
Modular Statically Typed Multimethods

Todd Millstein and Craig Chambers

Department of Computer Science and Engineering
University of Washington

{todd,chambers}@cs.washington.edu

Technical Report UW-CSE-99-03-02
March 1999

This technical report presents the formal details of the Dubious language and its various static type
systems, as described in [Millstein & Chambers 99]. Section 1 presents the syntax of Dubious,
sections 2 and 3 present its formal dynamic and static semantics, respectively, and section 4
sketches the soundness proofs for each of Dubious’s type systems. Refer to [Millstein & Chambers
99] for an informal description of the semantics of the language and its static type restrictions.

2

Modular Statically Typed Multimethods

1 Syntax

Dubious’s syntax appears in figure 1-1. This syntax is used in conjunction with the static type rules
corresponding to System M. The static type restrictions of Systems E and ME require a few
modifications and additions to the syntax, as follows:

M ::= module I imports I1, ..., Imextends I1′, ..., Ir′ { D1 ... Dn }

O ::= I | (S1, ..., Sn) →O

S ::= [#]O

2 Dynamic Semantics

This section presents the dynamic semantics of Dubious. Subsection 2.1 presents the dynamic
semantics corresponding to the syntax in figure 1-1, and subsection 2.2 presents the modifications
to the dynamic semantics for the augmented syntax necessary for Systems E and ME.

2.1 Dynamic Semantics for Systems G and M

2.1.1 Preliminaries

Figure 2-1 defines the necessary domains for the dynamic semantics.Envrepresents the dynamic
environment, mapping identifiers to values.Storemaintains information on the inheritance relation
among objects and the methods contained in each generic function.ModEnvis a mapping from
each module name to an environment representing the values defined in that module.Isa is the
domain representing the declared inheritance relationship. TheGFMethodsdomain contains the

P ::= M1 ... Mn import I in E end

M ::= module I imports I1, ..., Im { D1 ... Dn }

D ::= [abstract | interface] object I isa O1, ..., On
| I has method(F1, ..., Fn) { E }

E ::= E0(E1, ..., En) | I
O ::= I | (O1, ..., On) →O

F ::= I1 [@ I2]

I ::= identifier

Figure 1-1: Syntax of Dubious

e ∈ Env = I → Val
s ∈ Store = Isa × GFMethods
me ∈ ModEnv = I → Env
isa ∈ Isa = (Val × Obj)*
gfms∈ GFMethods = (Val × MethodHeader) → MethodBody
mh ∈ MethodHeader= Obj*
mb ∈ MethodBody = I* × E × Env
o ∈ Obj = Val + Arrow
arr ∈ Arrow = arrow (Obj*, Obj)
v ∈ Val = obj(Nat)

Figure 2-1: Domains for the dynamic semantics

3

Modular Statically Typed Multimethods

relevant information about each method in a generic function object.MethodHeaderis the list of
specializer objects of a method.MethodBodyis the list of formal parameter names, method body,
and lexical environment of a method.Obj is the domain of objects in the program.Arrow is the
domain of arrow objects, containing a list of argument objects and a result object.Val is the domain
of non-arrow objects. Each element of this domain is given a different natural number, which serves
as the object’s unique identity.

Figure 2-2 makes several useful definitions and functions. Many of these definitions are self-
explanatory.+ is the pointwise union of twoStores. & is ashadowing unionoperator, favoringr2.
Thedisjoint function returns true if and only if all of its arguments are distinct. Since each textual
occurrence of “object” maps to a unique run-time value, the subscripts are a simple way to provide
each run-time value with a unique identity.

2.1.2 Judgements

Now we present the judgements for the dynamic semantics. In general, a judgement may have the
form d1,...,dm |− X ⇒ o ➢ d1′,...,dn′. Such a judgement is interpreted as follows: “Given the
information in domain elementsd1,...,dm as the context for evaluation, the program fragmentX
evaluates to the objecto and producesd1′,...,dn′ as additions to the current context.” The⇒ o or ➢
d1′,...,dn′ parts may be omitted.

Figure 2-3 contains the judgements for programs and modules. The program rule evaluates each
module in the program, returning a global store and an environment for each module. The rule then

We define accessor functions on the components ofStore,with the namesisaandgfms
respectively.

r1 & r2 = {(x,y1) | (x,y1) ∈ r2 or [(x,y1) ∈ r1 and ∼∃ y2.(x,y2) ∈ r2]}

(isa1, gfms1) + (isa2, gfms2) = (isa1 ∪ isa2, gfms1 ∪ gfms2)

name(I1@I2) = I1 name(I1) = I1
disjoint(x1,...,xn) = ∀ 1 ≤ i ≤ n. ∀ 1 ≤ j ≤ n.(xi = xj) ⇒ (i = j)

Each static occurrence of “object” in the program is subscripted with a unique integer
greater than one.

Figure 2-2: Definitions and functions

Figure 2-3: Judgements for programs and modules

[prg-d]
|− M1 ... Mn ➢ s,me e= me(I) e,s|− E ⇒ v

——
|− M1...Mn import I in E end ⇒ v ➢ s

[md*-d]

{} |− M1 ➢ s1,me1
s1,me1 |− M2 ➢ s2,me2 ... s1+...+sn-1,me1& me2&...&men-1|− Mn ➢ sn,men

——
|− M1 ... Mn ➢ s1+s2+...+ sn, me1& me2&...&men

[mod-d]
e= me(I1)&...&me(It) e,s|− D1 ... Dn ➢ e0,s0

——
s,me|− module I imports I1,...,It { D1 ... Dn} ➢ s0 , {(I,e&e0)}

4

Modular Statically Typed Multimethods

evaluates the given expression in the context of the global store and the environment of the
imported module. A module is evaluated in the context of the shadowing union of the environments
of each module it imports.

The judgements for declarations are shown in figures 2-4. Each declaration in a declaration block
is evaluated in an environment which includes any name bindings from previous declarations in the
block. Although declaration blocks are not recursive, it is still possible to write (mutually) recursive
methods because generic functions are declared separately from their methods. For example, the
body of a methodm may refer to the same generic function in whichm is contained, since the
generic function was declared previously, thereby creating a recursive method. Theobject
declaration is evaluated by evaluating each inheritance parent of the new object and storing the new
inheritance pairs in the resulting evaluation context. Methods are evaluated by evaluating each
formal argument and recording the appropriate information in the resulting evaluation context.

Figure 2-5 contains the judgements for expressions and objects. A generic function application is
evaluated by evaluating the generic function expression and the actual argument expressions to
objects. The most-specific method for the argument objects is extracted from the generic function
object, and its method body is then evaluated in the context of the method’s lexical environment,
augmented with bindings from the formal to the actual parameters. An identifier is evaluated
simply by looking up the identifier’s binding in the current environment. An arrow object is
evaluated by evaluating each of its object components.

The judgements for evaluating formals are given in figure 2-6. If the formal parameter is
specialized, the specializer object is evaluated and returned. If the formal parameter is
unspecialized, we consider the formal to be implicitly specialized on the associated object in an
arrow object of the generic function (the static semantics will ensure that there is at most one such
arrow object for each generic function).

Figure 2-4: Judgements for declarations

[dc*-d]

e,s|− D1 ➢ e1,s1
e&e1,s+s1 |− D2 ➢ e2,s2

...
e&e1&e2&...& en-1,s+s1 +s2+...+sn−1 |− Dn ➢ en,sn

———
e,s|− D1 ... Dn ➢ e1&e2&...& en, s1+ s2+...+ sn

[obj-d]

e |− O1 ⇒ o1 ... e |− On ⇒ on
v = obj(i)

——
e,s|− [abstract| interface] objecti I isa O1, ..., On

➢ {(I,v)},({(v,o1),...,(v,on)},{})

[has-d]

e |− I ⇒ v
e,s|− (v, [F1,...,Fn]) ⇒ (o1,...,on)

mb= ([name(F1),...,name(Fn)],E, e)
——

e,s|− I has method(F1,...,Fn) { E} ➢ {},({},{((v,[o1,...,on]),mb)})

5

Modular Statically Typed Multimethods

The method lookup rule appears in figure 2-7. The rule first extracts the tuple of specializers of all
applicablemethods for [o1,...,om] from the generic functiono. Then it finds the unique such tuple
of specializers that is more-specific than all other tuples of specializers, and it returns this tuple
along with the associated formal arguments, method body, and lexical environment.

The rules for extending the direct inheritance relation to form the descendant relation are given in
figure 2-8. The≤isa* relation is a pointwise extension of the≤isa relation. The≤isa relation is the
reflexive, transitive closure of the declared inheritance relation, along with the standard
contravariant rule for relating arrow objects.

