
On Constraints on the Search Path of Policy

Iteration

Omid Madani

March 30, 1999

Abstract

We describe a few structural properties enjoyed by the policy space of problems such as

in�nite-horizon MDPs. From these properties we derive constraints limiting the number of

iterations of algorithms such as the policy iteration algorithm for in�nite-horizon MDPs

and the Ho�man-Karp algorithm for simple stochastic games. An open problem is to

characterize the growth of the worst-case number of iterations of these algorithms subject

to the derived constraints.

1 Introduction

This paper reports on an investigation of some open computational complexity questions re-

garding problems under in�nite-horizon MDPs [Mad98, MC94b] and Simple Stochastic Games

(SSGs) [Con92]. The best known algorithm for SSGs is a randomized algorithm running in

O(2

p

n

) expected time [Lud95], where n denotes the number of states of the system. In�nite-

horizon MDPs are known to be in P as they can be cast as linear programs (LPs). However,

since there is no known strongly polynomial time algorithm for LPs, it is not known whether

MDPs have strongly polynomial time algorithms.

Policy iteration for in�nite-horizon MDPs is a search algorithm that converges to an optimal

policy in few iterations in practice

1

. In this report we consider the variant of policy iteration

where all improvable states change actions in each iteration. No lower-bound other than the

trivial
(n) iterations is known for this algorithm, and our experiments on random graph inputs

have shown no input requiring more than n+2 iterations. On the other hand, the Ho�man-Karp

algorithm for SSGs is closely related to policy iteration, and we expect that a close study of

policy iteration would yield fruitful insights on the structure of both problems, perhaps leading

to strongly polynomial time algorithms for both in�nite-horizon MDPs and SSGs.

This report is an attempt in that direction. In Section 2 we describe a few structural

properties enjoyed by the policy space of a class of problems including in�nite-horizon MDPs.

1

We assume two actions per state in this report for simplicity.

1

We use these properties in Section 3 to derive constraints limiting the number of iterations of

algorithms such as the policy iteration algorithm and the Ho�man-Karp algorithm for SSGs. An

open problem is to characterize the growth of the worst-case number of iterations of algorithms

that must satisfy the constraints. The treatment in Section 2 is in an abstract though simple

and self-contained setting. We refer the reader to [Mad98, Con92, Con93, Put94] for background

on MDPs and SSGs.

2 Monotone Spaces

Consider policy spaces which come under consideration in problems such as MDPs under various

�nite or in�nite-horizon criteria, or their generalizations such as the SSGs. Assume the system

under consideration has n vertices (states), and for our purposes it su�ces to assume that each

vertex has two control choices, 0 or 1. Each policy is an assignment of a control choice to each

vertex. Thus policies can be thought of as bit vectors and there are 2

n

many of them. We call

such set of 2

n

policies a policy space. For a policy p, let v

p

denote its value vector assigned by

a particular optimality criterion (an n-dimensional real valued vector for n vertices), and v

p

[i]

denote the value of vertex i using policy p. The optimality criterion can be an in�nite horizon

(or �nite-horizon) average or total expected reward criterion, or in case of 2-player games, the

state values obtained for the max player when it plays the policy p, and the min player choses

its best policy against policy p.

Consider the partial ordering on value vectors of policies. This partial ordering is the natural

one, derived from the component-wise comparison of values. We write v

1

< v

2

for two vectors

v

1

and v

2

, if v

1

[i] � v

2

[i]; 1 � i � n; and for some j; 1 � j � n, v

1

[j] < v

2

[j]. Likewise, we write

v

1

� v

2

if v

1

[i] � v

2

[i]; 1 � i � n:We extend this notation to policies: p < q if v

p

< v

q

and p � q

if v

p

� v

q

. Finally p <> q denotes the situation where neither p < q nor q < p (incomparable

policies). So the partial ordering on the value vectors imposes a semi-partial ordering (the

ordering is not anti-symmetric) on the set of policies. The partial ordering on the policy space

of MDPs and models alike has additional structural properties which depend on the optimality

criteria in question. As consequences of these properties, we obtain characteristics such as

existence of optimal policies, notions of local optimality being equivalent to global optimality,

correctness of policy improvement search algorithms such as parallel switch (described below),

and constraints on the search sequences of algorithms. We will next explore these properties

and their consequences.

