load of a non-relative. An X means that there was no subsequent miss to that neighbor

before the line was evicted from the cache.

When a line is loaded into the cache, its own entry is marked with an R and all its other

entries are checked to see if they are related and marked with an H or X as appropriate.

Furthermore, all other lines may update the appropriate entry of their patterns with either

an R or an C.

As subsequent references occur, the conditions of the X state are updated. State can only

be changed from an X into an R or C. A cache hit as well as a cache miss can change the

state. A superload will wipe clean all state. However, only the particular line which caused

the superline will be marked with an R.

When a line is evicted from the cache, its reference pattern is used to update its operation

counter. If the reference pattern produced by the LSD contains 1 or more H's, the operation

counter is decremented. The intuition behind this rule is that while H's do denote spatial

locality, it is in some sense too late, as superloading at this point would be partially redun-

dant. If the pattern contains 2 or more C's the counter is decremented. This action deters

superloading from occurring when the extra lines brought in would have been replaced before

being used. The counter is incremented if it contains 3 or more R's, or 2 R's and 2 X's. These

are situations where superloading was or probably would have been pro�table.

The following table shows the e�ects of a simpli�ed but illustrative set of references on the

LSD and OCT. The references, the decision that was made based on their operation count,

the resulting state of the cache, the evicted cache line and the update to its operation counter

are all shown in the table. The letter denotes a superline, the number corresponds to the line
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within a superline. In the example, C1 replaces A1, A1 and B2 are neighbors, and B2 and

B3 are relatives.

Ref OCT Cache State Eviction OCT(Eviction)

(Ref) 1 2 3 4

{ { ?1 [????] ?2 [????] ?3 [????] ?4 [????] ?? [????] OCT(??) unch

A1 WSL A1 [RXXX] A2 [XXXX] A3 [XXXX] A4 [XXXX] ?? [????] OCT(??) unch

B2 WL A1 [RCXX] B2 [XRXX] A3 [XCXX] A4 [XCXX] A2 [XXXX] OCT(A2) unch

B3 WL A1 [RCCX] B2 [XRRX] B3 [XHRX] A4 [XCCX] A3 [XXXX] OCT(A3) unch

C1 WL C1 [RXXX] B2 [CRRX] B3 [CHRX] A4 [CCCX] A1 [RCCX] OCT(A1) decr

C2 WL C1 [RRXX] C2 [HRXX] B3 [CHRX] A4 [CCCX] B2 [CRRX] OCT(B2) unch

C3 WL C1 [RRRX] C2 [XRRX] C3 [HHRX] A4 [CCCX] B3 [CHRX] OCT(B3) unch

A1 WL A1 [RXXH] C2 [CRXX] B3 [CHRX] A4 [CCCX] C1 [RRRX] OCT(C1) incr

When a prediction needs to be made, the counter associated with the missing line is checked

and it indicates the operation to be performed. Currently, if a reference has any relatives, a

superload will be suppressed. This is due to the observation that superloading is usually not

pro�table if 1 or more relatives are already present in the cache in the Opt 2:1 model. The

OCT counters are initialized to weak superloads.

The LSD is comparable to Johnson's SLDT [?] and Kumar's AST [?]. The LSD operates at

a much �ner grain than the SLDT. It restricts its prediction to a binary decision, unlike the

AST which predicts a mask of 16 \lines" to be loaded in a \superline". The LSD also uses

four states, R,X,C,H, to record cache behavior, while the SLDT and AST e�ectively only use

R and X.

As with any online prediction scheme, there are many design parameters for the prediction

lookup table (OCT) and knowledge mechanism (LSD). Just a few examples are, the initial

state of the OCT, the size of the OCT counter, which combination of bits (PC, EA) should

index the OCT, which states should the LSD track, which patterns should modify the OCT.

Having the optimal o�ine results presents the novel ability to highly tune these structures.

However, as we are just beginning this process, we have used default settings, based on

common practice in similar settings, such as branch prediction.