Figure 2-5: Judgements for expressions and objects

[app-d]

e,s|− E0 ⇒ v0 ... e,s|− En ⇒ vn
s|− v0 lookup-method[v1,...,vn] ➢ (mh,([I1,...,In],E,e0))

e0 & {(I1,v1),...,(In,vn)} ,s |− E ⇒ v
——————————————————————————————————————

e,s|− E0(E1,...,En) ⇒ v

[id-d]
e(I) = v

————————————————————————
e,s|− I ⇒ v

[arr-d]
e |− O1 ⇒ o1 ... e|− On ⇒ on e |− O ⇒ o

—————————————————————————————————
e |− (O1,...,On)→O ⇒ arrow ([o1,...,on],o)

Figure 2-6: Judgements for formal arguments

[form-d]
e,s|− (o,F1,1) ➢ o1 ... e,s|− (c,Fn,n) ➢ on

———-——————————————————
e,s|− (o,[F1,...,Fn]) ➢ [o1,...,on]

[spe-d]
e |− I2 ⇒ o2

———————————————————
e,s|− (o, I1@I2, i) ⇒ o2

[uns-d]
1 ≤ i ≤ n (o,arrow ([o1,...,on],o0)) ∈ isa(s)

—————————————————————————
e,s|− (o, I, i) ➢ oi

Figure 2-7: Judgement for method lookup

[look-d]

[mh1,...,mhn] = [mh| ((o,mh),mb)∈ gfms(s)∧ s |− [o1,...,om] ≤isa* mh]
disjoint(mh1,...,mhn) 1 ≤ i ≤ n

s |− mhi ≤isa* mh1 ... s|− mhi ≤isa* mhn
((o,mhi),mbi)∈ gfms(s)

——
s|− o lookup-method[o1,...,om] ➢ (mhi,mbi)

6

Modular Statically Typed Multimethods

2.2 Modifications for Systems E and ME
Two minor modifications of these semantics are needed to accomodate the syntax extensions for
Systems E and ME. These modified rules are shown in figure 2-9. The modified rule for modules
treats extended modules identically to imported modules, using their environments as context for
the evaluation of the new module. The rule for evaluating arrow objects simply ignores the optional
markers on argument objects.

3 Static Semantics

This section presents the static semantics of Dubious. Subsection 3.1 presents the base static
semantics, which is independent of the particular modular typechecking system used. Subsections
3.2 through 3.5 present the modifications and additions to the base static semantics for Systems G,
M, E, and ME, respectively.

Figure 2-8: Judgements for the descendant relation

[isa*-d]
s |− o1 ≤isa o1′ ... s|− on ≤isa on′

——————————————————————————
s |− [o1,...,on] ≤isa* [o1′,...,on′]

[isb-d]
(o1,o2) ∈ isa(s)

————————————————————————
s |− o1 ≤isa o2

[isr-d] s |− o ≤isa o

[ist-d]
s |− o1 ≤isa o2 s |− o2 ≤isa o3

————————————————————————
s |− o1 ≤isa o3

[isar-s]

s |− o1′ ≤isa o1 ... s |− on′ ≤isa on
k |− o ≤isa o′

——————————————————————————————
s |− arrow([o1,...,on],o) ≤isa arrow([o1′,...,on′],o ′)

Figure 2-9: Judgement modifications for Systems E and ME

[mod-d]

e= me(I1)&...&me(Im)&me(I1′)&...&me(Ir′)
e,s|− D1 ... Dn ➢ e0,s0

——
s,me|− module I imports I1,...,Imextends I1′, ..., Ir′{ D1 ... Dn}

➢ s0 , {(I,e&e0)}

[arr-d]

e |− O1 : o1 ... e|− On : on e |− O : o
—————————————————————————————————

e |− ([#]O1,...,[#]On)→O : arrow ([o1,...,on],o)

7

Modular Statically Typed Multimethods

3.1 Base Static Semantics

3.1.1 Preliminaries

Figure 3-1 defines the necessary domains for the static semantics.TypeEnvrepresents the static
environment, mapping object identifiers to their types.TypeStoremaintains information on the
inheritance relation among objects, which objects are concrete, which objects are abstract, the
methods contained in each generic function, and local information about the current module being
typechecked.Modules maintains a mapping from each module name to its associated type
environment, and a mapping from each module name to its associated type store. The
GFMethodTypesdomain maintains, for each method in the program, a mapping from the method’s
generic function to the method’s tuple of specializers.Localskeeps track of all non-arrow objects
created in the current module being typechecked, andLocalGFMethodskeeps track of all methods
created in the current module being typechecked. AConstTypeis the type of statically known
objects. This is either a non-arrow object with a known object identity, or an arrow object.ObjType
is the type of all values in the program. A value may either have aConsttype, in which case the
value has a statically known object identity, or aunknowntype of the formunk(Type), which
means that the value is not statically known but is known to inherit fromType.

Figure 3-2 makes several useful definitions and functions. As in the dynamic semantics, we define
accessor functions for easy manipulation of theTypeStoreandModulesdomains. In addition, we
define a record-like syntax for representing sparseTypeStores, where most of the components are
empty. Theadd-impfunction is used to obtain “interface” information from the type context of an
imported module. This information is then added to the type context of the importer. As in the
dynamic semantics, integer subscripts on occurrences of “object” are used as object identities. We
assume that the subscripts used in the dynamic and static semantics are identical.

p ∈ TypeEnv = I→ ObjType
k ∈ TypeStore = Isa× Concrete× Abstract× GFMethodTypes

× LocalTypeStore
m ∈ Modules = ModTypeEnv× ModTypeStore
cnc ∈ Concrete = Const*
abs ∈ Abstract = Const*
isa ∈ Isa = (Const× ConstType)*
gfms∈ GFMethodTypes = (Const× MethodHeaderType)*
mh ∈ MethodHeaderType = ConstType*
lk ∈ LocalTypeStore = Locals× LocalGFMethods
ls ∈ Locals = Const*
lgf ∈ LocalGFMethods = GFMethodTypes
mp ∈ ModTypeEnv = I→ TypeEnv
mk ∈ ModTypeStore = I→ TypeStore
t ∈ ConstType = Const+ ArrowType
art ∈ ArrowType = arrow (ConstType*, ConstType)
ot ∈ ObjType = Const+ unk(ConstType)
c ∈ Const = object(Nat)

Figure 3-1: Domains for the static semantics

8

Modular Statically Typed Multimethods

3.1.2 Judgements

Now we present the judgements for the base static semantics. In general, a judgement may have
the form d1,...,dm |− X : t ➢ d1′,...,dn′. Such a judgement is interpreted as follows: “Given the
information in domain elementsd1,...,dm as the context for typechecking, the program fragmentX
has typet and producesd1′,...,dn′ as additions to the current type context.” The :t or ➢ d1′,...,dn′
parts may be omitted.

Figure 3-3 contains the judgements for programs and modules. The program rule typechecks each
module in the program, returning a global type store and a type environment and type store for each
module. The rule then typechecks the given expression in the context of the global type store and
the type environment of the imported module. A block of modules is typechecked one-by-one, and
the typechecking of each module returns that module’s type environment and store. The type store
of the program is the union of the type stores of each module. Theprogram-has-safe-modulesrule
will be supplied by the particular type system (G, M, E, or ME) being added to these base
semantics, performing any necessary global typechecking. The declarations in a module are
typechecked in the context of the type environments and type stores of each imported module. The
four module-has-safe-xrules will be supplied by each particular type system, performing any
necessary local and regional typechecking.

The judgements for declarations are shown in figure 3-4. Each declaration in a declaration block is
typechecked in the context of the name bindings and type store produced from typechecking all
preceding declarations in the block. The [obj-s] rule typechecks objects that are not acting as
generic functions. In particular, the rule checks that none of the object’s parents (either declared or
inherited) are arrow objects. The rule simply evaluates each declared inheritance parent and stores
these parents in theIsa component of the type context. It also adds the new object toLocals,
indicating that the object was created in the current module. The [gf-s] rule typechecks generic
functions. It is similar to the [obj-s] rule, except that it ensures that the new generic function has
exactly one most-specific parent arrow object. The [abso-s] and [cnco-s] rules are used as wrappers
around the previous two rules, in order to correctly note in the type context if the new object is

We define names for the components of aTypeStoreandModule, and associated
accessor functions with those names: (isa,cnc,abs,gfms,(ls,lgf)) and (mp,mk)

Let () denote the empty type store and (x1 = v1,...,xn = vn) denote the empty type store
augmented with componentxi equal tovi.

r1 & r2 = {(x,y1) | (x,y1) ∈ r2 or [(x,y1) ∈ r1 and ∼∃ y2.(x,y2) ∈ r2]}

(s11,...,s1n) + (s21,...,s2n) = (s11 ∪ s21, ... , s1n ∪ s2n)

add-imp((isa,cnc,abs,gfms,lk)) = (isa,cnc,abs,gfms,({},{}))

name(module I imports I1,...It {D* }) = I

name(I1@I2) = I1 name(I) = I

disjoint(x1,...,xn) = ∀ 1 ≤ i ≤ n. ∀ 1 ≤ j≤ n.(xi = xj) ⇒ (i = j)

length([x1,...,xn]) = n

Each static occurrence of “object” in the program is subscripted with a unique integer
greater than one.

Figure 3-2: Definitions and functions

9

Modular Statically Typed Multimethods

abstract or concrete (if the new object is an interface, nothing is added to the type context). Methods
are typechecked by typechecking each formal argument position, returning an associated
specializer type. Then the method body is typechecked in the context of the current lexical type
environment, augmented with type bindings for the formals. The body must have the declared
result type of the method’s associated generic function.

