
Revisiting Stru
tured Storage: A Transa
tional Re
ord Store

Robert Grimm, Mi
hael M. Swift, and Henry M. Levy

University of Washington

frgrimm, mikesw, levyg�
s.washington.edu

UW-CSE-00-04-01

Abstra
t

An in
reasing number of appli
ations, su
h as ele
-

troni
 mail servers, web servers, and personal infor-

mation managers, handle large amounts of homo-

geneous data. This data 
an be e�e
tively repre-

sented as re
ords and manipulated through simple

operations, e.g., re
ord reading, writing, and sear
h-

ing. Unfortunately, modern storage systems are in-

appropriate for the needs of these appli
ations. On

one side, �le systems store only unstru
tured data

(byte strings) with very limited reliability guaran-

tees. On the other side, relational databases store

stru
tured data and provide both 
on
urren
y 
on-

trol and transa
tions; but relational databases are

often too slow, 
omplex, and diÆ
ult to manage for

many appli
ations.

This paper presents a transa
tional re
ord store

that dire
tly addresses the needs of modern appli
a-

tions. The store 
ombines the simpli
ity and man-

ageability of the �le system interfa
e with a sele
t

few features for managing re
ord-oriented data. We

des
ribe the prin
iples guiding the design of our

transa
tional re
ord store as well as its design. We

also present a prototype implementation and its per-

forman
e evaluation.

1 Introdu
tion

With the su

ess of the Internet, the last few years

have seen a proliferation of networked data servi
es,

su
h as ele
troni
 mail servers, web servers, and

personal information managers. Su
h appli
ations

manage data that are regular in stru
ture and eas-

ily represented as re
ords with distin
t �elds, e.g.,


onta
ts, s
hedules, user preferen
es, or 
ustomer

orders. Ele
troni
 mail messages or mer
handise de-

s
riptions are less regular, but 
an also be organized

as a set of well-de�ned �elds, su
h as sender, sub-

je
t, or order number. Internet appli
ations also

exhibit fairly simple workloads. For a given task,

they sequentially a

ess only a small number of

data sour
es, for example, when a user browses mer-


handise des
riptions or when a server pro
esses a


ustomer order. As a result, they perform a rela-

tively simple set of operations: they read, modify,

or sear
h small re
ords. Finally, these appli
ations

typi
ally require repli
ation for availability or relia-

bility.

In the future, we expe
t to see an in
reasing

number of su
h data-
entri
 appli
ations and a

wider range of 
omputing devi
es running them [13,

44℄. On the hardware side, non-traditional 
omput-

ing devi
es, su
h as palm-sized 
omputers or 
ell

phones, are already in wide-spread use and provide

a

ess to a user's 
onta
ts and messages. Newer de-

vi
es su
h as pads are about to be 
ommer
ially

released as well. On the software side, 
luster-

based servi
es implement highly available and s
al-

able networked servers [14, 39℄, while repli
ation

s
hemes spe
i�
ally designed for a mobile environ-

ment automate the syn
hronization of data between

remote and mobile nodes [1, 18, 25, 37℄.

Despite this diversity of existing and future ap-

pli
ations with 
ommon data storage needs, the

management of persistent storage remains a 
hal-

lenge. Currently, an appli
ation has two 
hoi
es|

�le systems or databases|ea
h of whi
h fails to

meet appli
ation needs in one or more dimensions.

File systems typi
ally store only unstru
tured data

and provide limited (if any) failure atomi
ity, mak-

ing them ill-suited for reliably storing large num-

bers of homogeneous re
ords. Obje
t stores and re-

lational databases manage obje
ts and re
ords, re-

spe
tively, and provide 
on
urren
y 
ontrol and reli-

ability through transa
tions. However, obje
t stores

are optimized for maintaining heterogeneous obje
ts

and their linked relationships. Relational databases

are often far too 
omplex and diÆ
ult to manage

as they provide 
onsiderable fun
tionality, e.g., sup-

port for a query language, joins, and bat
h pro
ess-

ing. These fun
tions are often overkill for modern

networked data servi
es, and they 
ome at a high




ost.

To address this la
k of appropriate storage solu-

tions, we present a transa
tional re
ord store that


ombines the simpli
ity and manageability of the �le

system interfa
e with sele
t features for managing

re
ord-oriented data. Re
ords are stored in tables,

and all re
ords in a table share the same �eld names

and types. The re
ords are the rows of the table and

the �elds are the 
olumns. Tables, in turn, are orga-

nized in dire
tories, resulting in a hierar
hi
al name

spa
e similar to that of a �le system. To simplify

repli
ation, the store exposes globally unique iden-

ti�ers [28℄ (GUIDs) for individual re
ords as well as

tables and dire
tories. To ensure good performan
e,

it uses a simple yet expressive hinting system. Fi-

nally, to provide reliability a
ross failures, all oper-

ations are atomi
 and transa
tions 
an be used to

group several operations into one atomi
 unit.

Re
ord storage as a system servi
e is not a new

idea. For example, IBM's VSAM [34℄, Compaq's

RMS [10℄, and Palm Computing's Palm OS [6℄ all

provide re
ord storage at the system level. This

raises the question of why it is ne
essary to revisit

the topi
 of stru
tured storage. We believe that

re
ord storage as a system servi
e is important for

three reasons. First, a relatively new 
lass of ap-

pli
ations, as dis
ussed above, requires it. Se
ond,

the most 
ommon 
omputing platforms do not o�er

re
ord storage. As a result, many 
ommer
ial appli-


ations either (1) ship with an appli
ation-spe
i�


solution, thus leading to unne
essary appli
ation


omplexity and a 
onsiderable dupli
ation of fun
-

tionality, or (2) build on top of a relational database,

whi
h has its own performan
e, 
ost, and 
omplex-

ity impli
ations. Third and most important, build-

ing a viable re
ord store is hard, be
ause it is not

obvious how to make the right trade-o�s between

s
alability, 
exibility, 
omplexity, and performan
e.

The primary 
ontribution of this paper is a thorough

exploration of these trade-o�s.

The rest of this paper is stru
tured as follows.

Se
tion 2 develops the prin
iples guiding the de-

sign of our transa
tional re
ord store and Se
tion 3

presents the a
tual design. Se
tion 4 des
ribes a

prototype implementation and Se
tion 5 re
e
ts on

our experien
es in building the prototype as well

as its performan
e. Se
tion 6 reviews related work.

Finally, Se
tion 7 
on
ludes.

2 Prin
iples

A pra
ti
al re
ord store for data-
entri
 appli
ations

should meet three requirements. First, it should

be reliable, i.e., its operations should be atomi


in the fa
e of failures. This is parti
ularly 
ru-


ial given the e
onomi
 signi�
an
e of Internet ser-

vi
es. Se
ond, the re
ord store should be s
alable; it

must be implementable a
ross a wide range of 
om-

puting platforms, from wearable devi
es to large-

s
ale 
lusters. Third, it should e�e
tively support

appli
ation-spe
i�
 repli
ation, providing both 
ex-

ibility and performan
e of repli
ation me
hanisms.