De�nition 1 Switching a vertex in a policy means toggling its control choice from 0 to 1 or 1

to 0 (complementing the control bit), while leaving the rest of the policy unchanged. Similarly,

switching a set of vertices in a policy means switching every vertex in the set, and leaving the

rest of vertices unchanged. Given a policy p:

� A set S of vertices is said to be switchable if switching the choices of the vertices results

2

in an increase in the value of at least one vertex in S, and the value of no vertex in S

decreases.

� A vertex v is switchable if the set fvg is switchable.

� De�ne an unswitchable set (and vertex) in a symmetric way, i.e. the values don't increase,

and the value of at least one vertex in the set decreases.

� If the value of no vertex in the set changes with switching the set, the set is called a

don't-care set. Similarly de�ne a don't-care vertex.

� Finally, switching a mixed set results in an increase in the value of at least one vertex

and a decrease in the value of another.

Switchability properties by de�nition are always with respect to a policy under consideration,

and in what follows mention of an explicit policy is omitted. MDPs enjoy a nice monotonicity

property in that switching a switchable set is not only locally bene�cial (with respect to vertices

in the set) but also globally bene�cial (at a minimumharmless to other vertices). This motivates

the next de�nition:

De�nition 2 A policy space is called monotone if the following are satis�ed:

� Given any policy p, switching any switchable subset of p results in a policy q, with p < q

� Given any policy p, switching any unswitchable subset of p results in a policy q, with q < p

� Given any policy p, switching any don't-care subset of p results in q, with v

q

= v

p

The monotonicity of a policy set is desirable but still not su�cient for important properties

such as the existence of upper or lower elements (e.g. optimal value vectors). However we

describe two characteristics that policy spaces may have and from each of which existence of

extreme elements and other desirable properties follow.

De�nition 3 A policy space has the decomposability property if,

1. The union of a switchable set S

1

and a switchable or don't-care set S

2

, is a switchable set.

2. (Similar for unswitchable sets)

3. The union of a don't-care sets S

1

and S

2

, is a don't-care set.

De�nition 4 For any policy and any subset S of vertices, let �(i) denote the change in value of

vertex i when S is switched. Let �

S

= max

i2S

j�(i)j; and �

V

= max

i2S

j�(i)j: Note that �

V

� �

S

by de�nition. In damped policy spaces, for any policy and any subset S of vertices �

V

� �

S

:

3

Policy spaces of MDPs, under various criteria such as average expected-reward, total reward,

or model generalizations such as 2-player games, enjoy the damping property, but systems such

as pre-Leontief system of inequalities (see [MC94a]) need not. On the other hand, MDPs under

total reward (discounted or undiscounted) criteria enjoy the decomposability properties, while

MDPs under average-reward criteria don't (they fail property 3 of decomposability).

We can �rst show that the combination of monotonicity and decomposability or monotonic-

ity and dampness establish the existence of extreme lattice points (optimal policies and/or value

vectors), and that policy-improvement algorithms are correct in that they �nd these extreme

points. The basic proof argument works by showing that if a policy has a mixed set then it has

a switchable set, so the policy can be improved. As there are only a �nite number of policies,

there must exist an upper (optimal) element. The following lemma is what we need then:

Lemma 2.1 Consider a monotone policy space satisfying either decomposability (type one) or

dampness (type two). Then any mixed set in any policy p has a switchable (and an unswitchable)

subset.

Proof. Consider a type one space and a mixed set in a policy. The mixed set must have a

switchable vertex in it, otherwise it will be don't-care or unswitchable by decomposability.

Consider a type two space, and a smallest mixed set S in it. Let S

2

be those vertices of S

that increase value when switching S. S

2

cannot be empty, otherwise S would be don't-care or

unswitchable and couldn't be mixed by monotonicity. If S

1

is switchable, we are done. S

1

can't

be don't-care, otherwise switching it causes no vertex value to change due to dampness, and

then switching S

1

can only decrease any value due to monotonicity and S would not be mixed.

A similar argument shows that S

1

can't be unswitchable, otherwise, let � denote the maximum

decrease in values of vertices in S

1

which would be maximum change in values of all vertices.

Now switching the rest of vertices S

2

of S can't improve any vertex value in S

2

by more than

�; otherwise some vertex in S

2

will have increased value, contradicting our assumption on S

1

and S

2

, therefore some vertices of S

1

will have no increase in value again contradicting our

assumption on S

1

. 2

De�nition 5 A policy r is an optimal policy if for all policies p; p � r.