Figure 3-5 contains the judgements for expressions and types. The [app-s] rule is the client-side
typechecking rule for generic function applications. The result of a generic function application
cannot be statically known, so the result type is always of the formunk(t). An identifier is
typechecked simply by looking up the identifier’s binding in the current type environment. There
are two subsumption rules, which allow the types of expressions to be “raised.” The [smpc-s] rule
ensures that only concrete objects can have their types raised, which has the effect of disallowing
reference to non-concrete objects in expressions. An arrow object is typechecked by typechecking
each of its components.

The judgements for typechecking formals are given in figure 3-6. If the formal parameter is
specialized, the specializer object is typechecked and returned. The specializer must not be an
interface and it must be a descendant of the associated argument object of the generic function’s
arrow object. If the formal parameter is unspecialized, we consider the formal to be implicitly
specialized on the associated object in the generic function’s arrow object.

Figure 3-7 shows the static analog of the dynamic method lookup rule. The rule checks that generic
functionc has a most-specific method for the argument tuple [t1,...,tm]. This is the main subroutine
in the implementation-side typechecking of a generic function (each type system will fill in the
other details of implementation-side typechecking).

The rules for extending the direct inheritance relation to form the descendant relation are given in
figure 3-8. These are simply the analogs of the associated rules in the dynamic semantics.

Figure 3-3: Judgements for programs and modules

[prg-s]
|− M1 ... Mn ➢ k,m p =(mp(m))(I) p,k |− E : unk(t)

———
|− M1...Mn import I in E end : unk(t) ➢ k

[md*-s]

({},{}) |− M1 ➢ m1 m1 |− M2 ➢ m2 ... m1+m2+ ...+ mn-1|− Mn ➢ mn
disjoint(name(M1),...,name(Mn))

m =m1+m2+...+mn k = mk(m)(name(M1))+...+mk(m)(name(Mn))
k,m|− program-has-safe-modules

——
|− M1 ... Mn ➢ k, m

[mod-s]

p = mp(m)(I1)&...&mp(m)(It)
k = add-imp(mk(m)(I1))&...&add-imp(mk(m)(It))

p,k |− D1 ... Dn ➢ p0,k0
k+k0 |− module-has-safe-gfs k+k0 |−module-has-safe-imported-gfs
k+k0 |−module-has-safe-objects k+k0 |−module-has-safe-methods

——
m |− module I imports I1,...,It { D1 ... Dn} ➢ ({(I,p&p0)}, {(I,k+k0)},)

10

Modular Statically Typed Multimethods

Figure 3-4: Judgements for declarations

[dc*-s]

p,k |− D1 ➢ p1,k1
p&p1,k+k1 |− D2 ➢ p2,k2

...
p&p1&p2&...& pn-1,k+k1+k2+ ...+kn-1|− Dn ➢ pn,kn

———————————————————————————————————————
p,k |− D1 ... Dn ➢ p1&p2&...& pn,k1+ k2+ ...+kn

[obj-s]

p,k |− O1 : t1 ... p,k|− On : tn
{ c1,...,cm} = { c | 1≤ j ≤ n ∧ c = tj}

{} = { art | 1≤ j ≤ m ∧ (cj,art) ∈ isa(k)} ∪ {art | 1 ≤ j ≤ n ∧ art = tj}
k0 = (isa = {(object(i),c1),...,(object(i),cm)} , ls={object(i)})

——
p,k |− interface objecti I isa O1,...,On ➢ {(I, object(i))},k0

[gf-s]

p,k |− O1 : t1 ... p,k|− On : tn
{ c1,...,cm} = { c | 1≤ j ≤ n ∧ c = tj}

{ art1,...,artq} = { art | 1≤ j ≤ m ∧ (cj,art) ∈ isa(k)} ∪ {art | 1 ≤ j ≤ n ∧ art = tj}
1 ≤ r ≤ q k |− artr ≤isa art1 ... k |− artr ≤isa artq

k0 = (isa = {(object(i),c1),...,(object(i),cm), (object(i),artr)} , ls={object(i)})
———

p,k |− interface objecti I isa O1,...,On ➢ {(I, object(i))},k0

[abso-s]
p,k |− interface objecti I isa O1,...,On ➢ p0,k0

——
p,k |− abstract objecti I isa O1,...,On ➢ p0 ,k0+(abs= {object(i)})

[cnco-s]
p,k |− interface objecti I isa O1,...,On ➢ p0,k0

———
p,k |− objecti I isa O1,...,On ➢ p0 ,k0 + (cnc= {object(i)})

[has-s]

p,k |− I : c (c,arrow ([t1′,...,tn′],t)) ∈ isa(k)
p,k |− (c,[F1,...,Fn]) ➢ [t1,...,tn]

∀ 1 ≤ i ≤ n. Ii = name(Fi) disjoint(I1,...,In)
p&{(I1,unk(t1)),...,(In,unk(tn)),k |− E : unk(t)

——
p,k |− I has method(F1,...,Fn) { E}

➢ {}, (gfms = {(c,[t1,...,tn])}, lgf = {(c,[t1,...,tn])})

Figure 3-7: Judgement for method lookup

[look-s]

[mh1,...,mhn] = [mh| (c,mh)∈ gfms(k)∧ k |− [t1,...,tm] ≤isa* mh]
disjoint(mh1,...,mhn) 1 ≤ i ≤ n

k |− mhi ≤isa* mh1 ... k |− mhi ≤isa* mhn
——

k|− c lookup-method[t1,...,tm]

11

Modular Statically Typed Multimethods

3.2 System G

This subsection provides additions to the base static semantics that enforce the typing restrictions
of System G. In particular, we provide typing rules for thehas-safe“hooks” in the base static
semantics of section 3.1.

The typing rules forprogram-has-safe-modulesare shown in figure 3-9. The rules globally perform
implementation-side typechecking on each concrete generic function in the program. In particular,
for each concrete generic function acceptingn arguments, all possible argument tuples [c1,...,cn]
are formed such that eachci is concrete and descends from the corresponding object in the generic
function’s arrow object. It is checked that each of these argument tuples has a most-specific method
in the generic function.

Figure 3-5: Judgements for expressions and types

[app-s]

p,k |− E0 : unk(arrow ([t1,...,tn],t))
p,k |− E1 : unk(t1) ... p,k|− En : unk(tn)

———————————————————————————————————
p,k |− E0(E1,...,En) : unk(t)

[id-s]
p(I) = ot

————————————————————————
p,k |− I : ot

[smpc-s]
p,k |− E : c k |− c ≤isa t c ∈ cnc(k)

——
p,k |− E : unk(t)

[smpu-s]
p,k |− E : unk(t1) k |− t1 ≤isa t2

——
p,k |− E : unk(t2)

[art-s]
p,k |− O1 : t1 ... p,k|− On : tn p,k |− O: t

—————————————————————————————————
p,k |− (O1,...,On)→O : arrow ([t1,...,tn],t)

Figure 3-6: Judgements for formal arguments

[form-s]
p,k |− (c,F1,1) ➢ t1 ... p,k|− (c,Fn,n) ➢ tn

———-—————————————————
p,k |− (c,[F1,...,Fn]) ➢ [t1,...,tn]

[spe-s]

(c,arrow ([t1,...,tn],t)) ∈ con(k)
p,k |− I2 : c0 c0 ∈ cnc(k)∪abs(k) k |− c0 ≤isa ti

——————————————————————
p,k |− (c, I1@I2, i) ➢ c0

[uns-s]
(c,arrow ([t1,...,tn],t)) ∈ con(k)

—————————————————
p,k |− (c, I, i) ➢ ti

12

Modular Statically Typed Multimethods

The local and regional typechecking rules for System G are shown in figure 3-10. These rules are
all trivially satisfied. Because of the global implementation-side typechecking, there is no need for
any local or regional typechecking.

3.3 System M

This subsection provides additions to the base static semantics that enforce the typing restrictions
of System M. The rule forprogram-has-safe-modulesis shown in figure 3-11. Since System M
requires no global typechecking, this rule is trivially satisfied.

