Modular Statically Typed Multimethods

Todd Millstein and Craig Chambers

Department of Computer Science and Engineering
University of Washington
{todd,chambers}@cs.washington.edu

Technical Report UW-CSE-99-03-02
March 1999

This technical report presents the formal details of the Dubious language and its various static type
systems, as described in [Millstein & Chambers 99]. Section 1 presents the syntax of Dubious,

sections 2 and 3 present its formal dynamic and static semantics, respectively, and section 4
sketches the soundness proofs for each of Dubious’s type systems. Refer to [Millstein & Chambers
99] for an informal description of the semantics of the language and its static type restrictions.

Modular Statically Typed Multimethods

P:= M;..Myinport I in E end

M := pmodule | inmports Iy, ..., In{ Djp .. Dp}
D :=[abstract | interface] object | isa Oy .., O,
| 1 has method(Fq, ..., F){ E}
E = Eo(Ep .. E)| |
O:x=1|(Oy4.,0H) -0
Fu= 11 @3]
| = identifier
Figure 1-1: Syntax of Dubious
1 Syntax

Dubious’s syntax appears in figure 1-1. This syntax is used in conjunction with the static type rules
corresponding to System M. The static type restrictions of Systems E and ME require a few
modifications and additions to the syntax, as follows:

M:= nodule | imports Iy, .., Ih,extends I, .., 1,/ { Dy .. Dy}
o= 1|1(& .. -0
S = [#O

2 Dynamic Semantics

This section presents the dynamic semantics of Dubious. Subsection 2.1 presents the dynamic
semantics corresponding to the syntax in figure 1-1, and subsection 2.2 presents the modifications
to the dynamic semantics for the augmented syntax necessary for Systems E and ME.

2.1 Dynamic Semantics for Systems G and M

2.1.1 Preliminaries

Figure 2-1 defines the necessary domains for the dynamic semdiagpresents the dynamic
environment, mapping identifiers to valu&soremaintains information on the inheritance relation
among objects and the methods contained in each generic funitatEnvis a mapping from
each module name to an environment representing the values defined in that nealisi¢he
domain representing the declared inheritance relationship GHMethodsdomain contains the

e 0 Env = | - Vval

S 0 Store = Isax GFMethods

me [ModEnv = | - Env

isa O Isa = (Val x Obj*

gfmsd GFMethods = (Valx MethodHeader - MethodBody
mh [MethodHeader= Obj*

mb [0 MethodBody = I* xExEnv

o O Ob = Val+ Arrow

arr [0 Arrow = arrow(Obj*, Ob))

v 0O Vval = obj(Nat)

Figure 2-1: Domains for the dynamic semantics

Modular Statically Typed Multimethods

We define accessor functions on the componen&arke with the namessaandgfms
respectively.

r1& rp={(xy)) | &yp) Orzor[(xyq) Oryand y,.(x,y2) U rol}
(isay, gfmg) + (isay, gfms) = (isa; U isay, gfmsg [gfms)
namel,@,) =14 namel,) =14
disjoint(xy,....)) =0 1<isn O1l<j<n(x=x)0 (i=))
Each static occurrence of “object” in the program is subscripted with a unique in
greater than one.
Figure 2-2: Definitions and functions

relevant information about each method in a generic function objesthodHeaders the list of
specializer objects of a methadethodBodys the list of formal parameter names, method body,
and lexical environment of a metho@bj is the domain of objects in the prograkwrrow is the
domain of arrow objects, containing a list of argument objects and a result okgéistthe domain

of non-arrow objects. Each element of this domain is given a different natural number, which serves
as the object’s unique identity.

Figure 2-2 makes several useful definitions and functions. Many of these definitions are self-
explanatory:+ is the pointwise union of tw&tores. & is ashadowing uniomperator, favoring».
Thedisjointfunction returns true if and only if all of its arguments are distinct. Since each textual
occurrence of “object” maps to a unique run-time value, the subscripts are a simple way to provide
each run-time value with a unique identity.

2.1.2 Judgements

Now we present the judgements for the dynamic semantics. In general, a judgement may have the
form dq,....d,F X O o O dy,...,d,. Such a judgement is interpreted as follows: “Given the
information in domain elements,...,d,, as the context for evaluation, the program fragment
evaluates to the objeotand producesd,’,...,d, as additions to the current context.” Theo or []

d,...,d, parts may be omitted.

Figure 2-3 contains the judgements for programs and modules. The program rule evaluates each
module in the program, returning a global store and an environment for each module. The rule then

FM;..M,0O s,me emgl) esFEOV

[prg-d]
FMi.Myinport linEendd vO s
{}FM. O s5,me
[md*d] si,me F My O S,,ms ... §1+.45,1,Me & me&.&me - M, O s,,me,
FM;..M, O g+s+..+3, Mmg& me&..&me,
e=mgl)&...&mgly) e,;skD;..D,0 €55
[mod-d]

s,mel-nodul e linports Iy, ..., 1{D1.. Dy} U 5, {(I,e&ey)}

Figure 2-3: Judgements for programs and modules

Modular Statically Typed Multimethods

e,51— D1|:| €1,$
e&ey,sts Do 0 e),s,

08018 8&..& 61,5+ +S+.+54F Dy O €5,

[dc*-d]
e,skD;..D 0 & 6&..& 8, +5+.+5
eFO;00; ... eF0O,0 o,
: v = obj(i)
[obj-d]
e,sk-[abstract|interface] object; lisa Oq .., O,
0 {(v}.((v,00),....(v,a0)} {})
eI OV
e, sk (v, [Fq,....Fy) O (04,...,@)
mb= ([nam€F,),....naméF)],E, &
[has-d]

e,sk 1 has met hod(Fq,....Fy) { E} O {,({}.{((v[04,...,0),mb})
Figure 2-4: Judgements for declarations

evaluates the given expression in the context of the global store and the environment of the
imported module. A module is evaluated in the context of the shadowing union of the environments
of each module it imports.

The judgements for declarations are shown in figures 2-4. Each declaration in a declaration block
is evaluated in an environment which includes any name bindings from previous declarations in the
block. Although declaration blocks are not recursive, it is still possible to write (mutually) recursive
methods because generic functions are declared separately from their methods. For example, the
body of a methodn may refer to the same generic function in whithis contained, since the
generic function was declared previously, thereby creating a recursive methoabJleet
declaration is evaluated by evaluating each inheritance parent of the new object and storing the new
inheritance pairs in the resulting evaluation context. Methods are evaluated by evaluating each
formal argument and recording the appropriate information in the resulting evaluation context.

Figure 2-5 contains the judgements for expressions and objects. A generic function application is
evaluated by evaluating the generic function expression and the actual argument expressions to
objects. The most-specific method for the argument objects is extracted from the generic function
object, and its method body is then evaluated in the context of the method’s lexical environment,
augmented with bindings from the formal to the actual parameters. An identifier is evaluated
simply by looking up the identifier's binding in the current environment. An arrow object is
evaluated by evaluating each of its object components.

The judgements for evaluating formals are given in figure 2-6. If the formal parameter is
specialized, the specializer object is evaluated and returned. If the formal parameter is
unspecialized, we consider the formal to be implicitly specialized on the associated object in an
arrow object of the generic function (the static semantics will ensure that there is at most one such
arrow object for each generic function).