5 Methodology

To evaluate the e�ectiveness our optimal algorithms, we used all eight of the Spec95 integer

benchmarks. Traces were collected with the SimpleScalar simulator [?]. The default setting

for the simulator, an 64-bit 256 register RISC machine, was used. The binaries for the

benchmarks were those provided with SimpleScalar simulator.

Our traces include only reads. To accurately capture the behavior of �rst level caches of the

size used in our study, it is our observation that a trace of several million reads is su�cient.

Therefore, we collected traces over 5 million reads in length but less than 25 million.

The input sets for 126.gcc and 132.ijpeg use the test input set. All others use the train input
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set (134.perl uses just the \scrabbl" input from the train input set).

124.m88ksim, 129.compress and 134.perl were not sampled. They contained 7.5M, 11.6M

and 23.2M reads respectively. Others were sampled with 5 separate sections of 4 million

consecutive reads. The 5 sections were uniformly spaced through out the trace and then

concatenated together to form one 20 million read trace.

For this study, we consider direct-mapped caches of sizes 8K, 16K, and 32K. We also consider

line sizes of 8, 16, 32, and 64 bytes. Throughout the remainder of the paper, each reference

to a line size implicitly assumes a superline size of four times the line size.

The optimal algorithms have good performance, allowing us to run approximately 500 cache

simulations for this study. On a 200 MHz Pentium Pro machine, the algorithm described

in section ?? takes about 30 minutes to run on a 20 million read trace. The algorithm in

section ?? takes about 2 minutes to run on a 20 million read trace. Both algorithms exhibit

large amounts of coarse grain parallelism, as each superline in the cache can be optimized

independently.

6 Results

6.1 Optimal algorithms

This section describes our observations from applying the optimal algorithm described in

section ?? to the benchmark application suite described in section ??.

6.1.1 Evaluation of optimal algorithms

As discussed earlier, there are two metrics we use to evaluate superloading algorithms: miss

rate, as a measure of latency, and bytes transferred, as a measure of bus bandwidth utilized.

By setting the cost parameters associated with the optimal algorithms, we can choose to

place di�erent degrees of importance on these two metrics. To minimize bytes transferred,

the optimal strategy for all applications is to use the smallest possible line size and perform

no superloading. To minimize miss rate, the appropriate line size and extent of superloading

depend on the spatial and temporal locality of the application [?]. We examine a range of

optimal algorithms each optimizing within a speci�c tradeo� between latency and bandwidth.

The Opt 1:1 algorithm minimizes the miss rate, de�ned as the sum of the number of loads

and the number of superloads. The tie-breaking mechanism we use in all optimal algorithms

favors loads over superloads. Hence, Opt 1:1 will never superload unless at least one line

in the superline other than the missed line will be referenced before its next eviction. The

Opt 2:1 algorithm minimizes the sum of L+2SL, where L is the number of loads performed

and SL is the number of superloads performed. Since the corresponding number of misses
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Miss rate Bytes read

Application 8 16 32 64 8 16 32 64

compress 5.10 4.79 4.79 5.51 100.00 188.06 375.81 864.33

gcc 6.18 5.22 4.67 4.80 100.00 169.00 302.46 621.94

go 4.14 4.56 5.73 7.27 100.00 220.40 553.78 1403.95

ijpeg 3.99 2.50 1.74 1.32 100.00 125.16 174.17 263.87

li 8.55 6.14 4.21 3.21 100.00 143.72 196.92 300.67

m88ksim 2.54 2.09 1.60 1.37 100.00 164.19 251.35 430.77

perl 3.96 3.73 3.67 3.89 100.00 188.46 370.81 787.03

vortex 8.15 6.62 6.57 6.55 100.00 162.33 322.14 642.75

average 5.33 4.46 4.12 4.24 100.00 170.17 318.43 664.41

Table 2: Miss rates and bytes read for the eight benchmark applications at a series of cache line sizes,

8, 16, 32, and 64 bytes, and a cache size of 16K. For each application, bytes read is normalized to the

quantity for the case of an 8-byte line size (set to 100).

is L + SL and the corresponding number of lines transferred is L + 4SL, this is equivalent

to placing twice as much importance on minimizing miss rate as on minimizing bandwidth

(L + 2SL = (2=3)(L + SL) + 1=3(L + 4SL)). As above, Opt 2:1 never superloads unless at

least two lines in the superline other than the missed line will be referenced prior to their next

eviction. Finally, Opt 3:1 places greater importance on minimizing bandwidth by minimizing

the sum L+3SL. Opt 3:1 never superloads unless all lines in the superline will be referenced

prior to their eviction.