The rest of the rules implement restrictionsM1-M4 as well as the two kinds of re-implementation-
side typechecking required for importers. The restrictions on methods and objects appear in figure
3-12. Themodule-has-safe-methodsrule implements restrictionM1, which ensures that, for each

Figure 3-8: Judgements for the descendant relation

[isa*-s]
k |− t1 ≤isa t1′ ... k |− tn ≤isa tn′

——————————————————————————
k |− [t1,...,tn] ≤isa* [t1′,...,tn′]

[isb-s]
(t1,t2) ∈ isa(k)

————————————————————————
k |− t1 ≤isa t2

[isr-s] k |− t ≤isa t

[ist-s]
k |− t1 ≤isa t2 k |− t2 ≤isa t3

————————————————————————
k |− t1 ≤isa t3

[isar-s]

k |− t1′ ≤isa t1 ... k |− tn′ ≤isa tn
k |− t ≤isa t′

——————————————————————————
k |− arrow([t1,...,tn],t) ≤isa arrow([t1′,...,tn′],t ′)

Figure 3-9: Global typechecking for System G

[mdsf-s]
k|− G-impl-side-typecheck-gfs ls(k)

——————————————————————————————
k,m|− program-has-safe-modules

[Ggfs-s]

∀ c ∈ { c1′,...,cr′}.∀ [c1,...,cn].
((c ∈ cnc(k)∧ (c,art)∈ isa(k) ∧ k|− [c1,...,cn] G-is-legal-tuple-for(c,art)) ⇒

k|− c lookup-method[c1,...,cn])
——

k|− G-impl-side-typecheck-gfs{ c1′,...,cr′}

[Gleg-s]
∀ 1 ≤ i ≤ n. ci ∈ cnc(k)∧ k |− ci≤isa ti

—————————————————————————————————————
k |− [c1,...,cn] G-is-legal-tuple-for(c ,arrow([t1,...,tn],t))

13

Modular Statically Typed Multimethods

method created in the current module, either the method was added to a local generic function or
the method is encapsulated-style (the method’s first specializer is a local object). Themodule-has-
safe-objectsrule implements restrictionM2, which disallows unanticipated multiple code
inheritance across module boundaries.

The rules for implementation-side typechecking of a module appear in figure 3-13. The rules
ensure that, for each generic function created in the current module, each legal argument tuple
[t1,...,tn] has a most-specific method to invoke. TheM-is-legal-tuple-forrule defines which argument
tuples are checked for a most-specific method. This rule implements restrictionsM3 andM4. In
particular, letarrow([t1′,...,tn′],t) be the arrow object of the generic function being checked. For any
argument positioni other than the first, all descendants ofti′ are checked, regardless of whether or

Figure 3-10: Local and regional typechecking for System G

[gfsf-s] k|− module-has-safe-gfs

[igfsf-s] k|− module-has-safe-imported-gfs

[obsf-s] k|− module-has-safe-objects

[mtsf-s] k|− module-has-safe-methods

Figure 3-11: Global typechecking for System M

[mdsf-s] k,m|− program-has-safe-modules

Figure 3-12: RestrictionsM1 and M2

[mtsf-s]

c* = {c | (c,[t1,...,tn]) ∈ lgf(k)}
k|− restriction-M1 c*

——————————————————————————————
k|− module-has-safe-methods

[M1-s]
∀(c,[t1,...,tn]) ∈ lgf(k). c∈ c* ⇒ (c ∈ ls(k)∨ (n > 0 ∧ t1 ∈ ls(k)))

——
k|− restriction-M1 c*

[obsf-s]
k|− restriction-M2

——————————————————————————————
k|− module-has-safe-objects

[M2-s]

∀ c ∈ ls(k).∀ c1 ∈ cnc(k)∪abs(k).∀ c2 ∈ cnc(k)∪abs(k) .
(c ∈ cnc(k)∪abs(k) ∧ k |− c ≤isa c1 ∧ k |− c ≤isa c2 ∧ c1 ∉ls(k) ∧ c2 ∉ ls(k)) ⇒

((k |− c1 ≤isa c2 ∨ k |− c2 ≤isa c1) ∨
(c3 ∈ cnc(k)∪abs(k)∧ k |− c ≤isa c3 ∧ k |− c3 ≤isa c1 ∧ k |− c3 ≤isa c2))

——
k|− restriction-M2

14

Modular Statically Typed Multimethods

not these descendants are concrete. Concrete descendants oft1′ are checked, as well as any non-
local descendants oft1′.

The rules for the two kinds of re-implementation-side typechecking of imported generic functions
are shown in figure 3-14. The [Migfs-s] rule ensures that, for each imported generic function, all

Figure 3-13: Implementation-side typechecking for System M

[gfsf-s]
k|− M-impl-side-typecheck-gfs ls(k)

——————————————————————————————
k|− module-has-safe-gfs

[Mgfs-s]

∀ c ∈ { c1′,...,cr′}.∀ [t1,...,tn].
(c ∈ cnc(k)∧ (c,art)∈ isa(k) ∧ k|− [t1,...,tn] M-is-legal-tuple-for(c,art)) ⇒

k|− c lookup-method[t1,...,tn]
———

k|− M-impl-side-typecheck-gfs{ c1′,...,cr′}

[Mleg-s]
∀ 1 ≤ i ≤ n.k |− ti≤isa ti′ (t1 ∈ cnc(k) ∨ t1 is-non-local))

——
k |− [t1,...,tn] M-is-legal-tuple-for(c,arrow([t1′,...,tn′],t))

Figure 3-14: Re-implementation-side typechecking for System M

[igfsf-s]

c*= {c| c ∉ ls(k) ∧ c ∈ cnc(k)∧ (c,art)∈ isa(k)}
k|− M-impl-side-typecheck-imported-gfs c*

——————————————————————————————
k|− module-has-safe-imported-gfs

[Migfs-s]

∀ c∈ c*.∀ [t1,...,tn]. ((c,art)∈ isa(k) ∧
(k|− [t1,...,tn] is-local-recheck1-for(c,art) ∨

k|− [t1,...,tn] is-local-recheck2-for(c,art))) ⇒
k|− c lookup-method[t1,...,tn]

————————————————————————————————————
k|− M-impl-side-typecheck-imported-gfs c*

[re1-s]

k |− [t1,...,tn] M-is-legal-tuple-for(c,arrow([t1′,...,tn′],t))
(c,mh) ∈ lgf(k) k |− [t1,...,tn] ≤isa* mh

—————————————————————————————————————
k |− [t1,...,tn] is-local-recheck1-for(c,arrow([t1′,...,tn′],t))

[re2-s]

k |− [t1,...,tn] M-is-legal-tuple-for(c,arrow([t1′,...,tn′],t))
k |− t1 is-orphan

———————————————————————————————————————
k |− [t1,...,tn] is-local-recheck2-for(c,arrow([t1′,...,tn′],t))

[orph-s]

k|− t is-non-local c∈ ls(k)
{ c} = { c0 | c0 ∈ cnc(k) ∧ k |− c0≤isa t ∧ k |− c≤isa c0}
——————————————————————————————————

k|− c is-orphan

15

Modular Statically Typed Multimethods

argument tuples satisfying one of the two re-check conditions has a most-specific method to
invoke. A tuple satisfies rule [re1-s] if it is a legal argument tuple and the generic function has an
applicable method that was created in the current module. A tuple satisfies rule [re2-s] if it is a legal
argument tuple and its first component is an orphan. An orphan is a local, concrete object that
descends from a non-local, non-concrete objectt without also descending from a concrete
descendant oft.

Finally, the rules defining when an object is non-local appear in figure 3-15. A non-arrow object is
non-local if it was not created in the current module. An arrow object is non-local if it does not have
a local object in a positive position.

3.4 System E

This subsection provides modifications and additions to the base static semantics for System E.
Section 3.4.1 presents the modifications necessary to accomodate the augmented syntax of the
language (see section 1). Section 3.4.2 presents the implementation of System E’s modular typing
restrictions.

3.4.1 Modifications to the base static semantics

Figure 3-16 defines the necessary modifications and additions to the domains for the static
semantics. TheTypeStorenow includes an element of theSpecializersdomain. This domain
records, for each generic function, which argument positions are marked and which are unmarked.
An argument position gets theSpecs (for specializable) if it is marked, and otherwise it gets the
Specu (for unspecialized). TheModulesdomain includes a component that records the declared
extension relation between modules. This will be used to ensure that each module has a most-
extending module in the program. Finally, theLocalTypeStoredomain includes a component that
records all non-arrow objects that were declared in (transitive) extendees of the current module.

Figure 3-15: Judgements for determining if an object is non-local

[isnloc-s]
k|− t has-no-local-in-positive-position

——————————————————————————————
k|− t is-non-local

[nlposb-s]
c ∉ ls(k)

——————————————————————————————
k|− c has-no-local-in-positive-position

[nlposa-s]

(∀1≤ i ≤ n.k|− ti has-no-local-in-negative-position)
k|− t0 has-no-local-in-positive-position

——————————————————————————————
k|− arrow([t1,...,tn],t0) has-no-local-in-positive-position

[nlnegb-s] k|− c has-no-local-in-negative-position

[nlnega-s]

(∀ 1≤ i ≤ n.k|− ti has-no-local-in-positive-position)
k|− t0 has-no-local-in-negative-position

——————————————————————————————
k|− arrow([t1,...,tn],t0) has-no-local-in-negative-position

16

Modular Statically Typed Multimethods

Figure 3-17 makes modifications and additions to the definitions and functions. First the
appropriate accessor functions are defined on the modifiedTypeStoreandModuledomains. The
add-impfunction takes aTypeStorefor a module and returns the “interface” information needed by
an importer of the module. Theadd-extfunction is similar, but for extenders of the module. In
particular, theadd-ext function appropriately updates the extender’s list of objects created in
extendees. Thetypeandspecfunctions are simple accessor functions on elements of the syntax
domainS, which represents a possibly marked object.