Modular Statically Typed Multimethods

eskFEp0 vg ... eskE\O v,
St vg lookup-methodivy,...,vi)] O (Mmh([l4,....14].E.&))
eO& {(|11V1)’---’(|n’Vn)}nS|_ EQ vV

[app-d]
e,st Eo(Ey....E) O v
ell)=v
[id-d]
eskIO v
erFO;00; ... eFO,00, eFOLOO
[arr-d]
el (0y,....0)-00 arrow([o0y,...,0,,0)
Figure 2-5: Judgements for expressions and objects
est(,F,)00; .. esk(cF,nU o,
[form-d]
e, sk (0[F4,....R) O [04,...,0)
e I_ |2 U)
[spe-d]
e,st (o, 1@, 1) I 0y
1<i<n (o,arrow([0y,...,04,00)) O isa(s)
[uns-d]

e, s (o, I, 1) O o
Figure 2-6: Judgements for formal arguments

[MA,...mk]=[mh| MM D giméy T s |[04,...,0y] Sisa» MK

disjoint(mh,...mip) 1<i<n
St mh Sigg» mhy ... s mh Sjga+ Mh,

[look-d] (OmR)mb) U gfmsy
st o lookup-methogoy,...,q,] O (mhmb)

Figure 2-7: Judgement for method lookup

The method lookup rule appears in figure 2-7. The rule first extracts the tuple of specializers of all
applicablemethods for ¢,,...,g,] from the generic functiow. Then it finds the unique such tuple

of specializers that is more-specific than all other tuples of specializers, and it returns this tuple
along with the associated formal arguments, method body, and lexical environment.

The rules for extending the direct inheritance relation to form the descendant relation are given in
figure 2-8. Thesig,+ relation is a pointwise extension of thg, relation. The<;g, relation is the
reflexive, transitive closure of the declared inheritance relation, along with the standard
contravariant rule for relating arrow objects.

Modular Statically Typed Multimethods

St 01<i5a 01 - Sk~ Oy Sisa O

[isa*-d]
St [04,-,] Sisar [01',--, O]
. (01,0) UisA9
[isb-d]
SF 01 Sisa 02
lisr-d] S 0<ia 0
_ S 01Sisa02 Sk 0r<js503
[ist-d]
S| 01 Sisa 03
St 01’ Sisa 01 .- St Oy’ <jsa On
. KFo0<is50
[isar-s]
s} amrow((0y,...¢J9 Sisa ATOW(oY .10
Figure 2-8: Judgements for the descendant relation
e=mgl)&...&mgl,)&mgl;)&...&megl,’)
S Dy ... D, O &g,
[mod-d] e,sf-Dq nt €S
s,mel-nodul e linports |4, ..., Iyextends 1y, .., 1,'{D; ... Dy}
U s, {(1,e&ep)}
eF0O;:0;1...eF0O,:0, elO:o
[arr-d] el ([(#Oy,...[#]Op) - O : arrow([0y,...,3,],0)

Figure 2-9: Judgement modifications for Systems E and ME

2.2 Madifications for Systems E and ME

Two minor modifications of these semantics are needed to accomodate the syntax extensions for
Systems E and ME. These modified rules are shown in figure 2-9. The modified rule for modules
treats extended modules identically to imported modules, using their environments as context for
the evaluation of the new module. The rule for evaluating arrow objects simply ignores the optional
markers on argument objects.

3 Static Semantics

This section presents the static semantics of Dubious. Subsection 3.1 presents the base static
semantics, which is independent of the particular modular typechecking system used. Subsections
3.2 through 3.5 present the modifications and additions to the base static semantics for Systems G,
M, E, and ME, respectively.

Modular Statically Typed Multimethods

p 0O TypeEnv = |- ObjType

k 0O TypeStore = Isa Concretex Abstractx GFMethodTypes
x LocalTypeStore

m [0 Modules = ModTypeEn¥ ModTypeStore

cnc U Concrete = Const*

abs [0 Abstract = Const*

isa 0O Isa = (Constx ConstTypg

gfms GFMethodTypes =(Constx MethodHeaderTypé

mh [MethodHeaderType = ConstType*

Ik 0O LocalTypeStore = Localg LocalGFMethods

Is 0O Locals = Const

lgf O LocalGFMethods = GFMethodTypes

mp [ModTypeEnv = |- TypeEnv

mk [0 ModTypeStore = | TypeStore

t (0 ConstType = Const ArrowType

art [0 ArrowType = arrow(ConstType*, ConstType

ot [ObjType = Const unk(ConstType

c 0O Const = object(Nat)

Figure 3-1: Domains for the static semantics

3.1 Base Static Semantics

3.1.1 Preliminaries

Figure 3-1 defines the necessary domains for the static semaim=Enwrepresents the static
environment, mapping object identifiers to their typ®&gpeStoremaintains information on the
inheritance relation among objects, which objects are concrete, which objects are abstract, the
methods contained in each generic function, and local information about the current module being
typecheckedModules maintains a mapping from each module name to its associated type
environment, and a mapping from each module name to its associated type store. The
GFMethodTypedomain maintains, for each method in the program, a mapping from the method’s
generic function to the method’s tuple of specializéxscalskeeps track of all non-arrow objects
created in the current module being typechecked LamalGFMethod&eeps track of all methods
created in the current module being typecheckeddxstTypds the type of statically known
objects. This is either a non-arrow object with a known object identity, or an arrow oOjejdlype

is the type of all values in the program. A value may either ha@G®asttype, in which case the

value has a statically known object identity, ouaknowntype of the formunk(Typg, which

means that the value is not statically known but is known to inherit Tyga

Figure 3-2 makes several useful definitions and functions. As in the dynamic semantics, we define
accessor functions for easy manipulation of TiypeStoreandModulesdomains. In addition, we

define a record-like syntax for representing spdsgeeStors, where most of the components are
empty. Theadd-impfunction is used to obtain “interface” information from the type context of an
imported module. This information is then added to the type context of the importer. As in the
dynamic semantics, integer subscripts on occurrences of “object” are used as object identities. We
assume that the subscripts used in the dynamic and static semantics are identical.

Modular Statically Typed Multimethods

We define names for the components @fpeStoreandModule and associated
accessor functions with those namésa,¢nc,abs,gfmds,|gf)) and (mp,mK

Let () denote the empty type store ang € v4,...,%, = V,,) denote the empty type stol
augmented with componextequal tov;.

ri & ro={(x,yp) | ,y1) Oryor [(xys) Orqand [y,.(X,Y) O rol}

(S11--S10) + (S215---52n) = (S12 U 21, -4 S1n U Spp)
add-img(isa,cnc,abs,gfms Jk= (isa,cnc,abs,gfmg}.{}))

namégnodul e li nports |q,...k {D*}) = |
namgl,@,) =1, namél) =1
disjoint(xy,....)) =0 1<isn O1<jsn(x=x)0 (i =])

length([xy, .. %]) = n
Each static occurrence of “object” in the program is subscripted with a unique in
greater than one.

Figure 3-2: Definitions and functions
3.1.2 Judgements

Now we present the judgements for the base static semantics. In general, a judgement may have
the formd,,....d, | X : t O dy,...,d,. Such a judgement is interpreted as follows: “Given the
information in domain elementy, ...,d,, as the context for typechecking, the program fragment

has typet and producesl',...,d, as additions to the current type context.” Theor O dy',...,dy

parts may be omitted.

Figure 3-3 contains the judgements for programs and modules. The program rule typechecks each
module in the program, returning a global type store and a type environment and type store for each
module. The rule then typechecks the given expression in the context of the global type store and
the type environment of the imported module. A block of modules is typechecked one-by-one, and
the typechecking of each module returns that module’s type environment and store. The type store
of the program is the union of the type stores of each modulepidgram-has-safe-modulesle

will be supplied by the particular type system (G, M, E, or ME) being added to these base
semantics, performing any necessary global typechecking. The declarations in a module are
typechecked in the context of the type environments and type stores of each imported module. The
four module-has-safe-rules will be supplied by each particular type system, performing any
necessary local and regional typechecking.

