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Abstract

Many clustering algorithms have been proposed to analyme ggpression data, but little
guidance is available to help choose among them. We proviisi@matic and quantitative
framework to assess the results of clustering algorithmstypical gene expression data set
contains measurements of the expression levels of a fixed gehes under various experimental
conditions. Clustering algorithms attempt to partitioe thenes into groups exhibiting similar
patterns of variation in expression level, hopefully réiepbiologically meaningful patterns of
activity or control. Our methodology is to apply a clustgralgorithm to the data from all but
one experimental condition. The remaining condition isiuseassess the predictive power of the
resulting clusters—meaningful clusters should exhilssleariation in the remaining condition
than clusters formed by coincidence. We have successfolijead the methodology to compare
three clustering algorithms on three published gene esfmeslata sets. In particular, we found
our quantitative measures of cluster quality to be positigerrelated with external standards of
cluster quality (functional categorizations of genes kndar two of the three data sets).



1 Introduction and Motivation

In an attempt to understand complicated biological systéange amounts of gene expression data
have been generated by researchers (see [3] and [14]). &ecadhe large number of genes and
the complexity of biological networks, clustering is a ugedata exploratory technique for gene
expression analysis. Many clustering algorithms have Ipeeposed for gene expression data. For
example, Eiseret al. [5] applied the average linkage hierarchical clusteringpathm to identify
groups of co-regulated yeast genes. Ben-Etaal. [1] reported success with their CAST algorithm.
Tamayoet al. [13] used self-organizing maps to identify clusters in tleast cell cycle and human
hematopoietic differentiation data sets.

Assessing the clustering results and interpreting theersidound are as important as generating
the clusters [7]. In much of the published clustering workgeme expression, the success of clus-
tering algorithms is assessed by visual inspection usiolpdical knowledge (for example, [11] and
[5]). The following example (illustrated in Figure 1) showse importance of assessing clustering
results. In Figure 1(a) and Figure 1(b), genes are clustesed) the average linkage hierarchical
clustering algorithm so that similar genes are placed adjat each other along the vertical axis.
The experiments or conditions along the horizontal axisiatelustered. The color intensity of each
cell in the figure is proportional to the measured gene espagatio, with bright red representing
the most positive and bright green being most negative. rEig@u@) shows a cluster identified by
Eisenet al. (Figure 2E in [5]) from a data set with 2467 yeast genes andor@ditons. Figure 1
(b) shows a striking pattern obtained in our simulation datawhich doesiot contain any intrinsic
pattern. The simulation data sé¥(i, j), is obtained by randomly choosing a mean expression level
«; for each geneé and randomly choosing a mean vajsiefor each conditiory according to standard
normal distributions. Each entry in the simulation data B¥t, ), is chosen from the normal distri-
bution with meand; + ;) and variance 1. Therefore, the simulation data set cantaninstrinsic
pattern. The CUSTER software [5], which is an average linkage hierarchical teltisg algorithm,
is then applied to the genes in the simulation data set. Eifj(b) is a pattern representing a subtree
in the dendrogram identified by visual inspection using tireEAVIEW software [5]. Due to some
technical difficulties, the resolutions of Figures 1 (a) #ibdare different. Despite the difference in
resolution in the two figures, genes in Figure 1(b) show &iatyipattern which can easily be inter-
preted as a potential cluster without any validation procesl To the best of our knowledge, there
is no systematic data-driven method to quantitatively & gene expression clustering results.

Furthermore, the clusters obtained by different clustgalgorithms can be remarkably different.
A biologist with a gene expression data set is faced with ttedlpm of choosing an appropriate
clustering algorithm for his or her data set. Our paper glesia quantitative data-driven framework
to evaluate and compare different clustering algorithms.

Many clustering algorithms take a similarity matrix, iretieof the raw gene expression data, as
input. In the similarity matrix, the similarity between tvgene expression series in the raw data is
reduced to a single value, callpdirwise similarity The pre-clustering step of choosing the similarity
metric, with which pairwise similarities are computed, t@we a serious impact on clustering results.
There are no general guidelines in the literature for théoehaf similarity metrics [12]. Our approach
can also be used to investigate the effect of similarity ioewn the quality of clustering results.
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Figure 1: (a) Figure 2E from Eisegt al. [5] (b) A striking pattern from our simulation data which
contains no intrinsic pattern.

2 PreviousWork on Cluster Validation

According to Jain and Dubes [7¢|uster validationrefers to procedures that evaluate the results of
cluster analysis in a quantitative and objective fashionthk statistics literature, cluster validation
procedures are divided into two main categories: extemligternal criterion analysis [7]. Chapter
4 in Jain and Dubes [7] provides a detailed discussion of #rews indices proposed to validate
clustering results.

The external criterion analysis validates a clusteringltdsy comparing the clustering result to a
given “gold” standard which is another partition of the altfe The “gold” standard can be obtained
by an independent process based on information other tieagitbn data set. This criterion will be
discussed in more details in Section 6.

The internal criterion analysis uses information from witthe given data set to represent the
goodness of fit between the input data set and the resultirsgecing results.

There are usually some tunable parameters to clusteriogithigns which in turn determines the
number of clusters produced. Another aspect of clustedatdin is to justify the number of clusters
in a clustering result. Determining the optimal number abtérs is a very difficult problem [8]. Jain
et al. [8] used a bootstrapping technique to estimate the optimadber of clusters in a given data
set.