Relational databases use tables to store large

numbers of re
ords and provide transa
tions for reli-

ability. Te
hniques for implementing both eÆ
iently

are well known. For this reason, we also base our

re
ord store on tables and transa
tions. However,

relational databases provide 
omplex fun
tionality,

su
h as a query language, joins, and bat
h pro
ess-

ing, that are of limited use to networked data ser-

vi
es. Furthermore, databases typi
ally implement

repli
ation internally [32, 35℄ and thus la
k e�e
tive

support for appli
ation-spe
i�
 repli
ation s
hemes.

The key issues for the re
ord store are therefore

whi
h features to provide and how to stru
ture its

various interfa
es.

To guide our design, we have used three funda-

mental prin
iples:

1. Limit global knowledge. Knowledge should be

lo
ally generated and managed whenever possi-

ble. The primary purpose of this prin
iple is to

ensure an eÆ
ient implementation and s
alabil-

ity by limiting the need for global 
oordination

of system state.

2. Don't hide power. The abstra
tion barrier be-

tween appli
ations and the re
ord store should

not hide expressive power. The primary pur-

pose of this prin
iple is to ensure that the

re
ord store provides suÆ
ient fun
tionality.

3. Separate independent 
on
erns. Di�erent de-

sign aspe
ts, su
h as data layout, data a
-


ess, performan
e, or a

ess 
ontrol, should be


learly separated by using distin
t operations

and abstra
tions. The primary purpose of this

prin
iple is to ensure that the re
ord store is

easy to use and repli
ate.

These prin
iples are not absolutes, as 
learly use-

ful features may follow one prin
iple but violate oth-

ers. The three prin
iples thus need to be 
arefully

weighed against the requirements of data-
entri
 ap-

pli
ations, as dis
ussed above. When prin
iples 
on-


i
t, we typi
ally favor limiting global knowledge to

aid s
alability.



3 Design

In our design, re
ords are stored in tables, whi
h are


olle
tions of identi
ally-stru
tured re
ords. Ea
h

re
ord in a table thus has the same �elds with the

same name and type (for a given re
ord, though,

not every �eld needs to store a value). Operations

on tables a�e
t only one table. In addition, a ta-

ble has distin
t operations to manage its s
hema

(i.e., �elds), its performan
e hints, its a

ess 
on-

trol information, and its data. These operations are

straight-forward and either a

ess or modify a ta-

ble's meta-data or data. For example, the s
hema

operations allow an appli
ation to add and 
hange

individual �elds, lookup a �eld by name, and re-

trieve a list of all of a table's �elds.

Tables are organized in dire
tories, whi
h sup-

port typi
al dire
tory operations su
h as entry

lookup or move. Dire
tories fa
ilitate the logi
al

grouping of related tables, and the resulting hierar-


hi
al name spa
e provides a 
onvenient and proven

interfa
e for managing persistent storage. Adding

�les as a separate storage abstra
tion in addition to

tables makes it possible to integrate re
ord and byte

string storage into a single storage system. To fur-

ther aid manageability, the store also supports sym-

boli
 links in the form of aliases, whi
h 
an referen
e

other aliases, dire
tories, and tables and are auto-

mati
ally resolved during lookup. We 
all aliases,

dire
tories, and tables store obje
ts.

To provide reliability, all store operations are

atomi
 and appli
ations 
an spe
ify a transa
tion

to group several operations into one atomi
 unit.

To provide 
onsisten
y, all transa
tions are fully se-

rializable by default. Transa
tions 
ombine two sep-

arate 
on
erns, atomi
ity and 
on
urren
y 
ontrol,

whi
h violates one of our prin
iples. As a result, ap-

pli
ations that only need reliability, su
h as a single-

threaded 
onta
t manager running on a 
ell phone,

also pay the overhead for 
on
urren
y 
ontrol. The

re
ord store thus in
ludes the option to set a di�er-

ent isolation level for individual transa
tions.

We have spe
i�ed our re
ord store in the form

of a set of Java interfa
es and ex
eptions. The

spe
i�
ation does not rely on features unique to

Java; it simply serves as a 
on
ise des
ription of

the re
ord store's appli
ation programming inter-

fa
e (API). The store 
onsists of 15 interfa
es, most

of whi
h represent simple des
riptors su
h as �elds,

queries, or hints, with a total of 82 methods. It

also 
ontains 16 ex
eptions that represent spe
i�


ex
eptional 
onditions and are sub
lasses of 
lass

StorageEx
eption. For transa
tions, we rely on

Jini's transa
tion spe
i�
ation [2℄. Figure 1 pro-

Guid add(Guid g,List fields,List data,Txn t);

/* Add a new re
ord with GUID g and data for

fields and return its GUID. If g is null,

the GUID is automati
ally generated. */

void write(Guid g,List fields,List data,Txn t);

/* Write data to fields for the re
ord with

GUID g. */

List read(Guid g, List fields, Txn t);

/* Read fields from the re
ord with GUID g

and return that data. */

Results query(Query q, List values, Txn t);

/* Instantiate query q with values, perform

the instantiated query, and return an

iterator over the results. */

void delete(Guid g, Txn t);

/* Delete the re
ord with GUID g. */

Figure 1: The �ve methods for a

essing a table's

re
ords. Re
ords are added, written, read, and deleted

one at a time by GUID. In 
ontrast, queries 
an sear
h

re
ords a

ording to appli
ation-spe
i�
 
riteria and re-

turn more than one result. Appli
ations 
an group sev-

eral operations into an atomi
 unit by passing a transa
-

tion through the Txn (short for Transa
tion) parameter.

All �ve methods may throw a StorageEx
eption or a

Transa
tionEx
eption. GUIDs are explained in detail

in 3.1 and queries in 3.2.

vides a 
avor of our interfa
es by showing the �ve

operations used to a

ess a table's data.

The rest of this se
tion is stru
tured as follows.

We des
ribe the motivation for and the use of glob-

ally unique identi�ers in 3.1, followed by queries

(3.2), hints (3.3), and a

ess 
ontrol (3.4). We 
on-


lude this se
tion with a summary of our design

in 3.5.

3.1 Globally Unique Identi�ers

A primary 
hallenge for implementing an

appli
ation-spe
i�
 repli
ation s
heme on a

stru
tured store is the identi�
ation of re
ords

and 
olle
tions of re
ords a
ross node boundaries.

In general, database implementations require an

internal identi�er to uniquely name re
ords [19℄;

our re
ord store formalizes this identi�er and

asso
iates globally unique identi�ers [28℄ (GUIDs)

with re
ords as well as store obje
ts (i.e., aliases,

dire
tories, and tables). GUIDs represent an

attra
tive 
hoi
e for su
h an identi�er, be
ause the



spe
i�
ation for GUIDs in
ludes an algorithm for

generating them autonomously on every node while

also guaranteeing that they are globally unique.

GUIDs are asso
iated with store obje
ts and

re
ords during 
reation and are immutable after-

wards. Appli
ations 
an either let the re
ord store


reate a fresh GUID or expli
itly spe
ify the GUID.

Typi
ally, appli
ations allow the re
ord store to 
re-

ate the GUID when a store obje
t or re
ord is orig-

inally 
reated on a node. They spe
ify the 
orre-

sponding GUID when a store obje
t or re
ord is

propagated to a repli
a. Following our prin
iple

of limiting global knowledge, the re
ord store en-

for
es the uniqueness of GUIDs only within a lim-

ited s
ope. In parti
ular, the store guarantees the

uniqueness of GUIDs for re
ords within a single ta-

ble and the uniqueness of GUIDs for store obje
ts

within its lo
al name spa
e.