The judgements for declarations are shown in figure 3-4. Each declaration in a declaration block is
typechecked in the context of the name bindings and type store produced from typechecking all
preceding declarations in the block. The [0obj-s] rule typechecks objects that are not acting as
generic functions. In particular, the rule checks that none of the object’s parents (either declared or
inherited) are arrow objects. The rule simply evaluates each declared inheritance parent and stores
these parents in thisa component of the type context. It also adds the new objetiotals,
indicating that the object was created in the current module. The [gf-s] rule typechecks generic
functions. It is similar to the [obj-s] rule, except that it ensures that the new generic function has
exactly one most-specific parent arrow object. The [abso-s] and [cnco-s] rules are used as wrappers
around the previous two rules, in order to correctly note in the type context if the new object is

Modular Statically Typed Multimethods

FMq... M, O k,m p =(mp(m))(l) p,kF E : unk(t)

[prg-s]
FMj...Myinport linEend:unk()O k
GHEM O M mEMOM, Lo mytmpttmyg - My O my,
disjoin(naméM,),... naméM,,))
m=mpmyt4m, k= mkmnamé)+-. AmkmnaméM,)
[md*-s] k,m|- program-has-safe-modules

FM;...M,0 km

p =mpm)(I)&...&mp(m)(ly)
k = add-imgmkm)(l,))&...&add-imgmkm)(ly))

p,kE Dy ... Dy 0 pokg
k+ko |- module-has-safe-gfs +kg Fmodule-has-safe-imported-gfs
[mod-s] k+ky Fmodule-has-safe-objects +lg F-module-has-safe-methods

mpnodul elinmports Iy, ..., 1{D1 ... D} O {(p&pg}.{(Lk+kg})

Figure 3-3: Judgements for programs and modules

abstract or concrete (if the new object is an interface, nothing is added to the type context). Methods
are typechecked by typechecking each formal argument position, returning an associated
specializer type. Then the method body is typechecked in the context of the current lexical type
environment, augmented with type bindings for the formals. The body must have the declared
result type of the method’s associated generic function.

Figure 3-5 contains the judgements for expressions and types. The [app-s] rule is the client-side
typechecking rule for generic function applications. The result of a generic function application
cannot be statically known, so the result type is always of the fork(t). An identifier is
typechecked simply by looking up the identifier’s binding in the current type environment. There
are two subsumption rules, which allow the types of expressions to be “raised.” The [smpc-s] rule
ensures that only concrete objects can have their types raised, which has the effect of disallowing
reference to non-concrete objects in expressions. An arrow object is typechecked by typechecking
each of its components.

The judgements for typechecking formals are given in figure 3-6. If the formal parameter is
specialized, the specializer object is typechecked and returned. The specializer must not be an
interface and it must be a descendant of the associated argument object of the generic function’s
arrow object. If the formal parameter is unspecialized, we consider the formal to be implicitly
specialized on the associated object in the generic function’s arrow object.

Figure 3-7 shows the static analog of the dynamic method lookup rule. The rule checks that generic
functionc has a most-specific method for the argument tugle [t,)]. This is the main subroutine

in the implementation-side typechecking of a generic function (each type system will fill in the
other details of implementation-side typechecking).

The rules for extending the direct inheritance relation to form the descendant relation are given in
figure 3-8. These are simply the analogs of the associated rules in the dynamic semantics.

Modular Statically Typed Multimethods

p.k|=D1 O ppk
P&p1,k+ky |- Dy O po,ky

(dor] P&P1& Po&.& Py Ktk ot 1 Dy O Poky

P,KF Dy ... D, O p1& po&..& pkythot .4,

p,kI—Ol:tl p,kl— On:tn
{cr...gpt={c|1l<jsnlc=t}
{t={art|1<sj<smU(g,art) Uisa} U {art| 1<sj<nDart =1t}
[0bj-S] ko = (isa= {(object(i),cy),...,(Object(i),c)} . Is={object(i)})

pklinterface object;lisa O .., O,0 {(, object(i))} kg

pkFO;:t; ... pkFEO,:t,
{cp.gt={c|1l<sjsnlc=t}
{arty,...arg} ={art| 1<sj<sm0(c,art) Uisal} U {art|1<j<nDart=1t}
1<r<q kfart<sgart; ... klart, g ar
kg = (isa= {(object(i),c,),...,(0bject(i),c,), (object(i),art,)},ls={object(i)})

[9f-s]
p,kl-interface object;lisa O .., O,0 {(, object(i))} kg

p,kl-interface object;lisa Oy .., O,0 pgko
[abso-s]

p,kf-abstract object;lisa Oy .., O,0 py,kyt+(abs= {object(i)})

p,kl-interface object;lisa Oy .., O,0 pgko
[cnco-s]

p,kf-obj ect;lisa Oy, .., O,0 py,ky+ (cnc= {object(i)})

p,kF1:c (carrow([ty,....ty],t)) Disalk
p.KF (c[Fq,.... K O [tg,...4]
Ol<i<n. lj=namgF;) disjoin{(l,...,I,)
[has-s] P&{(11,unk(ty)),...(In,unk(t,)).k I E : unk(t)

p,kl- I has nmet hod(Fq,...,R) { E}
0§, (gfms={(c,[ty,....)} lgf ={(c[ty,....xD)})

Figure 3-4: Judgements for declarations

[mhy,...mb] = [mhl €M O g O K F [ty ..t Sicqr MH

disjoint(mh,....mh) 1<i<n
[look-s] K mh Siga» mhy ... K- mh Sjg5« mhy,

kI~ ¢ lookup-methofty,...,]

Figure 3-7: Judgement for method lookup

10

Modular Statically Typed Multimethods

P,k Ep: unk(arrow ([ty,...,t],t))
p,KF Eq i unk(ty) ... p.kF E,:unk(t,)

[app-s]
p.kF Ep(Ey,....B) : unk(t)
p(l) = ot
[id-s]
p,kF1: ot
pkFE:c kFcsigat cOondk
[smpc-s]
p,k} E: unk(t)
p,k E: unk(ty) Kt Sisalo
[smpu-s]
p,kl E: unk(ty)
pkFOy:t; ... pkFO,:t, pkFO:t
[art-s]
p,kF (O4,...,8) - O arrow ([ty,...,t,],t)
Figure 3-5: Judgements for expressions and types
p.kF (c,F,) 0O t; ... pkF(c,F,n) O t,
[form-s]
p.kE (C[FyRl) O [ty 4]
(carrow ([ty,...,1],t)) O con(k)
pkElyic coUondlabd) ki CoSisat
[spe-s]
p.kF(c, 1@, i) O ¢
(carrow ([ty,...,t],t)) O con(k)
[uns-s]
p.kE(c, 1,)0t
Figure 3-6: Judgements for formal arguments
3.2 System G

This subsection provides additions to the base static semantics that enforce the typing restrictions
of System G. In particular, we provide typing rules for thas-safe‘hooks” in the base static
semantics of section 3.1.

The typing rules foprogram-has-safe-modulese shown in figure 3-9. The rules globally perform
implementation-side typechecking on each concrete generic function in the program. In particular,
for each concrete generic function acceptmgrguments, all possible argument tupleg.[.,G|

are formed such that eachis concrete and descends from the corresponding object in the generic
function’s arrow object. It is checked that each of these argument tuples has a most-specific method
in the generic function.

11

Modular Statically Typed Multimethods

. KFtSisats’ - K thSisaty’
[isa*-s]
K [ty] Sisar [t
_ (ty.tp) Disak)
[isb-s]
k I_) Sisalo
lisr-s] KFt<igat
. k I') Sisal2 k I') <isal3
[ist-s]
k I' t) Sisal3
KFt'Sisaly - KFty Sjsaly
. KFt<igat
[isar-s]
K |- amow(ty,...H.D <isa amow((ty',...51t)
Figure 3-8: Judgements for the descendant relation
K G-impl-side-typecheck-gfs(k$
[mdsf-s]
k- program-has-safe-modules
OcO{c{,....G}.0O[cq,....G-
((cOcndh D (cart)Uisak) Lkl [cq,...,G] G-is-legal-tuple-for(c,art)) U
[Gyfs-s] kI~ ¢ lookup-methodic,,...,G,])
K- G-impl-side-typecheck-g{€,,...,G}
O1<i<n.gUOcondQK | G<Sigqti
[Gleg-s]

K[cq,...,G] GislegaHuple-fofc amow((t,...4.0)
Figure 3-9: Global typechecking for System G

The local and regional typechecking rules for System G are shown in figure 3-10. These rules are
all trivially satisfied. Because of the global implementation-side typechecking, there is no need for
any local or regional typechecking.