3 Problem Statement and Basic | dea

Our work to assess the quality of clustering results is ratdigd by thgackknifeapproach [4]. A
typical gene expression data set contains measuremeniprassion levels of. genes measured
underm experimental conditions. Presumably, the expressiorid@feco-regulated genes will vary
similarly across then conditions (or experiments), so clustering the genes basesimilarities
among these expression level measurements should ishiaters of biologically related genes. Our
goal is to compare the clustering results of two (or moreyteling algorithms, say algorithm A
and algorithm B. Our idea is to apply a clustering algorittortite data from(m — 1) conditions,



and to use the remaining condition to assess the predictwesipof the clustering algorithm. A
clustering algorithm is said to have good predictive povgienes in the same cluster tend to have
similar expression levels in the condition that is not usedrbduce the clusters. We define a scalar
guantity called thdigure of merit(FOM), which is an estimate of the predictive power of a atisig
algorithm.

The idea is illustrated in Figure 2, in which a clusteringoaithm is applied to the data from con-
ditions0,1,...,(e—1),(e+1),...,(m—1), and conditiore is used to estimate the predictive power
of the algorithm. Supposk clusters,Cy, Cs, ..., Cy, are obtained, with cluster sizes, ss, . . ., sk,
such thatzle s; = n. Let R(i, ) be the expression level of gemeinder conditionj in the raw
data matrix. Let"OM (e, k) be the figure of merit fok clusters and using conditianas validation.
There are many possible definitions of the figure of merit Seetion 5). For example, a possible
definition of FOM is the average squared distance from thenneg@ression level in each cluster,
which can be written aBOM (e, k) = \/1 « S5, 3, . (R(x, ) — e, (e))2, wherepc, (e) is the
average expression level in conditieof genes in cluste€’;.

Each of then conditions can be used in turn as the validation conditidre aggregate figure of
merit FOM;.; (k) = S-7' FOM (e, k), is an estimate of the total predictive power of the alganith
over all the conditions fok clusters in a data set.

cog\ditions
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Figure 2: Raw data matrix. Figure 3: Comparison of algorithms A and B.

In the case of using the average of the squared distance fremméan as the figure of merit, a
small aggregate figure of merit is an indication of a high e power clustering algorithm. For
example, in Figure 3, algorithm B has higher predictive pativan algorithm A. Different algorithms
typically have different tunable parameters. To compaeedthality of clusters produced by two
different algorithms, we must adjust the parameters sdlieatumber of clusters is the same in both
cases. Otherwise, simply producing more (and therefordlemnalusters will produce a smaller
FOM. Determining the optimal number of clusters is a verfidift problem [8]. Since we cannot
determine the optimal number of clusters for a given dataveetcannot produce clustering results
with the optimal number of clusters. Therefore, our methaglp of comparing clustering algorithms
over a range of number of clusters is a reasonable way to gehdithe problem of determining the
optimal number of clusters.

Our approach is different froteave-one-out cross validatian machine learning. In leave-one-
out cross validation in machine learning, the objectivecigs$timate the accuracy ofdassifier
which is an algorithm that maps an unlabelled instance tdel ldy supervised learning9]. The



4 4 CLUSTERING ALGORITHMS

labels of the objects to be clustered are assumed to be knbaidea is to hide the label of each
object in turn, and to estimate the label of the object usirgdgasifier. This is in contrast to our
approach in which we daot assume any prior information of the genes to evaluate thbtywh
clustering results. Instead, we define figures of merit, vhie estimators of the predictive power of
clustering algorithms, to assess the quality of clusterasylts.

We demonstrated our technique on three clustering algosittCAST [1], k-means and an iter-
ative algorithm) and three gene expression data sets: ti@erdral Nervous System (CNS) data set
[14], the yeast cell cycle data set [2], and the human heroabp differentiation data set [13]. Sec-
tion 4 describes the clustering algorithms, and Sectiorséudises different definitions for the figure
of merit. Section 6 provides a methodology to measure thespondence of a clustering result with
a given partial categorization of genes. We will show that plerformance of the clustering algo-
rithms depends on the specific data set, the number of ctusitet the definition of figure of merit.
None of the three clustering algorithms is a clear winneninresults. In general, the k-means algo-
rithm has comparable average performance to the CAST #iguriWe will also provide evidence
that the figure of merit is an estimator for the predictive poof clustering algorithms using external
validation with known functional categories of genes. W# also show that the predictive power of
the CAST algorithm using the Euclidean distance and thestairon coefficient as similarity metrics
are comparable on the rat CNS data set. The detailed resillisendescribed in Section 7. Our
main contribution is not the comparison of these specifiordtiyns and metrics, but rather the de-
velopment of a simple, quantitative data-driven methogiplallowing such comparisons to be made
between any clustering algorithms and any similarity nastri

4 Clustering Algorithms

We implemented three clustering algorithms: @lester Affinity Search Technig€AST) [1], an
iterative partition algorithm and theK-meansalgorithm[7]. For comparison, a random clustering
algorithm is also implemented.

41 CAST[]]

We implemented the pseudo-code of CAST in [1] with two addiil heuristics that have been added
to BioCLusT, the implementation of CAST by its authors. Please refefljddr the details of the
algorithm. One heuristic is to choose a gene with the maxinmumber of neighbors to start a
new cluster. After the CAST algorithm converges, there isdditional iterative step, in which all
clusters are considered at the same time, and genes are mdheccluster with the highest average
similarity.

4.2 lterative Partition Algorithm

The input to the iterative partition algorithm consists dfimilarity matrix S, and a parametet.
Varying the parameter produces clustering results with different number of @ust The total sim-
ilarity of a geney to a clusterC, Simy (g, C), is defined as the sum of the pairwise similarities from
g to each gene i, i.e., Sim(9,C) = > ,cc S(g,x), whereS(g, z) is the pairwise similarity

1The iterative a gorithm was suggested by Richard M. Karp at University of California, Berkeley.
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of geneg and gener. Theexcess similaritfrom a geney to a clusterC, Exzcessgim (g, C), is de-
fined as the excess of the total similarity frgnto C' over o multiplied by the size of cluster G.e.,
Excesssim(g,C) = Sim(g,C) — ax|C|.

