
Reducing Startup Latency in Web and Desktop Applications

Dennis Lee, Jean-Loup Baer, Brian Bershad, and Tom Anderson

Department of Computer Science and Engineering

University of Washington, Box 352350

Seattle, WA 98195-2350

fdlee,baer,bershad,tomg@cs.washington.edu

Abstract

Application startup latency has become a performance problem for both desktop applications

and web applications. In this paper, we show that much of the latency experienced during

application startup can be avoided by more e�ciently packing application code pages. To take

advantage of more e�cient packing, we describe the implementation of demand paging for web

applications. Finally, we show that combining demand paging with code reordering can improve

application startup latency by more than 58%.

1 Introduction

Program startup latency is an important performance problem for both desktop and web appli-

cations. Desktop applications are becoming larger and improvements in disk and network speeds

have not kept up with the improvements in CPU speed. For example, Microsoft Word 2.0 on

an Intel 66 Mhz 486 takes about 14 seconds to start, while Microsoft Word 7.0 on a 200 Mhz

Pentium Pro takes almost 17 seconds to start.

The situation is worse for web applications on the Internet. For many users, web applications

take a long time (a few minutes) to start because they connect to the Internet through high

latency, low bandwidth links (i.e., modems). For example, Vivo, a popular video display and

control application, takes over 8 minutes to download over a 56 Kbps modem link and over 2

minutes on a 256 Kbps DSL link. For applications on corporate Intranets, frequent updates of

internal corporate applications require web professionals to frequently download the applications

through slow modem or wireless links.

A large portion of startup latency involves transferring a large number of code bytes through

slow links. For web applications, the dominant cost is downloading the entire application over slow

network links. For desktop applications, program startup involves loading a large number of code

pages from the relatively slow disk. This paper proposes a technique that attempts to transfer the

minimum amount of code (and consequently bytes) through expensive disk or network links.

Researchers have recently proposed several ways for improving startup latency including com-

pression [Enst et al. 97, Franz & Kistler 97], non-strict execution [Krintz et al. 98], just-in-time

code layout [Chen & Leupen 97], and optimizing disk layout [Melanson 98] . Our approach is or-

thogonal and uses code reordering [Pettis & Hansen 90] and demand paging [Levy & Redell 82] to

improve the startup latency of web and desktop applications, and reduce the load on web servers

and the network.

We show that code reordering can signi�cantly improve upon the performance of pure demand

paging systems. To allow execution without requiring the entire binary to be present, we implement

1



an extension of demand paging for web applications. The combination of these two techniques can

improve the startup latency of web applications by more than 58% and that of desktop applications

by more than 53%.

The rest of this paper

Section 2 presents the motivation and architecture for improving application startup latency. Sec-

tion 3 describes our experimental methodology and setup. In Section 4, we present the results of

our measurements. Finally, Section 5 concludes.

2 Approach

Program startup typically involves waiting for the program binary to be loaded into memory

through relatively expensive links (i.e., the network or disk). For web applications, this involves

downloading the whole application through the Internet. For desktop applications, this involves

paging in all the code and data needed to initialize the application.

In this section, we describe our approach to improving startup latency which attempts to reduce

the number of code bytes that passes through expensive links. Our approach places procedures

that will probably be used by the application into a single contiguous block in the binary. This

improves the e�ectiveness of demand paging systems and consequently reduces startup latency.

As motivation, we �rst present the results of pro�ling several web and desktop applications.

These pro�les show that existing applications can be better laid out to optimize startup latency.

We then present our architecture for code reordering and our architecture for allowing partial

downloads of web applications using demand paging.

2.1 Motivation

Web Applications

Application Description Size (MB)

envoy Document viewing control 1.09

scout VRML parser and renderer 0.98

vivo Applet for watching movies 0.44

whip AutoCAD drawing display control 0.49

Desktop Applications

1

Application Description Size (MB)

acrobat Adobe Acrobat Reader 3.0: Reader for portable

document format (PDF) �les.

2.26

netscape Netscape Navigator 3.1 web browser. 3.17

photoshop Adobe Photoshop 4.0 image editing package. 3.65

powerpoint Microsoft PowerPoint 7.0b presentation package. 4.36

word Microsoft Word 7.0 word processor. 3.78

Table 1: Web and Desktop Applications. The table describes the applications used in this paper. Our web

applications consists of four ActiveX [Chappell 96] controls which display various document types. The size

column gives the size of the main application binary. For web applications, the given size is the uncompressed

size of the main application binary and does not include dynamically loaded libraries (DLLs) used by the

applications.

