
le. As
hare all
ave the

cu-
ently
ck to
 several
in. Our
rdware

ance
ithm can

odern

xts, an

t proces-

calars

ds exe-

its,

e

rograms

cessor

 bench-

ling

entary
Thread-Sensitive Scheduling for SMT Processors

Abstract

A simultaneous-multithreaded (SMT) processor executes multiple instructions from multiple threads every cyc
a result, threads on SMT processors – unlike those on traditional shared-memory machines – simultaneously s
low-level hardware resources in a single CPU. Because of this fine-grained resource sharing, SMT threads h
ability to interfere or conflict with each other, as well as to share these resources to mutual benefit.

This paper examinesthread-sensitive schedulingfor SMT processors. When more threads exist than hardware exe
tion contexts, the operating system is responsible for selecting which threads to execute at any instant, inher
deciding which threads will compete for resources. Thread-sensitive scheduling uses thread-behavior feedba
choose the best set of threads to execute together, in order to maximize processor throughput. We introduce
thread-sensitive scheduling schemes and compare them to traditional oblivious schemes, such as round-rob
measurements show how these scheduling algorithms impact performance and the utilization of low-level ha
resources. We also demonstrate how thread-sensitive scheduling algorithms can be tuned to trade-off perform
and fairness. For the workloads we measured, we show that an IPC-based thread-sensitive scheduling algor
achieve speedups over oblivious schemes of 7% to 15%, with minimal hardware costs.

1  Introduction

Simultaneous Multithreading (SMT) [22] is a processor design that combines the wide-issue capabilities of m

superscalars with the latency-hiding abilities of hardware multithreading. Using multiple on-chip thread conte

SMT processor issues instructions from multiple threads each cycle. The technique has been shown to boos

sor utilization for wide-issue CPUs, achieving a 2- to 3-fold throughput improvement over conventional supers

and a 2x improvement over fine-grained multithreading [10].

SMT is unique in the level of fine-grained resource sharing it permits. Because instructions from several threa

cute simultaneously, threads compete every cycle for all common hardware resources, such as functional un

instruction queues, renaming registers, caches, and TLBs. Since programs may differ widely in their hardwar

requirements, some programs may interact poorly when co-scheduled onto the processor. For example, two p

with large cache footprints may cause inter-thread cache misses, leading to low instruction throughput for the

machine as a whole. Conversely, threads with complementary resource requirements may coexist on the pro

without excessive interference, thereby increasing utilization; for example, integer-intensive and FP-intensive

marks should execute well together, since they utilize different functional units. Consequently, thread schedu

decisions have the potential to affect performance, either improving it by co-scheduling threads with complem

hardware requirements, or degrading it by co-scheduling threads with identical hardware needs.

Sujay Parekh
IBM T.J. Watson Research Center

sujay@us.ibm.com

Susan Eggers
University of Washington

eggers@cs.washington.edu

Henry Levy
University of Washington

levy@cs.washington.edu

Jack Lo
Transmeta

jlo@transmeta.com
1



-

t differ

duler

focus on

es in a

s that tar-

the con-

heir

 con-

alanced

sents a

ling on

 using

enefits

,2,10,1],

1] looks

. He

ent

3] fol-

vel,

loads

r utiliza-

active at

lancing

f work. If

the load.

he affin-

us tak-
This paper presents and evaluates two classes of scheduling algorithms for SMTs:oblivious algorithms, which sched-

ule without regard to thread behavior, andthread-sensitive algorithms, which predict and exploit the resource require

ments of individual threads in order to increase performance. We first compare several oblivious schemes tha

in the number of context switches each quantum; we show that context switching alone is not a factor in sche

performance. We then evaluate several thread-sensitive schemes that either target overall performance (IPC),

optimizing a single resource (such as the L1 D-cache, L2 cache, and TLB), or strive to utilize hardware resourc

complementary fashion. Our results show that a feedback-scheduler based on IPC is superior to the scheme

get a single hardware resource, achieving speedups over oblivious round-robin scheduling of 7% to 15% on 

figurations and workloads we measured. Although the resource-specific schedulers improve the behavior of t

particular resource, in doing so they expose other resource bottlenecks that then become dominant factors in

straining performance. We also consider thread starvation, and show how performance and fairness can be b

in a system using thread-sensitive scheduling.