Initially, each gene is in its own cluster. A random orderatested for the genes in the iterative
step. In each iteration, for each genehe excess similarity from gengto each existing cluster is
computed. IfC,,.. is the cluster with the maximum excess similarity to ggrend genegy is not
currently in clusteiC,,...., geneg is removed from the cluster itis in, and is inserted in clustg,,...
This process is repeated until no genes are moved betwesersiu

Note that in CAST, there is only one cluster open at a timelendil clusters are open at the same
time in the iterative algorithm.

4.3 K-means

The number of clusters;, is an input to the k-means clustering algorithm. Clusteesdescribed
by centroids which are cluster centers, in the algorithm. In our implatagon of k-means [7],
the initial centroids consist df randomly chosen genes. Each gene is assigned to the cefanoid
hence cluster) with the closest Euclidean distance. Newaids of thek clusters are computed after
all genes are assigned. The steps of assigning genes toidesrdnd computing new centroids are
repeated until no genes are moved between clusters.

4.4 Random Clustering

To evaluate the performance of a clustering algorithm, weammpare the clustering algorithm to
random clustering. A random clustering forclusters and condition can be obtained by randomly
putting the data values in conditiagninto % bins. If the figure of merit obtained from a clustering
algorithm is considerably lower than that from random @tisg, this is evidence that the clustering
algorithm has higher predictive power than random clusggri

5 Figureof Merit

A figure of meritis an estimate of the predictive power of a clustering atbori Suppose a clustering
algorithm A is applied to all conditions except conditienand there aré clusters. The figure
of merit, FOM (e, k), considered in Section 3 is an estimate of the mean erroregfigiing the
expression levels from the average expression levels afitiséers in conditior. Let R(z, e) be the
expression level of genein conditione, anduc, (e) be the average expression level in condition
of genes in cluste€’;. The2-normfigure of merit,FO M5, is defined as:

FOMo(e, k) $ — % Z S (R fic;(€))? 1)

i=1xeC;

Similarly, we can define th&-normfigure of merit, FOM,, as the average Manhattan distance
between the mean expression level in each cluster and thessign levels of genes in the cluster in
conditione.

FOMlek—%*ZZ]Rxe c;(e)] (2)

i=1zeC;
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Define therangein conditione of clusterC; as the difference of the maximum expression level,
mazc;(e), and the minimum expression levehinc, (e), in conditione of clusterC;. The range
measures the diameter of a cluster. The average range bfdsters is defined as tmangeFOM,
FOMEg.

k
FOMg(e, k) Z mazxc,(e) —ming,(e)) (3)

Theminimum achievable figure of mefdr conditione is the minimum possible FOM given the
data values in condition only. The minimum achievable figure of merit represents ¢iweel bound
of the figure of merit of any clustering algorithm.

Theorem 1: The minimum achievable figure of merit for the range FORM) M 2" (e, k), can be
computed inD(n log n) time.
Proof Outline:

First, we proved by contradiction that the optimal solutimast be a partition of sorted data
values. In the second part of the proof, we showed that the&tesllbboundaries should be placed in
the (k — 1) largest gaps in the sorted data values in conditisince FOM " (e, k) is minimized
when the gap values between sorted data values are maxiniibedefore, FOM " (e, k) can be
computed by sorting the data values in conditipand placing the cluster boundaries in {the— 1)
largest gaps between sorted data values. This can be déne ilog n) time. O

The 2-norm, 1-norm and range FOM estimate the predictiveepaf a clustering algorithm
by measuring the dispersion of the gene expression levdlseiteft-out conditione. Intuitively,
genes in the same clusters are expected to have similarssiqmdevels. Moreover, disjoint clusters
are expected to be relatively far apart from each other. &bes, we can define thetio FOM
to be the ratio of the within-cluster dispersion to the betweluster separation. The within-cluster
dispersion can be represented by the 1-norm FOM. The betalaster separation can be represented
by the distance between the centers of trausters in conditiore. Let ;¢ (e) be the average gene
expression level of cluster; in conditione. Denote the maximum average gene expression level in
conditione by ui**(e) = maxc, uc, (e). Similarly, the minimum average gene expression level in
conditione is ;/m"( ) = ming; pe, (e). The average between-cluster separation can be estimated b

’UL(L‘L (8) rnm )

the average Manhattan distance between cluster meams?. Hence, theatio FOM
can be written as:

it zf_l Lrec, |R(x,¢) — nc, (e)
* (e (e) — pg™ (e)

FOM,qti0(e, k) = (4)

6 External Validation of FOM

In this section, we will describe a methodology to justife thse of figures of merit as a measure
of the predictive power of clustering algorithms. Suppdse functional categories of a subset of
the genes in the given data set are known. Although the fumaiticategorization may be derived
from information other than gene expression data, a genessipn data set is expected to reflect
the functional categories to a certain degree. The idea ¢®napare a clustering result to a given
known functional categorization of the genes. Since nogaties have been classified, we allow
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a partial functional categorization as the “gold” standard to corepaustering results with. This
methodology can also be applied to determine the similafityvo clustering results.