For store obje
ts, GUIDs provide an alternative

name spa
e: store obje
ts 
an be looked up (and

deleted) by name as well as GUID. This makes it

possible to lo
ate repli
ated store obje
ts a
ross dif-

ferent nodes, even if they have di�erent names on

di�erent nodes, as long as the store obje
ts share

a 
ommon GUID. As a result, store obje
ts 
an be

e�e
tively repli
ated, even though di�erent nodes

may have di�erent poli
ies for organizing the lo
al

store.

For re
ords, GUIDs provide the only name spa
e.

Every table has a �eld representing its re
ords'

GUIDs; this is 
omparable to the primary key in a

relational database. As shown in Figure 1, re
ords


an be added, written, read, and deleted by GUID

only. Furthermore, operations manipulate only one

re
ord at a time. The simpli
ity and regularity of

these operations simpli�es logging for repli
ation.

We believe that it does not represent an undue lim-

itation, be
ause many tasks need to a

ess only a

small number of re
ords. However, a

ess to re
ords

by GUID alone is not suÆ
ient, be
ause most appli-


ations have external identi�ers, su
h as user names

or book titles, that also need to be sear
hed.

3.2 Queries

Appli
ations sear
h the re
ords of a table using

queries, for example, when sear
hing for all mail

messages sent by a parti
ular user. A query is not

limited to GUID-based re
ord a

ess and it 
an re-

turn more than one re
ord. A query has three parts:

(1) a sele
t 
lause that spe
i�es whi
h re
ords to se-

le
t, (2) a (possibly empty) list of sort 
lauses that

spe
i�es the sort order for the sele
ted re
ords, and

(3) a list of �elds that spe
i�es whi
h �elds to return

of the sele
ted and sorted re
ords. The sele
t 
lause


onsists of one or more sub
lauses that 
ompare a

�eld to a value. This value may be spe
i�ed at either

of two times: query 
reation time or query exe
ution

time. In the latter 
ase, the re
ord store 
reates a

query template, whi
h is instantiated with the a
tual

value at exe
ution time (see Figure 1). Comparisons

may be negated and are 
ombined using 
onjun
-

tions and disjun
tions. The result of a query is an

iterator over the sele
ted and sorted re
ords.

The 
hallenge in designing a query fa
ility for

re
ord storage is to balan
e expressiveness against

implementation 
omplexity and performan
e. To

be 
onsistent with the prin
iple of limiting global

knowledge, queries, just like other operations on ta-

bles, are restri
ted to a single table, thus avoid-

ing the 
omplexities asso
iated with supporting

joins [19, 33℄. Furthermore, to be 
onsistent with

the prin
iple of not hiding power, queries support

sort 
lauses and templates. Sort 
lauses ensure that

a query's results are ordered. Appli
ations thus

do not need to sort the returned data themselves

and the re
ord store 
an e�e
tively s
hedule the

prefet
hing of query results. Templates let appli
a-

tions express the stru
ture of 
ommon queries, for

example, those resulting from users �lling out sear
h

forms. The re
ord store 
an thus optimize table lay-

out and indexes for performing these queries well.

3.3 Hints

Appli
ation-spe
i�
 hints have been su

essfully

used to optimize the 
a
hing and prefet
hing be-

havior of �le systems [27, 42℄, thus suggesting that

they 
an be an e�e
tive me
hanism for optimizing

the performan
e of re
ord storage as well. For �le

systems, hints are dynami
ally issued by appli
a-

tions be
ause they primarily 
ontrol the dynami


behavior of the �le system 
a
he. To perform well,

however, a re
ord store not only needs to optimize

the management of its 
a
he, but also optimize the

on-disk layout of tables (i.e., the on-disk order of

re
ords) as well as the generation of indexes (i.e.,

for whi
h �elds to generate whi
h indexes).

Our re
ord store 
onsequently uses sets of hints

to 
hara
terize dominant a

ess patterns for tables.

Hints are expli
itly 
reated for a spe
i�
 table and

stati
ally asso
iated with it. We expe
t them to

only 
hange when workloads 
hange. Individual

hints des
ribe either an add, write, read, query, or

delete operation. They have a name to simplify pro-

grammati
 a

ess and a weight spe
ifying that hint's

relative importan
e. Hints for add, write, and read

operations also spe
ify the �elds to be added, writ-



Hint 
reateHint(int type,String name,int weight,

List fields, Query q);

/* Create a new hint with type, name, and

weight. fields spe
ifies the fields for

add, write, and read hints. q spe
ifies

the query for query hints. */

void setHints(List hints, Txn t);

/* Set a table's hints. */

List getHints(Txn t);

/* Get a table's hints. */

Figure 2: A table's operations on hints. Hints

are 
reated for a spe
i�
 table and always a
-


essed as a set. All three methods may throw a

StorageEx
eption; setHints() and getHints() may

also throw a Transa
tionEx
eption.

ten, or read. Hints for queries spe
ify the query to

be performed. Figure 2 illustrates the interfa
e for

managing hints.

Based on these hints, the re
ord store 
an opti-

mize the 
reation of indexes as well as the physi
al

layout of a table. For example, if the workload spe
-

i�ed by the hints is dominated by reads, the re
ord

store should 
reate indexes for all �elds sear
hed

by queries. At the same time, if the workload is

more balan
ed between reads and writes, it should

only 
reate indexes for the most frequently sear
hed

�elds. Finally, if the majority of queries sear
h on

a parti
ular �eld or are sorted by a parti
ular �eld,

it should store the re
ords ordered by that �eld.

3.4 A

ess Control

Choosing an appropriate a

ess 
ontrol model for

the re
ord store is diÆ
ult. Common �le systems,

su
h as those on Unix or Windows NT, typi
ally use

a form of a

ess 
ontrol list (ACL) that is stored

with a �le's meta-data and maintained by the �le

system. At the same time, an in
reasing number

of systems base a

ess 
ontrol on the name of a

resour
e and not on its meta-data. For example,

Java se
urity [17℄, distributed virtual ma
hines [41℄,

and domain and type enfor
ement [3℄ rely on 
en-

tral poli
y des
riptions that are based on resour
e

names. Similarly, SPKI [12℄ uses authorization 
er-

ti�
ates that spe
ify the name of a resour
e. It has

already been shown that merging �le system per-

mission models is diÆ
ult [23℄. So, settling on any

of these models or developing our own is not viable

as we want the re
ord store to s
ale a
ross a wide

Permission Corresponding Rights

add To add to a dire
tory or to a table.

write To 
hange a dire
tory or a re
ord.

read To read data and meta-data.

delete To delete a store obje
t or re
ord.


ontrol To 
hange a store obje
t's or re
ord's

ACL.

layout To 
hange a table's s
hema.

hint To 
hange a table's performan
e hints.

Table 1: The permissions used by the re
ord store.

range of 
omputing platforms.

For our store, we 
hose to spe
ify a standard

interfa
e to an external a

ess 
ontroller that im-

plements the platform-spe
i�
 a

ess 
ontrol model.