This paper is organized as follows. The next section describes previous work related to our study. Section 3 pre

brief overview of the SMT architecture and our simulator. In Section 4 we discuss the issues relevant to schedu

SMT. We first evaluate the deficiencies of several simple thread-oblivious thread-scheduling algorithms; then

this information, we design and evaluate thread-sensitive algorithms that attempt to maximize the potential b

obtained by SMT. Section 5 discusses the issue of scheduler fairness, and we conclude in Section 6.

2  Related Work

Previous studies of multithreaded machines either do not consider more threads than hardware contexts [18

or they use a simple round-robin scheme for scheduling threads onto the processor [13,6,14]. Fiske's thesis [1

at improving the performance of a single multithreaded application on a fine-grained multithreaded processor

considers both mechanisms and policies for prioritizing various threads of the same application to meet differ

scheduling criteria. A multiprogrammed workload, however, is not discussed. The Tera processor scheduler [

lows a Unix-like scheme for scheduling single-threaded programs. Both Unix [4,16] and Mach [5] use multi-le

priority-based feedback scheduling, which essentially amounts to round-robin for the compute-intensive work

that we consider in this paper. They do not address the specific issue of selecting threads to improve processo

tion, which we consider here; their emphasis is more towards maintaining fairness.

Schedulers for multiprocessors also are faced with the problem of choosing the proper subset of threads to be

a given moment. Typically, such schedulers focus on the issues of load balancing and cache affinity. Load ba

[8,20] assigns threads to processors so as to ensure that each processor is assigned an equivalent amount o

the load becomes unbalanced, a scheduler can move threads from one processor to another to help rebalance

However, relocating threads has a cost: the state built up by a thread in a processor's local cache is lost. In cac

ity scheduling [7,23,19], a thread is preferentially re-scheduled onto the processor on which it last executed, th

ing advantage of built-up cache state.
2



proces-

propri-

e

be less

er hand,

e benefi-

e word

ntext

func-

ersca-

hese

ushing,

thread

tion of

 include

onten-

mance

Each

aming

 register

texts.

nstruc-

rder.

ator

nd

hy,
The simplest approach to adapting a traditional multiprocessor scheduler for an SMT CPU would equate each

sor to a hardware thread context. However, using multiprocessor scheduling algorithms on SMT may not be ap

ate. Load balancing, for example, is not a concern for a multithreaded machine, since hardware resources ar

dynamically shared by all threads; that is, one hardware context is as good as another. Cache affinity may also

important, because there is only one shared cache, rather than several processor-private caches. On the oth

keeping a thread loaded on an SMT processor may take advantage of its existing cache state and thus still b

cial.

3  The SMT Model

This section briefly describes the SMT architecture and our SMT simulator. In general, we use the termthread to

refer to a schedulable sequential task (an independent program or a component of a parallel program) and th

context to refer to the hardware structures that hold an executing thread's processor state. At any instant, a co

holds a thread, and there are more threads than contexts.

An SMT processor executes multiple instructions from multiple threads each cycle. Even with this increased 

tionality, SMT can be constructed with straightforward modifications to a standard dynamically-scheduled sup

lar processor [21].   To support multiple resident threads, several structures must be replicated or modified. T

include per-context thread state (registers and a program counter), active lists, and mechanisms for pipeline fl

traps, interrupts and return stack prediction. In addition, the branch-target buffer and TLB entries must include

IDs. Modifications of this nature increased the chip area of Compaq’s recently announced Alpha implementa

SMT by only 10%, compared to a similar superscalar design [9].

On an SMT processor, many processor structures are shared dynamically between executing threads. These

the renaming register pool, instruction queues, functional units, TLBs, and the entire memory hierarchy. It is c

tion for these resources that we need to consider when scheduling threads.

Table 1 lists the processor and memory system parameters for our SMT simulator which models a high-perfor

processor in the 3-year time frame. We simulate a processor pipeline similar to that of the Alpha 21264 [12]. 

cycle, the simulator fetches up to 8 instructions from each of 2 contexts. After instruction decode, register ren

maps per-context architectural registers onto a shared pool of physical registers. This not only removes false

dependencies within a thread (as in a conventional processor), but also resolvesinterthread naming conflicts.