Hence optimal policies exist in monotone/decomposable (type 1) or monotone/damped (type

2) policy spaces, and the following generic policy-improvement algorithm stops and �nds the

optimal.

Start with an arbitrary policy p

While p contains a switchable subset do

change p by switching a switchable subset of p

Output p

So far we have described several su�cient conditions for existence of optimal policies and

correctness of the generic policy improvement algorithm in monotone policy spaces. The de-

composability property of type 2 spaces translates to several elegant constraints on the search

sequence of parallel switch. We will describe such in the next section.

4

3 Constraints on Parallel Switch in Type One Spaces

In this section we assume that the underlying policy space is a type one space. Let us focus on

the parallel switch algorithm which switches the set of all switchable vertices in each iteration:

1 Start with an arbitrary policy p

2 While p contains a switchable vertex do

3 change p by switching all switchable vertices of p

4 Output p

Note that the most common variant of policy iteration for in�nite-horizon MDPs is a parallel-

switch algorithm. The argument for correctness of parallel switch is straight forward: from

decomposability, if policy p has a switchable set (or a mixed set), it must have a switchable

vertex (hence line 2 checks for optimality), and line 3 must improve p due to the decomposability

and monotonicity properties.

Consider the sequence of policies that parallel switch goes through (policy i is the one at

the start of iteration i). An example policy sequence is shown next, where policy 000 is the

policy at iteration 1 (the start of the algorithm), the �rst iteration of the algorithm switches

all vertices (bits) to get 111 for iteration 2:

1 000

2 111

3 001

4 101

5 100

We will see that, as a consequence of the Constraint corollary given below, the pattern of bit

(vertex) switches in any iteration constrains the pattern of bit switches in later iterations. These

constraints accumulate and eventually no additional policy can be added to the policy sequence.

In this section we will explore the growth of the length of the longest possible sequence of bit

vectors (policies) under these constraints as a function of n.

Lemma 3.1 Consider any two policies p and q in a type 1 space. Let S = fijv

p

(i) < v

q

(i)g;

and assume S 6= ;. Then the set S

0

= S \ fijp(i) 6= q(i)g is not empty, and furthermore some

vertex of S

0

is switchable in p.

Proof. An extension of the proof of lemma 2.1 for type one spaces. 2

Corollary 3.2 (Constraint) Consider two policies p and q and assume p < q. Let S denote

the vertices where the choice of edges is di�erent in p and q. There is some vertex v 2 S that

is switchable in p.

We say a policy is implied at (iteration) i < m, if it can be constructed by switching a subset

of switchable vertices of policy i (so policy i+ 1 is by de�nition a policy implied at i). In our

5

example, at iteration 2, policies 011 (switch bit 1 only), 101 (switch bit 2 only), and 001 (switch

the set of all switchable vertices) are all implied. From the decomposability and monotonicity

properties, all policies implied at i are superior to policy i and hence all policies j; j � i. In the

above example, we have 111 < 011, 111 < 101, and 111 < 001.

Consider any implied policy q at some iteration i � 2, and a policy p at iteration j � i:

We have p < q, so it follows from the Constraint corollary that some vertex from the set of

vertices where q and p di�er must be switchable in p (in iteration j) and must have the value

it has in q in iteration j +1. Put another way, the switched bit value of at least one switchable

vertex in p; must be the same as the bit value in q. We shall formulate this constraint as a

Boolean disjunctive clause. Each transition from iteration i to iteration i + 1 (transition i)

introduces a clause that all implied policies at iterations i+ 1 and later should satisfy. Let x

v

denote the boolean variable for bit (vertex) v. If vertex v in transition i changes from 1 to 0,

then the clause for transition i will contain �x

v

, and if it changes from 0 to 1, it will contain

x

v

. The clausal constraints for the example above are shown next. The (clausal) constraint for

transition i is shown next to policy i+ 1:

1 000

2 111 (x

1

_ x

2

_ x

3

)

3 001 (�x

1

_ �x

2

)

4 101 x

1

5 100 �x

3

Hence we de�ne a legal sequence of bit vectors to be one where:

1. No vector repeats immediately (no empty clausal constraint).

2. The disjunctive clausal constraint produced from transition i is satis�ed by all the implied

bit vectors at transition i+ 1 and later.