The a

ess 
ontroller interfa
e supports both ACL-

based and name-based a

ess 
ontrol and is invoked

by the re
ord store on all operations. For tables, it


an provide a

ess 
ontrol at the granularity of the

entire table, individual re
ords, as well as individual

�elds. In order to keep the a

ess 
ontroller inter-

fa
e simple, it uses seven permissions to represent

the individual re
ord store operations, as shown in

Table 1.

The re
ord store manages the ACLs asso
iated

with store obje
ts as well as re
ords for ACL-based

a

ess 
ontrol. It stores their internal, binary rep-

resentation with its own meta-data and lets ap-

pli
ations a

ess their external obje
t representa-

tion. Furthermore, it uses the a

ess 
ontroller to


onvert between the two representations. Newly


reated store obje
ts automati
ally inherit a 
opy

of their parent dire
tory's ACL. Similarly, newly

added re
ords are prote
ted by their table's ACL.

The 
omplete interfa
e of the a

ess 
ontroller is

shown in Figure 3.

3.5 Summary

In our design, re
ords are stored in tables, and ta-

bles, in turn, are organized in dire
tories, forming a

hierar
hi
al name spa
e similar to that of �le sys-

tems. To ensure the s
alability of the re
ord store,

all operations on tables a�e
t only a singe table. To

ensure its reliability, all operations are atomi
 and

appli
ations 
an use transa
tions to group several

operations into one atomi
 unit. To simplify repli-


ation, all re
ords are asso
iated with GUIDs and

a

essed by GUID, one re
ord at a time. Appli
a-

tions use queries to sear
h re
ords by other 
riteria.

Furthermore, appli
ations 
an provide hints, so that

the re
ord store 
an optimize table a

ess and lay-

out for the appli
ations' workload. Finally, a

ess



publi
 interfa
e A

essController {

boolean usesA
ls();

/* Return true if the a

ess 
ontroller

uses ACLs. */

void 
he
k(String name, Guid g, int perm,

byte[℄ a
l);

/* Che
k that the 
aller has permissions

perm for the store obje
t with name

and GUID g. */

void 
he
k(String path, Guid g1, Guid g2,

List fields, int perm, byte[℄ a
l);

/* Che
k that the 
aller has permissions

perm for fields of the re
ord with

GUID g2 in the table with name and

GUID g1. */

A
l 
onvert(byte[℄ a
l);

/* Convert the binary representation of

a
l into its obje
t representation. */

byte[℄ 
onvert(A
l a
l);

/* Convert the obje
t representation of

a
l into its binary representation. */

}

Figure 3: The interfa
e to the a

ess 
ontroller. The

name argument for both 
he
k() methods is the fully

quali�ed name that does not 
ontain any aliases for the


orresponding store obje
t. If the a

ess 
ontroller uses

ACLs, the re
ord store passes the ACL prote
ting a store

obje
t or re
ord to the 
orresponding 
he
k() method.

Both 
he
k() methods throw a Se
urityEx
eption if

the 
he
k fails.


ontrol is delegated to an external a

ess 
ontroller,

whi
h 
an perform 
he
ks based on ACLs or names.

4 Prototype Implementation

The primary goal for our prototype implementation

is to provide a platform for validating that our de-

sign (1) meets the needs of modern data-
entri
 ap-

pli
ations and (2) e�e
tively supports appli
ation-

spe
i�
 repli
ation. We therefore de
ided to imple-

ment our prototype using a relational database as

the ba
king store instead of providing a native im-

plementation. This may seem like a strange de
i-

sion, given our assertion that relational databases

are too 
omplex; however, for our prototype the re-

lational database a
ts simply as a reliable persis-

tent store with support for transa
tions. Our im-

plementation is written in Java and uses JDBC [45℄

to a

ess the underlying database. It 
onsists of

16 
lasses and about 8,200 lines of well-do
umented


ode.

Our implementation maps the re
ord store into

the database as follows. It uses a separate database

table to store ea
h re
ord store table. Additionally,

it uses three database tables to store meta-data, one

for the hierar
hi
al name spa
e, one for the �eld

des
riptors of all re
ord store tables, and one for

the hints of all re
ord store tables.

To minimize any performan
e overhead 
aused

by using the database, the implementation makes

extensive use of 
a
hing. Transa
tions are an im-

pli
it property of the database 
onne
tions used by

JDBC to a

ess a database. Our implementation

thus maintains a pool of 
onne
tions and maps the

expli
it transa
tions used in the re
ord store API to

the 
orresponding database 
onne
tions. Further-

more, it uses prepared statements for all operations

on re
ord store tables and 
a
hes them for future re-

use. Finally, it 
a
hes the Java obje
ts representing

store obje
ts.

5 Experien
es

In order to gain experien
e with our re
ord-storage

interfa
e, we implemented several ben
hmark pro-

grams and measured their exe
ution on the re
ord

store. For 
omparison, we also implemented and

measured several of these tests using straight JDBC.

Our ben
hmark programs are:

1. A mi
ro-ben
hmark that 
reates a simple di
-

tionary table mapping integer keys to string

values.

2. An appli
ation implementing a portion of the

TPC-W ben
hmark for e-
ommer
e [43℄ that

sear
hes a database for all the books by a given

author.

3. An appli
ation, also based on the TPC-W

ben
hmark, that implements a user database

supporting a

ount additions, logons, and a
-


ount updating after an order.

4. A simple mail server that supports the fun
-

tions ne
essary for responding to IMAP4 re-

quests [11℄. We layered the mail server on top

of a repli
ation module that inter
epts 
alls to

the re
ord store and 
opies data to a peer ma-


hine.



Writing these programs allowed us to gauge the

usefulness of the re
ord store's API, as well as to

dis
over 
aws. Overall, using the re
ord store's

interfa
e is easier than using JDBC, mostly due

to its 
lean design. The two most useful fea-

tures turned out to be the automati
 
onne
tion

management, whi
h simpli�es multi-threaded pro-

gramming, and expli
it transa
tion support, whi
h

proved simpler than asso
iating transa
tions with


onne
tions. Furthermore, our experien
es showed

that the interfa
e is both suÆ
iently powerful to

write a real appli
ation and simple enough to imple-

ment repli
ation on top of it. The major drawba
k

of the API turned out to be its verbosity: to perform

operations that take a single line of SQL 
ode re-

quires several lines to build the 
orresponding re
ord

store data stru
tures. However, the API en
ourages

re-use of these data stru
tures, so the 
omplexity is


entralized. The programs also demonstrated that

the performan
e of the re
ord store, even when lay-

ered on top of JDBC, is good enough to be used

seriously.

5.1 Experimental Setup

We had three goals in evaluating our prototype im-

plementation. The �rst was to make sure that our

implementation did not have a major impa
t on per-

forman
e relative to that of JDBC. The se
ond was

to demonstrate that the re
ord store performs well

for the workloads it targets, su
h as e-
ommer
e

or ele
troni
 mail. The third was to show that

the interfa
e 
an e�e
tively support an appli
ation-

spe
i�
 repli
ation me
hanism. All experiments use

Sun's HotSpot Server virtual ma
hine, version 2.0

RC2, and a 
ommer
ial relational database as the

underlying storage layer. They were performed on


ommodity PCs with a 350 MHz Pentium III pro-


essor, 128 MByte of RAM, and two IDE hard disks,

whi
h are 
onne
ted by a 100 Mbps swit
hed Eth-

ernet. We report the average of ten trials for ea
h

experiment.