2



Application Binary Breakdown

Size (KB) Data (KB) Used (KB) Unused (KB)

envoy 1,089 248 (23%) 164 (15%) 685 (62%)

scout 979 285 (29%) 262 (27%) 440 (45%)

vivo 444 274 (62%) 102 (23%) 69 (16%)

whip 487 197 (40%) 71 (14%) 224 (46%)

Table 2: Procedure Utilization in Web Applications. The percentages in parenthesis show the fraction of

the entire binary covered by the particular component. The data column shows the size of all the non-code

sections of the binary including section headers. The unused column shows the potential bene�t of not

downloading the entire application binary.

Application Code Pages

Total Touched Utilization

acrobat 404 246 (60%) 28%

netscape 388 388 (100%) 26%

photoshop 594 479 (80%) 28%

powerpoint 766 164 (21%) 32%

word 743 300 (40%) 47%

Table 3: Desktop Application Pro�le Results. Table gives the number of code pages touched during program

startup. Utilization gives the average fraction of used procedures in touched code pages. Page fault rates

during startup could be reduced by better packing code pages.

We pro�led four web applications and �ve desktop applications (c.f., Table 1) to determine

if there was an opportunity to improve startup time by improving the layout of procedures in a

program binary.

Table 2 shows the statistics derived from pro�ling four web applications. We ran these applica-

tions to completion with a typical workload to determine how many procedures in the application

are actually used. The table shows that the applications utilize only between 38% (envoy) to 84%

(scout) of the bytes in their program binaries. Typically, web applications download their entire

program binaries before starting. The utilization statistics suggest that startup times could be

signi�cantly improved if we download only the procedures actually used by the application.

Table 3 shows statistics for code pages of di�erent desktop applications during startup. The

binary for desktop applications is demand paged so we are examine the utilization of the code

pages brought in during startup. The table shows that only 26% (netscape) to 47% (word) of the

code pages brought in during program startup are utilized. Interestingly, netscape and photoshop

touch almost every code page in their main binary during startup. For these two applications,

demand paging does not reduce the number of bytes accessed on the disk. The low page utilization

suggests that like web applications, we could improve startup latency for desktop applications by

only loading the actual procedures used by the application.

2.2 Architecture

The previous subsection showed that much of the code transferred over the network or transferred

from the disk is not used by the application. Our approach attempts to transfer only the used

procedures in the application. We use pro�le information and an object rewriting system to move

the likely-used procedures in the binary together, essentially packing pages better to make the

demand paging system more e�cient.

3



Figure 1 shows a diagram of the object rewriting phases of our approach. We use pro�le

information to predict with high accuracy which part of the application would be used. Using an

object rewriting engine, we then move the likely-used procedures together at the top of the code

section. For our experiments, we simply arrange the code section in �rst-touch order. Ordering

using procedure a�nity [Pettis & Hansen 90] might be better for locality but �rst touch order works

well enough for our goal of improving startup latency.

Profile
Information

Reordered
Application

Binary

Application
Binary

Profiler

Code
Layout

Code
Splitter

Headers &
 global data &

Likely-used code

Unlikely-used 
code pages

Runtime
(in server)

Profiling Rewriting

desktop applications
finished at this phase

Figure 1: Object Rewriting Phases

For desktop applications, the system is done after generating the binary from the code reordering

phase. The built-in O/S demand paging system will load in only the fraction of the pages containing

the used procedures.

For web applications, the system needs to be able to download only part of the application

required for execution. The code-splitting module splits the binary into 1) a large main binary that

contains the data portion of the binary and the likely-used procedures, and 2) several page-sized

�les containing the unlikely-used procedures. At runtime, the server only returns the main binary.

When the client needs an unlikely-used procedure, it can easily ask for the page-sized �le that

contains the procedure.

Web Client Architecture

Our client architecture extends demand paging to web applications to provide a convenient mech-

anism to detect missing pages and to allow the system to function correctly when control passes to

functions that are not present in the initial download.

Figure 2 shows a diagram of what happens on the web client during program runtime. When

a web application is accessed by the client browser, only pages containing the data and likely-used

portion of the binary are downloaded. The part of the binary that has not been downloaded is

marked PAGE NO ACCESS by the system.

If the application transfers control to a page that is marked PAGE NO ACCESS, the page-fault

handler is invoked. We modi�ed the handler to contact the web server, download the �le containing

the page, place the page in the appropriate location in application memory.