6.1 TheJaccard and Hurbert indices

In Chapter 4 of Jain and Dubes [Bxternal indiceghat assess the degree to which two partitions
with the same number of objects agree are defined. Sinceghglgorithms assign each object to
exactly one cluster, clustering results can be considesgrhditions. Suppose two partitiors,and
V, are to be compared. Jain and Dubes [7] define be the number of pairs of objects that appear
in the same cluster in both partitioristo be the number of pairs of objects in the same clustér in
but not inV, ¢ to be the number of pairs of objects in the same clustéf but not inU, andd to be
the number of pairs of objects in different clusters in bahtigions. There are several known indices
that measure the similarity of two partitions, for exampihes Jaccard index:

a

d=——7— 5
Jaccar P (5)

They also definen; = a + b, which is the number of pairs of objects that are in the same
group inU. Similarly, ma = a + c is the number of pairs of objects in the same group’inLet
M =a+ b+ c+ d. The Hurberf" statistic is defined as:

Ma — mimo
\/mlmg(M — ml)(M — mg)

The Hurberfl” statistic is essentially the correlation between two mesi;; andly. Iy (i, j) =
1 if object ¢ and objectj are in the same group in partitidi, and I;; (¢, j) = 0 otherwise. Iy is
similarly defined.

The Jaccard index lies between 0 and 1, while the Hutbstatistic lies between -1 and 1. A high
Jaccard or Hurbelf statistic means a high correspondence to the given furadt@aiegorization.

Hurbert = (6)

6.2 Our Generalization

In Jain and Dubes [7], they assume the patrtitions to be cadparecompletepartitions of all the
objects. We generalize the indices in Section 6.1 to compeantéal partitions since not all genes fall
into known functional categories. The main observatiorhé the Jaccard and Hurbdttstatistics
only depend on the valuesb, ¢, d. Our idea is that we only count the number of pairs of genek suc
that both genes exist in the given known categorization p8s@l is a clustering result of genes,
andV is apartial functional categorization aof genes, where < n. We defines to be the number
of pairs of genes such that both genes exidt' jrand both genes appear in the same groug ahd
same cluster itV. We can similarly definé, c andd.

A high Jaccard or Hurbelif' statistic indicates high similarity of a clustering residta given
functional categorization. Recall that a low figure of mirtticates high predictive power. The idea is
to apply a clustering algorithm to all conditions exceptdition e to producek clusters,FFOM (e, k)
and the Jaccard or Hurbdrt statistic of the clustering result based on all conditiorsepte are
computed. Repeat this process for different clusteringritlgm, and then plot the statistics against
FOM (e, k)'s for different algorithms. If the points show a trend of domard negative slope, this
shows that a clustering result with a low FOM tend to have & ligrrespondence to the given
functional categorization. This provides evidence for pihedictive power of FOM for comparing
clustering algorithms.
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7 Resultsand Discussion

In this section, we will describe the performance of theaitee, CAST, and k-means clustering

algorithms on the rat CNS data set [14], the yeast cell cyala set [2], and the human hematopoietic
differentiation data set [13]. We will also justify the uskfigures of merit as an estimate of the

predictive power of clustering algorithms using known bgital classes of genes in the rat CNS
data set and the yeast cell cycle data set. The three genessipr data sets are available via the
World Wide Web. In our experiments, the random clusterirap st/as repeated 1000 times, the
iterative algorithm were run 10 times and the k-means algorivere run 30 times to obtain reliable

FOM/(e, k)’s.

7.1 TheRat CNSData Set

Figures 4, 5, 6, 7 show the performance of the iterative, kitaeand the CAST clustering algo-
rithms in terms of the aggregate 2-norm, 1-norm, range atol FOM'’s on the rat CNS data set.
The raw data set published by Wenal. consists of 112 genes and 9 time points. As suggested in
[14], the raw data is normalized by the maximum expressivel i®r each gene. The data set is then
augmented with slopes (differences between consecuthe fibints) to capture parallel trajectories
of the time course data. This results in a data set with 112gand 17 conditions. The correlation
coefficient is used to compute pairwise similarities of genall three clustering algorithms (iter-
ative, k-means and CAST) achieve lower aggregate figureseoit than random clustering in the
2-norm, 1-norm, range and ratio FOM’s. Since the iteratilie,k-means and the random clustering
algorithms are randomized, each of them is run multiple siteeobtain reliableFOM (e, k)’s. In
the following figures, the solid lines for the iterative, keams and random algorithms represent the
sum of the averag€'OM (e, k) over all the conditions. We also show the 80% and 20% error bars
in Figure 4. The 80% error bars for the randomized algoritamesobtained by computing the 80
percentile of the"O M (e, k) from the multiple runs of the algorithms, and then summingral the
conditions to obtain the aggregate FOM. Similarly, the 2086rebars are obtained by computing the
20 percentile from the multiple runs. We have chosen to ptabe 20% and 80% error bars instead
of the maximum and minimum because the maximum and minim@nveny sensitive to outliers.
From Figure 4, we can see that the spread of the FOM of thdiiter@gorithm is much smaller than
that of the k-means and the random clustering algorithms d&rhor bars of the 1-norm and range
FOM show similar behavior and are not be presented here.

The behavior of the clustering algorithms on the aggregaterin FOM (Figure 5) is very similar
to that of the 2-norm (Figure 4). When the number of clustersmall (below 25), the CAST and
k-means clustering algorithms have comparable aggregatar and 2-norm FOM's, which are
lower than those of the iterative algorithm. When the nundb@tusters is large (above 30), all three
clustering algorithms have comparable aggregate 2-nodriarorm FOM’s.