5.2 Mi
ro-Ben
hmarks

The �rst mi
ro-ben
hmark tests the overhead intro-

du
ed by the re
ord store interfa
e. In this test, a

table with two �elds, an integer key and a string

value, is populated with data, then queried by in-

teger key, and �nally updated by GUID. The size

of the string was varied between 10 bytes and 7,000

bytes, near the maximum bu�er size of JDBC. The

throughput results in Figure 4 show that the perfor-

man
e di�eren
e is never greater than 16%, whi
h

0

100

200

300

400

500

600

700

ad
d 

(1
0b

)

ad
d 

(1
00

0b
)

ad
d 

(7
00

0b
)

writ
e 

(1
0b

)

writ
e 

(1
00

0b
)

writ
e 

(7
00

0b
)

qu
er

y (
10

b)

qu
er

y (
10

00
b)

qu
er

y (
70

00
b)

Operation and Value Size

O
p

er
at

io
n

s 
p

er
 s

ec
o

n
d

JDBC

Record Store

Figure 4: Performan
e 
omparison of JDBC and the

re
ord store for adding, writing, and querying 10, 1000,

and 7000 byte values. Bars represent throughput in op-

erations per se
ond.

o

urs for small data items that are stored in the

bu�er 
a
he of the database. This represents the

worst-
ase performan
e, be
ause the overhead of the

re
ord store interfa
e is amortized over reading just

ten bytes of data. For larger data values, the over-

head drops to less than 6%. For 1,000 byte values,

the performan
e on writes is better than for 10 byte

values due to the underlying database implementa-

tion. Nonetheless, this test demonstrates that the

overhead introdu
ed by the re
ord store is relatively

small and does not severely 
ompromise the perfor-

man
e of JDBC.

The next test simulates \Sear
h Author Web In-

tera
tion" database operations from the TPC-W e-


ommer
e ben
hmark [43℄. In this test, two tables,

an author table and a book table, are populated

with a set of 5,000 author names and 30,000 book

titles that are randomly generated using a tool pro-

vided with the ben
hmark spe
i�
ation. Ea
h book

re
ord 
ontains a �eld identifying the book's author

by author ID. The test program pi
ks a random

author name and then queries for books by those

authors whose names start with the same letters.

Be
ause titles and authors are stored in separate

tables, the implementation on top of JDBC uses a

join operation on the author ID for both tables. In

the re
ord store interfa
e, however, it must be im-

plemented by performing a nested loop join: �rst

the program queries for the author, to �nd the au-

thor ID, and then the book table is queried to �nd

books by that author. We ran the test sear
hing for

one, ten, and �fty books.

The results, shown in Figure 5, illustrate that



0

20

40

60

80

100

120

140

160

180

1 10 50

Number of books in result

S
ea

rc
h

es
 p

er
 s

ec
o

n
d

JDBC

Record Store

Figure 5: Performan
e 
omparison of JDBC and the

re
ord store for sear
hing a database of books by their

author. Bars represent throughput in operations per

se
ond when 1, 10, and 50 books are requested.

there is a signi�
ant performan
e penalty for using

an interfa
e without relational operators. The re-

sults for sear
hing for a single book are somewhat

anomalous. In this 
ase, the data set is small enough

to �t into the database's bu�er 
a
he. However, due

to a bug in JDBC, the re
ord store has to iterate

through all the results for ea
h query. Consequently,

the JDBC implementation is able to satisfy sear
hes

for a single book out of memory, while the re
ord

store is for
ed to go to disk. The results for sear
h-

ing for 10 and 50 books better demonstrate the

penalty of not supporting relations. The through-

put for 10 results is about 50% of the throughput

of JDBC, while for 50 results it is 45% as fast. The

di�eren
e 
an be a

ounted for by the re
ord store

implementation issuing separate queries for ea
h au-

thor until it has a suÆ
ient number of results. Over-

all, this test demonstrates that for 
ommon Web

appli
ations, su
h as sear
hing a database and re-

turning a small number of results, the re
ord store

performs well enough that the 
ommon order-of-

magnitude di�eren
es in database performan
e do

not o

ur [20℄.

The �nal mi
ro-ben
hmark implements the \Buy

Request Web Intera
tion" from TPC-W. This test

uses a table of user a

ounts and a separate table

of addresses. During ea
h request session, a user

either logs on to an existing a

ount or 
reates a

new user a

ount and address. Following that, the

user may exit without ordering, in whi
h 
ase the

last-logon time of the a

ount is updated, or make

an order, whi
h 
auses the whole a

ount to be read

and the a

ount balan
e to be updated. This ben
h-

0

10

20

30

40

50

60

10 10 10 25 25 25 50 50 50

10 25 50 10 25 50 10 25 50

% of requests ordering
% of new users 

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

JDBC

Record Store

Figure 6: Performan
e 
omparison of JDBC and

the re
ord store for simulating user sessions on an e-


ommer
e site. The portion of sessions resulting in the


reation of new user a

ounts varies from 10% to 50%.

Similarly, the portion of sessions resulting in an order

varies from 10% to 50%. Bars represent throughput in

requests per se
ond.

mark is intended to highlight mixed read/write per-

forman
e. In order to explore the sensitivity of the

re
ord store to the mix of read and write opera-

tions, we varied the per
entage of new users and

the per
entage of users making an order. The re-

sults, shown in Figure 6, illustrate that the perfor-

man
e of the re
ord store 
auses a negligible 3% to

7% loss in throughput, whi
h drops when perform-

ing more disk-intensive write operations. Thus, this

test demonstrates that on a realisti
 workload with

both read and write operations, the re
ord store in-

terfa
e adds negligible overhead to JDBC. It indi-


ates that a native implementation 
ould perform

equally well or better.

5.3 Repli
ation

As a �nal test, we implemented a simple mail server

program on top of our re
ord store and then inserted

a repli
ation layer underneath the mail server. The

repli
ation layer implements the repli
ation proto-


ol used in the Por
upine 
luster mail server [39℄,

whi
h was designed for eÆ
ient multi-master repli-


ation among a small number of peers. The proto
ol

uses a last-writer-wins strategy for resolving update


on
i
ts, whi
h 
auses every update to rewrite the

obje
t with its new 
ontents. This is appropriate

for a mail server, sin
e mail messages are typi
ally

only 
reated and deleted, but not modi�ed. The

repli
ation 
ode is written as a layer that inter
epts

requests to the re
ord store and logs updates while



otherwise passing through all requests. The repli
a-

tion layer uses a ba
kground thread to read obje
ts

referen
ed in the repli
ation log and to 
opy them

to the repli
ation peers.

To test the mail server, we 
reated a 
lient pro-

gram that generates requests to either send mail or

to read mail for a parti
ular user. The size of mes-

sages sent is 
hosen a

ording to the size distribu-

tion used in [39℄, and the users for reading mail are


hosen in a randomized round-robin fashion. Clients

randomly 
hoose to either send mail or read mail

with equal probability. To avoid the overhead of

parsing mail proto
ols in our tests, we use a simpli-

�ed RPC me
hanism that sends serialized Java ob-

je
ts over a TCP 
onne
tion. For our experiments,

we use two ma
hines for running the 
lients and one

or two ma
hines for running the server, depending

on whether data is repli
ated or not.