2

2

As an alternative to downloading individual �les each containing a single code page, the client could use the

range option in HTTP 1.1 [Nielsen et al. 97]. This would avoid splitting the application binary into multiple �les.

4



Page-Fault 
Handler

Code pages

Program Data

Null pages 
(initially marked

PAGE_NO_ACCESS)

Likely-used code

Operating System

Page fault

internet

Figure 2: Web Client Architecture

3 Experimental Methodology

3.1 Startup Latency

To determine the startup latency, our timing system 1) invokes the application, and 2) simulates a

user initiated event by sending a message to an application window. We de�ne startup latency as

the time from the invocation of the application to the time the application replies to the message

sent by the timing system.

Our timing method works because of the Windows NT event queue model and the way most

Windows applications are written. Under Windows NT, windows are assigned to threads, and

messages are sent to thread-local event queues. Messages are delivered to this queue and do not

interrupt the execution of the owning thread. For most applications, threads process their message

queue only when they have �nished initializing and are ready to respond to user input.

Occasionally, a thread responsible for the main application window will respond to a user

message even when other threads are still drawing other windows (e.g., tool bar windows). Since

users are unlikely to interact with the application until after all the initial windows have been

drawn, the timing system sends a message not to the main application window but rather to the

window last drawn during application startup and waits for the reply.

3.2 Environment

Our client system was a Pentium Pro 200 system running Windows NT 4.0 Service Pack 3, with

128 MB of memory, and a Seagate ST34371W disk. We used a slightly modi�ed version of Internet

Explorer 4.0 as our browser. Our measurements were taken using the processor cycle counter and

the performance counters built into Windows NT. All our network measurements were taken on

isolated networks with no external tra�c.

For our web server, we use Apache 1.3b5 running on FreeBSD 2.2.6. To control the bandwidth

and latency between the web server and the client, we installed the dummynet [Rizzo 99] patch

to the BSD kernel. Our Internet application experiments looked at a range of bandwidths (from

56 Kbits/second to 3 Mbits/second) and latencies (from 10 ms. to 200 ms.) which cover the range

of network conditions on the Internet.

The application server used in our experiments with application startup latency was a Pentium

Pro 200 system running Windows NT 4.0 service pack 3 with 64 MB of memory. Unfortunately, we

could not control the bandwidth or latency to the application server on NT so our measurements

for desktop applications only involve communication on a single shared 10 Mbit Ethernet link.

5



We used Etch [Romer et al. 97, Lee et al. 98], a binary instrumentation and rewriting engine,

to pro�le and rewrite the applications used in this study. For all our experiments, we pro�le and

reorder only the main application binary. For our prototype implementation, we simulate having

an augmented page fault handler using the Windows NT debugger API [Microsoft 98]. We run the

web browser in the context of a custom debugger.

4 Results

In this section, we present the results of our experiments optimizing the startup latency. Sec-

tion 4.1 describes the results for web applications, and Section 4.2 describes the results for desktop

applications.

4.1 Web Applications

In this subsection, we show the performance of our optimization on web applications. We �rst

present a performance model describing the startup latency of web applications and show how our

optimization improves startup latency. We then compare four di�erent schemes for starting web

applications.

4.1.1 Performance Model

A simple model for predicting the startup latency of web applications:

Startup =

Bytes

Bandwidth

+Requests� Latency+Overhead (1)

where:

� Bandwidth and Latency are the observed network bandwidth and latency between the client and server,

� Bytes is the number of bytes transfered,

� Requests is the number of requests for �les to the web server, and

� Overhead is the �xed overhead of executing instructions to start the application.

Equation 1 suggests that we can improve startup time by reducing the number of bytes trans-

fered and transfer all the needed bytes in a single requests. Unfortunately, we cannot predict with

perfect accuracy the actual bytes that the application would use. Download schemes thus have to

strike a balance between including as little as possible into the initially downloaded package and

paying the cost of extra requests.

In the next subsection, we will consider the case of \improved" schemes that reduces the number

of bytes downloaded at the cost of more requests. An improved scheme would be faster than the

original scheme, if and only if:

Startup

Original

> Startup

Improved

(2)

Bytes

Original

�Bytes

Improved

Requests

Improved

�Requests

Original

> Bandwidth� Latency (3)

Equation 3 implies that the performance of one scheme relative to another is closely related to

the bandwidth-latency product. An improved scheme may be faster when the bandwidth-latency

product is small but the same scheme might actually be slower when the bandwidth-latency product

is large.