In Figure 6, the minimum FOM corresponds to the aggregaténmuim achievable range FOM.
FOM™" (e, k) can be computed with Theorem 1. The iterative algorithm baei aggregate range
FOM's than the CAST and k-means algorithms when the numbetusters is small (below 20).
When the number of clusters is large (above 20), all thres@ting algorithms have similar aggregate
range FOM's. Moreover, all three algorithms produce agageegange FOM's lying roughly halfway
between that of random clustering and the aggregate miniamimevable range FOM.

The 2-norm, 1-norm and range FOM’s are expected to be moitaltyndecreasing as the number
of clusters increases. This is not the case for the ratio FDbkst measures the ratio of the within-
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cluster dispersion to between-cluster dispersion. Sra#ilb FOM’s are desirable. However, the
ratio FOM may not be monotonic. Jaét al. [8] applied the bootstrap technique to determine the
optimal number of clusters. They defined a similar ratio afhim-cluster dispersion to between-
cluster separation, plotted the ratio against the numbetusters, and argued that a “significant”
knee in the graph corresponds to the optimal number of chistAs a matter of fact, plotting an
evaluation index against the number of clusters is a stdn@gghnique [7]. In Figure 7, there is a
knee around four to six clusters for all of the iterative, kans and CAST clustering algorithms.
The ratio of within-cluster dispersion to between-clusteparation is a minimum around four to
six clusters in the rat CNS data set. In [14], the genes in &hd&CNS data set are classified into
four categories using biological knowledge. The ratio FOBlyrgive us an estimate of the optimal
number of clusters inherent in the data.

2-norm FOM on the rat CNS data

—=—avg iterative

—=-avg k-means
CAST

——avg random

0 5 10 15 20 25 30 35 40 45 50 55 60 65
number of clusters

Figure 4: Aggregate 2-norm FOM’s of clustering algorithnmstioe rat CNS data set.

Wen et al. [14] categorized genes in the rat CNS data set into four familsing biological
knowledge. Table 1 shows that the aggregate 2-norm andri-R@M'’s of the four clusters iden-
tified in [14] are comparable to those of the iterative, k-meeand CAST algorithms. The k-means
algorithm achieves the lowest aggregate 2-norm and 1-n@i’§ for four clusters in our results.
It is interesting to observe that the aggregate range FOM fhe iterative algorithm is significantly
lower than that from the clusters identified by Wenal.. In fact, the aggregate range FOM from
Wen'’s clusters are only slightly lower than that from randclostering. Since our definition of the
range FOM depends only on the maximum and minimum expressiets in each cluster, the range
FOM is expected to be very sensitive to outliers.

Wen et al. [14] found six clusters on this data set with the FITCH sofevis]. The CAST
algorithm achieves the lowest aggregate 2-norm and 1-nd@d’s for six clusters in our results.
The aggregate 2-norm and 1-norm FOM'’s (data not shown hétbg®ix clusters found in [14] are
slightly lower than those from the CAST algorithm.

Overall, we take the fact that the figures of merit for the @tschosen by Weet al. are similar
to those found algorithmically to be a good indication thatmethodology is providing a meaningful
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1-norm FOM on the rat CNS data
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Figure 5: Aggregate 1-norm FOM’s of clustering algorithnmstioe rat CNS data set.

Range FOM on the rat CNS data
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Figure 6: Aggregate range FOM’s of clustering algorithmghmrat CNS data set.
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ratio FOM on the rat CNS data
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Figure 7: Aggregate ratio FOM's of clustering algorithmstba rat CNS data set.

FOM definition\ Wen'’s clustering iterative k-means CAST random

2-norm 4.39 4.43 412  4.27 4.61
1-norm 3.43 3.54 3.14  3.40 3.72
range 16.93 5.64 14.97 12.58 17.24

Table 1: Aggregate FOM’s from Wen'’s clusters and from clastealgorithms.

estimate of cluster quality.

In addition to the above FOM calculation, we also evaluatedstmilarity of our clustering results
to the four functional categories of the genes on the rat Cat& get according to West al. [14]
using the methodology in Section 6.

Figure 8 and Figure 9 show the Jaccard index agaii3fi/»(0,4) and the HurberT statistic
againstF'O M, (0, 4) respectively. The iterative, k-means, CAST and randomrilgos are applied
to 16 conditions (the first condition is left out) of the 112hge in the rat CNS data set to produce
four clusters. The FOM is computed using the gene expre$siahs in the left-out condition. The
iterative and random algorithms are run 10 and 30 times ofisply. The CAST algorithm is run
exactly once since it is deterministic. The k-means algoriis run 10 times, and we show the
intermediate results of k-means and CAST in successiegiibeis in Figure 8, Figure 9 and Figure 10.

In Figure 8, Figure 9 and Figure 10, the FOM'’s of the randonostigm are a few standard
deviations higher than the other clustering algorithmsgl g Jaccard or Hurbeff statistics are a
few standard deviations lower than the other clusteringrityms. Moreover, there is an obvious
downward negative slope trend in all three figures, showlirag ¢lustering results with low FOM’s
tend to have high correspondence with the given functioatggorization.

Figure 10 shows the results of five runs of k-means and onefrtlredCAST algorithm. Each
run of k-means is represented by the same color. The poititstiné same color represent succes-
sive iterations of the same run. Successive iterations @lgorithm show how the FOM’s and the
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Figure 8: The Jaccard index agai#3D M (0, 4) on the rat CNS data set.
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Figure 10: The Hurbert index againStD M> (0, 4) of successive iterations of k-means and CAST on
the rat CNS data set.

statistics change as the algorithm proceed to a more dkshlstering result. For most runs of the
k-means and CAST, as the algorithm proceed to the nextitieratre can see a trend of lower FOM
and a higher correspondence to the given functional categmm.

