
Revisiting Strutured Storage: A Transational Reord Store

Robert Grimm, Mihael M. Swift, and Henry M. Levy

University of Washington

frgrimm, mikesw, levyg�s.washington.edu

UW-CSE-00-04-01

Abstrat

An inreasing number of appliations, suh as ele-

troni mail servers, web servers, and personal infor-

mation managers, handle large amounts of homo-

geneous data. This data an be e�etively repre-

sented as reords and manipulated through simple

operations, e.g., reord reading, writing, and searh-

ing. Unfortunately, modern storage systems are in-

appropriate for the needs of these appliations. On

one side, �le systems store only unstrutured data

(byte strings) with very limited reliability guaran-

tees. On the other side, relational databases store

strutured data and provide both onurreny on-

trol and transations; but relational databases are

often too slow, omplex, and diÆult to manage for

many appliations.

This paper presents a transational reord store

that diretly addresses the needs of modern applia-

tions. The store ombines the simpliity and man-

ageability of the �le system interfae with a selet

few features for managing reord-oriented data. We

desribe the priniples guiding the design of our

transational reord store as well as its design. We

also present a prototype implementation and its per-

formane evaluation.

1 Introdution

With the suess of the Internet, the last few years

have seen a proliferation of networked data servies,

suh as eletroni mail servers, web servers, and

personal information managers. Suh appliations

manage data that are regular in struture and eas-

ily represented as reords with distint �elds, e.g.,

ontats, shedules, user preferenes, or ustomer

orders. Eletroni mail messages or merhandise de-

sriptions are less regular, but an also be organized

as a set of well-de�ned �elds, suh as sender, sub-

jet, or order number. Internet appliations also

exhibit fairly simple workloads. For a given task,

they sequentially aess only a small number of

data soures, for example, when a user browses mer-

handise desriptions or when a server proesses a

ustomer order. As a result, they perform a rela-

tively simple set of operations: they read, modify,

or searh small reords. Finally, these appliations

typially require repliation for availability or relia-

bility.

In the future, we expet to see an inreasing

number of suh data-entri appliations and a

wider range of omputing devies running them [13,

44℄. On the hardware side, non-traditional omput-

ing devies, suh as palm-sized omputers or ell

phones, are already in wide-spread use and provide

aess to a user's ontats and messages. Newer de-

vies suh as pads are about to be ommerially

released as well. On the software side, luster-

based servies implement highly available and sal-

able networked servers [14, 39℄, while repliation

shemes spei�ally designed for a mobile environ-

ment automate the synhronization of data between

remote and mobile nodes [1, 18, 25, 37℄.

Despite this diversity of existing and future ap-

pliations with ommon data storage needs, the

management of persistent storage remains a hal-

lenge. Currently, an appliation has two hoies|

�le systems or databases|eah of whih fails to

meet appliation needs in one or more dimensions.

File systems typially store only unstrutured data

and provide limited (if any) failure atomiity, mak-

ing them ill-suited for reliably storing large num-

bers of homogeneous reords. Objet stores and re-

lational databases manage objets and reords, re-

spetively, and provide onurreny ontrol and reli-

ability through transations. However, objet stores

are optimized for maintaining heterogeneous objets

and their linked relationships. Relational databases

are often far too omplex and diÆult to manage

as they provide onsiderable funtionality, e.g., sup-

port for a query language, joins, and bath proess-

ing. These funtions are often overkill for modern

networked data servies, and they ome at a high



ost.

To address this lak of appropriate storage solu-

tions, we present a transational reord store that

ombines the simpliity and manageability of the �le

system interfae with selet features for managing

reord-oriented data. Reords are stored in tables,

and all reords in a table share the same �eld names

and types. The reords are the rows of the table and

the �elds are the olumns. Tables, in turn, are orga-

nized in diretories, resulting in a hierarhial name

spae similar to that of a �le system. To simplify

repliation, the store exposes globally unique iden-

ti�ers [28℄ (GUIDs) for individual reords as well as

tables and diretories. To ensure good performane,

it uses a simple yet expressive hinting system. Fi-

nally, to provide reliability aross failures, all oper-

ations are atomi and transations an be used to

group several operations into one atomi unit.

Reord storage as a system servie is not a new

idea. For example, IBM's VSAM [34℄, Compaq's

RMS [10℄, and Palm Computing's Palm OS [6℄ all

provide reord storage at the system level. This

raises the question of why it is neessary to revisit

the topi of strutured storage. We believe that

reord storage as a system servie is important for

three reasons. First, a relatively new lass of ap-

pliations, as disussed above, requires it. Seond,

the most ommon omputing platforms do not o�er

reord storage. As a result, many ommerial appli-

ations either (1) ship with an appliation-spei�

solution, thus leading to unneessary appliation

omplexity and a onsiderable dupliation of fun-

tionality, or (2) build on top of a relational database,

whih has its own performane, ost, and omplex-

ity impliations. Third and most important, build-

ing a viable reord store is hard, beause it is not

obvious how to make the right trade-o�s between

salability, exibility, omplexity, and performane.

The primary ontribution of this paper is a thorough

exploration of these trade-o�s.

The rest of this paper is strutured as follows.

Setion 2 develops the priniples guiding the de-

sign of our transational reord store and Setion 3

presents the atual design. Setion 4 desribes a

prototype implementation and Setion 5 reets on

our experienes in building the prototype as well

as its performane. Setion 6 reviews related work.

Finally, Setion 7 onludes.

2 Priniples

A pratial reord store for data-entri appliations

should meet three requirements. First, it should

be reliable, i.e., its operations should be atomi

in the fae of failures. This is partiularly ru-

ial given the eonomi signi�ane of Internet ser-

vies. Seond, the reord store should be salable; it

must be implementable aross a wide range of om-

puting platforms, from wearable devies to large-

sale lusters. Third, it should e�etively support

appliation-spei� repliation, providing both ex-

ibility and performane of repliation mehanisms.

Relational databases use tables to store large

numbers of reords and provide transations for reli-

ability. Tehniques for implementing both eÆiently

are well known. For this reason, we also base our

reord store on tables and transations. However,

relational databases provide omplex funtionality,

suh as a query language, joins, and bath proess-

ing, that are of limited use to networked data ser-

vies. Furthermore, databases typially implement

repliation internally [32, 35℄ and thus lak e�etive

support for appliation-spei� repliation shemes.