Figure 7 shows the results for one mail server

without repli
ation handling requests from one, two,

and four 
lients as well as for two servers with repli-


ation handling requests from the same number of


lients. The results demonstrate that, while repli-


ation 
auses a 20% performan
e drop for a sin-

gle 
lient, repli
ation in
reases the s
alability of the

overall mail system for two and four 
lients. This

in
reased s
alability has two reasons. First, when

updates arrive through repli
ation, the user need

not be authenti
ated and her mailbox need not be

lo
ated. Se
ond, updates arrive in bat
hes, so there

is less overhead than when pro
essing individual re-

quests. This experiment shows that appli
ation-

spe
i�
 repli
ation 
an readily be implemented on

top of the re
ord store and 
an be used to in
rease

appli
ation s
alability when 
lient 
ommuni
ation is

relatively expensive.

5.4 Summary

Overall, we believe that the re
ord store's API


onsiderably simpli�es the implementation of data-


entri
 appli
ations. Furthermore, even with an im-

plementation on top of a relational database, the

re
ord store introdu
es only a small performan
e

overhead for many appli
ations. Finally, it provides

an e�e
tive platform for appli
ation-spe
i�
 repli-


ation, be
ause it only exposes a small number of

simple operations that modify data and that must

be 
aptured by the repli
ation layer.

0

0.5

1

1.5

2

2.5

3

3.5

1 client 2 clients 4 clients

Number of clients

M
es

sa
g

es
 p

er
 s

ec
o

n
d

Non-replicated mail

Replicated Mail

Figure 7: Performan
e 
omparison of a mail server

with and without repli
ation. Clients randomly ei-

ther send mail or retrieve mail for one of 1,000 users.

The non-repli
ated test uses a single server and mul-

tiple 
lients while the repli
ated test splits 
lients be-

tween two servers that repli
ate all data. Bars represent

throughput of the mail system in messages per se
ond.

6 Related Work

While storage systems 
over a wide range of design

points in the spa
e of possible storage solutions,

three aspe
ts stand out. The �rst aspe
t is how

data is stru
tured, the se
ond is how the storage

system ensures reliability, and the third is the ab-

stra
tion level provided by the storage system. Tra-

ditionally, storage systems store either unstru
tured

or stru
tured data. On one side, �le systems and re-


overable virtual memory (RVM) manage basi
ally

unstru
tured data. On the other side, re
ord stores,

obje
t stores, tuple spa
es, and relational databases

manage either re
ords or obje
ts. Semi-stru
tured

data, notably XML [7℄, is just emerging as an alter-

native to both unstru
tured and stru
tured data. At

the same time, eÆ
iently storing and querying semi-

stru
tured data is still a topi
 of a
tive resear
h [46℄.

File systems, while nearly ubiquitous, store only

unstru
tured data, whi
h 
onsiderably 
ompli
ates


on
urrent updates to the same �le as well as repli-


ation. Furthermore, while several e�orts have

explored providing failure atomi
ity for �le sys-

tems [9, 16, 22, 31, 38℄ as well as the underlying

disk system [8, 21℄, most �le systems limit failure

atomi
ity to their meta-data, if they provide it at

all.

RVM [30, 40℄ represents a fault-tolerant alter-

native for managing appli
ation state by providing

transa
tional guarantees for regions of virtual mem-

ory. However, sin
e memory, like �les, is inherently



unstru
tured, RVM su�ers from similar problems.

As data is dire
tly mapped into an appli
ation's ad-

dress spa
e, it 
onsiderably 
ompli
ates the e�e
tive

sharing between appli
ations as well as repli
ation.

Re
ord stores, su
h as IBM's VSAM [34℄ and

Compaq's RMS [10℄, provide a re
ord-oriented stor-

age API and in
lude support for indexes. Be
ause

these re
ord stores expose the on-disk layout of

re
ords and la
k any high-level me
hanisms for en-

suring atomi
ity, they are more suitable as the un-

derlying storage layer for our re
ord store than as a

general storage abstra
tion for appli
ations. Palm

Computing's Palm OS [6℄ does not distinguish be-

tween main memory and persistent storage. Its

re
ord storage is limited to providing a possibly

sorted list of re
ords and thus represents an even

lower level of abstra
tion.

Obje
t stores, su
h as Thor [29℄, provide a per-

sistent heap of obje
ts. By preserving the stru
-

ture of appli
ation obje
ts, they let appli
ations

safely share data. By using transa
tions, they pro-

vide both 
on
urren
y 
ontrol and reliability a
ross

failures. However, obje
t stores are optimized for

storing heterogeneous obje
ts and for maintaining

the relationships between them, and not for storing

large 
olle
tions of homogeneous re
ords.

Tuple spa
es, su
h as JavaSpa
es [15℄ and T

Spa
es [47℄, are emerging as a new kind of network

servi
e. A tuple spa
e stores obje
ts and supports

three basi
 operations: write (to add an obje
t),

read (to return a 
opy of an obje
t that mat
hes a

template), and take (to remove and return an ob-

je
t that mat
hes a template). While tuple spa
es

support 
olle
tions of homogeneous obje
ts and use

transa
tions for reliability, their limited interfa
e is

not well suited for data-
entri
 appli
ations that fre-

quently modify data.

Relational databases [19℄ are spe
i�
ally de-

signed to store large 
olle
tions of re
ords, to pro-

vide 
on
urren
y 
ontrol and reliability through

the use of transa
tions, and to support sophisti-


ated queries to a

ess the data. They are widely

used as the underlying store for server appli
ations.

Furthermore, embedded databases are in
reasingly

used as a storage substrate for resour
e-limited de-

vi
es, su
h as personal digital assistants [36℄. The

level of abstra
tion provided by databases is mu
h

higher than that of our re
ord store be
ause of the

support for relations, a query language [24℄, and

repli
ation, resulting in a system that is overly 
om-

plex and requires signi�
ant management e�orts.

Our re
ord store, like other re
ord stores and

relational databases, manages re
ord-oriented data.

The store provides operations that are atomi
 a
ross

failures, and appli
ations 
an use transa
tions to

group several operations into an atomi
 unit. Com-

pared to the other systems des
ribed, we designed

our re
ord store to provide a simple interfa
e spe
if-

i
ally tuned to the needs of modern networked data

servi
es. In parti
ular, our interfa
e is (1) simpler

than that of other re
ord stores, be
ause it provides

a higher level of abstra
tion and hides the on-disk

layout of data, (2) simpler than that of relational

databases, be
ause it does not support many of their

advan
ed features, and (3) 
leaner than the inter-

fa
es of other systems, be
ause it 
learly separates

di�erent 
on
erns and provides separate operations

and abstra
tions to represent them. Finally, our

re
ord store is the only system spe
i�
ally designed

to support appli
ation-spe
i�
 repli
ation.

7 Con
lusions

A new generation of networked data servi
es has ap-

peared, due in part to the su

ess of the Internet.

These appli
ations store and retrieve relatively sim-

ple data obje
ts, but have high demands for avail-

ability and reliability, whi
h requires repli
ation.

Neither �le systems nor databases provide a good

mat
h for these Internet appli
ations.