3.3 System M

This subsection provides additions to the base static semantics that enforce the typing restrictions
of System M. The rule foprogram-has-safe-modulés shown in figure 3-11. Since System M
requires no global typechecking, this rule is trivially satisfied.

The rest of the rules implement restrictidid-M4 as well as the two kinds of re-implementation-
side typechecking required for importers. The restrictions on methods and objects appear in figure
3-12. Themodule-has-safe-methodde implements restrictioM1, which ensures that, for each

12

Modular Statically Typed Multimethods

[gfsf-s] kI module-has-safe-gfs
[igfsf-s] kI module-has-safe-imported-gfs
[obsf-s] k- module-has-safe-objects
[mtsf-s] kI module-has-safe-methods

Figure 3-10: Local and regional typechecking for System G

[mdsf-s] k- program-has-safe-modules

Figure 3-11: Global typechecking for System M

c* = {c| Clty,....]) Dlgf(k)}
KI- restriction-M1 c*

[mtsf-s]
kI module-has-safe-methods
O(cty,-...4]) Olgf(k). cOc* O (cOHRWO(n > 00t OHK))
[M1-s]
kf- restriction-M1 c*
KI- restriction-M2
[obsf-s]

kI module-has-safe-objects
O c Ols(k).0 ¢, O engk Uabgk).L ¢, [engk) Habgk) .
(c Ocnagk)Oabgk) Ok |- c<ijs5 €1 Ok |- C<igq € U ey Ois(K) O ey O s(K)) O
(kl-cysisaCo Uk Cysjsac) U
[M2-5] (c3 DendhUabs Lk |- € sisa C3 UK F €3 Sjgq € LK - 3 Sjsq)

KI- restriction-M2

Figure 3-12: RestrictionsM1 and M2

method created in the current module, either the method was added to a local generic function or
the method is encapsulated-style (the method'’s first specializer is a local objeaotiée-has-
safe-objectsrule implements restrictiorM2, which disallows unanticipated multiple code
inheritance across module boundaries.

The rules for implementation-side typechecking of a module appear in figure 3-13. The rules
ensure that, for each generic function created in the current module, each legal argument tuple
[t1,....},] has a most-specific method to invoke. ThieslegaHuple-forrule defines which argument
tuples are checked for a most-specific method. This rule implements restrit®@asndM4. In
particular, letamow (... be the arrow object of the generic function being checked. For any
argument positiomother than the first, all descendantg;bre checked, regardless of whether or

13

Modular Statically Typed Multimethods

kK M-impl-side-typecheck-gfs(l9

[gfsf-s]

kI module-has-safe-gfs

OcO{c{,....¢ 3 O [ty,.... 1.

(cOengQU (cart) isal) Uk} [tg,...,t,] M-is-legal-tuple-for(c,art)) O
[Mgfs-s] kI~ c lookup-methodt;,... .t
K M-impl-side-typecheck-g{<,'...,G"}
O1<is<nkFt<igat (ty Oendk Oty ishorHocd)

[Mleg-s]

K F[ty,..., 1] Mristegakuple-fofc,amow [ty £10)

Figure 3-13: Implementation-side typechecking for System M

c*={c|cOIs(k) Oc O cndk U (car) [isa)}
_ k- M-impl-side-typecheck-imported-gfs c*
[igfsf-s]

kI module-has-safe-imported-gfs

OcOc*.0 [ty,....t]. (cart)Uisak O
(kF [tq,...,t,] is-local-recheckl1-fo(c,art) U
Kkl [ty,....t,] is-local-recheck2-fo(c,art))) I

[Migfs-s] kl- c lookup-methodt;,....t]

K M-impl-side-typecheck-imported-gfs c*

K [ty,....t] MHsHegaHuple-fotc,amow([ty',...51.0)
(c.mh Ok Kb [tg,....5] Sisax mh

K F[ty,...,1] istocakrecheckd-fac, amow ([t £1)

K [ty,....t] MHsdegaHuple-fotc,arrow([ty',...51.0)
K |-t, is-orphan

[rel-s]

[re2-s]

K | [ty,...,t,] istocakrechedke-ac, amow(ty.- 1)

KI-t is-non-local cdK
{c}={colcoUendk) UK |- G<isa t UK |-C<jsa Co}

Kl c is-orphan

[orph-s]

Figure 3-14: Re-implementation-side typechecking for System M

not these descendants are concrete. Concrete descendgaseo€hecked, as well as any non-
local descendants gf.

The rules for the two kinds of re-implementation-side typechecking of imported generic functions
are shown in figure 3-14. The [Migfs-s] rule ensures that, for each imported generic function, all

14

Modular Statically Typed Multimethods

kIt has-no-local-in-positive-position

[isnloc-s]
KI-t is-non-local
c UK
[nlposb-s]
k- ¢ has-no-local-in-positive-position
(01<i < nkft t; hashodocaHn-negative-positon
K} tohas-noHocaHn-positive-position
[nlposa-s]
Kl amow([t;,...klt9) has-no-local-in-positive-position
[nInegb-s] k- ¢ has-no-local-in-negative-position
(O 1< < nk} tj hashoocaknpositive-positipn
K- tohas-noHocakn-negative-position
[nInega-s]

kl- amow(ty,...1)t9 has-no-local-in-negative-position
Figure 3-15: Judgements for determining if an object is non-local

argument tuples satisfying one of the two re-check conditions has a most-specific method to
invoke. A tuple satisfies rule [rel-s] if it is a legal argument tuple and the generic function has an
applicable method that was created in the current module. A tuple satisfies rule [re2-s] if itis a legal
argument tuple and its first component is an orphan. An orphan is a local, concrete object that
descends from a non-local, non-concrete objegtithout also descending from a concrete
descendant df

Finally, the rules defining when an object is non-local appear in figure 3-15. A non-arrow object is
non-local if it was not created in the current module. An arrow object is non-local if it does not have
a local object in a positive position.

3.4 System E

This subsection provides modifications and additions to the base static semantics for System E.
Section 3.4.1 presents the modifications necessary to accomodate the augmented syntax of the
language (see section 1). Section 3.4.2 presents the implementation of System E’s modular typing
restrictions.

3.4.1 Modifications to the base static semantics

Figure 3-16 defines the necessary modifications and additions to the domains for the static
semantics. Th&ypeStorenow includes an element of th®pecializersdomain. This domain
records, for each generic function, which argument positions are marked and which are unmarked.
An argument position gets tHgpecs (for specializablgif it is marked, and otherwise it gets the
Specu (for unspecialized The Modulesdomain includes a component that records the declared
extension relation between modules. This will be used to ensure that each module has a most-
extending module in the program. Finally, thecalTypeStorelomain includes a component that
records all non-arrow objects that were declared in (transitive) extendees of the current module.