Renamed instructions reside in separate integer and floating-point queues, which are shared among the con

After their operands have been computed, instructions become eligible for issue to the functional units; ready i

tions from any thread may issue any cycle. Finally, completed instructions are retired in per-thread program o

For our experiments, we use cycle-accurate, emulation-based simulation of user-level instructions. Our simul

takes as input unmodified Alpha binaries and models the processor pipeline in detail, including speculation a

resource contention. We also use a detailed TLB and cache simulator that models the entire memory hierarc
3



 per-

uling.

runnable

le goals,

roces-

bina-

ler may

t each

dulers,

valua-

sed on

.

including bank and bus conflicts. We do not simulate the full operating system; instead, the simulator directly

forms relevant functions that normally would be performed by the OS, such as I/O, page mapping and sched

4  OS Thread Scheduling

When there are more threads than hardware contexts, the operating system must decide which subset of the

threads to schedule onto an SMT processor’s hardware contexts. Thread scheduling can have several possib

e.g., optimizing response time, throughput, or processor utilization. Since the objective of SMT is to improve p

sor utilization by exploiting multiple threads, we will study scheduling algorithms that focus on this goal.

Because of the varying characteristics of different programs or phases within a single program, different com

tions of threads can have varying resource demands. Hence, the particular thread mix chosen by the schedu

impact processor utilization. In this paper, we investigate scheduling algorithms that rely on information abou

program's behavior in order to make scheduling decisions. We characterize schedulers asthread-sensitiveor oblivious

according to whether or not they utilize thread-behavior information. We propose several thread-sensitive sche

each of which targets a different processor resource for optimization.

In the next few sections, we first present the methodology we use for carrying out our studies, including our e

tion procedure. We then present and analyze the performance of several oblivious scheduling algorithms. Ba

this data, we create and analyze the thread-sensitive algorithms and compare them to the oblivious schemes

Hardware contexts 8 (occasionally 4 & 2 are examined for comparison)

Functional units 6 integer (4 ld/st), 4 FP

Instruction latencies based on the Alpha 21264 [12]

Instruction queue entries 32 integer, 32 FP

Active list entries 128 entries/context

Architectural registers 32 integer, 32 FP (64-bit)

Renaming registers 100 integer, 100 FP

Instruction retirement 12 instructions/cycle

Branch prediction McFarling-style [15]

Pattern history table 2K-entry

L1 cache organization (I & D) 128KB, 2-way, nonblocking; separate instruction, data

L2 cache organization 16MB, direct-mapped, unified

Fill latency 2 cycles (L1), 4 cycles (L2)

TBLs (I & D) 128 entries

Banks 4 (L1), 1 (L2)

Ports/bank 1 (L1-instruction and L2), 2 (L1-data)

Table 1: Processor and cache parameters
4



roces-

ce. For

C-FP,

parallel

shared

several

eeks

erence

tions.

onsists

cute the

st-for-

l edge

y state

or low

never

e, then

 con-

inate

rkload

tate in a

 (e.g., a

ts are

n. To

rement

nt.
4.1  Methodology

4.1.1  Workload

Our workload consists of a collection of single-threaded programs that are multiprogrammed onto the SMT p

sor. This scenario represents a heavily-loaded workstation or server that is running many different tasks at on

our experiments, we use a mix of 32 programs from the SPEC95 [17] suite, 8 from SPEC-Int and 8 from SPE

each running on its reference dataset. (The specific programs are discussed later in Table 2.) We eliminated 

threads from the study, because parallel threads typically execute the same code over different portions of a 

data space, and hence their per-thread hardware resource requirements are nearly identical.

Running any one of these SPEC applications with its reference dataset directly (i.e., not in the simulator) takes

minutes of CPU time. Running a multiprogramming workload in our detailed simulator would require many w

for each run. To shorten the simulation time and still obtain realistic performance estimates, we retain the ref

dataset but shorten the execution. We chose a window of execution of 100 million instructions1 from each program as

a representative sample of its execution. For the SPEC-int programs, this window is the first 100 million instruc

For SPEC-FP, the window begins in the main loop of the programs (the initial portion of these FP programs c

of either reading in or generating the input data). For correctness of both execution and cache contents, we exe

initialization portion of these benchmarks, but we start our measurements once the programs are past this (fa

ward) stage.