In this paper, we have presented a transa
tional

re
ord store that better meets the requirements of

modern data-
entri
 appli
ations. The design of our

re
ord store is based on three prin
iples: limit global

knowledge, don't hide power, and separate indepen-

dent 
on
erns. The store 
ombines the manageabil-

ity of the �le system interfa
e with sele
t features for

managing re
ord-oriented data. Re
ords are stored

in tables, whi
h are organized in a hierar
hi
al name

spa
e. To simplify repli
ation, the store exposes

globally unique identi�ers for individual re
ords as

well as the obje
ts in its name spa
e. To ensure good

performan
e, the store uses a simple yet expressive

hinting system. Finally, to provide reliability a
ross

failures, all operations are atomi
 and appli
ations


an use transa
tions to group several operations into

a single atomi
 unit.

An implementation of our re
ord store on top

of a relational database shows negligible overhead

over dire
t database a

ess for workloads dominated

by reads and writes and a reasonable overhead for

workloads dominated by relational operations. Fur-

thermore, the implementation demonstrates that

the re
ord store is an e�e
tive platform for imple-

menting appli
ation-spe
i�
 repli
ation.

We are 
onsidering two future extensions to our

re
ord store. First, we wish to support referen
es



as a basi
 type in addition to the existing numeri
,

string, and binary types. Appli
ations 
an already

referen
e spe
i�
 re
ords by using a pair of GUIDs,

one for the re
ord's table and the other for the

re
ord itself. The prin
iple of not hiding power sug-

gests that this type of referen
e should be formal-

ized, espe
ially sin
e referen
es 
an provide infor-

mation on whi
h data to prefet
h [5℄. Support for

referen
es, however, raises the question of whether

to ensure their integrity. On one side, relational

databases provide referential integrity between pri-

mary and foreign keys and thus help appli
ations

maintain 
onsisten
y between related re
ords. On

the other side, referential integrity 
learly violates

the prin
iple of limiting global knowledge. Conse-

quently, we plan to investigate how networked data

servi
es may utilize referen
es in order to better un-

derstand their requirements.

Se
ond, the emergen
e of tuple spa
es as a new

kind of network servi
e raises the question of how

to e�e
tively implement them. Tuple spa
es lend

themselves towards storage in a table, but sup-

porting multiple versions and sub
lasses of obje
ts

makes the mapping non-trivial [4, 26℄. Conse-

quently, we plan to determine the minimal feature

set ne
essary to implement tuple spa
es dire
tly

within the re
ord store and how to integrate tuple

and re
ord storage.

A
knowledgments

We thank Brian Bershad for his input in early dis-


ussions of our proje
t. We also thank David Ely

and Suzanne Swift for their 
omments on earlier ver-

sions of this paper.

Referen
es

[1℄ D. Agrawal, A. El Abbadi, and R. C. Steinke. Epi-

demi
 algorithms in repli
ated databases. In Pro-


eedings of the 16th ACM Symposium on Prin
iples

of Database Systems, pages 161{172, Tu
son, Ari-

zona, May 1997.

[2℄ K. Arnold, B. O'Sullivan, R. W. S
hei
er, J. Waldo,

and A. Wollrath. The Jini Spe
i�
ation. Addison-

Wesley, 1999.

[3℄ L. Badger, D. F. Sterne, D. L. Sherman, K. M.

Walker, and S. A. Haghighat. Pra
ti
al domain and

type enfor
ement for UNIX. In Pro
eedings of the

1995 IEEE Symposium on Se
urity and Priva
y,

pages 66{77, Oakland, California, May 1995.

[4℄ P. A. Bernstein, B. Harry, P. Sanders, D. Shutt, and

J. Zander. The Mi
rosoft repository. In Pro
eed-

ings of the 23rd International Conferen
e on Very

Large Data Bases, pages 3{12, Athens, Gree
e,

Aug. 1997.

[5℄ P. A. Bernstein, S. Pal, and D. Shutt. Context-

based prefet
h for implementing obje
ts on rela-

tions. In Pro
eedings of the 25th International Con-

feren
e on Very Large Data Bases, pages 327{338,

Edinburgh S
otland, Sept. 1999.

[6℄ C. Bey, E. Freeman, D. Mulder, and J. Ostrem.

Palm OS SDK referen
e. Te
hni
al report, Palm

Computing, In
., Santa Clara, California, Jan.

2000.

[7℄ T. Bray, J. Paoli, and C. M. Sperberg-M
Queen.

Extensible markup language (XML) 1.0. W3C re
-

ommendation, World Wide Web Consortium, Cam-

bridge, Massa
husetts, Feb. 1998.

[8℄ C. Choa, R. English, D. Ja
obson, A. Stepanov,

and J. Wilkes. Mime: a high performan
e par-

allel storage devi
e with strong re
overy guar-

antees. Te
hni
al Report HPL-CSP-92-9rev1,

Hewlett Pa
kard, Nov. 1992.

[9℄ S. Chutani, O. T. Anderson, M. L. Kazar, B. W.

Leverett, W. A. Mason, and R. N. Sidebotham. The

Episode �le system. In Pro
eedings of 1992 Winter

USENIX Conferen
e, pages 43{60, San Fran
is
o,

California, Jan. 1992.

[10℄ Compaq. OpenVMS re
ord management servi
es.

Referen
e Manual AA{PV6RC{TK, Compaq Com-

puter Corporation, Houston, Texas, Jan. 1999.

[11℄ M. R. Crispin. Internet message a

ess proto
ol|

version 4. RFC 1730, Internet Engineering Task

For
e, De
. 1994.

[12℄ C. M. Ellison, B. Frantz, B. Lampson, R. Rivest,

B. Thomas, and T. Ylonen. SPKI 
erti�
ate theory.

RFC 2693, Internet Engineering Task For
e, Sept.

1999.

[13℄ M. Esler, J. Hightower, T. Anderson, and G. Bor-

riello. Next 
entury 
hallenges: Data-
entri
 net-

working for invisible 
omputing. In Pro
eedings of

the Fifth ACM/IEEE International Conferen
e on

Mobile Computing and Networking, pages 256{262,

Seattle, Washington, Aug. 1999.

[14℄ A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,

and P. Gauthier. Cluster-based s
alable network

servi
es. In Pro
eedings of the 16th ACM Sympo-

sium on Operating Systems Prin
iples, pages 78{

91, Saint-Malo, Fran
e, O
t. 1997.

[15℄ E. Freeman, S. Hupfer, and K. Arnold. Java-

Spa
es Prin
iples, Patterns, and Pra
ti
e. Addison-

Wesley, 1999.

[16℄ G. R. Ganger and Y. N. Patt. Metadata update

performan
e in �le systems. In Pro
eedings of the



1st USENIX Symposium on Operating Systems De-

sign and Implementation, pages 49{60, Monterey,

California, Nov. 1994.

[17℄ L. Gong. Inside Java Platform Se
urity|

Ar
hite
ture, API Design, and Implementation.

Addison-Wesley, June 1999.

[18℄ J. Gray, P. Helland, P. O'Neil, and D. Shasha. The

dangers of repli
ation and a solution. In Pro
eedings

of the 1996 ACM SIGMOD International Confer-

en
e on Management of Data, pages 173{182, Mon-

treal, Canada, June 1996.

[19℄ J. Gray and A. Reuter. Transa
tion Pro
ess-

ing: Con
epts and Te
hniques. Morgan Kaufmann,

1993.