15

Modular Statically Typed Multimethods

k O TypeStore = Isa Concretex Abstractx GFMethodTypes
Specializers< LocalTypeStore
ModTypeEn¥ ModTypeStore Extends

m O Modules

extll Extends = (I x)*

sp O Specializers = (Constx Spec}*

lk O LocalTypeStore = Locals Extendees LocalGFMethods
ex 0 Extendees = Const

s O Spec = s|u
Figure 3-16: Modifications and additions to the domains for the static semantic:

We define names for the components @fpeStoreandModule and associated
accessor functions with those namésa,cnc,abs,gfms,qf5,ex,Igj) and (mp,mk,ext

add-img(isa,cnc,abs,gfms,sp))k= (isa,cnc,abs,gfms,p},{}.{}))
add-ex((isa,cnc,abs,gfms,gts,ex,lg))) =(isa,cnc,abs,gfms, g}, Is 0 ex{}))
typgO) =0 typd#0O) =0
spe¢O) =u spe¢#O) =s

Figure 3-17: Modifications and additions to the definitions and functions

GHHEMOm mEM O My Lo myp+mpttmyg - M O my,
disjoint(namégM,),... namégM,,))
k= mKm)(namV)+-.Amm)naméMy) m=my+mp

[md*-s] k,m}- program-has-safe-modules
FM;...M, 0 km

p = mpm)(l)&...& mpm)(I)&mp(m)(l11")&...&mp(m)(l,")
k = add-imgmkm)(l,))&...&add-imgmkm)(l;))&
add-extmkm)(11'))&...&add-ex¢emkm)(l,"))
p.kE Dy ... Dy O poy
k+ko |- module-has-safe-gfs +kg Fmodule-has-safe-imported-gfs
k+ko Fmodule-has-safe-objects +lig Fmodule-has-safe-methods

[mod-s]

mpnodul elinports Iy, ..., liextends 1, .., 1,/ {D; .. D}
0 Qp&pg} { kgl {(111),--. 0.1)})

Figure 3-18: Updated judgements for module blocks and modules

Figure 3-17 makes modifications and additions to the definitions and functions. First the
appropriate accessor functions are defined on the modifipdStoreand Moduledomains. The
add-impfunction takes dypeStordor a module and returns the “interface” information needed by
an importer of the module. Thadd-extfunction is similar, but for extenders of the module. In
particular, theadd-extfunction appropriately updates the extender’s list of objects created in
extendees. The/peandspecfunctions are simple accessor functions on elements of the syntax
domainS, which represents a possibly marked object.

16

Modular Statically Typed Multimethods

{lIp b ={11<j<sn0=03} {Of,...00}={0,...04 —{l1-...I}
pkFli:c...pkFlm:icn PKFO! 410 s1*'... pkF Oy 1t O s5*'
{(arty, s1*),...(artg,sq*)} ={(art,s*) | 1< j < mU(g;,art) Lisal)c;,s*) U sk}
O{(art,s*) [1<j<n0art=t Us*=g*'}
l1<srsq Kkfartsgart; ... Ki-art, iz artg
kg = (isa= {(object(i),cy),...,(Object(i),c), (object(i),art,)},ls={object(i)},
sp={(object(i),s*)})

p,klinterface object;lisa O .., O,0 {(, object(i))} kg
O1 =typeSy) ... O =typeS,)
S = Spe¢Sy ... s, =spe¢S,)
p,kFOq:ty ... pkKFO,:t, p.kFO:t
p.klF (S,-..,.S) - O rarrow ([ty,....1],t) O [Sq,...,%)

Figure 3-19: Updated judgements for generic functions and arrow objects

[of-s]

[art-s]

Figure 3-18 shows the updated rules for typechecking module blocks and modules. The rule for
module blocks simply takes into account the fact that Mwdulesdomain now has one more
component than it used to have. The [mod-s] rule is revised in order to use both importees and
extendees as context in the evaluation of a module’s declarations.

Figure 3-19 shows the modified rule for typechecking generic functions, as well as the rule for
typechecking arrow objects with possibly marked argument positions. The generic function rule is
identical to the original rule for generic functions, except that the new rule must record which
positions of the new generic function are marked and which are unmarked. The rule simply uses
whatever markings are on the generic function’s most-specific arrow object for this purpose. The
complexity in this augmented rule comes from the need to track the markings of each inherited
arrow object. The rule for typechecking arrow objects is identical to the old rule, except that the
new rule also extracts and returns the argument position markings.

3.4.2 Additions to the base static semantics

Now we provide the judgements implementing System E’s modular typechecking restrictions. The
rule for program-has-safe-modulés shown in figure 3-20. This rule implements the check that
each module has a unique most-extending module in the program. For this purpaggéiation

is defined as the reflexive, transitive closure of the declared extension relation. The check for most-
extending modules is the only global check needed by System E.

The rest of the rules implement restrictida$-E4 as well as the two kinds of re-implementation-

side typechecking required for importers. The restrictions on methods and objects appear in figure
3-21. Themodule-has-safe-methodde implements restrictions1la andE1lb. The rule forEla

ensures that methods do not specialize on unmarked positions of their associated generic function.
The rule for E1b ensures that methods added to imported generic functions are all-local
multimethods. The rule also requires such methods to have at least one marked argument position.
Because the method must be all-local, this restriction forces at least one specializer to be a local
object, so the method will not conflict with unseen methods. Moelule-has-safe-objectsle
implements restrictio&2, which restricts multiple inheritance across module boundaries.

17

Modular Statically Typed Multimethods

m|- each-module-has-a-most-extending-module

[mdsf-s]
k- program-has-safe-modules
01 O domairimp(m)). 1, O domaifmp(m)).O I, O domair{mp(m)).
(ME Iy <ext! 0 ME 1y <exl2)
[me-s]
m|- each-module-has-a-most-extending-module
(11.12) Oexm
[exb-s]
ME 1y Sextl2
[exr-s]] ol
MElpSextls MElySeyls
[ext-s]
M 11 <extl3
Figure 3-20: Global typechecking for System E
c*={c| C[ty,...t) Dlgr(k)}
KI- restriction-Elac* k|- restriction-E1b c*
[mtsf-s]

kI module-has-safe-methods

O (cty,....t]) Olgf(K).(cO c* O (c[s,--s) U s U (camow(ty',....]0) [isak) O
Ol<isn(s=u)0 (=41

[Ela-s]

KI- restriction-Ela c*

O (c[ty,...,t]) Olgf(k). cO c* Oc OgOexk O
(Cls-g) Ul 01l<i<n.g=sO(01l<i<n.(s=u) Ot OLK))

[Elb-s]

kt restriction-E1b c*

KI- restriction-E2

[obsf-s]

kI module-has-safe-objects

O cOls(k).(c Denak)Uabgk) Ok | c<jgq t Dk | tis-imported U
(O ¢ Oeng Dabgk).0 ¢, O endk) Cabgk).
[E2-s] (kI c<isaCy Uk c<isaCo Heg Os(K) U (K| €1 Sjsa & UK € Sjsq €1))

KI- restriction-E2
Figure 3-21: RestrictionsEl and E2

18

Modular Statically Typed Multimethods

K- E-impl-side-typecheck-gtts(k) (I ex(k))
KI- restriction-E4a 1$k)

[gfsf-s]
kI module-has-safe-gfs
OcO{c{,....G} O[tg,.... 4]
(cOengQU (cart) isal) Ukt [tq,...,t,] E-is-legal-tuple-for(c,art)) O
[Egfs-s] kI~ c lookup-methodt;, ...,
kI~ E-impl-side-typecheck-g{,',...,G'}
(Cls-3D) U st
O1<isnklFt<igat
Ol<gsnl1l<sr<n.
[Eleg-s] (sg=sr=9 U (a=r)) U (tq0 cndk) OK | ty is-non-loca)
K |-[ty,...,}] EisdegaHuple-foic amow(ty',...510)
O ¢ O c*.0 amow([ty,...H). (Clsy,--$) [sl L c<igq amow([ty,...HH) O
Eda-s] O1<is<sn(k}tis-importedd (s =u))

KI- restriction-E4a c*
Figure 3-22: Implementation-side typechecking for System E

The modular typechecking restrictions for generic functions appear in figure 3-22. First the rules
for implementation-side typechecking the generic functions in a module are given. These rules
ensure that, for each generic function created in the current module, each legal argument tuple
[t1,....1,] has a most-specific method to invoke. ThRéslegaHupleforule defines which argument
tuples are checked for a most-specific method. This rule implements restrieiBan&3b, and

E4b. In particular, letamrow([t;',...;10) be the arrow object of the generic function being checked. For
any argument position, all descendants df are checked, regardless of whether or not these
descendants are concrete. However, if the generic function is singly dispatchgasahd single
marked position, descendantstpére checked only if they are concrete or non-Id&alally, rule

[E4a-s] enforces restrictioB4a, which checks that if any descendant of an argument object in a
generic function’s arrow object is imported, then the associated argument position is unmarked.
Note that all arrow objects from which the generic function descends are checked in rule [E4a-s],
which by contravariance has the effect of checking all descendants of the argument objects in the
generic function’s most-specific arrow object.