We also investigated the effect of leaving out other coadgj and found that the shown figures
for leaving out the first conditiore(= 0) are typical results. Furthermore, we computed the average
Jaccard and Hurbeltstatistics when all 17 conditions in the data set are useldigtering algorithms
(shown in Table 3) over multiple runs of the algorithms. Tieedtive and random algorithms are run
10 times, while the k-means algorithm is run 30 times for #mults in Table 3. The Jaccard and
HurbertI" statistics when all 17 conditions are applied are comparabiihose when one condition is
left out. This shows that leaving out one condition does mwehany significant effect on the quality
of clustering results.

algorithm \ Jaccard Hurbert

iterative 0.25 -0.012
k-means 0.24 0.17
CAST 0.28 0.18
random 0.15 -0.001

Table 3: Average Jaccard and HurbErstatistics for all 17 conditions and four clusters on the rat
CNS data set.

Hence, we conclude that clustering results with low FOMgltéo have high correspondence to
the functional categorization in Weat al. on the rat CNS data set.
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7.2 The Yeast Cell Cycle Data Set

The yeast cell cycle data set of Céial. [2] consists of approximately 6000 genes and 17 conditions.
Choet al. [2] identified 420 genes by visual inspection of the raw ddtiae data set is normalized
as in [13]. The 17 conditions are divided into two panels @glihcorrespond to two cell cycles) and
are normalized to have mean 0 and variance 1 within each.p@helcorrelation coefficient is used
to compute the similarity matrix.

Figure 11 shows the performance of the clustering algostimthe processed yeast cell cycle
data set. When the number of clusters is large (above S0)ietagive and CAST algorithms have
lower aggregate 2-norm FOM'’s than the k-means algorithm.

2-norm FOM on the yeast cell cycle data

—-av( iterative

-=-avg k-means
CAST

-+ avg random

0 50 100 150 200 250 300 350 400 450
Number of clusters

Figure 11: Aggregate 2-norm FOM’s of clustering algorithomsthe yeast cell cycle data set.

Choet al. categorized approximately 380 genes into five phases otgelé on their web site.
Since the 420 genes are identified by visual inspection of gepression data according to the peak
times of genes, we expect clustering results to correspmtitetfive known categories of genes. The
methodology of Section 6 is used to validate the use of FOM@&stamate of the predictive power of
clustering algorithms. The results for leaving out the firae point ¢ = 0) are shown in Figure 12,
Figure 13 and Figure 14. We also studied the effects of Igawirt other time points in the data set
and found that the shown figures are typical results (not ahoere). The randomized algorithms
are run 10 times, and the intermediate results of succe$siedions of k-means and CAST are also
shown.

There is an obvious downward negative slope Figure 12, Eifj@rand Figure 14. The iterative,
k-means and CAST algorithms show significantly lower FOM digher Jaccard and Hurbert
I" statistics than the random algorithm. Figure 14 shows th&B@nd Hurbertl’ statistics of
successive iterations of the k-means and CAST algorithmecessive iterations of the same run are
represented by the same color. In each iteration of k-meath&CAST, the FOM’s tend to be lower
and have higher correspondence to the five functional cagsgo

We have also computed the average Jaccard and Hurlstatistics when all 17 time points are
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Figure 13: The Hurbert index againSO M (0, 5) on the yeast cell cycle data set.
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Figure 14: The Hurbert index again8tO M, (0, 5) of successive iterations of k-means on the yeast
cell cycle data set.

used in clustering algorithms over multiple runs of the athbms as shown in Table 4. The average
Jaccard and Hurbeit statistics when all 17 time points are used are comparabthage when
one time point is left out. This is evidence that leaving ong @ondition does not seriously affect
clustering quality on this data set.

algorithm \ Jaccard Hurbert

iterative 0.42 0.45
k-means 0.43 0.48
CAST 0.45 0.50
random 0.12 0.001

Table 4: Average Jaccard and HurbErstatistics for all 17 conditions and five clusters on the yeas
cell cycle data set.

Choet al. [2] also looked up functional categorizations of the 420agefrom the MIPS [10]
database. Approximately 180 genes are divided into ninegoaies. Since the 420 genes are not
chosen due to the functional categories in MIPS, and the MiER&base is annotated based on more
than just gene expression data, we expect clustering semuthe gene expression data to have lower
Jaccard and Hurbelt statistics with the MIPS functional categories than with five stages of cell
cycle. A typical result is shown in Figure 15. As expected gtatistics have lower values than in
Figure 13. Note that there is also an obvious downward negslbpe in the graph, showing that low
FOM’s correspond to high correspondence to the MIPS funatioategories.

7.3 TheHuman Hematopoietic Data Set

The aggregate 2-norm FOM's of the clustering algorithmsheniuman hematopoietic differentia-
tion data set [13] are shown in Figure 16. The variation filkethe GENECLUSTER software [13] is
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Figure 15: The Hurbert index againBD M»(0, 9) on the yeast cell cycle data set.