The key issues for the reord store are therefore

whih features to provide and how to struture its

various interfaes.

To guide our design, we have used three funda-

mental priniples:

1. Limit global knowledge. Knowledge should be

loally generated and managed whenever possi-

ble. The primary purpose of this priniple is to

ensure an eÆient implementation and salabil-

ity by limiting the need for global oordination

of system state.

2. Don't hide power. The abstration barrier be-

tween appliations and the reord store should

not hide expressive power. The primary pur-

pose of this priniple is to ensure that the

reord store provides suÆient funtionality.

3. Separate independent onerns. Di�erent de-

sign aspets, suh as data layout, data a-

ess, performane, or aess ontrol, should be

learly separated by using distint operations

and abstrations. The primary purpose of this

priniple is to ensure that the reord store is

easy to use and repliate.

These priniples are not absolutes, as learly use-

ful features may follow one priniple but violate oth-

ers. The three priniples thus need to be arefully

weighed against the requirements of data-entri ap-

pliations, as disussed above. When priniples on-

it, we typially favor limiting global knowledge to

aid salability.



3 Design

In our design, reords are stored in tables, whih are

olletions of identially-strutured reords. Eah

reord in a table thus has the same �elds with the

same name and type (for a given reord, though,

not every �eld needs to store a value). Operations

on tables a�et only one table. In addition, a ta-

ble has distint operations to manage its shema

(i.e., �elds), its performane hints, its aess on-

trol information, and its data. These operations are

straight-forward and either aess or modify a ta-

ble's meta-data or data. For example, the shema

operations allow an appliation to add and hange

individual �elds, lookup a �eld by name, and re-

trieve a list of all of a table's �elds.

Tables are organized in diretories, whih sup-

port typial diretory operations suh as entry

lookup or move. Diretories failitate the logial

grouping of related tables, and the resulting hierar-

hial name spae provides a onvenient and proven

interfae for managing persistent storage. Adding

�les as a separate storage abstration in addition to

tables makes it possible to integrate reord and byte

string storage into a single storage system. To fur-

ther aid manageability, the store also supports sym-

boli links in the form of aliases, whih an referene

other aliases, diretories, and tables and are auto-

matially resolved during lookup. We all aliases,

diretories, and tables store objets.

To provide reliability, all store operations are

atomi and appliations an speify a transation

to group several operations into one atomi unit.

To provide onsisteny, all transations are fully se-

rializable by default. Transations ombine two sep-

arate onerns, atomiity and onurreny ontrol,

whih violates one of our priniples. As a result, ap-

pliations that only need reliability, suh as a single-

threaded ontat manager running on a ell phone,

also pay the overhead for onurreny ontrol. The

reord store thus inludes the option to set a di�er-

ent isolation level for individual transations.

We have spei�ed our reord store in the form

of a set of Java interfaes and exeptions. The

spei�ation does not rely on features unique to

Java; it simply serves as a onise desription of

the reord store's appliation programming inter-

fae (API). The store onsists of 15 interfaes, most

of whih represent simple desriptors suh as �elds,

queries, or hints, with a total of 82 methods. It

also ontains 16 exeptions that represent spei�

exeptional onditions and are sublasses of lass

StorageExeption. For transations, we rely on

Jini's transation spei�ation [2℄. Figure 1 pro-

Guid add(Guid g,List fields,List data,Txn t);

/* Add a new reord with GUID g and data for

fields and return its GUID. If g is null,

the GUID is automatially generated. */

void write(Guid g,List fields,List data,Txn t);

/* Write data to fields for the reord with

GUID g. */

List read(Guid g, List fields, Txn t);

/* Read fields from the reord with GUID g

and return that data. */

Results query(Query q, List values, Txn t);

/* Instantiate query q with values, perform

the instantiated query, and return an

iterator over the results. */

void delete(Guid g, Txn t);

/* Delete the reord with GUID g. */

Figure 1: The �ve methods for aessing a table's

reords. Reords are added, written, read, and deleted

one at a time by GUID. In ontrast, queries an searh

reords aording to appliation-spei� riteria and re-

turn more than one result. Appliations an group sev-

eral operations into an atomi unit by passing a transa-

tion through the Txn (short for Transation) parameter.

All �ve methods may throw a StorageExeption or a

TransationExeption. GUIDs are explained in detail

in 3.1 and queries in 3.2.

vides a avor of our interfaes by showing the �ve

operations used to aess a table's data.

The rest of this setion is strutured as follows.

We desribe the motivation for and the use of glob-

ally unique identi�ers in 3.1, followed by queries

(3.2), hints (3.3), and aess ontrol (3.4). We on-

lude this setion with a summary of our design

in 3.5.

3.1 Globally Unique Identi�ers

A primary hallenge for implementing an

appliation-spei� repliation sheme on a

strutured store is the identi�ation of reords

and olletions of reords aross node boundaries.

In general, database implementations require an

internal identi�er to uniquely name reords [19℄;

our reord store formalizes this identi�er and

assoiates globally unique identi�ers [28℄ (GUIDs)

with reords as well as store objets (i.e., aliases,

diretories, and tables). GUIDs represent an

attrative hoie for suh an identi�er, beause the



spei�ation for GUIDs inludes an algorithm for

generating them autonomously on every node while

also guaranteeing that they are globally unique.

GUIDs are assoiated with store objets and

reords during reation and are immutable after-

wards. Appliations an either let the reord store

reate a fresh GUID or expliitly speify the GUID.

Typially, appliations allow the reord store to re-

ate the GUID when a store objet or reord is orig-

inally reated on a node. They speify the orre-

sponding GUID when a store objet or reord is

propagated to a replia. Following our priniple

of limiting global knowledge, the reord store en-

fores the uniqueness of GUIDs only within a lim-

ited sope. In partiular, the store guarantees the

uniqueness of GUIDs for reords within a single ta-

ble and the uniqueness of GUIDs for store objets

within its loal name spae.

For store objets, GUIDs provide an alternative

name spae: store objets an be looked up (and

deleted) by name as well as GUID. This makes it

possible to loate repliated store objets aross dif-

ferent nodes, even if they have di�erent names on

di�erent nodes, as long as the store objets share

a ommon GUID. As a result, store objets an be

e�etively repliated, even though di�erent nodes

may have di�erent poliies for organizing the loal

store.