It is not di�cult to verify that there is no need to consider fractional values for superload

cost { all optimal algorithms with C

2

fractional behave identically to the optimal algorithm

with C

2

rounded down to the closest integer.

6.1.2 Workload characteristics

We begin by describing the cache characteristics of the benchmark suite, examining the op-

eration of the \base case" no-superload algorithm on each of the eight applications. We

illustrate the results in Table ??. As mentioned above, the best line size to minimize bytes

read is always the smallest line size, and the best line size to minimize miss rate varies across

applications. For this benchmark suite, the average application reaches a minimum miss rate

at a line size of 32 bytes for a 16K cache. At the extremes, the application go, with poor

spatial locality, has a lower miss rate at the smallest line size, 8 bytes; while the application

ijpeg, with strong spatial locality, fares dramatically better as the line size is increased over

this entire range.
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Figure 1: Miss rates and bytes read for the eight benchmark applications. The base case (no super-

loads), the three optimal algorithms Opt 3:1, Opt 2:1, and Opt 1:1 (see text), and the algorithm that

performs a superload at every miss are each simulated at a cache size of 16K and a line size of 32

bytes. For each application, the �gure for bytes read for each algorithm is normalized to the respective

base case (set to 100). The \superloads" algorithm is not displayed in the bytes read graph; its values

are much higher than the others, and would distort the scale.

6.1.3 Results of applying the optimal algorithms

We analyze each application, comparing the base cases of the algorithm that performs no

superloads and the algorithm that performs only superloads to the three optimal algorithms,

Opt 1:1, Opt 2:1, and Opt 3:1, at the same line size. Each of the algorithms is simulated

using a 32-byte line size, which is the line size that minimizes average miss rate in the base

case for this benchmark suite. The resulting miss rates are shown in the left-hand graph of

Figure ??. In all cases except Opt 3:1 for li, the optimal algorithms achieve lower miss rates

than either of the base case algorithms, and in some cases, fairly signi�cantly. As expected,

we also see that (a) the miss rate decreases as C

2

the superload cost used by the optimal

algorithm decreases, and (b) the percentage of misses on which a superload is performed

increases as C

2

decreases.

We also see that the proportion of superloads in the optimal algorithms is generally greatest

for those applications, such as ijpeg, that already have good performance in the sense of a

low miss rate for larger line sizes. We believe this is because these programs share the same

underlying factor, spatial locality. That is, an application that exhibits a high degree of

spatial locality will tend both to have a low miss rate and to make e�ective use of superloads.

We also see that for some applications a small number of superloads can lead to a signi�cant

improvement in miss rate. The superloads that are chosen in the Opt 3:1 algorithm are

precisely those that result in complete use of the superloaded lines, because three additional
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Figure 2: The miss rate and bytes read for the algorithm Opt 2:1 over the range of line sizes of interest.

Cache size is 16K. The base case (no superloads) is presented in three versions: at the best overall line

size for miss rate (32 bytes) and bytes read (8 bytes), respectively; at the best individual line sizes for

each application; and at a cache size twice as large (32K, 32 byte line size). Measurements of bytes

read are normalized to the 32-byte base case. Results for the individual applications are averaged to

produce a combined �gure.

hits are necessary for the cost of the superload to be preferred by that algorithm. These

high-e�ciency superloads do not lead to an increase in bandwidth (see Figure ??, right-hand

graph, left two columns), but can lead to a substantial decrease in miss rate (li or ijpeg, for

example, in Figure ??, left-hand graph).