6



4.1.2 Di�erent Approaches

We compare the performance of four approaches to starting web applications. These approaches

examine the performance of demand paging and reordering, and probe the space of trade-o�s

between 1) eager approaches which download more bytes in a few requests, and 2) lazy approaches

which download less bytes in many requests.

� Original downloads the entire binary at once. This approach assures that there will only be

a single request.

� Paged downloads a code page of the binary only when it is needed. All of the program data is

still downloaded initially. This approach reduces the number of bytes transfered (i.e., unused

pages are not transfered) but may have to pay a high cost because of request latency.

� Reordered-Paged is like paged in that it downloads a code page only when needed. But this

approach �rst reorders the procedures in the application to more densely pack likely-used

procedures into fewer code pages. Compared to paged, reordered-paged minimizes the number

of pages needed by the application, e�ectively reducing the number bytes transfered and the

number of requests to the server that have to be made.

� Reordered initially downloads the likely-used portion of the code section with all the data in

the binary. It still has to pay the cost of a request when control transfers to a page that is

not in the initially downloaded portion of the code but this would be much rarer. Reordered

may transfer more bytes than the reordered-paged approach since some of the pages in the

likely-used portion of the binary may not be used.

We implemented a prototype of each of these approaches. Each prototype reorders, pages, and

downloads only the main application binary and not the libraries that the binaries depend upon.

Figure 3 shows the results of our experiment starting applications using the di�erent approaches

and network conditions.

3

The �gure show the improvement in startup latency for a workload that

is di�erent from the pro�led workload used to reorder the binary (c.f., Section 2.2).

We highlight a few trends from the �gure:

� Reordered almost always does better than original.

� For low bandwidth (e.g., 60+Kbps) and low latency (e.g., 10 ms) connections, paging does

better than original. However, as the bandwidth-latency product increases (graphs towards

the bottom right), paged makes too many requests from the server and doesn't reduce the

number of bytes su�ciently to compensate.

� Comparing paged with reordered-paged shows that demand paging still leaves much room for

improvement. In all cases, reordered-paged does better than paged, especially in the cases of

envoy and scout.

� Reordered attempts to do better than reordered-paged by reducing the number of server re-

quests. The results show that reordered is better than reordered-paged for high latency-

bandwidth product networks. However, for low-bandwidth networks, the reduced number of

bytes transferred by reordered-paged make that option better for startup.

The �gure also shows a case where our methods are not very e�ective. For most cases with

vivo, reordered and reordered-paged do not do signi�cantly better than original. Since vivo is already

fairly well compacted (84% of the binary is used, c.f., Table 2), we are hard pressed to make the

binary more e�cient.

3

Figure 6 in the Appendix shows the raw startup latency numbers for all network conditions.

7



en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 64 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 251 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 948 Kbps,
Latency: 10 ms

paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 63 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 244 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 885 Kbps,
Latency: 100 ms

paged
reordered-paged
reordered

-87 -90

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 61 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 236 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r 
O

rig
in

al
 (

%
)

Bandwidth: 545 Kbps,
Latency: 200 ms

paged
reordered-paged
reordered

-109 -112 -64

Figure 3: Web Application Results. Graphs show the improvement in startup latency of web applications

under various network conditions. The measured workload was di�erent from the pro�led workload used to

reorder the web binary. The titles show the measured bandwidths between the client and the server. This

is di�erent from the \available" bandwidth (56 Kbps, 256 Kbps, and 1 Mbps) because of the e�ects of TCP

bu�ering and congestion control [Peterson & Davie 96], and the limitations of dummynet. We attempted to

get data points at higher bandwidth-latency products but were limited by the TCP receive bu�er size used

in Internet Explorer.

8



Analysis of Downloaded Bytes

Figure 4 shows the breakdown of the bytes downloaded during the startup of the di�erent applica-

tions. Paged downloads less bytes than original but generates a fair number of server requests. As

shown in Figure 3, this does not work well in the presence of high latency. As expected, reordered-

paged downloads the least number of bytes and has signi�cantly fewer server requests compared to

paged. This explains why reordered-paged is always better than paged.

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

0

200

400

600

800

1000
K

ilo
by

te
s 

T
ra

ns
fe

rr
ed

Text-Paged
Text-Initially Downloaded
Data

envoy scout vivo whip

13
2

45 11

11
4

43
12

33
16

7

32
20 10

Figure 4: Download Statistics. Numbers on top of the bars give the number of faults requiring access to the

web server. Reordered-paged downloads less bytes than paged and accesses the web server less. Reordered

downloads more bytes than reordered-paged but accesses the web server more.