For reords, GUIDs provide the only name spae.

Every table has a �eld representing its reords'

GUIDs; this is omparable to the primary key in a

relational database. As shown in Figure 1, reords

an be added, written, read, and deleted by GUID

only. Furthermore, operations manipulate only one

reord at a time. The simpliity and regularity of

these operations simpli�es logging for repliation.

We believe that it does not represent an undue lim-

itation, beause many tasks need to aess only a

small number of reords. However, aess to reords

by GUID alone is not suÆient, beause most appli-

ations have external identi�ers, suh as user names

or book titles, that also need to be searhed.

3.2 Queries

Appliations searh the reords of a table using

queries, for example, when searhing for all mail

messages sent by a partiular user. A query is not

limited to GUID-based reord aess and it an re-

turn more than one reord. A query has three parts:

(1) a selet lause that spei�es whih reords to se-

let, (2) a (possibly empty) list of sort lauses that

spei�es the sort order for the seleted reords, and

(3) a list of �elds that spei�es whih �elds to return

of the seleted and sorted reords. The selet lause

onsists of one or more sublauses that ompare a

�eld to a value. This value may be spei�ed at either

of two times: query reation time or query exeution

time. In the latter ase, the reord store reates a

query template, whih is instantiated with the atual

value at exeution time (see Figure 1). Comparisons

may be negated and are ombined using onjun-

tions and disjuntions. The result of a query is an

iterator over the seleted and sorted reords.

The hallenge in designing a query faility for

reord storage is to balane expressiveness against

implementation omplexity and performane. To

be onsistent with the priniple of limiting global

knowledge, queries, just like other operations on ta-

bles, are restrited to a single table, thus avoid-

ing the omplexities assoiated with supporting

joins [19, 33℄. Furthermore, to be onsistent with

the priniple of not hiding power, queries support

sort lauses and templates. Sort lauses ensure that

a query's results are ordered. Appliations thus

do not need to sort the returned data themselves

and the reord store an e�etively shedule the

prefething of query results. Templates let applia-

tions express the struture of ommon queries, for

example, those resulting from users �lling out searh

forms. The reord store an thus optimize table lay-

out and indexes for performing these queries well.

3.3 Hints

Appliation-spei� hints have been suessfully

used to optimize the ahing and prefething be-

havior of �le systems [27, 42℄, thus suggesting that

they an be an e�etive mehanism for optimizing

the performane of reord storage as well. For �le

systems, hints are dynamially issued by applia-

tions beause they primarily ontrol the dynami

behavior of the �le system ahe. To perform well,

however, a reord store not only needs to optimize

the management of its ahe, but also optimize the

on-disk layout of tables (i.e., the on-disk order of

reords) as well as the generation of indexes (i.e.,

for whih �elds to generate whih indexes).

Our reord store onsequently uses sets of hints

to haraterize dominant aess patterns for tables.

Hints are expliitly reated for a spei� table and

statially assoiated with it. We expet them to

only hange when workloads hange. Individual

hints desribe either an add, write, read, query, or

delete operation. They have a name to simplify pro-

grammati aess and a weight speifying that hint's

relative importane. Hints for add, write, and read

operations also speify the �elds to be added, writ-



Hint reateHint(int type,String name,int weight,

List fields, Query q);

/* Create a new hint with type, name, and

weight. fields speifies the fields for

add, write, and read hints. q speifies

the query for query hints. */

void setHints(List hints, Txn t);

/* Set a table's hints. */

List getHints(Txn t);

/* Get a table's hints. */

Figure 2: A table's operations on hints. Hints

are reated for a spei� table and always a-

essed as a set. All three methods may throw a

StorageExeption; setHints() and getHints() may

also throw a TransationExeption.

ten, or read. Hints for queries speify the query to

be performed. Figure 2 illustrates the interfae for

managing hints.

Based on these hints, the reord store an opti-

mize the reation of indexes as well as the physial

layout of a table. For example, if the workload spe-

i�ed by the hints is dominated by reads, the reord

store should reate indexes for all �elds searhed

by queries. At the same time, if the workload is

more balaned between reads and writes, it should

only reate indexes for the most frequently searhed

�elds. Finally, if the majority of queries searh on

a partiular �eld or are sorted by a partiular �eld,

it should store the reords ordered by that �eld.

3.4 Aess Control

Choosing an appropriate aess ontrol model for

the reord store is diÆult. Common �le systems,

suh as those on Unix or Windows NT, typially use

a form of aess ontrol list (ACL) that is stored

with a �le's meta-data and maintained by the �le

system. At the same time, an inreasing number

of systems base aess ontrol on the name of a

resoure and not on its meta-data. For example,

Java seurity [17℄, distributed virtual mahines [41℄,

and domain and type enforement [3℄ rely on en-

tral poliy desriptions that are based on resoure

names. Similarly, SPKI [12℄ uses authorization er-

ti�ates that speify the name of a resoure. It has

already been shown that merging �le system per-

mission models is diÆult [23℄. So, settling on any

of these models or developing our own is not viable

as we want the reord store to sale aross a wide

Permission Corresponding Rights

add To add to a diretory or to a table.

write To hange a diretory or a reord.

read To read data and meta-data.

delete To delete a store objet or reord.

ontrol To hange a store objet's or reord's

ACL.

layout To hange a table's shema.

hint To hange a table's performane hints.

Table 1: The permissions used by the reord store.

range of omputing platforms.

For our store, we hose to speify a standard

interfae to an external aess ontroller that im-

plements the platform-spei� aess ontrol model.

The aess ontroller interfae supports both ACL-

based and name-based aess ontrol and is invoked

by the reord store on all operations. For tables, it

an provide aess ontrol at the granularity of the

entire table, individual reords, as well as individual

�elds. In order to keep the aess ontroller inter-

fae simple, it uses seven permissions to represent

the individual reord store operations, as shown in

Table 1.

The reord store manages the ACLs assoiated

with store objets as well as reords for ACL-based

aess ontrol. It stores their internal, binary rep-

resentation with its own meta-data and lets ap-

pliations aess their external objet representa-

tion. Furthermore, it uses the aess ontroller to

onvert between the two representations. Newly

reated store objets automatially inherit a opy

of their parent diretory's ACL. Similarly, newly

added reords are proteted by their table's ACL.