In the right-hand graph of Figure ??, we display for each application the bytes read under the

base case (no superloads) and under the three optimal algorithms, Opt 3:1, Opt 2:1, and Opt

1:1. (The base case of the only-superload algorithm is not displayed; its values are generally

much higher, and would distort the scale.) Each quantity in the table is normalized to the

corresponding base case for that application (set to 100). We see from the graph that (as

noted above) the Opt 3:1 algorithm uses the same bandwidth, the Opt 2:1 algorithm uses

somewhat greater bandwidth, and the Opt 1:1 algorithm considerably greater bandwidth

than the corresponding base case. The considerable additional bandwidth required by Opt

1:1 compared to Opt 2:1 can be contrasted to the modest additional bene�t in miss rate,

suggesting that there are diminishing returns to the additional superloads, and indicating

that for Opt 1:1 in many cases only one additional extra line is used by a superload.

In Figure ?? (left-hand graph), we display a summary of the miss rate results of Opt 2:1 over

a range of line sizes. For comparison, we also display the base case results, at the best overall

line size (32 bytes) and the best per-application line size, and at a cache size twice as large.

In each case, the miss rates (and the respective contributions of loads and superloads) for the

eight applications are averaged to obtain the �gure displayed in the graph. The right-hand

graph of Figure ?? presents the corresponding results for bytes read.
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Figure 3: Performance comparison between superloading with and without bypassing. The miss rates

and bytes read associated with the base case and Opt 2:1 are displayed, with and without bypassing,

for all applications. Cache size 16K and line size 8 bytes. The bytes read are normalized to the base

case with no bypassing (set to 100) for each application.

We see that the Opt 2:1 algorithm produces a miss rate at any line size that is at least as

low as the average miss rate for the base case, even where the base case is simulated at each

application's individual optimal line size. In this sense the optimal algorithm captures the

individuality of the separate applications, by producing a miss rate for each that is comparable

to its performance at its own optimal line size. The brute-force approach of doubling the cache

size still leads to a lower miss rate than superloading.

In order to gauge the e�ect of cache size on superloads, we have carried out these same

experiments across a range of cache size values. The results are qualitatively similar. We

examine here the proportion of superloads in the Opt 2:1 algorithm as the cache size increases.

We expect to see a higher proportion of superloads, since as the cache size increases, there

are fewer conicts in the cache, and the optimal algorithm can more often take advantage

of the data placement of the additional lines. For example, for Opt 2:1 the absolute number

of superloads decreases from 781K to 491K (accompanied by a drop in the overall number

of misses), but the proportion of cache misses that are superloads increases from 11.12% to

23.25%, as the cache size increases from 8K to 32K.

6.1.4 Bypassing

We move on to consider the e�ects of bypassing both with and without superloading. The

important question we seek to answer from these experiments is how the potential performance

improvement suggested by Figure ?? will be a�ected if the hardware is enhanced to provide

bypassing capability.
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Figure ?? shows the performance improvement o�ered by an optimal superload algorithm

in the context of bypassing. We compare the performance improvement as between base

and Opt 2:1 in the no-bypassing case to the same experiment simulated on a cache with

bypassing. We see that, overall, the bene�ts of each modi�cation (bypassing and superloads)

are independent of each other. The relative improvement due to superloading is generally

preserved when we move to the simulation of a cache with bypassing. Second, we might

expect bypassing to increase the number of superloads, since { on initial analysis { the data

caching property of a superload can be enhanced by bypassing. However, we see from the

results in Figure ?? (left-hand graph) that the number of superloads declines slightly when

bypassing is introduced; the improvement in miss rate due to bypassing is reected entirely

in a lower number of loads. Finally, we note that neither technique clearly outperforms the

other: in some applications, such as vortex, bypassing o�ers tremendous improvement even

compared to superloads; while in others, such as ijpeg, bypassing o�ers little improvement,

while superloading o�ers substantial improvement.

In Figure ?? (right-hand graph), we consider the corresponding e�ect on bandwidth in the

context of bypassing. We see that, as with miss rate, the overall e�ect of bypassing varies

across applications, but the proportional impact of superloads { this time to increase bytes

read { is approximately the same as in the no-bypassing case. We note that the precise band-

width implications of bypassing are complex, especially at larger line sizes where bypassing

may result in smaller data loads. Our simulations make two simpli�cations, that the cost of

bypassing is equal (in both latency and bandwidth) to the cost of a line load; and that there

is no bypass bu�er common across superlines to o�er temporary cache storage.