k ∈ TypeStore = Isa× Concrete× Abstract × GFMethodTypes×
Specializers× LocalTypeStore

m ∈ Modules = ModTypeEnv× ModTypeStore× Extends
ext∈ Extends = (I × I)*
sp ∈ Specializers = (Const× Spec*)*
lk ∈ LocalTypeStore = Locals× Extendees× LocalGFMethods
ex ∈ Extendees = Const*
s ∈ Spec = s | u

Figure 3-16: Modifications and additions to the domains for the static semantics

We define names for the components of aTypeStoreandModule, and associated
accessor functions with those names: (isa,cnc,abs,gfms,sp,(ls,ex,lgf)) and (mp,mk,ext)

add-imp((isa,cnc,abs,gfms,sp,lk)) = (isa,cnc,abs,gfms,sp,({},{},{}))

add-ext((isa,cnc,abs,gfms,sp,(ls,ex,lgf))) =(isa,cnc,abs,gfms,sp,({}, ls ∪ ex,{}))

type(O) = O type(#O) = O

spec(O) = u spec(#O) = s
Figure 3-17: Modifications and additions to the definitions and functions

Figure 3-18: Updated judgements for module blocks and modules

[md*-s]

({},{},{}) |− M1 ➢ m1 m1 |− M2 ➢ m2 ... m1+m2+ ...+ mn-1|− Mn ➢ mn
disjoint(name(M1),...,name(Mn))

k = mk(m1)(name(M1))+...+mk(mn)(name(Mn)) m =m1+m2+...+mn
k,m|− program-has-safe-modules

——
|− M1 ... Mn ➢ k, m

[mod-s]

p = mp(m)(I1)&...&mp(m)(It)&mp(m)(I1′)&...&mp(m)(Ir′)
k = add-imp(mk(m)(I1))&...&add-imp(mk(m)(It))&

add-ext(mk(m)(I1′))&...&add-ext(mk(m)(Ir′))
p,k |− D1 ... Dn ➢ p0,k0

k+k0 |− module-has-safe-gfs k+k0 |−module-has-safe-imported-gfs
k+k0 |−module-has-safe-objects k+k0 |−module-has-safe-methods

———
m |− module I imports I1,...,It extends I1′,...,Ir′ {D1 ... Dn}

➢ ({(I,p&p0)}, {(I,k+k0)}, {(I,I1′),...,(I,I r′)})

17

Modular Statically Typed Multimethods

Figure 3-18 shows the updated rules for typechecking module blocks and modules. The rule for
module blocks simply takes into account the fact that theModulesdomain now has one more
component than it used to have. The [mod-s] rule is revised in order to use both importees and
extendees as context in the evaluation of a module’s declarations.

Figure 3-19 shows the modified rule for typechecking generic functions, as well as the rule for
typechecking arrow objects with possibly marked argument positions. The generic function rule is
identical to the original rule for generic functions, except that the new rule must record which
positions of the new generic function are marked and which are unmarked. The rule simply uses
whatever markings are on the generic function’s most-specific arrow object for this purpose. The
complexity in this augmented rule comes from the need to track the markings of each inherited
arrow object. The rule for typechecking arrow objects is identical to the old rule, except that the
new rule also extracts and returns the argument position markings.

3.4.2 Additions to the base static semantics

Now we provide the judgements implementing System E’s modular typechecking restrictions. The
rule for program-has-safe-modulesis shown in figure 3-20. This rule implements the check that
each module has a unique most-extending module in the program. For this purpose, the≤extrelation
is defined as the reflexive, transitive closure of the declared extension relation. The check for most-
extending modules is the only global check needed by System E.

The rest of the rules implement restrictionsE1-E4 as well as the two kinds of re-implementation-
side typechecking required for importers. The restrictions on methods and objects appear in figure
3-21. Themodule-has-safe-methodsrule implements restrictionsE1a andE1b. The rule forE1a
ensures that methods do not specialize on unmarked positions of their associated generic function.
The rule for E1b ensures that methods added to imported generic functions are all-local
multimethods. The rule also requires such methods to have at least one marked argument position.
Because the method must be all-local, this restriction forces at least one specializer to be a local
object, so the method will not conflict with unseen methods. Themodule-has-safe-objectsrule
implements restrictionE2, which restricts multiple inheritance across module boundaries.

Figure 3-19: Updated judgements for generic functions and arrow objects

[gf-s]

{ I1,...,Im} = { I | 1≤ j ≤ n ∧ I= O j} { O1′,...,Oo′} = { O1,...,On} − { I1,...,Im}
p,k |− I1 : c1 ... p,k|− Im : cm p,k |− O1′ : t1 ➢ s1* ′... p,k|− Oo′ : to ➢ so* ′

{(art1, s1*),...,(artq,sq*)} = {(art,s*) | 1≤ j ≤ m∧ (cj,art) ∈ isa(k)∧(cj,s*) ∈sp(k)}
∪ {(art,s*) | 1 ≤ j ≤ n ∧ art = tj ∧ s*= sj* ′}

1 ≤ r ≤ q k |− artr ≤isa art1 ... k |− artr ≤isa artq
k0 = (isa= {(object(i),c1),...,(object(i),cm), (object(i),artr)} , ls={object(i)},

sp= {(object(i),sr*)})
———

p,k |− interface objecti I isa O1, ..., On ➢ {(I, object(i))},k0

[art-s]

O1 = type(S1) ... On = type(Sn)
s1 = spec(S1) ... sn = spec(Sn)

p,k |− O1 : t1 ... p,k|− On : tn p,k |− O: t
————————————————————————————————————
p,k |− (S1,...,Sn)→O : arrow ([t1,...,tn],t) ➢ [s1,...,sn]

18

Modular Statically Typed Multimethods

Figure 3-20: Global typechecking for System E

[mdsf-s]
m|− each-module-has-a-most-extending-module

—————————————————————————————————
k,m|− program-has-safe-modules

[me-s]

∀ I ∈ domain(mp(m)). ∃ I1 ∈ domain(mp(m)).∀ I2 ∈ domain(mp(m)).
(m |− I2 ≤ext I ⇒ m |− I1 ≤ext I2)

———
m|− each-module-has-a-most-extending-module

[exb-s]
(I1,I2) ∈ ext(m)

————————————————————————
m |− I1 ≤ext I2

[exr-s] m |− I ≤ext I

[ext-s]
m |− I1 ≤ext I2 m |− I2 ≤ext I3

————————————————————————
m |− I1 ≤ext I3

Figure 3-21: RestrictionsE1 and E2

[mtsf-s]

c* = {c | (c,[t1,...,tn]) ∈ lgf(k)}
k|− restriction-E1a c* k|− restriction-E1b c*

———
k|− module-has-safe-methods

[E1a-s]

∀ (c,[t1,...,tn]) ∈ lgf(k).(c∈ c* ∧ (c,[s1,...,sn])∈ sp(k)∧ (c,arrow([t1′,...,tn′],t)) ∈ isa(k)) ⇒
∀ 1 ≤ i ≤ n.(si = u) ⇒ (ti = ti′)

———
k|− restriction-E1a c*

[E1b-s]

∀ (c,[t1,...,tn]) ∈ lgf(k). c∈ c* ∧ c ∉ ls(k)∪ex(k)⇒
((c,[s1,...,sn])∈ sp(k)∧ ∃ 1 ≤ i ≤ n. si=s ∧ (∀1 ≤ i ≤ n. (si = u) ∨ ti ∈ ls(k)))

——
k|− restriction-E1b c*

[obsf-s]
k|− restriction-E2

——————————————————————————————
k|− module-has-safe-objects

[E2-s]

∀ c ∈ ls(k).(c ∈ cnc(k)∪abs(k) ∧ k |− c ≤isa t ∧ k |− t is-imported) ⇒
(∀ c1 ∈ cnc(k)∪abs(k).∀ c2 ∈ cnc(k)∪abs(k).

(k |− c ≤isa c1 ∧ k |− c ≤isa c2 ∧ c1 ∉ls(k)) ⇒ (k |− c1 ≤isa c2 ∨ k |− c2 ≤isa c1))
———

k|− restriction-E2

19

Modular Statically Typed Multimethods

The modular typechecking restrictions for generic functions appear in figure 3-22. First the rules
for implementation-side typechecking the generic functions in a module are given. These rules
ensure that, for each generic function created in the current module, each legal argument tuple
[t1,...,tn] has a most-specific method to invoke. TheE-is-legal-tuple-forrule defines which argument
tuples are checked for a most-specific method. This rule implements restrictionsE3a, E3b, and
E4b. In particular, letarrow([t1′,...,tn′],t) be the arrow object of the generic function being checked. For
any argument positioni, all descendants ofti′ are checked, regardless of whether or not these
descendants are concrete. However, if the generic function is singly dispatched andq is the single
marked position, descendants oftq′ are checked only if they are concrete or non-local.Finally, rule
[E4a-s] enforces restrictionE4a, which checks that if any descendant of an argument object in a
generic function’s arrow object is imported, then the associated argument position is unmarked.
Note that all arrow objects from which the generic function descends are checked in rule [E4a-s],
which by contravariance has the effect of checking all descendants of the argument objects in the
generic function’s most-specific arrow object.