The rules for the two kinds of re-implementation-side typechecking of imported generic functions
are shown in figure 3-23. The [Eigfs-s] rule ensures that, for each imported generic function, all
argument tuples satisfying one of the two re-check conditions have a most-specific method to
invoke. A tuple satisfies rule [rel-s] if it is a legal argument tuple and the generic function has an
applicable method that was created in the current module. A tuple satisfies rule [re2-s] if itis a legal
argument tuple, the generic function is singly dispatched, and the tuple has an orphan at the single
marked position. We use the same definition of an orphan as in System M (rule [orph-s]).

19

Modular Statically Typed Multimethods

c*={c|cOIs(k)d exk) O (cah O isak}
kI E-impl-side-typecheck-imported-gfs c*

[igfsf-s]
kI module-has-safe-imported-gfs
OcOc*0[ty,...,t]. (cahUisak) O
(K F [tq,..-,t,] is-local-recheckl1-fo(c,art) U
K [ty,....t] is-local-recheck2-fofc,art))) [
[Eigfs-s] k |- c lookup-methofit;,... i
kI E-impl-side-typecheck-imported-gfs c*
K [ty,....t] EisdegaHuple-fotc,amow (t;,...Hl,t)
(c,mh Ol K[[ty,....t] Sjnpe Mh
[rel-s]
K |- [ty,...,t,] isdocaHecheckl-fdc,amow (t;,...Hl.t)
K [ty,....t] EisdegaHuple-fotc,amow (t;,...Hl,t)
Clsy-s)0sf® 1<isn §=s Oi<jsn g=s0 i
[re2-s] K} t; is-orphan

K F[ty,.... 1] istocatrechedkec, amow ([ty,..50)

Figure 3-23: Re-implementation-side typechecking for System E

KI-t is-non-local
[isimp-s] kIt has-imported-in-positive-position

KI-t is-imported
c OR O exKk)
k- ¢ has-imported-in-positive-position
(01<i < nkf tj hasimportecHn-negative-posijank|- t; hasimportedHn-positive-position
kl- amow(ty,...t)t9 has-imported-in-positive-position
(0 1<i < nkt tj hasimported-n-positive-positida ki- tn has-importecHn-negative-position

kl- amow(ty,...1)t9 has-imported-in-negative-position

[imposb-s]

[imposa-s]

[imnega-s]

Figure 3-24: Judgements for determining if an object is imported
We use the rules in System M for defining when an object is non-local (figure 3-15). Figure 3-24

shows the rules defining when an object is imported. An object is imported if it is non-local and
has an imported object in a positive position.

20

Modular Statically Typed Multimethods

c* ={c|(c,[ty,....}y)) Tlgf(k) Okt c is-M-gk
c* ={c|(c [ty,...,}y)) Ulgf(k) Ok} c is-E-g}
KI- restriction-M1 g*

[mtsf-s] kl-restriction-Ela ¢* K|-restriction-E1b ¢*

K- module-has-safe-methods
kI restriction-M2 k|- restriction-E2

[obsf-s]
kI module-has-safe-objects

c*={c|cOIs(k) Ok} cis-M-git ki M-impl-side-typecheck-gfgt
G*={c|cOIs(k)0 exk) Uk} c is-E-g} k|- E-impl-side-typecheck-gfs*c

* = oL i N
[gfsf-s] o ={clcOIs(K) Ok cis-E-g} k|- restriction-E4a g

kI module-has-safe-gfs

c*={c|cUIs(k) O (cafUisak I k|- c is-M-gh
G* ={c|cOIs(k)0 exk) U (car) O isal) Ok} c is-E-g}
kl- M-impl-side-typecheck-imported-gfgc

ligfsf-s] k- E-impl-side-typecheck-imported-gfg c

kI module-has-safe-imported-gfs
Figure 3-25: Judgements for System ME
3.5 System ME

This subsection presents the typing restrictions for System ME. The full set of judgements for
System ME is the union of the rules presented in this subsection, the base static semantics in section
3.1, the rules for System E in section 3.4, and the rules for System M in section 3.3 that are not
overridden by rules of the same name in System E.

The main typing rules for System ME are presented in figure 3-25. The rules simply invoke the
appropriate restrictions from Systems M and E. In particular, the generic functions are partitioned
into those that use System M'’s restrictions and those that use System E’s restrictions. A System M
generic function obeys restrictioMkl, M3, andM4, and similarly for a System E generic function.

All objects must obey both restrictiohd2 andE2, which greatly limit multiple inheritance across
module boundaries.

Finally, figure 3-26 shows the rules that define which typing restrictions are used for each generic
function. A generic function with no marked positions uses System M'’s restrictions, and a generic
function with at least one marked position uses System E’s restrictions.

4 Type Soundness

This section sketches our proof that Dubious’s static semantics is sound with respect to its dynamic
semantics. Section 4.1 overviews our proof method, which is based on prior work on type
soundness by Wright and Felleisen [Wright & Felleisen 94]. Section 4.2 describes the key lemma
for each of Systems G, M, E, and ME.

21

Modular Statically Typed Multimethods

Clsy-s)Osfib1l<i<n(s=u)

[isM-s]
K- c is-M-gf
Clsy-s)0sf® 1<i<n (5=9
[iISE-s]
K- c is-E-gf

Figure 3-26: Judgements for partitioning generic functions

4.1 Proof Outline

We begin by extending the static typing rules in order to relate elements Qfiipgomain in the
dynamic semantics to their static counterparts irCiwestTypedomain:

[val-s] pk}- obj(i) : object(i)
pkFo;:ty...p,kFo,:t, pklo:t

[valart-s]
p,k}- arrow ([0y,...,0,,0) : arrow ([ty,...,t,],t)

Since neither of these rules makes use of the giygreEnvand TypeStorewe often omit one or
both of these contexts to the judgements. We conddlgrelements to be members of tlie
syntactic domain. In particular, this allows the use of [smpc-s] and [smpu-s] to provide
subsumption for the types of dynamic objects.

Next we identify several correspondences between the static and dynamic contexts of a program.
In particular, suppose My,...,M, O k,mandf My,...,M, 00 s,me Let p=mp(m)(l) ande=mgl),

for somel O domaiflmp(m)). We identify thatp and e are isomorphic in a certain sense. In
particular, for every pairl(ot) O p there exists a pail,{) [esuch thap,k|- v : ot. Conversely, for

every pair (,v) O e there exists a pairl,ot) O p such thatp,k |- v : ot. Similarly, we identify
correspondences betweisa(k) andisa(s) and betweegfmgk) andgfmgs). Intuitively, isa(k) and

isa(s) are isomorphic because each records all of the direct inheritance relationships declared in
My,...,M,. Similarly, each ofgfmgk) andgfmgs) records relevant information about each method
declared ifMy,...,M,.

Now we prove a subject reduction lemma:

Lemma 1. (Subject Reduction) Suppo$eM,,...,.M, 0 kmand| My,...,.M, 0 s,me Let p =
mp(m)(1) ande= mgl). If p,k}- E : otande,s|- E0 othenp,k}-0: ot.

Proof: Given the correspondences identified above, the result follows by induction on the length
of the derivation in the dynamic semantics #hat- E [o.

The previous lemma says that types are preserved throughout the evaluation of an expression, in
the context of well-typed modules. To complete the proof of type soundness, we need to show that
the evaluation of well-typed expressions does not get stuck, in the context of well-typed modules.
We start with a notion dhulty expressions, which the following definition formalizes:

Definition 1. (Faulty Expressions) An expressi@nis faulty with respect to environment e and
store sif one of the following conditions holds:

22

Modular Statically Typed Multimethods

1.E=1and I Odomair(e)
2.E=Ey(E;.....Ey)) and0.(0<i < n and Eis faulty with respect to e andl s

3.E = Ey(Ey,...Ep), i.(0<si<n0 es}| E O o), and there is no most-specific applicable
method for g(0y,...,0y) in S.