4.1.2  Simulations

Comparing alternative scheduling algorithms in an SMT environment is quite challenging, since experimenta

effects can potentially lead to erroneous conclusions. On the one hand, if a job mix is examined only in stead

(i.e., when all threads are still running), high throughput may be achieved during measurement in exchange f

throughput at a later time. For example, imagine an algorithm that chooses to execute only “good” threads and

executes the “bad” ones during an experiment. On the other hand, if a job mix is run until all threads complet

throughput will inevitably drop at the tail of the experiment, when there are fewer threads than SMT hardware

texts. Depending on the relative lengths of steady-state and the tail, this low throughput may unrealistically dom

the experimental results.

For this reason, we investigated two different multiprogramming scenarios, each modeling a different set of wo

and measurement conditions. The first scenario models SMT’s projected mode of execution, that of steady s

heavily used compute, file, or web server. In this case, we assume a constant supply of threads for execution

continuous stream of server requests, in which completing threads are replaced by new ones, and all contex

always utilized). In the second scenario, we model a fixed multiprogramming workload that runs to completio

examine the differences in these two scenarios, we run basically similar experiments, but we vary the measu

1. To be precise, these are the retired instructions. The wrong-path instructions will vary in number and conte
5



ply of

 the

al to

ow

 state

s for the

o.

lso

ch

noring

nces in

the sec-

tate.

f the

 which

at will

e previ-

ilable.

r cycle

work-

ll quan-
interval and, in particular, the termination point for the measurements.

To represent the steady state server environment, we perform two measurement experiments. InSMTSteadyState,

the processor executes until the first of the 32 schedulable threads terminates. Although, in practice, the sup

threads might be significantly larger, 32 is the maximum number of threads we could comfortably simulate. In

second experiment,8ThreadsLeft, the processor executes until the pool of runnable threads is less than or equ

the number of SMT hardware contexts, i.e., there is no more work for the scheduler.

To study the run-to-completion effects, we performed two experiments as well. In general, we cannot know h

much steady state activity precedes the tailing off of threads in a terminating workload. The longer the steady

period, the less evident will be the effect of the tail, and vice versa. Therefore, we gathered separate statistic

tail, starting from the end of steady state, and we chose two different start-of-tail points. The8Tail measurements

contain instructions from the tail portion of8ThreadsLeft; it begins when eight threads are left and tapers off to zer

SSTail is the remainder ofSMTSteadyState; it begins with 31 threads (after the first thread completes) and a

runs until all threads have finished. In addition, we ran to completion our entire 32-thread workload (calledRunTo-

Completion), capturing the effect of tailing off on one particular workload, that of 100 million instructions from ea

of 32 threads.

The various measurement scenarios described above were necessary to ensure that neither including nor ig

scheduling edge effects would cause erroneous conclusions. In the end, however, we found that these differe

experimental and measurement conditions did not make an appreciable difference in the results. Therefore, in

tions below, we provide data for only a subset of the conditions that we measured, those that model steady s

All simulations use a simple temporal job profile where we submit all the threads simultaneously at the start o

simulation. Some of the scheduling algorithms we discuss (e.g., round-robin) may be affected by the order in

the threads are listed. To counteract this effect, we tested several different initial orderings.

Our schedulers use a scheduling quantum of 1 million cycles1 (about 2ms on a 500MHz processor). At the end of

every quantum, the scheduling algorithm reevaluates the currently-loaded threads, selecting those threads th

execute for the next quantum. The scheduler may choose to replace all, some, or none of the threads from th

ous quantum. All the schedulers we study allocate all hardware contexts if sufficient runnable threads are ava

We assume that all threads are running at equal user priority.

4.1.3  Evaluation

The schedulers we study strive to improve processor utilization, which is normally measured by instructions pe

(IPC). The problem with comparing the performance of different schedulers up to any intermediate point of our

1. We also experimented with quanta of 100K and 5M cycles. The results are qualitatively the same across a
tum values.
6



ecute a

sched-

a sched-

f each

e prob-

eaning-

below,

e win-

n Section

lly

ty
load (i.e., before workload completion) by their IPC is that, depending on the scheduler, the machine may ex

different instruction mix. This amounts to measuring performance across different workloads. In particular, a 

uler may execute the “easy” threads first and thus appear to be better than it is. To avoid this bias, we judge 

uler’s performance by its IPC improvement normalized to the single-threaded execution ofexactly those instructions

that were executed under the scheduler. To be precise:

1. Using a multi-threaded workload with a particular schedulerS, we measured:
ωS(p) = the number of instructions completed by threadp at the cutoff point underS
ΓS = the number of cycles at the cutoff point.