Of course, due to the clausal constraints, an immediate consequence is that no vector can

appear more than once in the entire sequence. We are interested in the growth of the length

of a longest legal sequence as a function of n; the number of bits (vertices). We denote this

measure by L(n). It is easy to show that L(n) =
(n

2

): An interesting open problem is to

obtain tight upper and lower bounds on L(n).

We close with a bipartite graph representation of legal sequences. This view can aid in

visualization and analysis of the process. Consider a bipartite graph G = (V

1

; V

2

); where V

1

is a set of n vertices, one for each bit of the n bits of the policy vectors. Each vertex in V

2

corresponds to a switch group, i.e. the set of bits that switch together in an iteration of

the algorithm. A vertex in V

1

has an edge to a vertex in V

2

if and only if the corresponding

bit participates in the corresponding group. To reect clausal constraints, some edges may be

directed as follows. For any u 2 V

1

[V

2

; let d(u) be the total number of edges incident on u,

6

1

1

Vertices Groups

000
111

1

2

3

001
2

101 3
100

4

Vertices Groups

000
111

1

2

3

001
2

101 3

1

2

3

000

Vertices Groups

Vertices Groups

1

2

3

Vertices Groups

000
111

1

2

3

001
2

000
111

1

1

Figure 1: The process of growing a legal graph which includes toggling vertices and groups.

out(u) be the number of edges directed away from u, and in(i) be the number of edges directed

toward u. For any vertex v and a neighboring group g 2 V

2

the edge from vertex v is directed

toward group g if and only if the current value of v is di�erent from its value in g (v does not

satisfy the clausal constraint corresponding to g). For a group g 2 V

2

; in(g) � d(g) � 1 and

out(g) = 0 if in(g) < d(g)�1, and out(g) = 1, if in(g) = d(g)�1. Note that due to constraints

of the process, a vertex v 2 V

1

cannot switch if in(v) > 0, and a set of vertices in V

1

that

contain all the vertices of some group with undirected incident edges cannot switch together.

Figure 1 shows the the graphical representation for each iteration of the our example sequence.

We refer to bipartite graphs that represent a legal sequence as legal graphs. Such legal graphs

enjoy properties such as acyclicity with respect to directed edges, and it is not hard to see that

for v 2 V

1

; out(v) = b

d(v)

2

c:

How fast does the maximum size for V

2

grow as a function of the size of V

1

in legal graphs?

This is equivalent to the question about the growth of L(n). An essentially equivalent question

is how large can the maximumnumber of edges of legal graphs be as a function of jV

1

j. We have

conducted computer experiments to investigate the growth of L(n). These experiments provide

some evidence that L(n) may grow super-polynomially, but perhaps sub-exponentially. We are

currently investigating analytic methods for bounding L(n); using the graph representation as

an aid.

7

4 Summary and Future Work

In this paper we described several properties of policy spaces of MDPs in a uniform setting.

From these properties, constraining rules on the search path of policy iteration were developed.

It is an open question whether these constraining rules are strong enough to limit the run-time

of policy iteration to a signi�cantly lower than an exponential bound. On the other hand, we

believe that there is more structure to MDPs, especially in the connectivity of the underlying

graph, that should further limit the length of the search path of policy iteration. Discovering

and characterizing such properties if they exist, and/or looking for bad example graphs for

policy iteration is a promising research direction.

References

[Con92] Anne Condon. The complexity of simple stochastic games. Information and Compu-

tation, 96(2):203{224, February 1992.

[Con93] Anne Condon. On algorithms for simple stochastic games. In Advances in computa-

tional complexity theory, volume 13 of DIMACS series in discrete mathematics and

theoretical computer science. 1993.

[Lud95] W. Ludwig. A subexponential randomized algorithm for the simple stochastic game

problem. Information and computation, 117:151{155, 1995.

[Mad98] Omid Madani. Models for decision making in dynamic and uncertain domains. Tech-

nical report, University of Washington, 1998.

[MC94a] Nimrod Megiddo and Edith Cohen. Improved algorithms for linear inequalities with

two variables per inequality. SIAM Journal on Computing, 23(6):1313{47, Dec 1994.

[MC94b] Mary Melekopoglou and Anne Condon. On the complexity of the policy improvement

algorithm for markov decision processes. ORSA Journal on Computing, 6(2), 1994.

[Put94] Martin L. Puterman. Markov Decision Processes. Wiley Inter-science, 1994.

8