4. E=Ey(E,,....Ey, Li.(0<i<nU e,skE O 0), ((0g,mh),mb) is the most-specific applicable
method for g(0y,...,0,) in s, where mb= ([l4,...,IJ.E',€), and E is faulty with respect to
€&{(14,01),..,(I1,05)} and s.

This definition of faulty expressions is validated by the following lemma, which says that the faulty
expressions are a conservative approximation of the stuck expressions:

Lemma 2. (Every stuck expression is faulty) Suppdsdl,...,M, 0 s,meand lete=mg(l). If E
is not faulty with respect teands ande,sf- E does not diverge, thens| ELI o.
Proof: By induction on the length of the derivation in the dynamic semantiespfE.

The final lemma shows that well-typed expressions are not faulty, in the context of well-typed
modules.

Lemma 3. (Well-typed expressions are not faulty) Supppdd,,...,M, 0 k,mand My,...,M,]

s,me Let p=mpm)(l) ande = mdl). If p,k}- E : otthenE is not faulty with respect teands.

Proof: We prove that none of the four cases in the definition of faulty expressions holds. The
isomorphism betweepandeis sufficient to prove that the typechecks on identifiers rule out case
one. We rule out cases two and four by induction. Ruling out case three is the only part of the entire
soundness proof that depends on which type system (G, M, E, or ME) is used. For each of these
systems, we prove that every legal message send has a most-specific applicable mefhibig in

is the key lemma of the soundness proof, and section 4.2 sketches it for each of the four type
systems. Ruling out case three is completed by showing that the isomorphisms hisaflgeand

isa(s) and betweergfmgk) and gfmgs) are sufficient to prove that method specificity kns
isomorphic to method specificity in So in particular, if a message send has a most-specific
applicable method ik, the message send also has a most-specific applicable meshod in

Finally, all three lemmas are combined to prove the main result:

Theorem 1. (Type Soundness) L& = My,...,M,import | in Eend. If - P: ot kand}- P does

not diverge in the dynamic semantics, theR [o [0 sandp,k}- o: ot, wherep = mpgm)(l).

Proof: Sincel- P : otO k, by the [prg-s] rule in the static semantics we h&visl,,...,M, O k,m
andp,k|- E : ot. First we show that, since no message sends are evaluated during the evaluation of
modules, successful typechecking of modules implies successful evaluation of modules. In
particular,i- My,...,M, O k,min the static semantics impligsM,,...,M, O s,mein the dynamic
semantics, for some stoseand module environmemtein the appropriate correspondence vkth
andmp(m). Lete = mgl). By lemma 3E is not faulty with respect te ands. Sincel- P does not
diverge in the dynamic semantics, by the [prg-d] rule neither égg}s E. Therefore by lemma 2,

e,s E O o.By the [prg-d] rule agairf; P 0 o0 s Finally by lemma 1p,k|-0: ot.

4.2 Key Lemma

This section provides more details on the key lemma in the soundness proof for each of our type
systems. The lemma says that, after all modules have been typechecked, for each concrete generic
functionf in the program, every tuple of concrete objects that can be sent as an argument tuple to

f has a most-specific method implementation to invoke. Formally, the lemma is defined as follows:

23

Modular Statically Typed Multimethods

Lemma 4. (Key Lemma) Suppose My,...,M, O k,m.If (c,amow(t,..klt) O isalk),cl engk), and
O1<i<n (G Sisati 0O endK), therk |- ¢ lookup-methofdicy,...,G,.

We now sketch the proof of this lemma for each of our type systems.

4.2.1 System G

Sincel My,...,M, O k,m by rule [md*-s] we know thak,m|- program-has-safe-modulé®|ds.
Therefore, by rule [mdsf-s] in System G, global implementation-side typechecks on the program
succeed, which is precisely the requirement of this lemma. In particular, by rules [Ggfs-s] and
[Gleg-s] we know that for each concrete generic function in the program, each legal argument tuple
of concrete objects has a most-specific method to invoke.

4.2.2 System M

We say that an object (method)vssible in a moduleM if the object (method) was created in a
(reflexive, transitive) importee d¥l. Let c be the generic function object in the statement of the
lemma, and suppose it was created in molNulé/e divide the proof into several cases:

1. The generic function accepts no arguments (thahis, 0). Then implementation-side
typechecks in moduléM (rule [gfsf-s]) ensure the existence of a most-specific method
implementation visible itM. This case is finished by showing that all applicable methods to
the argument tuple [] must be visibleh, so moduleM’s typechecks are sufficient to ensure
safety. In particular, all methods added to generic functionitside of moduléM must be
encapsulated-style methods, so by rule [M1-s] these methods must have at least one
argument. Therefore, these methods are not applicable to the argument tuple [].

2. The first argument objeat;, is visible inM. First we show that all methods ofapplicable
to [Cy,...,G] must be visible inM. In particular, any method not visible M must be created
in some importeM,,, of M. Then the method must be encapsulated-style, which means that
its first argument specializet,, is also not visible inM. If [c4,...,G,] IS applicable to the
method, thert; must (transitively) inherit fronc,,. But sincec, is visible in M, this means
thatc,, must also be visible iN, contradicting what we showed above.

Therefore, we only need to consider methods tifat are visible in modul#. Our strategy

is to build an argument tupld,],...,t,] that will be considered during implementation-side
typechecks ot in moduleM, and then show thatj,...,G, is applicable to precisely the
methods ofc that [t{'...,};] is applicable to. If we show this, then we are done, because
implementation-side typechecks in modWe ensure thattf',...,t,] has a most-specific
method, which implies that{,...,G] has a most-specific method as well.

Eacht;'is defined as follows: It; is visible in M, thent;'=c;. Otherwise, ifc; has no non-
interface ancestors that descendnd are visible irM, t;'=t;.Otherwise, by the restrictions
on cross-module multiple inheritance, we can show thatust have a single, most-specific
non-interface ancestor that descety@sd is visible inM, and we set;'to be this ancestor. It
is straightforward to show that the tuplg/'[..,t,] built by this definition satisfies the
requirements of the previous paragraph.

3. The first argument objeaty, is not visible inM. Further, it was created in some modivig,
andc is not visible inMg. This is the case whegy is an “open object.” We prove this case
precisely as in case 2 above. First, we can show that no methods created in impadvers of
can apply to¢,...,G,], or else we would be able to show tleas visible inMg. Then we build

24

Modular Statically Typed Multimethods

[t{,....t,] exactly as in case 2 and show by a similar argument that [t,] is considered
during implementation-side typecheckingooh M and thatfy',...,1,] applies to precisely the
same methods as does,|..,G)].

4. The first argument objeat, is not visible inM. Further, it was created in some modivg,
c is visible in My, and at least one of the two conditions for re-implementation-side
typechecking ot is met inMg. That is, eitheM creates a method imthat is applicable to
[C1,...,Gy Or cq is an orphan. The proof of this case is analogous to the proof in case 2, but
with respect to modul#, instead ofM. In particular, we first prove that only methodsof
visible in Mg can apply to ¢;,...,G,]. Then we build {;',...,};] as above, but with respect to
moduleMg instead of modul®l. We show thatty',...,1,] is considered by the re-checksof
performed byM, so it must have a most-specific methocciwisible in Mg. Therefore, so

does E4,...,G).

5. The first argument objeaty, is not visible inM. Further, it was created in some modivg,
cis visible inMg, and neither of the two conditions for re-implementation-side typechecking
of cin Mg is met. The key to proving this case is induction on the lemma, on the number of
concrete ancestors of (not including itself) that descend frotqp (The base case, whep
has zero such ancestors, is covered by cases 1-4 above.) Since no re-check condition is met,
we know that, is not an orphan with respecttp so it must have at least one such ancestor.
We prove this case by finding a concrete ancestohat descends fromj such that¢;,...,G
applies to precisely the same methods @ doesd,’',...,G,]. By the inductive hypothesis,
[c{',...,G] has a most-specific method, which means tbat [,G, does as well.