The rules for the two kinds of re-implementation-side typechecking of imported generic functions
are shown in figure 3-23. The [Eigfs-s] rule ensures that, for each imported generic function, all
argument tuples satisfying one of the two re-check conditions have a most-specific method to
invoke. A tuple satisfies rule [re1-s] if it is a legal argument tuple and the generic function has an
applicable method that was created in the current module. A tuple satisfies rule [re2-s] if it is a legal
argument tuple, the generic function is singly dispatched, and the tuple has an orphan at the single
marked position. We use the same definition of an orphan as in System M (rule [orph-s]).

Figure 3-22: Implementation-side typechecking for System E

[gfsf-s]

k|− E-impl-side-typecheck-gfs(ls(k) ∪ ex(k))
k|− restriction-E4a ls(k)

——————————————————————————————
k|− module-has-safe-gfs

[Egfs-s]

∀ c ∈ { c1′,...,cr′}. ∀ [t1,...,tn].
(c ∈ cnc(k)∧ (c,art)∈ isa(k) ∧ k|− [t1,...,tn] E-is-legal-tuple-for(c,art)) ⇒

k|− c lookup-method[t1,...,tn]
——

k|− E-impl-side-typecheck-gfs{ c1′,...,cr′}

[Eleg-s]

(c,[s1,...,sn])∈ sp(k)
∀ 1 ≤ i ≤ n.k |− ti≤isa ti′

∀ 1 ≤ q ≤ n.∀ 1 ≤ r ≤ n.
((sq = sr = s) ⇒ (q = r)) ⇒(tq ∈ cnc(k) ∨ k |− tq is-non-local)

——
k |− [t1,...,tn] E-is-legal-tuple-for(c ,arrow([t1′,...,tn′],t))

[E4a-s]

∀ c ∈ c*.∀ arrow([t1,...,tn],t).((c,[s1,...,sn])∈ sp(k)∧ c≤isaarrow([t1,...,tn],t))⇒
∀1 ≤ i ≤ n.(k |− ti is-imported⇒ (si = u))

——
k|− restriction-E4a c*

20

Modular Statically Typed Multimethods

We use the rules in System M for defining when an object is non-local (figure 3-15). Figure 3-24
shows the rules defining when an object is imported. An object is imported if it is non-local and
has an imported object in a positive position.

Figure 3-23: Re-implementation-side typechecking for System E

[igfsf-s]

c*= {c|c ∉ ls(k)∪ ex(k) ∧ (c,art)∈ isa(k)}
k|− E-impl-side-typecheck-imported-gfs c*

——————————————————————————————
k|− module-has-safe-imported-gfs

[Eigfs-s]

∀ c∈ c*.∀ [t1,...,tn]. ((c,art)∈ isa(k) ∧
(k |− [t1,...,tn] is-local-recheck1-for(c,art) ∨

k |− [t1,...,tn] is-local-recheck2-for(c,art))) ⇒
k |− c lookup-method[t1,...,tn]

———
k|− E-impl-side-typecheck-imported-gfs c*

[re1-s]

k |− [t1,...,tn] E-is-legal-tuple-for(c,arrow([t1,...,tn],t))
(c,mh) ∈ lgf(k) k |− [t1,...,tn] ≤inh* mh

———
k |− [t1,...,tn] is-local-recheck1-for(c,arrow([t1,...,tn],t))

[re2-s]

k |− [t1,...,tn] E-is-legal-tuple-for(c,arrow([t1,...,tn],t))
(c,[s1,...,sn])∈ sp(k) 1 ≤ i ≤ n si = s ∀1 ≤ j ≤ n. sj = s ⇒ i=j

k |− ti is-orphan
——

k |− [t1,...,tn] is-local-recheck2-for(c,arrow([t1,...,tn],t))

Figure 3-24: Judgements for determining if an object is imported

[isimp-s]
k|− t is-non-local

k|− t has-imported-in-positive-position
——————————————————————————————

k|− t is-imported

[imposb-s]
c ∉ ls(k)∪ ex(k)

——————————————————————————————
k|− c has-imported-in-positive-position

[imposa-s]
(∃ 1≤ i ≤ n.k|− ti has-imported-in-negative-position)∨ k|− t0 has-imported-in-positive-position
——

k|− arrow([t1,...,tn],t0) has-imported-in-positive-position

[imnega-s]
(∃ 1≤ i ≤ n.k|− ti has-imported-in-positive-position)∨ k|− t0 has-imported-in-negative-position
——

k|− arrow([t1,...,tn],t0) has-imported-in-negative-position

21

Modular Statically Typed Multimethods

3.5 System ME

This subsection presents the typing restrictions for System ME. The full set of judgements for
System ME is the union of the rules presented in this subsection, the base static semantics in section
3.1, the rules for System E in section 3.4, and the rules for System M in section 3.3 that are not
overridden by rules of the same name in System E.

The main typing rules for System ME are presented in figure 3-25. The rules simply invoke the
appropriate restrictions from Systems M and E. In particular, the generic functions are partitioned
into those that use System M’s restrictions and those that use System E’s restrictions. A System M
generic function obeys restrictionsM1, M3, andM4, and similarly for a System E generic function.
All objects must obey both restrictionsM2 andE2, which greatly limit multiple inheritance across
module boundaries.

Finally, figure 3-26 shows the rules that define which typing restrictions are used for each generic
function. A generic function with no marked positions uses System M’s restrictions, and a generic
function with at least one marked position uses System E’s restrictions.

4 Type Soundness

This section sketches our proof that Dubious’s static semantics is sound with respect to its dynamic
semantics. Section 4.1 overviews our proof method, which is based on prior work on type
soundness by Wright and Felleisen [Wright & Felleisen 94]. Section 4.2 describes the key lemma
for each of Systems G, M, E, and ME.

Figure 3-25: Judgements for System ME

[mtsf-s]

c1* = {c|(c,[t1,...,tn]) ∈ lgf(k) ∧ k|− c is-M-gf}
c2* = {c|(c,[t1,...,tn]) ∈ lgf(k) ∧ k|− c is-E-gf}

k|− restriction-M1 c1*
k|− restriction-E1a c2* k|− restriction-E1b c2*

——
k|− module-has-safe-methods

[obsf-s]
k|− restriction-M2 k|− restriction-E2

——————————————————————————————
k|− module-has-safe-objects

[gfsf-s]

c1* = {c|c∈ ls(k) ∧ k|− c is-M-gf} k|− M-impl-side-typecheck-gfs c1*
c2* = {c|c∈ ls(k)∪ ex(k) ∧ k|− c is-E-gf} k|− E-impl-side-typecheck-gfs c2*

c3* = {c|c∈ ls(k) ∧ k|− c is-E-gf} k|− restriction-E4a c3*
——

k|− module-has-safe-gfs

[igfsf-s]

c1* = {c|c ∉ ls(k) ∧ (c,art)∈ isa(k)∧ k|− c is-M-gf}
c2* = {c|c ∉ ls(k)∪ ex(k) ∧ (c,art)∈ isa(k) ∧ k|− c is-E-gf}

k|− M-impl-side-typecheck-imported-gfs c1*
k|− E-impl-side-typecheck-imported-gfs c2*

————————————————————————————————————
k|− module-has-safe-imported-gfs

22

Modular Statically Typed Multimethods

4.1 Proof Outline

We begin by extending the static typing rules in order to relate elements of theObj domain in the
dynamic semantics to their static counterparts in theConstType domain:

Since neither of these rules makes use of the givenTypeEnvandTypeStore, we often omit one or
both of these contexts to the judgements. We considerObj elements to be members of theE
syntactic domain. In particular, this allows the use of [smpc-s] and [smpu-s] to provide
subsumption for the types of dynamic objects.

Next we identify several correspondences between the static and dynamic contexts of a program.
In particular, suppose|− M1,...,Mn ➢ k,mand|− M1,...,Mn ➢ s,me. Let p = mp(m)(I) ande= me(I),
for someI ∈ domain(mp(m)). We identify thatp and e are isomorphic in a certain sense. In
particular, for every pair (I,ot) ∈ p, there exists a pair (I,v) ∈ esuch thatp,k |− v : ot. Conversely, for
every pair (I,v) ∈ e, there exists a pair (I,ot) ∈ p such thatp,k |− v : ot. Similarly, we identify
correspondences betweenisa(k) andisa(s) and betweengfms(k) andgfms(s). Intuitively, isa(k) and
isa(s) are isomorphic because each records all of the direct inheritance relationships declared in
M1,...,Mn. Similarly, each ofgfms(k) andgfms(s) records relevant information about each method
declared inM1,...,Mn.

Now we prove a subject reduction lemma:

Lemma 1. (Subject Reduction) Suppose|− M1,...,Mn ➢ k,m and |− M1,...,Mn ➢ s,me. Let p =
mp(m)(I) ande= me(I). If p,k |− E : ot ande,s|− E ⇒ o thenp,k |− o : ot.
Proof: Given the correspondences identified above, the result follows by induction on the length
of the derivation in the dynamic semantics thate,s|− E ⇒ o.