The omplete interfae of the aess ontroller is

shown in Figure 3.

3.5 Summary

In our design, reords are stored in tables, and ta-

bles, in turn, are organized in diretories, forming a

hierarhial name spae similar to that of �le sys-

tems. To ensure the salability of the reord store,

all operations on tables a�et only a singe table. To

ensure its reliability, all operations are atomi and

appliations an use transations to group several

operations into one atomi unit. To simplify repli-

ation, all reords are assoiated with GUIDs and

aessed by GUID, one reord at a time. Applia-

tions use queries to searh reords by other riteria.

Furthermore, appliations an provide hints, so that

the reord store an optimize table aess and lay-

out for the appliations' workload. Finally, aess



publi interfae AessController {

boolean usesAls();

/* Return true if the aess ontroller

uses ACLs. */

void hek(String name, Guid g, int perm,

byte[℄ al);

/* Chek that the aller has permissions

perm for the store objet with name

and GUID g. */

void hek(String path, Guid g1, Guid g2,

List fields, int perm, byte[℄ al);

/* Chek that the aller has permissions

perm for fields of the reord with

GUID g2 in the table with name and

GUID g1. */

Al onvert(byte[℄ al);

/* Convert the binary representation of

al into its objet representation. */

byte[℄ onvert(Al al);

/* Convert the objet representation of

al into its binary representation. */

}

Figure 3: The interfae to the aess ontroller. The

name argument for both hek() methods is the fully

quali�ed name that does not ontain any aliases for the

orresponding store objet. If the aess ontroller uses

ACLs, the reord store passes the ACL proteting a store

objet or reord to the orresponding hek() method.

Both hek() methods throw a SeurityExeption if

the hek fails.

ontrol is delegated to an external aess ontroller,

whih an perform heks based on ACLs or names.

4 Prototype Implementation

The primary goal for our prototype implementation

is to provide a platform for validating that our de-

sign (1) meets the needs of modern data-entri ap-

pliations and (2) e�etively supports appliation-

spei� repliation. We therefore deided to imple-

ment our prototype using a relational database as

the baking store instead of providing a native im-

plementation. This may seem like a strange dei-

sion, given our assertion that relational databases

are too omplex; however, for our prototype the re-

lational database ats simply as a reliable persis-

tent store with support for transations. Our im-

plementation is written in Java and uses JDBC [45℄

to aess the underlying database. It onsists of

16 lasses and about 8,200 lines of well-doumented

ode.

Our implementation maps the reord store into

the database as follows. It uses a separate database

table to store eah reord store table. Additionally,

it uses three database tables to store meta-data, one

for the hierarhial name spae, one for the �eld

desriptors of all reord store tables, and one for

the hints of all reord store tables.

To minimize any performane overhead aused

by using the database, the implementation makes

extensive use of ahing. Transations are an im-

pliit property of the database onnetions used by

JDBC to aess a database. Our implementation

thus maintains a pool of onnetions and maps the

expliit transations used in the reord store API to

the orresponding database onnetions. Further-

more, it uses prepared statements for all operations

on reord store tables and ahes them for future re-

use. Finally, it ahes the Java objets representing

store objets.

5 Experienes

In order to gain experiene with our reord-storage

interfae, we implemented several benhmark pro-

grams and measured their exeution on the reord

store. For omparison, we also implemented and

measured several of these tests using straight JDBC.

Our benhmark programs are:

1. A miro-benhmark that reates a simple di-

tionary table mapping integer keys to string

values.

2. An appliation implementing a portion of the

TPC-W benhmark for e-ommere [43℄ that

searhes a database for all the books by a given

author.

3. An appliation, also based on the TPC-W

benhmark, that implements a user database

supporting aount additions, logons, and a-

ount updating after an order.

4. A simple mail server that supports the fun-

tions neessary for responding to IMAP4 re-

quests [11℄. We layered the mail server on top

of a repliation module that interepts alls to

the reord store and opies data to a peer ma-

hine.



Writing these programs allowed us to gauge the

usefulness of the reord store's API, as well as to

disover aws. Overall, using the reord store's

interfae is easier than using JDBC, mostly due

to its lean design. The two most useful fea-

tures turned out to be the automati onnetion

management, whih simpli�es multi-threaded pro-

gramming, and expliit transation support, whih

proved simpler than assoiating transations with

onnetions. Furthermore, our experienes showed

that the interfae is both suÆiently powerful to

write a real appliation and simple enough to imple-

ment repliation on top of it. The major drawbak

of the API turned out to be its verbosity: to perform

operations that take a single line of SQL ode re-

quires several lines to build the orresponding reord

store data strutures. However, the API enourages

re-use of these data strutures, so the omplexity is

entralized. The programs also demonstrated that

the performane of the reord store, even when lay-

ered on top of JDBC, is good enough to be used

seriously.

5.1 Experimental Setup

We had three goals in evaluating our prototype im-

plementation. The �rst was to make sure that our

implementation did not have a major impat on per-

formane relative to that of JDBC. The seond was

to demonstrate that the reord store performs well

for the workloads it targets, suh as e-ommere

or eletroni mail. The third was to show that

the interfae an e�etively support an appliation-

spei� repliation mehanism. All experiments use

Sun's HotSpot Server virtual mahine, version 2.0

RC2, and a ommerial relational database as the

underlying storage layer. They were performed on

ommodity PCs with a 350 MHz Pentium III pro-

essor, 128 MByte of RAM, and two IDE hard disks,

whih are onneted by a 100 Mbps swithed Eth-

ernet. We report the average of ten trials for eah

experiment.