4.2.3 System E

The lemma is proven for System E in an analogous way to the proof for System M. In System E,
we say that an object (method) is visible in modMeif the object (method) was created in a
(reflexive, transitive) importee or extendee Mf Let ¢ be the generic function object in the
statement of the lemma. SingeM;,...,M, 0 k,m,we know thak,m|- program-has-safe-modules
holds, so by [mdsf-s] in System E, we know that each module has a most-extending module. Let
M be the most-extending moduleMg§, the module that createx

In this sketch, we assume that all argument positions are marked. It is easy to extend the proof to
include unmarked argument positions. In particular, because of restriEtl@a unmarked
positions may not be specialized upon. Therefore, the unmarked argument position of methods
cannot be the causes of method ambiguities. We can show that if an argument tuple has a most-
specific method implementation when we ignore the unmarked positions in the argument tuple and
in all methods of the generic function, the tuple must also have a most-specific method
implementation when the unmarked positions are taken into consideration.

Because parts of restrictioi8 andE4 depend on whether or not the generic function is multiply
dispatched, we prove soundness separately for generic functions that are multiply dispatched and
those that are not. First we sketch the proof when the generic funchas zero or one marked
position. The cases here are analogous to those in the sketch for System M:

1. c has zero marked argument positions. Implementation-side typechecks in nvbuike
[ofsf-s]) ensure the existence of a most-specific method for the tuple []. SIns¢he most-
extending module d#, any method not visible iiM must have been added by an importer
of M. Therefore, by restrictiofe1b (rule [E1b-s]), the generic function must have at least

25

Modular Statically Typed Multimethods

one marked position, contradicting our initial assumption. Therefore, only methods visible
in M can be applicable to [], so the checks by motMilere enough to ensure safety.

2. ¢, is visible byM. Then implementation-side typechecks in moddlensure the existence
of a most-specific method for the tuple]. Any method not visible iVl was added in an
importerM,,, of M. Therefore, by restrictiok1b, this method must be an all-local method,
So its specializec,' is a local object and is therefore not visible M If the method is
applicable to ¢], thenc, inheritsc,'. Sincec;, is visible inM andc, inheritsc;', we can
show that,' must also be visible iM, contradicting what we showed above. Therefore, only
methods visible itM can be applicable te{], soM’s checks are enough to ensure safety.

3.c¢, is not visible byM, ¢, was created in modulilyp, andc is not visible inMg,. This is the
case where; is an “open object.” As in System M, we prove this by finding an objgct
visible inM such that checks ony[] ensure the safety o€f]. We use the same definition for
t,'as in System M’s proof: I€; has no non-interface ancestors that des¢gadd are visible
in M, thent,' = t;. Otherwiset;'is assigned to be the most-specific such ancestoy. akle
can show that such a most-specific ancestor must exist by a combination of the restrictions
on open objects dE4a and the restrictions on multiple inheritanceEdt. Sincec, is an open
object, we can show th&f must be a non-local object ¥, so byE4b we know that {;] is
considered in implementation-side checks of M even ift;'is non-concrete.

4.c,q is not visible inM, ¢; was created in modull®ly, and My adds a method te that is
applicable to ¢,]. Therefore, one of the conditions for re-implementation-side typechecking
cin Mg is met, so re-checks ensure that there is a most-specific method implementation for
[c4] out of all the methods visible iMg. This case is finished by proving that the methods
created in modul®# that are applicable taf] (we know there is at least one such method)
are strictly more-specific than any other applicable methods. Therefore, the re-checks from
moduleM are enough to ensure safety.

5.cq is not visible byM, c; was created in modulély, andc, is an orphan. Therefore, one of
the conditions for re-implementation-side typecheclang Mg is met, so re-checks ensure
that there is a most-specific method implementationddrqut of all the methods visible in
Mp. Interestingly, there may be more-specific method implementations that are not visible in
Mg. However, because we can show thgtmust import the module creatirig ¢, is subject
to the multiple inheritance restrictions BR. In particular, this means that all non-local non-
interface parents ot; are totally ordered. Therefore, even if there are more-specific
applicable methods focf] than the most-specific method visibleNfy, the combination of
single dispatching and single inheritance guarantees the existence of a most-specific such
method.

6. cq is not visible byM, ¢, was created in modulkly, and neither of the conditions for re-
implementation-side typecheckiegn Mg holds. This case is proven analogously to case 5
in System M’s proof, by finding a concrete ancesigof c; such that ¢, and [c] apply to
precisely the same methods and arguing the safetypby induction on the lemma.

Now we sketch the various cases in the proof wbéas at least two marked argument positions.
We actually prove thatj,...,G] has a most-specific method when eacls a non-interface object,
rather than only proving the lemma when eaglis concrete. This allows us to use a stronger
inductive hypothesis in case 5 below.

26

Modular Statically Typed Multimethods

1. Each; is visible inM. This is just the generalization of case 2 above to multiple arguments,
and the same proof technique applies here.

2. At least one; is visible in M, but somex; is not visible inM. Since there is at least one
argument; visible in M, we can use the same argument in case 2 above to show that only
methods visible irtM can be applicable tacf,...,G]. Then we use the same technique as in
case 2 of System M’s proof, building the tuplg’[..,t;] which is considered during
implementation-side typechecksih and showing that{’,...,1,] is applicable to precisely
the same methods a5 |...,G]. We use the same definition for edglas in that proof.

3. Eaclx; is not visible inM. Further, eacls; was created in the same moduig,, andMg adds
amethod tethat is applicable tod;,...,G]. Thisis just a generalization of case 4 in the proof
above to multiple arguments, and the same proof technique applies here.

4. Eacly;is not visible inM. Further, case 3 above does not hold, and egahs zero non-local
non-interface ancestors that inherit framWe show thatd;,...,G,] applies to precisely the
same methods ag[...,t,]. Since eaclt; inheritst;, it is clear that every method applicable to
[t,...,}] is applicable to §,...,G]. Suppose there were some method applicable ta [,G,]
but not to [4,...,},]. We show that this implies that eachwas created in the same module,
Mg, and the applicable method was created/iinas well. Therefore, case 3 above applies,
contradicting our initial assumption.

So [cy,...,G)] applies to precisely the same methodstas.[,{]. This means that all applicable
methods are visible iM. By restrictionE3b, we know that {;,...,t,] is considered during
implementation-side typechecksoin M, even if some; is non-concrete. This ensures the
safety of {;,...,t], and hence ofq,...,q,].

5. Eachg; is not visible inM. Further, cases 3 and 4 above do not hold. As in the final case of
the previous proofs, we prove this by induction on the lemma. However, the induction in this
case is more complicated than in the previous cases. In particular, induction is performed on
the number of ancestor tuples|...,G,] of [c4,...,G,] according to thesig,« relation, such that
eachgc;' is a non-interface object that descends friarithe base case is covered by cases 1-

4 above. By induction, each of these ancestor tuples has a most-specific methddhis
case is proven by showing that the most-specific method of one of these ancestor tuples must
also be the most-specific method of,[..,G,].

4.2.4 System ME

The proof for System ME follows immediately from the proofs for Systems M and E. In particular,
System ME patrtitions its generic functions into those that use System M'’s rules and those that use
System E’s rules. Suppose the generic functionthe lemma uses System M’s rules. By the rules

for System ME, this generic function obeys restrictibhs, M3, andM4, and the entire program
obeys restrictioM 2. Therefore, our proof of the lemma for System M is sufficient to prove the
lemma forc. A similar argument is usedéfuses System E’s rules.

References

[Millstein & Chambers 99] Todd Millstein and Craig Chambers. Modular Statically Typed
Multimethods.The 13th European Conference on Object-Oriented Programming (ECOQP 99)
Lisbon, Portugal, June 14-18, 1999.

27

Modular Statically Typed Multimethods

[Wright & Felleisen 94] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundnesdnformation and Computatiori151):38-94, November 1994.

28