2. We ran each thread by itself to gather single-threaded baseline data of the form:
c(p,w) = the number of cycles for threadp to finish the firstw instructions.

3. Then, scheduler performance was measured as the speedup over the single-threaded baseline:

The weighted sum in the numerator gives the single-threaded baseline time, taking into account how much o

thread was executed in the multi-threaded workload. By normalizing to the single-threaded case, we avoid th

lem caused by the cutoff. Even though they may have executed different instructions, schedulers can still be m

fully compared when using these speedup values.

4.2  Oblivious Scheduling

We first present oblivious schedulers that do not make use of thread-specific information. In the descriptions 

we usen to refer to the total number of software threads andk for the number of hardware contexts.

• Round-robin (RR)

Then threads are placed in a circular queue in the order submitted. The scheduler choosesk scheduled threads

consecutively from this queue, effectively forming a window onto the queue. Every scheduling quantum, th

dow is shifted down byk. As threads finish, they are removed from the queue. We useRound-robin (RR) as a

baseline for our comparisons to the thread-sensitive schedulers, based on its prevalent use, as discussed i

2.

• RR-by-1

Context-switching inRR causes the entire set ofk running threads to change each quantum. This can potentia

destroy the working sets in the cache.RR-by-1 is a variant ofRR that attempts to preserve temporal cache affini

by retainingk-1of the threads from the previous quantum. That is, the window forRR-by-1 is shifted by just one

every quantum.

• Random

SpeedupS

c p ωS p( ),( )
p
∑

ΓS
--------------------------------------=
7



nd

-

ct that

 not be

ion 4.4.

e usage

nite size)

te

re,

ilization

siderably.

hread

is the

t instruc-
Every scheduling interval, thek threads for the next interval are chosen randomly from all runnable threads a

context switches are performed as required.Random enables us to judge whether any systematic bias is intro

duced by the grouping of threads inRR.

4.2.1  Performance of Oblivious Schedulers

Figure 1 shows the speedup achieved by the 3 oblivious schedulers for 4- and 8-context SMTs executing the

8ThreadsLeft workload (figures forSMTSteadyState are comparable). We can see that all of the oblivious

schedulers achieve similar instruction throughput. There are two ramifications of this observation. First, the fa

Random does as well (or as poorly) asRR indicates that the performance ofRR is not due to any systematic bias in

the grouping of threads in the input program ordering. Second,RR-by-1 shows only marginally improved perfor-

mance overRR, in spite of preserving cache state across scheduler invocations. This indicates that there may

much benefit to preserving cache affinity on an SMT processor. We will elaborate on this point further in sect

To understand why the oblivious schedulers do not achieve better throughput, we examined in more detail th

of several shared processor resources. For each resource of interest, we assumed perfect performance (or infi

and compared its performance toRR with the normal SMT configuration. Figure 2 shows the results, which indica

the potential for performance improvement by alleviating contention for a particular resource. (We use IPC he

since we are comparing alternatives with the same scheduling policy; IPC also lets us gauge the processor ut

achieved withRR. Again, the results are for the8ThreadsLeft workload; figures forSMTSteadyState have on

average an IPC 0.15 higher and retain the same relative performance across configurations.)

From the figure, we see that when hardware bottlenecks are removed, performance rises, in most cases con

Results for individual hardware resources depend on the number of concurrent threads, the number of inter-t

conflicts they generate, and the penalty of resolving those conflicts. With fewer thread contexts, the L1 D-cache

largest single limiting resource. In this case, the small number of threads do not provide enough independen

FIGURE 1.  Speedup of the oblivious schedulers

4 8

Contexts

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

RANDOM

RR

RR_by_1
8



nue to

ortant.

ber of

s rate

st per-

ottle-

ers of

e on an

ions and

erfect

wn).

gleaned

st bottle-

. We also
tions for SMT to hide the inter-thread conflict miss latencies. Although with more threads, these misses conti

rise, the additional instructions allow SMT to better hide their latencies, and the L1 D-cache becomes less imp

This effect doesn’t hold for the D-TLB, however, because therelative rise in TLB misses with increasing contexts is

greater and the TLB refill time is longer (compared to that of the L1 D-cache). For example, increasing the num

threads from 4 to 8 increases the D-TLB miss rate from 0.2% to .9% (a factor of 4.5), while the L1 D-cache mis

rises only from 2.7% to 3.6% (a factor of 1.4). Consequently, at 8 threads, the D-TLB becomes the single large

formance-limiting hardware resource.