Reordered reduces the number of server requests further but transfers more bytes. The �gure

shows that reordered still experiences some faults and downloads more bytes than reordered-paged.

The reason is three-fold. First, the measured workload is di�erent from the pro�led workload. We

expect that some of the code used in one run would not be used in the other. Second, we pro�led

the entire program run, rather than just startup, to avoid faults even in the middle of the program.

Hence, we initially download code that may not be used immediately. This is the case for reordered

in scout. Finally, our pro�le does not identify the use of data embedded in the code section. This

may cause faults on access to code pages containing data.

Reducing the number of bytes transfered has bene�ts other than reducing the startup latency

of web applications. [Banga & Druschel 99, Bradford & Crovella 98] showed that having a large

number of open connections on a web server can cause serious performance degradation. By

reducing the amount of work that the server has to perform, our techniques can reduce the duration

of each connection hence reducing the load on servers serving up these Web applications.

4.2 Desktop Applications

In this subsection, we examine the e�ect of reordering on desktop application startup latency. We

consider the e�ects of reordering on four di�erent states of the O/S �le cache:

� Cold - the �le cache is empty. All pages for all �les used by the application (including shared

libraries) have to be read in from disk.

9



� Warm-local - the �le cache contains the pages from shared libraries but not those of the main

application binary. This corresponds to the case when a user starts an application either for

the �rst time or after it has been purged from the disk cache. We expect that the shared

libraries would be in the �le cache due to other applications loading them.

� Warm-remote - like Warm-local except that the main application binary lives on a remote

server. We assume that the application binary is in the �le cache of the remote server. This

corresponds to the case when a user starts up an application on a shared �le server. Since

Windows NT purges its local copy of the �le when an application exits,

4

we expect this case

to happen often in environments with shared application servers.

� Hot - the �le cache contains all the application and library pages.

We ran the original and reordered application under these four scenarios. To �lter out spurious

results, we performed our measurements at least ten times for each application and scenario. We

dropped the runs with the highest and lowest times, and report the average of the other runs.

Figure 5 shows the results of these experiments.

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

10

20

30

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Cold

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Warm-Local

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d
0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Warm-Remote

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)
Hot

original
reordered

(a) Startup Latencies

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

1000

2000

3000

4000

P
ag

e 
F

au
lts

Cold

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e 
F

au
lts

Warm-Local

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e 
F

au
lts

Warm-Remote

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e 
F

au
lts

Hot

original
reordered

(b) Page Faults

Figure 5: E�ect of Reordering. Page fault data was obtained using the performance counters built into

Windows NT. Reordering improves application startup latency and reduces the number of page faults expe-

rienced by the program.

4

Actually, Windows NT purges the local copy of a �le when there is no longer an open handle to the �le in the

local machine [Leach & Naik 97].

10



For all applications and con�gurations, reordering improves application startup latency. The

two warm scenarios show that reordering the binary can signi�cantly reduce startup time. It is

especially e�ective for powerpoint and word as they improve their application startup time by 53%

and 39% respectively. Page fault rates decrease a corresponding amount for the cases where we

improve the application startup latency. This veri�es that the dominant cost during startup are

page-faults.

Since we only reordered the main application binary, we expect to mildly improve the cold case.

This is shown by Figure 5 as we see from 2% (word) to 11% (powerpoint) improvement. We also

included the hot case to see if reordering procedures in �rst-touch order would slow down this case.

The �gure shows that for the hot case, reordering does not slow down the applications and even

slightly improves photoshop and word.

5 Conclusion

We have implemented a system that uses code reordering and demand paging to improve the

startup latency of web and desktop applications. Our measurements on a prototype implementation

show that the combination of these optimizations can improve program startup latency of web

applications by as much as 58% and desktop applications by as much as 53%.

For web applications, the approaches to improving startup time have to carefully balance the

competing requirements of downloading as few bytes as possible and accessing the server the least

number of times. This balance is especially important for networks with a high latency-bandwidth

product.

For desktop applications, code reordering improves application startup latency for all states of

the �le cache. It improves startup latency moderately (11%) for cold caches, slightly (6%) for hot

caches, and signi�cantly (53%) for warm caches.