6.1.5 Predictability

We next turn to a more detailed analysis of the optimal algorithm and the miss characteristics

of the applications. The purpose of this analysis is to help in understanding online adaptive

algorithms, by illustrating the degree to which the load/superload decision follows predictable

patterns in the optimal sequence. We focus on predicting the correct decision for a given

line based on the previous decision the optimal algorithm took for that line (or for any of

its relatives), taken at the most recent miss reected in the simulation on that line (or on

a relative). If the previous decision is a good indicator of the correct current decision, it

suggests that an online adaptive algorithm based on that technique could be successful; if

however the previous decision is a poor indicator, it suggests that other online approaches

should be considered instead.

Cold misses A threshold question in considering such an adaptive scheme is the most ap-

propriate action in the case of cold misses, where there is no history on which to base the

load/superload decision. We ask two speci�c questions in Table ??: what proportion of misses

were cold misses; and of those cold misses, how often did the optimal algorithm perform loads
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Application Loads Superloads Pct of total misses

compress 60.2722 39.7278 1.4322

gcc 64.9284 35.0716 1.7965

go 51.3278 48.6722 0.2150

ijpeg 34.6594 65.3406 5.5759

li 36.9082 63.0918 0.3301

m88ksim 18.9395 81.0605 12.7968

perl 34.0139 65.9861 0.6890

vortex 58.1453 41.8547 2.2000

average 44.8993 55.1007 3.1294

Table 3: Cold miss breakdown: the proportions of cold misses on which the optimal sequence per-

formed loads and superloads; and the proportion of total misses that such cold misses represents. A

reference is considered a \cold miss" if it is the �rst reference to that line and it is a miss. (Because

of superloads, the �rst reference to a line can be and often is a \cold hit"; these are not included in

this table.) Opt 2:1 is used to produce the optimal sequence. Cache size 16K, line size 32 bytes.

or superloads. This data helps to indicate how an adaptive algorithm should initialize its

decision process, and how important that initialization decision is to the algorithm's perfor-

mance. We see from Table ?? that the contribution of cold misses to the overall performance

is substantial in some cases (m88ksim) and relatively unsubstantial in others (go, li). We

see that di�erent applications have signi�cantly di�erent cold miss behavior. In the LSP

described in section ??, we incorporate a single initialization (weak superloads) suggested by

the overall trend in Table ??.

Superloads We examine the optimal sequence to estimate the predictability of superloads

based on previous load and superload decisions for the same line. Considering the sequence of

references to a single line, we extract from that sequence those references that (i) resulted in a

miss (load or superload) and (ii) occurred at a time when the reference had no relatives in the

cache. The sequence so extracted is then examined for consecutive actions. The percentage

of superloads (respectively, loads) immediately preceded by a load or superload, as the case

may be, is displayed in Table ??. The loads and superloads analyzed in Table ?? do not

include the \cold misses" displayed in Table ??; they also do not include the �rst miss after a

\cold hit" (where the �rst reference to a line is a hit in the cache). We see from Table ?? that

a load is extremely well predicted by a preceding load, while a superload is fairly accurately

indicated by a preceding superload. The LSP is designed on this premise; its e�ectiveness is

analyzed in the following subsection.
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This reference: Superload Load

Previous reference: Load Superload Load Superload

compress 37.8772 62.1228 97.2410 2.7590

gcc 31.1431 68.8569 93.5538 6.4462

go 42.2985 57.7015 96.6771 3.3229

ijpeg 13.3187 86.6813 88.6827 11.3173

li 34.9917 65.0083 78.2467 21.7533

m88ksim 8.0170 91.9830 98.7273 1.2727

perl 52.6607 47.3393 97.1489 2.8511

vortex 23.2043 76.7957 99.5481 0.4519

average 30.4389 69.5611 93.7282 6.2718

Table 4: Predecessors of loads and superloads. Consecutive references to the same line for which

each occasioned a miss and each occurred when no relatives occupied the cache, broken down by cache

actions. Opt 2:1 is used to produce the optimal sequence. Cache size 16K, line size 32 bytes.