The previous lemma says that types are preserved throughout the evaluation of an expression, in
the context of well-typed modules. To complete the proof of type soundness, we need to show that
the evaluation of well-typed expressions does not get stuck, in the context of well-typed modules.
We start with a notion offaulty expressions, which the following definition formalizes:

Definition 1. (Faulty Expressions) An expressionE is faulty with respect to environment e and
store sif one of the following conditions holds:

[val-s] p,k|− obj(i) : object(i)

[valart-s]
p,k |− o1 : t1 ... p,k|− on : tn p,k |− o: t

—————————————————————————————————
p,k |− arrow ([o1,...,on],o) : arrow ([t1,...,tn],t)

Figure 3-26: Judgements for partitioning generic functions

[isM-s]
(c,[s1,...,sn])∈ sp(k)∧ ∀ 1 ≤ i ≤ n.(si = u)

——————————————————————————————
k|− c is-M-gf

[isE-s]
(c,[s1,...,sn])∈ sp(k) 1 ≤ i ≤ n (si = s)

——————————————————————————————
k|− c is-E-gf

23

Modular Statically Typed Multimethods

1. E = I and I ∉domain(e)

2. E = E0(E1,...,En) and∃i.(0 ≤ i ≤ n and Ei is faulty with respect to e and s)

3. E = E0(E1,...,En), ∀i.(0 ≤ i ≤ n ⇒ e,s|− Ei ⇒ oi), and there is no most-specific applicable
method for o0(o1,...,on) in s.

4. E = E0(E1,...,En), ∀i.(0 ≤ i ≤ n ⇒ e,s|− Ei ⇒ oi), ((o0,mh),mb) is the most-specific applicable
method for o0(o1,...,on) in s, where mb= ([I1,...,In],E′,e′), and E′ is faulty with respect to
e′&{(I1,o1),...,(In,on)} and s.

This definition of faulty expressions is validated by the following lemma, which says that the faulty
expressions are a conservative approximation of the stuck expressions:

Lemma 2. (Every stuck expression is faulty) Suppose|− M1,...,Mn ➢ s,meand lete = me(I). If E
is not faulty with respect toeands ande,s|− E does not diverge, thene,s|− E⇒ o.
Proof: By induction on the length of the derivation in the dynamic semantics ofe,s|− E.

The final lemma shows that well-typed expressions are not faulty, in the context of well-typed
modules.

Lemma 3. (Well-typed expressions are not faulty) Suppose|− M1,...,Mn ➢ k,mand|− M1,...,Mn ➢
s,me. Let p = mp(m)(I) ande= me(I). If p,k |− E : ot thenE is not faulty with respect toe ands.
Proof: We prove that none of the four cases in the definition of faulty expressions holds. The
isomorphism betweenp ande is sufficient to prove that the typechecks on identifiers rule out case
one. We rule out cases two and four by induction. Ruling out case three is the only part of the entire
soundness proof that depends on which type system (G, M, E, or ME) is used. For each of these
systems, we prove that every legal message send has a most-specific applicable method ink. This
is the key lemma of the soundness proof, and section 4.2 sketches it for each of the four type
systems. Ruling out case three is completed by showing that the isomorphisms betweenisa(k) and
isa(s) and betweengfms(k) and gfms(s) are sufficient to prove that method specificity ink is
isomorphic to method specificity ins. So in particular, if a message send has a most-specific
applicable method ink, the message send also has a most-specific applicable method ins.

Finally, all three lemmas are combined to prove the main result:

Theorem 1. (Type Soundness) LetP = M1,...,Mn import I in E end. If |− P : ot ➢ k and|− P does
not diverge in the dynamic semantics, then|− P ⇒ o ➢ sandp,k |− o : ot, wherep = mp(m)(I).
Proof: Since|− P : ot ➢ k, by the [prg-s] rule in the static semantics we have|− M1,...,Mn ➢ k,m
andp,k |− E : ot. First we show that, since no message sends are evaluated during the evaluation of
modules, successful typechecking of modules implies successful evaluation of modules. In
particular,|− M1,...,Mn ➢ k,m in the static semantics implies|− M1,...,Mn ➢ s,mein the dynamic
semantics, for some stores and module environmentmein the appropriate correspondence withk
andmp(m). Let e = me(I). By lemma 3,E is not faulty with respect toe ands.Since|− P does not
diverge in the dynamic semantics, by the [prg-d] rule neither doese,s|− E. Therefore by lemma 2,
e,s|− E ⇒ o. By the [prg-d] rule again,|− P ⇒ o ➢ s. Finally by lemma 1,p,k |− o : ot.

4.2 Key Lemma

This section provides more details on the key lemma in the soundness proof for each of our type
systems. The lemma says that, after all modules have been typechecked, for each concrete generic
function f in the program, every tuple of concrete objects that can be sent as an argument tuple to
f has a most-specific method implementation to invoke. Formally, the lemma is defined as follows:

24

Modular Statically Typed Multimethods

Lemma 4. (Key Lemma) Suppose|− M1,...,Mn ➢ k,m.If (c,arrow([t1,...,tn],t)) ∈ isa(k),c∈ cnc(k), and
∀ 1 ≤ i ≤ n. (ci ≤isa ti ∧ ci∈ cnc(k)), thenk |− c lookup-method[c1,...,cn].

We now sketch the proof of this lemma for each of our type systems.

4.2.1 System G

Since|− M1,...,Mn ➢ k,m, by rule [md*-s] we know thatk,m |− program-has-safe-modulesholds.
Therefore, by rule [mdsf-s] in System G, global implementation-side typechecks on the program
succeed, which is precisely the requirement of this lemma. In particular, by rules [Ggfs-s] and
[Gleg-s] we know that for each concrete generic function in the program, each legal argument tuple
of concrete objects has a most-specific method to invoke.

4.2.2 System M

We say that an object (method) isvisible in a moduleM if the object (method) was created in a
(reflexive, transitive) importee ofM. Let c be the generic function object in the statement of the
lemma, and suppose it was created in moduleM. We divide the proof into several cases:

1. The generic function accepts no arguments (that is,n = 0). Then implementation-side
typechecks in moduleM (rule [gfsf-s]) ensure the existence of a most-specific method
implementation visible inM. This case is finished by showing that all applicable methods to
the argument tuple [] must be visible inM, so moduleM’s typechecks are sufficient to ensure
safety. In particular, all methods added to generic functionc outside of moduleM must be
encapsulated-style methods, so by rule [M1-s] these methods must have at least one
argument. Therefore, these methods are not applicable to the argument tuple [].

2. The first argument object,c1, is visible inM. First we show that all methods ofc applicable
to [c1,...,cn] must be visible inM. In particular, any method not visible inM must be created
in some importerMm of M. Then the method must be encapsulated-style, which means that
its first argument specializer,cm, is also not visible inM. If [c1,...,cn] is applicable to the
method, thenc1 must (transitively) inherit fromcm. But sincec1 is visible inM, this means
thatcm must also be visible inM, contradicting what we showed above.

Therefore, we only need to consider methods ofc that are visible in moduleM. Our strategy
is to build an argument tuple [t1′,...,tn′] that will be considered during implementation-side
typechecks ofc in moduleM, and then show that [c1,...,cn] is applicable to precisely the
methods ofc that [t1′,...,tn′] is applicable to. If we show this, then we are done, because
implementation-side typechecks in moduleM ensure that [t1′,...,tn′] has a most-specific
method, which implies that [c1,...,cn] has a most-specific method as well.

Eachti′ is defined as follows: Ifci is visible in M, thenti′=ci.Otherwise, ifci has no non-
interface ancestors that descendti and are visible inM, ti′=ti.Otherwise, by the restrictions
on cross-module multiple inheritance, we can show thatci must have a single, most-specific
non-interface ancestor that descendsti and is visible inM, and we setti′to be this ancestor. It
is straightforward to show that the tuple [t1′,...,tn′] built by this definition satisfies the
requirements of the previous paragraph.

3. The first argument object,c1, is not visible inM. Further, it was created in some moduleM0,
andc is not visible inM0. This is the case whenc1 is an “open object.” We prove this case
precisely as in case 2 above. First, we can show that no methods created in importers ofM
can apply to [c1,...,cn], or else we would be able to show thatc is visible inM0. Then we build

25

Modular Statically Typed Multimethods

[t1′,...,tn′] exactly as in case 2 and show by a similar argument that [t1′,...,tn′] is considered
during implementation-side typechecking ofc in M and that [t1′,...,tn′] applies to precisely the
same methods as does [c1,...,cn].

4. The first argument object,c1, is not visible inM. Further, it was created in some moduleM0,
c is visible in M0, and at least one of the two conditions for re-implementation-side
typechecking ofc is met inM0. That is, eitherM0 creates a method inc that is applicable to
[c1,...,cn] or c1 is an orphan. The proof of this case is analogous to the proof in case 2, but
with respect to moduleM0 instead ofM. In particular, we first prove that only methods ofc
visible in M0 can apply to [c1,...,cn]. Then we build [t1′,...,tn′] as above, but with respect to
moduleM0 instead of moduleM. We show that [t1′,...,tn′] is considered by the re-checks ofc
performed byM0, so it must have a most-specific method inc visible in M0. Therefore, so
does [c1,...,cn].