References

[Banga & Druschel 99] Banga, G. and Druschel, P. Measuring the Capacity of a Web Server Under Realistic

Loads. World Wide Web Journal, May 1999. to appear.

[Bradford & Crovella 98] Bradford, P. and Crovella, M. Generating Representative Web Workloads for

Network and Sever Performance Evaluation. In Proceedings of the 1998 ACM SIGMETRICS

Internation Conference on Measurement and Modeling of Computer Systems, pages 151{160, July

1998.

[Chappell 96] Chappell, D. Understanding ActiveX and OLE. Microsoft Press, 1996.

[Chen & Leupen 97] Chen, J. and Leupen, B. Improving Instruction Locality with Just-in-Time Code

Layout. In Proc. of the USENIX Windows NT Workshop, pages 25{32, 1997.

[Enst et al. 97] Enst, J., Evans, W., Fraser, C., Lucco, S., and T.Proebsting. Code Compression. In Proc.

ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation, pages

358{365, 1997.

[Franz & Kistler 97] Franz, M. and Kistler, T. Slim Binaries. Communications of the ACM, 40(12):87{94,

December 1997.

[Krintz et al. 98] Krintz, C., Calder, B., Lee, H., and Zorn, B. Overlapping Execution with Transfer Using

Non-strict Execution for Mobile Programs. In Proc. 8th Int. Conf on Architectural Support for

Programming Languages and Operating Systems, pages 159{169, 1998.

11



[Leach & Naik 97] Leach, P. and Naik, D. A Common Internet File System (CIFS/1.0) Protocol, December

1997. Internet Engineering Task Force (IETF) draft document, available from ftp://ietf.org/-

internet-drafts/draft-leach-cifs-v1-spec-01.txt.

[Lee et al. 98] Lee, D., Crowley, P., Baer, J.-L., Anderson, T., and Bershad, B. Execution Characteristics

of Desktop Applications on Windows NT. In Proc. 25th Annual International Symposium on

Computer Architecture, pages 27{38, June 1998.

[Levy & Redell 82] Levy, H. M. and Redell, D. D. Virtual Memory Management in VAX/VMS. Computer,

15(3):35{41, March 1982.

[Melanson 98] Melanson, E. Tuning up. PC Magazine, August 1998.

[Microsoft 98] Microsoft. Microsoft Developer Network Library, April 1998. on CD-ROM.

[Nielsen et al. 97] Nielsen, H., Gettys, J., Baird-Smith, A., Prudhommeau, E., Lie, H., and Lilley, C. Net-

work Performance E�ects of HTTP/1.1, CSS1, and PNG. In Proc. of the ACM SIGCOMM 1997

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communi-

cation, pages 155{166, September 1997.

[Peterson & Davie 96] Peterson, L. L. and Davie, B. S. Computer Networks, A Systems Approach, chapter 6.

Morgan Kaufmann Publishers, Inc., 1996.

[Pettis & Hansen 90] Pettis, K. and Hansen, R. Pro�le Guided Code Positioning. In Proc. ACM SIGPLAN

1990 Conference on Programming Language Design and Implementation, pages 16{26, 1990.

[Rizzo 99] Rizzo, L. Dummynet: A Simple Approach to the Evaluation of Network Protocols, February

1999. available from http://www.iet.unipi.it/ luigi/ip dummynet.

[Romer et al. 97] Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Levy, H., and Bershad, B. In-

strumentation and Optimization of Win32/Intel Executables using Etch. In Proc. of the USENIX

Windows NT Workshop, pages 1{7, 1997.

12



A Web Application Download Times

In this appendix, we show the startup latency from all our experiments with web applications.

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 64 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p
0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 64 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 63 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 61 Kbps,
Latency: 200 ms

original
paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 251 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

40

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 248 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

40
S

ta
rt

up
 L

at
en

cy
 (

se
co

nd
s)

Bandwidth: 244 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

20

40

60

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 236 Kbps,
Latency: 200 ms

original
paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

2

4

6

8

10

12

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 948 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

2

4

6

8

10

12

14

16

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 922 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

5

10

15

20

25

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 885 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

40

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 545 Kbps,
Latency: 200 ms

original
paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

1

2

3

4

5

6

7

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 2732 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

2

4

6

8

10

12

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 2186 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

5

10

15

20

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 1147 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 579 Kbps,
Latency: 200 ms

original
paged
reordered-paged
reordered

Figure 6: Web Application Results. Graph shows the startup latency of web applications under various

network conditions.

13