2-norm FOM on the human hematopoietic data
8.5

8.0 =
7.5 \\\
7.0

% - avg iterative
s6.5 -=avg k-means

CAST

(@)
L 6.0 .

s \\_\\;—\:\—k avg random
5.0 S \\\“\"\
45 \‘\-

4.0\\\\\\\\\\\\\\\\\\\\\\\\\

1 17 32 47 62 77 92 107 122
number of clusters
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18 7 RESULTS AND DISCUSSION

applied to the raw data, and 1033 genes pass through the Tilherdata is then normalized across
each of the four cell lines making up the 17 conditions as esiggl in [13]. The correlation coeffi-

cient is used to compute the similarity matrix. A close irdfms shows that CAST achieves lower
aggregate 2-norm FOM'’s than the other two algorithms whenntimber of clusters is small (be-
low 30). When the number of clusters is large (above 50), theckns algorithm achieves lower
aggregate 2-norm FOM'’s than the iterative and CAST algarith

7.4 Analysis

With isolated exceptions, all the data sets we have coregidexhibit declining figures of merit under
all algorithms as the number of clusters increases. Twoifacntribute to this. First, the algorithms
may be finding higher quality clusterings, as they subdiléilge, coarse clusters into smaller, more
homogeneous ones. Second, simply increasing the numbdugiérs will tend to decrease the
FOM. The following simple analysis estimates the effecthef $econd factor. Suppose the measured
expression levelsy, ...,z of thes genes in some clustér are independent, identically distributed
normal random variables with variane@. Letz = > , z;/s. ThenC’s expected contribution
to the FO M, is the expected value oF;_,(x; — 7)2, which is (s — 1)o?. SubdividingC' into

k smaller nonempty sub-clusters would reduce these genpstcted contribution to th&'O M, to

(s — k)o?, and hence the aggregate 2-norm FOM for a collectioh sfich homogeneous clusters
would bem/(n — k)/no. In fact, on the rat CNS data set, this formula agrees witmteasured
2-norm FO M, (k) of random clustering to within a fraction of one percent fiiesthe fact that
the real data sets violate key assumptions in the analy§i®@sumably, then, the relatively steep
decline in the 2-norn¥’O M (k) achieved by all three clustering algorithms on the rat CNS dat
for k up to 20 or so reflect genuine progress in producing more hemexus clusters, whereas the
more gradual declines for largér roughly paralleling the random curves, largely reflectphecly
statistical effect of increasing. Although Wenet al. only identified 4 to 6 clusters in the rat CNS
data set, this analysis suggests that the data may suppomearefined sub-clustering.

7.5 Effect of Smilarity Metrics

Our approach can also be used to evaluate the effect of siyitaetrics on clustering results. There
are no general guidelines in the literature for the choicsimilarity metrics [12]. Figure 8 shows
the aggregate 2-norm FOM'’s of the CAST and iterative alporit on the rat CNS data set using the
correlation coefficient, Euclidean distance and infororagntropy as similarity metrics.

Michaelset al. [11] proposed to use information entropy as a similarity nmgtnd they com-
pared their biological knowledge to the clustering resulisng information entropy and Euclidean
distance as similarity metrics with the FITCH software [6h their paper [11], they showed that
clustering results using Euclidean distance and infolwnaéntropy have a high degree of corre-
spondence. In order to compute the information entropy ochegene expression sequence, the
expression levels are discretized into three equidistars. bLet 7 and J be two gene expression
series. The information entropyf (1), H(J), and mutual information) (1, J), can be computed
from the probabilities,P(i), of the occurrence of one of the three discretized expredsicels:
H(I)=—>[P(i)*log P(i)],andM (I, J) = H(I)+ H(J) — H(I,J). The normalized mutual in-
formation, M,, o, is defined ad/f,,r1, (1, JJ) = M (I, J)/ max{H (I), H(J)}. Myorm IS @ measure
of pairwise similarity between two gene expression series.
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Figure 8: Aggregate 2-norm FOM’s of the CAST and iterativgoaithms using different similarity
metrics.

In Figure 8, when the number of clusters is large (above B@)aggregate 2-norm FOM’s of both
algorithms using the correlation coefficient and the Ewamdistance are very similar, and are lower
than those of the information entropy. None of the simjanitetrics give clearly superior FOM's,
especially when the number of clusters is small. The CASoratym with the correlation coefficient
gives the lowest aggregate 2-norm FOM's for five to eightteltss

In other experiments (data not shown here), we observedttbet is no significant difference
in the aggregate 2-norm FOM'’s of the iterative and CAST allgors when ten bins are used in the
discretization of the expression levels for the informatentropy computation in the rat CNS data
set.

8 Conclusions

In this paper, we provide a simple and quantitative methmgioko compare the predictive power
of any clustering algorithms and similarity metrics on amyadset. We demonstrated our technique
using the iterative, k-means and CAST [1] algorithms on #teGNS data set [14], the yeast cell
cycle data set [2], and the human hematopoietic differdatiadata set [13]. We showed that the
performance of clustering algorithms depends on the speatdfia set, the number of clusters, and
the definition of FOM. On the rat CNS data set and the yeastygelé data set, we showed that low
FOM (e, k)'s tend to correspond to a high similarities to known pafiigctional categorizations of
genes. This is a good indication that our definitions of figusemerit provide a good estimate of
cluster quality. We found that the 1-norm and 2-norm FOMgeheery similar performance on all
three data sets. Since the range FOM is very sensitive termudnd the aggregate range FOM's from
the iterative algorithm tend to be significantly lower thae bther algorithms (especially when the
number of clusters is small), this suggests that the iteratigorithm may be more suited to handle
data with a lot of outliers.

Our methodology can also be used to verify the existenceustels in a given data set. If we plot
the FOM against the number of clusters for the simulatiola dat in Section 1, the diagram shows
a different trend than data sets with intrinsic patternagcam not shown here). For the simulation
data with no intrinsic pattern, the trend of all clusterimhgoaithms follow more closely to the random
clustering algorithm.
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No clustering algorithm emerged as a clear-cut winner mwork, and we suggest that flexibil-
ity, speed, reliability and ease of implementation may hea#lg important in differentiating cluster-
ing algorithms. In our implementation, k-means is subgéintfaster than the iterative and CAST
algorithms. It takes under two seconds on a Pentium Il 40Qutokrmeans once on the human
hematopoietic data set (1033 genes and 17 conditions). Viérage running times of the iterative
and CAST algorithms are over 50 seconds on the same datarstdrnis of reliability, CAST is
implemented as a deterministic algorithm, but the iteeatind k-means algorithms are randomized
algorithms. The error bars in Figure 4 showed that the standieviations of the iterative algorithm
tend to be much smaller than those of the k-means algorithm.