5.2 Miro-Benhmarks

The �rst miro-benhmark tests the overhead intro-

dued by the reord store interfae. In this test, a

table with two �elds, an integer key and a string

value, is populated with data, then queried by in-

teger key, and �nally updated by GUID. The size

of the string was varied between 10 bytes and 7,000

bytes, near the maximum bu�er size of JDBC. The

throughput results in Figure 4 show that the perfor-

mane di�erene is never greater than 16%, whih

0

100

200

300

400

500

600

700

ad
d 

(1
0b

)

ad
d 

(1
00

0b
)

ad
d 

(7
00

0b
)

writ
e 

(1
0b

)

writ
e 

(1
00

0b
)

writ
e 

(7
00

0b
)

qu
er

y (
10

b)

qu
er

y (
10

00
b)

qu
er

y (
70

00
b)

Operation and Value Size

O
p

er
at

io
n

s 
p

er
 s

ec
o

n
d

JDBC

Record Store

Figure 4: Performane omparison of JDBC and the

reord store for adding, writing, and querying 10, 1000,

and 7000 byte values. Bars represent throughput in op-

erations per seond.

ours for small data items that are stored in the

bu�er ahe of the database. This represents the

worst-ase performane, beause the overhead of the

reord store interfae is amortized over reading just

ten bytes of data. For larger data values, the over-

head drops to less than 6%. For 1,000 byte values,

the performane on writes is better than for 10 byte

values due to the underlying database implementa-

tion. Nonetheless, this test demonstrates that the

overhead introdued by the reord store is relatively

small and does not severely ompromise the perfor-

mane of JDBC.

The next test simulates \Searh Author Web In-

teration" database operations from the TPC-W e-

ommere benhmark [43℄. In this test, two tables,

an author table and a book table, are populated

with a set of 5,000 author names and 30,000 book

titles that are randomly generated using a tool pro-

vided with the benhmark spei�ation. Eah book

reord ontains a �eld identifying the book's author

by author ID. The test program piks a random

author name and then queries for books by those

authors whose names start with the same letters.

Beause titles and authors are stored in separate

tables, the implementation on top of JDBC uses a

join operation on the author ID for both tables. In

the reord store interfae, however, it must be im-

plemented by performing a nested loop join: �rst

the program queries for the author, to �nd the au-

thor ID, and then the book table is queried to �nd

books by that author. We ran the test searhing for

one, ten, and �fty books.

The results, shown in Figure 5, illustrate that



0

20

40

60

80

100

120

140

160

180

1 10 50

Number of books in result

S
ea

rc
h

es
 p

er
 s

ec
o

n
d

JDBC

Record Store

Figure 5: Performane omparison of JDBC and the

reord store for searhing a database of books by their

author. Bars represent throughput in operations per

seond when 1, 10, and 50 books are requested.

there is a signi�ant performane penalty for using

an interfae without relational operators. The re-

sults for searhing for a single book are somewhat

anomalous. In this ase, the data set is small enough

to �t into the database's bu�er ahe. However, due

to a bug in JDBC, the reord store has to iterate

through all the results for eah query. Consequently,

the JDBC implementation is able to satisfy searhes

for a single book out of memory, while the reord

store is fored to go to disk. The results for searh-

ing for 10 and 50 books better demonstrate the

penalty of not supporting relations. The through-

put for 10 results is about 50% of the throughput

of JDBC, while for 50 results it is 45% as fast. The

di�erene an be aounted for by the reord store

implementation issuing separate queries for eah au-

thor until it has a suÆient number of results. Over-

all, this test demonstrates that for ommon Web

appliations, suh as searhing a database and re-

turning a small number of results, the reord store

performs well enough that the ommon order-of-

magnitude di�erenes in database performane do

not our [20℄.

The �nal miro-benhmark implements the \Buy

Request Web Interation" from TPC-W. This test

uses a table of user aounts and a separate table

of addresses. During eah request session, a user

either logs on to an existing aount or reates a

new user aount and address. Following that, the

user may exit without ordering, in whih ase the

last-logon time of the aount is updated, or make

an order, whih auses the whole aount to be read

and the aount balane to be updated. This benh-

0

10

20

30

40

50

60

10 10 10 25 25 25 50 50 50

10 25 50 10 25 50 10 25 50

% of requests ordering
% of new users 

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

JDBC

Record Store

Figure 6: Performane omparison of JDBC and

the reord store for simulating user sessions on an e-

ommere site. The portion of sessions resulting in the

reation of new user aounts varies from 10% to 50%.

Similarly, the portion of sessions resulting in an order

varies from 10% to 50%. Bars represent throughput in

requests per seond.

mark is intended to highlight mixed read/write per-

formane. In order to explore the sensitivity of the

reord store to the mix of read and write opera-

tions, we varied the perentage of new users and

the perentage of users making an order. The re-

sults, shown in Figure 6, illustrate that the perfor-

mane of the reord store auses a negligible 3% to

7% loss in throughput, whih drops when perform-

ing more disk-intensive write operations. Thus, this

test demonstrates that on a realisti workload with

both read and write operations, the reord store in-

terfae adds negligible overhead to JDBC. It indi-

ates that a native implementation ould perform

equally well or better.

5.3 Repliation

As a �nal test, we implemented a simple mail server

program on top of our reord store and then inserted

a repliation layer underneath the mail server. The

repliation layer implements the repliation proto-

ol used in the Porupine luster mail server [39℄,

whih was designed for eÆient multi-master repli-

ation among a small number of peers. The protool

uses a last-writer-wins strategy for resolving update

onits, whih auses every update to rewrite the

objet with its new ontents. This is appropriate

for a mail server, sine mail messages are typially

only reated and deleted, but not modi�ed. The

repliation ode is written as a layer that interepts

requests to the reord store and logs updates while



otherwise passing through all requests. The replia-

tion layer uses a bakground thread to read objets

referened in the repliation log and to opy them

to the repliation peers.

To test the mail server, we reated a lient pro-

gram that generates requests to either send mail or

to read mail for a partiular user. The size of mes-

sages sent is hosen aording to the size distribu-

tion used in [39℄, and the users for reading mail are

hosen in a randomized round-robin fashion. Clients

randomly hoose to either send mail or read mail

with equal probability. To avoid the overhead of

parsing mail protools in our tests, we use a simpli-

�ed RPC mehanism that sends serialized Java ob-

jets over a TCP onnetion. For our experiments,

we use two mahines for running the lients and one

or two mahines for running the server, depending

on whether data is repliated or not.

Figure 7 shows the results for one mail server

without repliation handling requests from one, two,

and four lients as well as for two servers with repli-

ation handling requests from the same number of

lients. The results demonstrate that, while repli-

ation auses a 20% performane drop for a sin-

gle lient, repliation inreases the salability of the

overall mail system for two and four lients. This

inreased salability has two reasons. First, when

updates arrive through repliation, the user need

not be authentiated and her mailbox need not be

loated. Seond, updates arrive in bathes, so there

is less overhead than when proessing individual re-

quests. This experiment shows that appliation-

spei� repliation an readily be implemented on

top of the reord store and an be used to inrease

appliation salability when lient ommuniation is

relatively expensive.