5. The first argument object,c1, is not visible inM. Further, it was created in some moduleM0,
c is visible inM0, and neither of the two conditions for re-implementation-side typechecking
of c in M0 is met. The key to proving this case is induction on the lemma, on the number of
concrete ancestors ofc1 (not including itself) that descend fromt1. (The base case, whenc1
has zero such ancestors, is covered by cases 1-4 above.) Since no re-check condition is met,
we know thatc1 is not an orphan with respect tot1, so it must have at least one such ancestor.
We prove this case by finding a concrete ancestorc1′that descends fromt1 such that [c1,...,cn]
applies to precisely the same methods ofc as does [c1′ ,...,cn]. By the inductive hypothesis,
[c1′ ,...,cn] has a most-specific method, which means that [c1 ,...,cn] does as well.

4.2.3 System E

The lemma is proven for System E in an analogous way to the proof for System M. In System E,
we say that an object (method) is visible in moduleM if the object (method) was created in a
(reflexive, transitive) importee or extendee ofM. Let c be the generic function object in the
statement of the lemma. Since|− M1,...,Mn ➢ k,m,we know thatk,m|− program-has-safe-modules
holds, so by [mdsf-s] in System E, we know that each module has a most-extending module. Let
M be the most-extending module ofMc, the module that createdc.

In this sketch, we assume that all argument positions are marked. It is easy to extend the proof to
include unmarked argument positions. In particular, because of restrictionE1a, unmarked
positions may not be specialized upon. Therefore, the unmarked argument position of methods
cannot be the causes of method ambiguities. We can show that if an argument tuple has a most-
specific method implementation when we ignore the unmarked positions in the argument tuple and
in all methods of the generic function, the tuple must also have a most-specific method
implementation when the unmarked positions are taken into consideration.

Because parts of restrictionsE3 andE4 depend on whether or not the generic function is multiply
dispatched, we prove soundness separately for generic functions that are multiply dispatched and
those that are not. First we sketch the proof when the generic functionc has zero or one marked
position. The cases here are analogous to those in the sketch for System M:

1. c has zero marked argument positions. Implementation-side typechecks in moduleM (rule
[gfsf-s]) ensure the existence of a most-specific method for the tuple []. SinceM is the most-
extending module ofMc, any method not visible inM must have been added by an importer
of Mc. Therefore, by restrictionE1b (rule [E1b-s]), the generic function must have at least

26

Modular Statically Typed Multimethods

one marked position, contradicting our initial assumption. Therefore, only methods visible
in M can be applicable to [], so the checks by moduleM are enough to ensure safety.

2. c1 is visible byM. Then implementation-side typechecks in moduleM ensure the existence
of a most-specific method for the tuple [c1]. Any method not visible inM was added in an
importerMm of Mc. Therefore, by restrictionE1b, this method must be an all-local method,
so its specializerc1′ is a local object and is therefore not visible inM. If the method is
applicable to [c1], thenc1 inheritsc1′ . Sincec1 is visible in M andc1 inheritsc1′ , we can
show thatc1′must also be visible inM, contradicting what we showed above. Therefore, only
methods visible inM can be applicable to [c1], soM’s checks are enough to ensure safety.

3. c1 is not visible byM, c1 was created in moduleM0, andc is not visible inM0. This is the
case whenc1 is an “open object.” As in System M, we prove this by finding an objectt1′
visible inM such that checks on [t1′] ensure the safety of [c1]. We use the same definition for
t1′as in System M’s proof: Ifc1 has no non-interface ancestors that descendt1 and are visible
in M, thent1′= t1. Otherwise,t1′ is assigned to be the most-specific such ancestor ofc1. We
can show that such a most-specific ancestor must exist by a combination of the restrictions
on open objects ofE4a and the restrictions on multiple inheritance ofE2. Sincec1 is an open
object, we can show thatt1′ must be a non-local object toM, so byE4b we know that [t1′] is
considered in implementation-side checks ofc in M even ift1′is non-concrete.

4. c1 is not visible inM, c1 was created in moduleM0, andM0 adds a method toc that is
applicable to [c1]. Therefore, one of the conditions for re-implementation-side typechecking
c in M0 is met, so re-checks ensure that there is a most-specific method implementation for
[c1] out of all the methods visible inM0. This case is finished by proving that the methods
created in moduleM0 that are applicable to [c1] (we know there is at least one such method)
are strictly more-specific than any other applicable methods. Therefore, the re-checks from
moduleM0 are enough to ensure safety.

5. c1 is not visible byM, c1 was created in moduleM0, andc1 is an orphan. Therefore, one of
the conditions for re-implementation-side typecheckingc in M0 is met, so re-checks ensure
that there is a most-specific method implementation for [c1] out of all the methods visible in
M0. Interestingly, there may be more-specific method implementations that are not visible in
M0. However, because we can show thatM0 must import the module creatingt1, c1 is subject
to the multiple inheritance restrictions ofE2. In particular, this means that all non-local non-
interface parents ofc1 are totally ordered. Therefore, even if there are more-specific
applicable methods for [c1] than the most-specific method visible inM0, the combination of
single dispatching and single inheritance guarantees the existence of a most-specific such
method.

6. c1 is not visible byM, c1 was created in moduleM0, and neither of the conditions for re-
implementation-side typecheckingc in M0 holds. This case is proven analogously to case 5
in System M’s proof, by finding a concrete ancestorc1′of c1 such that [c1′] and [c] apply to
precisely the same methods and arguing the safety of [c1′] by induction on the lemma.

Now we sketch the various cases in the proof whenc has at least two marked argument positions.
We actually prove that [c1,...,cn] has a most-specific method when eachci is a non-interface object,
rather than only proving the lemma when eachci is concrete. This allows us to use a stronger
inductive hypothesis in case 5 below.

27

Modular Statically Typed Multimethods

1. Eachci is visible inM. This is just the generalization of case 2 above to multiple arguments,
and the same proof technique applies here.

2. At least oneci is visible in M, but somecj is not visible inM. Since there is at least one
argumentci visible in M, we can use the same argument in case 2 above to show that only
methods visible inM can be applicable to [c1,...,cn]. Then we use the same technique as in
case 2 of System M’s proof, building the tuple [t1′,...,tn′] which is considered during
implementation-side typechecks inM, and showing that [t1′,...,tn′] is applicable to precisely
the same methods as [c1,...,cn]. We use the same definition for eachti′ as in that proof.

3. Eachci is not visible inM. Further, eachci was created in the same module,M0, andM0 adds
a method toc that is applicable to [c1,...,cn]. This is just a generalization of case 4 in the proof
above to multiple arguments, and the same proof technique applies here.

4. Eachci is not visible inM. Further, case 3 above does not hold, and eachci has zero non-local
non-interface ancestors that inherit fromti. We show that [c1,...,cn] applies to precisely the
same methods as [t1,...,tn]. Since eachci inheritsti, it is clear that every method applicable to
[t1,...,tn] is applicable to [c1,...,cn]. Suppose there were some method applicable to [c1,...,cn]
but not to [t1,...,tn]. We show that this implies that eachci was created in the same module,
M0, and the applicable method was created inM0 as well. Therefore, case 3 above applies,
contradicting our initial assumption.

So [c1,...,cn] applies to precisely the same methods as [t1,...,tn]. This means that all applicable
methods are visible inM. By restrictionE3b, we know that [t1,...,tn] is considered during
implementation-side typechecks ofc in M, even if someti is non-concrete. This ensures the
safety of [t1,...,tn], and hence of [c1,...,cn].

5. Eachci is not visible inM. Further, cases 3 and 4 above do not hold. As in the final case of
the previous proofs, we prove this by induction on the lemma. However, the induction in this
case is more complicated than in the previous cases. In particular, induction is performed on
the number of ancestor tuples [c1′,...,cn′] of [c1,...,cn] according to the≤isa* relation, such that
eachci′ is a non-interface object that descends fromti. The base case is covered by cases 1-
4 above. By induction, each of these ancestor tuples has a most-specific method inc. This
case is proven by showing that the most-specific method of one of these ancestor tuples must
also be the most-specific method of [c1,...,cn].

4.2.4 System ME

The proof for System ME follows immediately from the proofs for Systems M and E. In particular,
System ME partitions its generic functions into those that use System M’s rules and those that use
System E’s rules. Suppose the generic functionc in the lemma uses System M’s rules. By the rules
for System ME, this generic function obeys restrictionsM1, M3, andM4, and the entire program
obeys restrictionM2. Therefore, our proof of the lemma for System M is sufficient to prove the
lemma forc. A similar argument is used ifc uses System E’s rules.

References
[Millstein & Chambers 99] Todd Millstein and Craig Chambers. Modular Statically Typed

Multimethods.The 13th European Conference on Object-Oriented Programming (ECOOP 99),
Lisbon, Portugal, June 14-18, 1999.

28

Modular Statically Typed Multimethods

[Wright & Felleisen 94] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundness.Information and Computation, 115(1):38–94, November 1994.