By combining the perfect L1 D-cache, L2 cache, and D-TLB, we show the performance impact of alleviating b

necks for the entire data-memory subsystem. This combination provides the best performance for both numb

thread contexts, a 36% improvement overRR for 4 contexts and 26% for 8 contexts.

Perfect branch prediction has less impact on performances. Because multiple threads simultaneously execut

SMT processor, each makes less progress down a mispredicted path. Consequently, the cost of the mispredict

the gain from a perfect branch predictor is less. As the number of threads increases, the marginal benefit of p

branch prediction declines.

Making the L1 I-cache or I-TLB perfect provided little improvement (less than 1%) in performance (data not sho

This is not surprising, given the relatively small I-cache footprints of the SPEC benchmarks.

In summary, oblivious scheduling may create bottlenecks that reduce SMT performance. Based on the results

from Figure 2, we now evaluate thread-sensitive schedulers that address the contention that exists in the mo

necked resources: the D-TLB, the L1 data cache, the L2 cache, and the data memory subsystem as a whole

evaluate a scheduler that reflects total thread performance.

FIGURE 2. Effect of perfect components on commit IPC

4 8
Contexts

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
IP

C

None (RR)

Branch Pred

L1 D-cache

DTLB

L2 cache

L1+L2+DTLB

Perfect
Component:
9



n intel-

arks in

ach

differ-

ased,

 (col-

s. The
4.3  Thread-sensitive Scheduling

Before examining the thread-sensitive algorithms, it is interesting to ask whether our workload even permits a

ligent scheduler to choose jobs with different resource requirements. That is, how varied are the SPEC benchm

their resource demands? Table 2 sheds light on this issue by characterizing the execution time behavior of e

SPEC95 program as measured on a 1-context SMT (effectively a superscalar). We can see some significant 

ences across the applications. For example, most integer programs (in particularcompress, gcc andgo) pose serious

problems for the branch predictor (column 5), whereas most of the SPEC-FP benchmarks, being more loop-b

fetch few wrong-path instructions. This difference can also be seen in the gap between fetch and commit IPC

umns 9 and 10) for the integer programs, which indicates that they commit far fewer of their fetched instruction

cache behavior of these programs also varies widely. For example, the L1 D-cache miss rate range from 0.2 (ijpeg) to

Program
Cache Miss-rate (%) Wrong-path instr

(% of fetched)