6.2 Line Size Predictor

Our online prediction scheme can be quite e�ective in reducing cache misses. Typically the

performance of the LSP varies between those of the Opt 2:1 and the Opt 3:1 algorithms. The

miss rate is shown in Figure ?? (left-hand graph) where it can be seen that the LSP is close

to the Opt 2:1 for the same line size (2nd and 4th bars). In the case of ijpeg, LSP actually

outperforms Opt 2:1 in miss rate. This is not a contradiction; as previously mentioned in

section ??, the Opt 2:1 algorithm minimizes not cache misses but the sum of L+ 2SL.

As noted earlier, applications can show large variations in miss rate across di�erent line sizes.

The LSP exhibits a similar but less pronounced variation in performance across di�erent line

sizes. The LSP rarely performs worse than always loading or always superloading. Exceptions

occur when the LSP uses large line sizes on applications that prefer small line sizes. One

example, not shown in Figure ??, is the application go, where the base case beats the LSP

for a line size of 64 bytes.

Another observation from Figure ?? is that the LSP does more superloads than the optimal

algorithms. This translates into a signi�cant increase in the number of bytes transferred.

However, the largest factor for the number of bytes read still remains the line size. The LSP

at an 8-byte line size is roughly equivalent in bytes read to the Opt 2:1 algorithm at a 16-byte

line size. The LSP at a 16-byte line size is comparable to the base case, a 32-byte line size.

This implies that the additional bandwidth requirements of LSP could easily be negated if its

inclusion allows the cache to be designed with smaller line sizes. This increase in superloads

also suggests that the LSP's current parameters may be too aggressive.

Even without signi�cant tuning, the LSP shows promise in being able to obtain the bene�ts
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Figure 4: Miss rates and bytes read for the eight benchmark applications. The LSP online algorithm

is simulated at line sizes of 8, 16, and 32 bytes. For comparison, the base case (no superloads) and

the optimal algorithm Opt 2:1 are simulated at a line size of 32 bytes. Cache size of 16K. For each

application, the �gure for bytes read for each algorithm is normalized to the respective base case (set

to 100).

of superloading. This implementation of the LSP clearly demonstrates that it is possible to

create a knowledge mechanism for determining line size that will provide good feedback to

an online predictor.

7 Conclusion and future work

We have presented o�ine algorithms for determining the optimal sequence of loads, superloads

and bypasses for a given reference stream for direct-mapped caches. We have presented the

experimental results of these algorithms applied over a range of cache parameters for a set

of traces based on the Spec95 integer benchmarks. Each optimal algorithm incorporates a

speci�c tradeo� between cache miss rate and the number of bytes read into the cache. In

many cases, optimal superloading can noticeably reduce miss rate when compared to the

base case without appreciably increasing bandwidth. In other cases, superloading can achieve

a comparable miss rate with smaller line sizes, translating into a substantial reduction in

bandwidth.

We have analyzed the interaction of bypassing and superloading, and conclude that the per-

formance improvements for each are comparable in magnitude and largely independent of

each other.

We have also presented an online algorithm for determining the sequence of loads and super-
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loads. Experimental results for this algorithm, compared to the optimal algorithm, indicate

that comparable improvements in cache miss rate can be achieved, although there is a notice-

able increase in the number of bytes read in some cases. This suggests that further re�nement,

using the knowledge gained from analyzing optimal sequences, could improve the performance

of the online algorithm.

The algorithms that we have currently developed will allow us to characterize other features

of optimal superloading. In future work, we expect to analyze other line/superline size ratios,

loading arbitrary combinations of lines within a superline, and similar variations.

The development of corresponding algorithms for set-associative caches is another interesting

area for future research.

The results of these algorithms can be used to further develop software and hardware tech-

niques that exploit spatial locality. Pro�ling using optimal algorithms and using the results

to statically identify pro�table loads and superloads is one promising idea. And perhaps

most signi�cant, optimal results allow the construction of a framework which can lead to the

determination of better parameters for lookup tables and knowledge mechanisms.
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