5.4 Summary

Overall, we believe that the reord store's API

onsiderably simpli�es the implementation of data-

entri appliations. Furthermore, even with an im-

plementation on top of a relational database, the

reord store introdues only a small performane

overhead for many appliations. Finally, it provides

an e�etive platform for appliation-spei� repli-

ation, beause it only exposes a small number of

simple operations that modify data and that must

be aptured by the repliation layer.

0

0.5

1

1.5

2

2.5

3

3.5

1 client 2 clients 4 clients

Number of clients

M
es

sa
g

es
 p

er
 s

ec
o

n
d

Non-replicated mail

Replicated Mail

Figure 7: Performane omparison of a mail server

with and without repliation. Clients randomly ei-

ther send mail or retrieve mail for one of 1,000 users.

The non-repliated test uses a single server and mul-

tiple lients while the repliated test splits lients be-

tween two servers that repliate all data. Bars represent

throughput of the mail system in messages per seond.

6 Related Work

While storage systems over a wide range of design

points in the spae of possible storage solutions,

three aspets stand out. The �rst aspet is how

data is strutured, the seond is how the storage

system ensures reliability, and the third is the ab-

stration level provided by the storage system. Tra-

ditionally, storage systems store either unstrutured

or strutured data. On one side, �le systems and re-

overable virtual memory (RVM) manage basially

unstrutured data. On the other side, reord stores,

objet stores, tuple spaes, and relational databases

manage either reords or objets. Semi-strutured

data, notably XML [7℄, is just emerging as an alter-

native to both unstrutured and strutured data. At

the same time, eÆiently storing and querying semi-

strutured data is still a topi of ative researh [46℄.

File systems, while nearly ubiquitous, store only

unstrutured data, whih onsiderably ompliates

onurrent updates to the same �le as well as repli-

ation. Furthermore, while several e�orts have

explored providing failure atomiity for �le sys-

tems [9, 16, 22, 31, 38℄ as well as the underlying

disk system [8, 21℄, most �le systems limit failure

atomiity to their meta-data, if they provide it at

all.

RVM [30, 40℄ represents a fault-tolerant alter-

native for managing appliation state by providing

transational guarantees for regions of virtual mem-

ory. However, sine memory, like �les, is inherently



unstrutured, RVM su�ers from similar problems.

As data is diretly mapped into an appliation's ad-

dress spae, it onsiderably ompliates the e�etive

sharing between appliations as well as repliation.

Reord stores, suh as IBM's VSAM [34℄ and

Compaq's RMS [10℄, provide a reord-oriented stor-

age API and inlude support for indexes. Beause

these reord stores expose the on-disk layout of

reords and lak any high-level mehanisms for en-

suring atomiity, they are more suitable as the un-

derlying storage layer for our reord store than as a

general storage abstration for appliations. Palm

Computing's Palm OS [6℄ does not distinguish be-

tween main memory and persistent storage. Its

reord storage is limited to providing a possibly

sorted list of reords and thus represents an even

lower level of abstration.

Objet stores, suh as Thor [29℄, provide a per-

sistent heap of objets. By preserving the stru-

ture of appliation objets, they let appliations

safely share data. By using transations, they pro-

vide both onurreny ontrol and reliability aross

failures. However, objet stores are optimized for

storing heterogeneous objets and for maintaining

the relationships between them, and not for storing

large olletions of homogeneous reords.

Tuple spaes, suh as JavaSpaes [15℄ and T

Spaes [47℄, are emerging as a new kind of network

servie. A tuple spae stores objets and supports

three basi operations: write (to add an objet),

read (to return a opy of an objet that mathes a

template), and take (to remove and return an ob-

jet that mathes a template). While tuple spaes

support olletions of homogeneous objets and use

transations for reliability, their limited interfae is

not well suited for data-entri appliations that fre-

quently modify data.

Relational databases [19℄ are spei�ally de-

signed to store large olletions of reords, to pro-

vide onurreny ontrol and reliability through

the use of transations, and to support sophisti-

ated queries to aess the data. They are widely

used as the underlying store for server appliations.

Furthermore, embedded databases are inreasingly

used as a storage substrate for resoure-limited de-

vies, suh as personal digital assistants [36℄. The

level of abstration provided by databases is muh

higher than that of our reord store beause of the

support for relations, a query language [24℄, and

repliation, resulting in a system that is overly om-

plex and requires signi�ant management e�orts.

Our reord store, like other reord stores and

relational databases, manages reord-oriented data.

The store provides operations that are atomi aross

failures, and appliations an use transations to

group several operations into an atomi unit. Com-

pared to the other systems desribed, we designed

our reord store to provide a simple interfae speif-

ially tuned to the needs of modern networked data

servies. In partiular, our interfae is (1) simpler

than that of other reord stores, beause it provides

a higher level of abstration and hides the on-disk

layout of data, (2) simpler than that of relational

databases, beause it does not support many of their

advaned features, and (3) leaner than the inter-

faes of other systems, beause it learly separates

di�erent onerns and provides separate operations

and abstrations to represent them. Finally, our

reord store is the only system spei�ally designed

to support appliation-spei� repliation.

7 Conlusions

A new generation of networked data servies has ap-

peared, due in part to the suess of the Internet.

These appliations store and retrieve relatively sim-

ple data objets, but have high demands for avail-

ability and reliability, whih requires repliation.

Neither �le systems nor databases provide a good

math for these Internet appliations.

In this paper, we have presented a transational

reord store that better meets the requirements of

modern data-entri appliations. The design of our

reord store is based on three priniples: limit global

knowledge, don't hide power, and separate indepen-

dent onerns. The store ombines the manageabil-

ity of the �le system interfae with selet features for

managing reord-oriented data. Reords are stored

in tables, whih are organized in a hierarhial name

spae. To simplify repliation, the store exposes

globally unique identi�ers for individual reords as

well as the objets in its name spae. To ensure good

performane, the store uses a simple yet expressive

hinting system. Finally, to provide reliability aross

failures, all operations are atomi and appliations

an use transations to group several operations into

a single atomi unit.