[20℄ J. Greene. Mi
rosoft ignites new war with Ora
le

at Comdex show. Seattle Times, page D5, 1998. 17

November 1998.

[21℄ R. Grimm, W. C. Hsieh, W. de Jonge, and M. F.

Kaashoek. Atomi
 re
overy units: Failure atomi
-

ity for logi
al disks. In Pro
eedings of the 16th IEEE

International Conferen
e on Distributed Comput-

ing Systems, pages 26{36, Hong Kong, May 1996.

[22℄ R. Hagmann. Reimplementing the Cedar �le sys-

tem using logging and group 
ommit. In Pro
eed-

ings of the 11th ACM Symposium on Operating

Systems Prin
iples, pages 155{162, Austin, Texas,

Nov. 1987.

[23℄ D. Hitz, B. Allison, A. Borr, R. Hawley, and

M. Muhlestein. Merging NT and UNIX �lesystem

permissions. In Pro
eedings of the 2nd USENIX

Windows NT Symposium, pages 87{95, Seattle,

Washington, Aug. 1998.

[24℄ ISO/IEC. Information te
hnology|database

languages|SQL. ISO/IEC Standard 9075, In-

ternational Standards Organization/International

Ele
trote
hni
al Commission, Geneva, Switzer-

land, 1999.

[25℄ P. J. Keleher. De
entralized repli
ated-obje
t pro-

to
ols. In Pro
eedings of the 18th Annual ACM

Symposium on Prin
iples of Distributed Comput-

ing, pages 143{151, Atlanta, Georgia, May 1999.

[26℄ A. M. Keller, R. Jensen, and S. Agarwal. Persis-

ten
e software: Bridging obje
t-oriented program-

ming and relational databases. In Pro
eedings of the

1993 ACM SIGMOD International Conferen
e on

Management of Data, pages 523{528, Washington,

DC, May 1993.

[27℄ T. Kimbrel, A. Tomkins, R. H. Patterson, B. Ber-

shad, P. Cao, E. W. Felten, G. A. Gibson, A. R.

Karlin, and K. Li. A tra
e-driven 
omparison of

algorithms for parallel prefet
hing and 
a
hing. In

Pro
eedings of the 2nd USENIX Symposium on Op-

erating Systems Design and Implementation, pages

19{34, Seattle, Washington, O
t. 1996.

[28℄ P. J. Lea
h and R. Salz. UUIDs and GUIDs. In-

ternet Draft draft-lea
h-uuids-guids-01.txt, Inter-

net Engineering Task For
e, Feb. 1998.

[29℄ B. Liskov, M. Castro, L. Shrira, and A. Adya. Pro-

viding persistent obje
ts in distributed systems. In

R. Guerraoui, editor, Pro
eedings of the 13th Euro-

pean Conferen
e on Obje
t-Oriented Programming,

volume 1628 of Le
ture Notes in Computer S
i-

en
e, pages 230{257, Lisbon, Portugal, June 1999.

Springer-Verlag.

[30℄ D. E. Lowell and P. M. Chen. Free transa
tions

with Rio Vista. In Pro
eedings of the 16th ACM

Symposium on Operating Systems Prin
iples, pages

92{101, Saint-Malo, Fran
e, O
t. 1997.

[31℄ M. K. M
Kusi
k and G. R. Ganger. Soft up-

dates: A te
hnique for eliminating most syn-


hronous writes in the fast �lesystem. In Pro
eed-

ings of the FREENIX Tra
k, 1999 USENIX Annual

Te
hni
al Conferen
e, pages 1{17, Monterey, Cali-

fornia, June 1999.

[32℄ Mi
rosoft. Repli
ation for SQL Server 7.0. White

paper, Mi
rosoft Corporation, Redmond, Washing-

ton, De
. 1998. http://www.mi
rosoft.
om/SQL/

deployadmin/repli
ation.htm.

[33℄ P. Mishra and M. H. Ei
h. Join pro
essing in

relational databases. ACM Computing Surveys,

24(1):63{113, Mar. 1992.

[34℄ B. Musteata and R. Lesser. VSAM Te
hniques:

System Con
epts and Programming Pro
edures.

QED Information S
ien
es, 1987.

[35℄ Ora
le. Ora
le8i advan
ed repli
ation. Te
hni
al

white paper, Ora
le Corporation, Redwood Shores,

California, Feb. 1999. http://www.ora
le.
om/

database/do
uments/adv_repli
ation_twp.pdf.

[36℄ S. Ortiz, Jr. Embedded databases 
ome out of hid-

ing. IEEE Computer, 33(3):16{19, Mar. 2000.

[37℄ K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.

Theimer, and A. J. Demers. Flexible update prop-

agation for weakly 
onsistent repli
ation. In Pro-


eedings of the 16th ACM Symposium on Operat-

ing Systems Prin
iples, pages 288{301, Saint-Malo,

Fran
e, O
t. 1997.

[38℄ M. Rosenblum and J. K. Ousterhout. The design

and implementation of a log-stru
tured �le sys-

tem. ACM Transa
tions on Computer Systems,

10(1):26{52, Feb. 1992.

[39℄ Y. Saito, B. N. Bershad, and H. Levy. Manageabil-

ity, availability and performan
e in Por
upine: A

highly s
alable Internet mail servi
e. In Pro
eedings

of the 17th ACM Symposium on Operating Systems

Prin
iples, Kiawah Island Resort, South Carolina,

De
. 1999.

[40℄ M. Satyanarayanan, H. H. Mashburn, P. Kumar,

D. C. Steere, and J. J. Kistler. Lightweight re-


overable virtual memory. In Pro
eedings of the



14th ACM Symposium on Operating Systems Prin-


iples, pages 146{160, Asheville, North Carolina,

De
. 1993.

[41℄ E. G. Sirer, R. Grimm, A. J. Gregory, and B. N.

Bershad. Design and implementation of a dis-

tributed virtual ma
hine for networked 
omputers.

In Pro
eedings of the 17th ACM Symposium on Op-

erating Systems Prin
iples, pages 202{216, Kiawah

Island Resort, South Carolina, De
. 1999.

[42℄ D. C. Steere. Exploiting the non-determinism and

asyn
hrony of set iterators to redu
e aggregate �le

I/O laten
y. In Pro
eedings of the 16th ACM

Symposium on Operating Systems Prin
iples, pages

252{263, Saint-Malo, Fran
e, O
t. 1997.

[43℄ TPC. TPC ben
hmark W. Spe
i�
ation 1.0.1,

Transa
tion Pro
essing Performan
e Coun
il, San

Jose, California, Feb. 2000.

[44℄ M. Weiser. The 
omputer for the twenty-�rst 
en-

tury. S
ienti�
 Ameri
an, 265(3):94{104, Sept.

1991.

[45℄ S. White, M. Fisher, R. Cattell, G. Hamilton, and

M. Hapner. JDBC API Tutorial and Referen
e.

Addison-Wesley, se
ond edition, June 1999.

[46℄ J. Widom. Data management for XML: Re-

sear
h dire
tions. IEEE Data Engineering Bulletin,

22(3):44{52, Sept. 1999.

[47℄ P. Wy
ko�, S. W. M
Laughry, T. J. Lehman, and

D. A. Ford. T Spa
es. IBM Systems Journal,

37(3):454{474, 1998.