More work needs to be done to confirm the apparent small effeitie predictive power on the
similarity metric used to measure similarity of gene expi@s levels. There are many directions of
future work, one of which is to compare the similarity of d¢kréng results of different algorithms.
For example, given two genasandy that are in the same cluster obtained by algorithm A, it would
be interesting to compute the probability thedndy are in the same cluster if algorithm B is applied.
Another important pre-clustering step is the standaritinatf variables in the data set. The effect of
different variable standardization methods on the predigiower of clustering algorithms would be
another interesting direction of future work.

To summarize, clustering is a difficult problem. It would beenif there were a single universally
superior clustering method. However, given the observeabiity in the solutions produced by the
different algorithms on different data sets and under vaygimilarity metrics, no such solution is
in sight. Lacking that, we feel that the simple methodolaglydduced in this paper for quantitative
comparison of the predictive power of clustering algorighwill prove to be a valuable ingredient in
future clustering studies.

Acknowledgement

We would like to thank Richard M. Karp for suggesting theatare algorithm. We would also
like to thank Amir Ben-Dor for sharing the additional hetids implemented in their software with
us. In addition, we would like to thank Lue Ping Zhao at thedRtdeitchinson Cancer Research Centre
for his suggestions on modelling simulation data sets. Mailleagues and friends at University
of Washington provided valuable suggestions to us: Coregefson, Mathieu Blanchette, Jeremy
Buhler, Jared Saia, Andrew Siegel, Martin Tompa, and thayaanalysis group. We would like
to thank the Whitehead Institute for granting us an acadesiteclicense for their GNECLUSTER
software. We would also like to thank Michael Eisen and thenfatrd University for granting us the
permission to use their @sTER and TREEV IEW softwares.

References

[1] A. BEN-DOR, Z. YAKHINI. Clustering gene expression patteri&.oceedings of the Third
International Conference on Computational Biology (Relb@8), pp. 33-42, 1999.

[2] R.J. CHO, M. J.CAMPBELL, E. A. WINZELER, L. STEINMETZ, A. CONWAY, L. WODICKA,
T. G. WOLFSBERG A. E. GABRIELIAN, D. LANDSMAN, D. J. LOCKHART, R. W. Davis. A
genome-wide transcriptional analysis of the mitotic cglile.Molecular Cell, vol 2, pp. 65-73,
July 1998.

[3] J. L. DERISI, V. R. IYER, P. O. BROWN. Exploring the metabolic and genetic control of gene
expression on a genomic scafience, vol. 278, pp. 680-686, 1997.



REFERENCES 21

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

B. EFRON. The jackknife, the bootstrap, and other resampling pl&wiety for Industrial and
Applied Mathematics, 1982.

M. B. EISEN, P. T. ’ELLMAN, P. O. BROWN, D. BOTSTEIN. Cluster analysis and display of
genome-wide expression patter®NAS, vol 95, pp. 14863-14868, Dec 1998.

J. FELSeNSTEIN PHYLIP (Phylogeny Inference Package), version 3digtributed by the au-
thor, Department of Genetics, University of Washingtorat8e. (1993)

A. K. JaIN, R. C. DuBkes. Algorithms for clustering dataPrentice Hall, Englewood Cliffs,
NJ, 1988.

A. K. JAIN, J. V. MOREAU. Bootstrap technique in cluster analysiattern Recognition, vol
20, no. 5, pp. 547-568, 1987.

R. KoHavi. A study of cross-validation and bootstrap for accuracyreation and model se-
lection.[JCAI 1995, pp. 1137-1143.

H. W. MEWES, K. HEUMANN, A. KAPS, K. MAYER, F. PFEIFFER S. STOCKER, D. FRISH-
MAN MIPS: a database for protein sequences and complete gendinekeic Acids Research
27, pp. 44-48, 1999.

G. S. McHAELS, D. B. CARR, M. ASKENAZI, S. FUHRMAN, X. WEN, R. SOMOGY!I.
Cluster analysis and data visualization of large-scaleayerpression dat&acific Symposium
on Biocomputing 3, pp. 42-53, 1998.

G. W. MILLIGAN . Clustering validation: results and implications for apgdi analysisClus-
tering and Classification, 1996.

P. TaAMAYO, D. SLONIM, J. MESIROV, Q. ZHU, S. KITAREEWAN, E. DMITROVSKY, E. S.
LANDER, T. R. GoLuUB. Interpreting patterns of gene expression with self-orgeng maps:
methods and application to hematopoietic differentiatieNAS, vol 96, pp. 2907-2912, March
1999.

X. WEN, S. FUHRMAN, G. S. MCHAELS, D. B. CARR, S. SMITH, J. L. BARKER, R. SOM-
OGYI. Large-scale temporal gene expression mapping of centraloos system development.
PNAS, vol 95, pp. 334-339, Jan 1998.

Web Sites of data sources
Rat CNS data set: http://rsh.info.nih.gov/mol-physidlAS/GEMtable.html
Yeast cell cycle data set: http://genomics.stanfordyezhst/cellcycle.html
Human hematopoietic differentiation data set: http://wgemome.wi.mit.edu/MPR/