An implementation of our reord store on top

of a relational database shows negligible overhead

over diret database aess for workloads dominated

by reads and writes and a reasonable overhead for

workloads dominated by relational operations. Fur-

thermore, the implementation demonstrates that

the reord store is an e�etive platform for imple-

menting appliation-spei� repliation.

We are onsidering two future extensions to our

reord store. First, we wish to support referenes



as a basi type in addition to the existing numeri,

string, and binary types. Appliations an already

referene spei� reords by using a pair of GUIDs,

one for the reord's table and the other for the

reord itself. The priniple of not hiding power sug-

gests that this type of referene should be formal-

ized, espeially sine referenes an provide infor-

mation on whih data to prefeth [5℄. Support for

referenes, however, raises the question of whether

to ensure their integrity. On one side, relational

databases provide referential integrity between pri-

mary and foreign keys and thus help appliations

maintain onsisteny between related reords. On

the other side, referential integrity learly violates

the priniple of limiting global knowledge. Conse-

quently, we plan to investigate how networked data

servies may utilize referenes in order to better un-

derstand their requirements.

Seond, the emergene of tuple spaes as a new

kind of network servie raises the question of how

to e�etively implement them. Tuple spaes lend

themselves towards storage in a table, but sup-

porting multiple versions and sublasses of objets

makes the mapping non-trivial [4, 26℄. Conse-

quently, we plan to determine the minimal feature

set neessary to implement tuple spaes diretly

within the reord store and how to integrate tuple

and reord storage.

Aknowledgments

We thank Brian Bershad for his input in early dis-

ussions of our projet. We also thank David Ely

and Suzanne Swift for their omments on earlier ver-

sions of this paper.

Referenes

[1℄ D. Agrawal, A. El Abbadi, and R. C. Steinke. Epi-

demi algorithms in repliated databases. In Pro-

eedings of the 16th ACM Symposium on Priniples

of Database Systems, pages 161{172, Tuson, Ari-

zona, May 1997.

[2℄ K. Arnold, B. O'Sullivan, R. W. Sheier, J. Waldo,

and A. Wollrath. The Jini Spei�ation. Addison-

Wesley, 1999.

[3℄ L. Badger, D. F. Sterne, D. L. Sherman, K. M.

Walker, and S. A. Haghighat. Pratial domain and

type enforement for UNIX. In Proeedings of the

1995 IEEE Symposium on Seurity and Privay,

pages 66{77, Oakland, California, May 1995.

[4℄ P. A. Bernstein, B. Harry, P. Sanders, D. Shutt, and

J. Zander. The Mirosoft repository. In Proeed-

ings of the 23rd International Conferene on Very

Large Data Bases, pages 3{12, Athens, Greee,

Aug. 1997.

[5℄ P. A. Bernstein, S. Pal, and D. Shutt. Context-

based prefeth for implementing objets on rela-

tions. In Proeedings of the 25th International Con-

ferene on Very Large Data Bases, pages 327{338,

Edinburgh Sotland, Sept. 1999.

[6℄ C. Bey, E. Freeman, D. Mulder, and J. Ostrem.

Palm OS SDK referene. Tehnial report, Palm

Computing, In., Santa Clara, California, Jan.

2000.

[7℄ T. Bray, J. Paoli, and C. M. Sperberg-MQueen.

Extensible markup language (XML) 1.0. W3C re-

ommendation, World Wide Web Consortium, Cam-

bridge, Massahusetts, Feb. 1998.

[8℄ C. Choa, R. English, D. Jaobson, A. Stepanov,

and J. Wilkes. Mime: a high performane par-

allel storage devie with strong reovery guar-

antees. Tehnial Report HPL-CSP-92-9rev1,

Hewlett Pakard, Nov. 1992.

[9℄ S. Chutani, O. T. Anderson, M. L. Kazar, B. W.

Leverett, W. A. Mason, and R. N. Sidebotham. The

Episode �le system. In Proeedings of 1992 Winter

USENIX Conferene, pages 43{60, San Franiso,

California, Jan. 1992.

[10℄ Compaq. OpenVMS reord management servies.

Referene Manual AA{PV6RC{TK, Compaq Com-

puter Corporation, Houston, Texas, Jan. 1999.

[11℄ M. R. Crispin. Internet message aess protool|

version 4. RFC 1730, Internet Engineering Task

Fore, De. 1994.

[12℄ C. M. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. SPKI erti�ate theory.

RFC 2693, Internet Engineering Task Fore, Sept.

1999.

[13℄ M. Esler, J. Hightower, T. Anderson, and G. Bor-

riello. Next entury hallenges: Data-entri net-

working for invisible omputing. In Proeedings of

the Fifth ACM/IEEE International Conferene on

Mobile Computing and Networking, pages 256{262,

Seattle, Washington, Aug. 1999.

[14℄ A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,

and P. Gauthier. Cluster-based salable network

servies. In Proeedings of the 16th ACM Sympo-

sium on Operating Systems Priniples, pages 78{

91, Saint-Malo, Frane, Ot. 1997.

[15℄ E. Freeman, S. Hupfer, and K. Arnold. Java-

Spaes Priniples, Patterns, and Pratie. Addison-

Wesley, 1999.

[16℄ G. R. Ganger and Y. N. Patt. Metadata update

performane in �le systems. In Proeedings of the



1st USENIX Symposium on Operating Systems De-

sign and Implementation, pages 49{60, Monterey,

California, Nov. 1994.

[17℄ L. Gong. Inside Java Platform Seurity|

Arhiteture, API Design, and Implementation.

Addison-Wesley, June 1999.

[18℄ J. Gray, P. Helland, P. O'Neil, and D. Shasha. The

dangers of repliation and a solution. In Proeedings

of the 1996 ACM SIGMOD International Confer-

ene on Management of Data, pages 173{182, Mon-

treal, Canada, June 1996.

[19℄ J. Gray and A. Reuter. Transation Proess-

ing: Conepts and Tehniques. Morgan Kaufmann,

1993.

[20℄ J. Greene. Mirosoft ignites new war with Orale

at Comdex show. Seattle Times, page D5, 1998. 17

November 1998.

[21℄ R. Grimm, W. C. Hsieh, W. de Jonge, and M. F.

Kaashoek. Atomi reovery units: Failure atomi-

ity for logial disks. In Proeedings of the 16th IEEE

International Conferene on Distributed Comput-

ing Systems, pages 26{36, Hong Kong, May 1996.

[22℄ R. Hagmann. Reimplementing the Cedar �le sys-

tem using logging and group ommit. In Proeed-

ings of the 11th ACM Symposium on Operating

Systems Priniples, pages 155{162, Austin, Texas,

Nov. 1987.

[23℄ D. Hitz, B. Allison, A. Borr, R. Hawley, and

M. Muhlestein. Merging NT and UNIX �lesystem

permissions. In Proeedings of the 2nd USENIX

Windows NT Symposium, pages 87{95, Seattle,

Washington, Aug. 1998.

[24℄ ISO/IEC. Information tehnology|database

languages|SQL. ISO/IEC Standard 9075, In-

ternational Standards Organization/International

Eletrotehnial Commission, Geneva, Switzer-

land, 1999.

[25℄ P. J. Keleher. Deentralized repliated-objet pro-

tools. In Proeedings of the 18th Annual ACM

Symposium on Priniples of Distributed Comput-

ing, pages 143{151, Atlanta, Georgia, May 1999.

[26℄ A. M. Keller, R. Jensen, and S. Agarwal. Persis-

tene software: Bridging objet-oriented program-

ming and relational databases. In Proeedings of the

1993 ACM SIGMOD International Conferene on

Management of Data, pages 523{528, Washington,

DC, May 1993.

[27℄ T. Kimbrel, A. Tomkins, R. H. Patterson, B. Ber-

shad, P. Cao, E. W. Felten, G. A. Gibson, A. R.

Karlin, and K. Li. A trae-driven omparison of

algorithms for parallel prefething and ahing. In

Proeedings of the 2nd USENIX Symposium on Op-

erating Systems Design and Implementation, pages

19{34, Seattle, Washington, Ot. 1996.

[28℄ P. J. Leah and R. Salz. UUIDs and GUIDs. In-

ternet Draft draft-leah-uuids-guids-01.txt, Inter-

net Engineering Task Fore, Feb. 1998.

[29℄ B. Liskov, M. Castro, L. Shrira, and A. Adya. Pro-

viding persistent objets in distributed systems. In

R. Guerraoui, editor, Proeedings of the 13th Euro-

pean Conferene on Objet-Oriented Programming,

volume 1628 of Leture Notes in Computer Si-

ene, pages 230{257, Lisbon, Portugal, June 1999.

Springer-Verlag.

[30℄ D. E. Lowell and P. M. Chen. Free transations

with Rio Vista. In Proeedings of the 16th ACM

Symposium on Operating Systems Priniples, pages

92{101, Saint-Malo, Frane, Ot. 1997.

[31℄ M. K. MKusik and G. R. Ganger. Soft up-

dates: A tehnique for eliminating most syn-

hronous writes in the fast �lesystem. In Proeed-

ings of the FREENIX Trak, 1999 USENIX Annual

Tehnial Conferene, pages 1{17, Monterey, Cali-

fornia, June 1999.

[32℄ Mirosoft. Repliation for SQL Server 7.0. White

paper, Mirosoft Corporation, Redmond, Washing-

ton, De. 1998. http://www.mirosoft.om/SQL/

deployadmin/repliation.htm.

[33℄ P. Mishra and M. H. Eih. Join proessing in

relational databases. ACM Computing Surveys,

24(1):63{113, Mar. 1992.

[34℄ B. Musteata and R. Lesser. VSAM Tehniques:

System Conepts and Programming Proedures.

QED Information Sienes, 1987.

[35℄ Orale. Orale8i advaned repliation. Tehnial

white paper, Orale Corporation, Redwood Shores,

California, Feb. 1999. http://www.orale.om/

database/douments/adv_repliation_twp.pdf.

[36℄ S. Ortiz, Jr. Embedded databases ome out of hid-

ing. IEEE Computer, 33(3):16{19, Mar. 2000.

[37℄ K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.

Theimer, and A. J. Demers. Flexible update prop-

agation for weakly onsistent repliation. In Pro-

eedings of the 16th ACM Symposium on Operat-

ing Systems Priniples, pages 288{301, Saint-Malo,

Frane, Ot. 1997.

[38℄ M. Rosenblum and J. K. Ousterhout. The design

and implementation of a log-strutured �le sys-

tem. ACM Transations on Computer Systems,

10(1):26{52, Feb. 1992.

[39℄ Y. Saito, B. N. Bershad, and H. Levy. Manageabil-

ity, availability and performane in Porupine: A

highly salable Internet mail servie. In Proeedings

of the 17th ACM Symposium on Operating Systems

Priniples, Kiawah Island Resort, South Carolina,

De. 1999.

[40℄ M. Satyanarayanan, H. H. Mashburn, P. Kumar,

D. C. Steere, and J. J. Kistler. Lightweight re-

overable virtual memory. In Proeedings of the



14th ACM Symposium on Operating Systems Prin-

iples, pages 146{160, Asheville, North Carolina,

De. 1993.

[41℄ E. G. Sirer, R. Grimm, A. J. Gregory, and B. N.

Bershad. Design and implementation of a dis-

tributed virtual mahine for networked omputers.

In Proeedings of the 17th ACM Symposium on Op-

erating Systems Priniples, pages 202{216, Kiawah

Island Resort, South Carolina, De. 1999.

[42℄ D. C. Steere. Exploiting the non-determinism and

asynhrony of set iterators to redue aggregate �le

I/O lateny. In Proeedings of the 16th ACM

Symposium on Operating Systems Priniples, pages

252{263, Saint-Malo, Frane, Ot. 1997.

[43℄ TPC. TPC benhmark W. Spei�ation 1.0.1,

Transation Proessing Performane Counil, San

Jose, California, Feb. 2000.

[44℄ M. Weiser. The omputer for the twenty-�rst en-

tury. Sienti� Amerian, 265(3):94{104, Sept.

1991.

[45℄ S. White, M. Fisher, R. Cattell, G. Hamilton, and

M. Hapner. JDBC API Tutorial and Referene.

Addison-Wesley, seond edition, June 1999.

[46℄ J. Widom. Data management for XML: Re-

searh diretions. IEEE Data Engineering Bulletin,

22(3):44{52, Sept. 1999.

[47℄ P. Wyko�, S. W. MLaughry, T. J. Lehman, and

D. A. Ford. T Spaes. IBM Systems Journal,

37(3):454{474, 1998.