Instr Type (%) IPC

L1-I L1-D L2 Int Branch FP Fetch Commit

SPEC-Int

go 1.5 2.7 9.6 33.0  100  14  0 3.6 2.4

m88ksim 0.1 5.0 99.2  1.0  100  18  0  2.2 2.1

gcc 4.4 2.4 3.4 35.6  100  18  0 2.4 1.6

compress 0.1 3.4 2.2  57.2 80 12 20  3.3 1.4

li 0.1 1.3 0.9 21.5  100 21  0 4.1 3.2

ijpeg 0.1 0.2 65.0 4.8  100  11  0 3.9 3.7

perl 3.5 1.0 9.2 27.8  100 15  0 2.5 1.8

vortex 3.4 0.9 12.5 8.5  100 16  0 2.6 2.3

SPEC-FP

swim 0.1 3.2 98.2  0.2 59  2 41 2.0 2.0

su2cor 0.1 6.9 29.7 28.7 66 4 34  2.8  2.0

hydro2d 0.1 9.3 61.8 0.8  67 4  33 1.7 1.7

mgrid 0.1 2.4 46.7 0.7 63  1 37 2.3 2.3

applu 0.1 3.0 54.6 1.0 48  3 52 2.2 2.2

turb3d 0.1 7.8 13.3 1.8 73  4 27  1.6 1.6

apsi 0.3 5.2 2.3 2.5 68  5 32 1.8 1.7

fpppp 5.1 0.4 0.6 2.0 54  2 46 2.8 2.7

The L2 miss-rate is relative to the total number of accesses to the L2 cache (the local miss rate).
Fetch IPC refers to the rate at which instructions are fetched from the instruction stream. How-
ever, since our processor supports speculation, not all these instructions are useful. Commit IPC
measures the rate at which right-path instructions are retired. The fetch IPC shows how much of
the fetch bandwidth can be consumed by that program; the commit IPC is a measure of the real
work done, in light of speculation.
For each benchmark, we have also shown the breakup of instructions fetched based on their type:
Integer and Floating-Point. Branch refers to the subset of Integer instructions that are branch
instructions.

Table 2: Characterization of SPEC95 programs
10



across

t

specific

athered

 below:

spective

ing

d need

ally use

as, we

e com-

 cycle

e aver-

to com-

pe of

er and

f them

 of per-

 counts.

ation
9.3 (hydro2d) and L2 miss rates range from 0.6 (fpppp) to a whopping 99.2 (m88ksim) percent! The effect of these

variations in the individual hardware resources manifests itself in commit IPC, which also varies significantly 

the programs, from 1.4 forcompress to 3.7 forijpeg.A thread-sensitive scheduler for SMT could potentially extrac

and exploit differences like these to alleviate contention for particular resources.

4.3.1  Thread-sensitive Schedulers

The thread-sensitive schedulers we evaluated are discussed below. In general, each algorithm focuses on a 

component metric, attempting to optimize that metric. Every quantum, the algorithmgreedilyschedules thek threads

that have the best statistics as determined by the particular algorithm. All metrics are computed using values g

by thread-specific hardware performance counters. The algorithms and hardware support required are listed

• Miss rate in the L1 Data Cache (G_D1MR), L2 Cache (G_L2MR) and D-TLB (G_DTLBMR)

These three greedy algorithms choose the threads that have experienced the smallest miss rates for their re

memory component (e.g.,G_L2MR chooses the threads with the lowest per-thread L2 miss rates). Maintain

per-thread statistics is feasible for the L1 caches and the D-TLB, because they are virtually addressed an

access to the thread ID in any case. However, since the L2 cache is physically addressed, it does not norm

the requesting thread ID. Therefore,G_L2MR may require the hardware to forward the thread ID to the miss

counters on an L1 miss.

• Data Memory Subsystem (G_ADMAT)

Given that all hardware structures for data (the L1 data cache, the L2 cache, and D-TLB) are problem are

also examine the average data memory access time (ADMAT), which combines the performance of all thes

ponents. TheG_ADMAT algorithm picks thek threads with the least ADMAT values. A cheap implementation

would keep two per-thread counters: one that accumulates the number of stalled memory operations each

and another for the total number of memory operations issued. Dividing the former by the latter gives us th

age (the divide only needs to be performed once per scheduling quantum).

• IPC (G_IPC)

This scheme directly uses a per-thread IPC measurement. The commit IPC achieved by a thread allows us

bine all the factors affecting a thread's performance.

Because we have separate integer and floating-point queues and functional units, we schedule for each ty

hardware separately in order to maximize the utilization of both. In other words, we compute separate integ

floating-point IPC for each thread. The scheduler then picks the threads that have the highest IPC -- half o

based on their integer IPC and half based on the FP IPC. The hardware required for this scheme consists

thread counters that are updated in the commit pipeline stage, one each for the integer and FP instruction

If the instruction type is not normally available in the commit stage, we can propagate this one bit of inform

from the decode stage, where it is computed.

• Complementary Hardware Resources(DTLBMR_MIX, ADMAT_MIX, IPC_MIX)
11



chedulers

s. With

an

r

nder-

thms. A

overall

ts the

dware

rfor-

(3.8%
These schemes attempt to utilize complementary hardware resources by choosingk/2 best andk/2 worst threads

each quantum.IPC_MIX chooses threads based on total IPC, whereas its greedy counterpart,G_IPC, picked

threads based on integer and floating point IPC separately.

4.3.2  Performance of Thread-sensitive Schedulers

Figure 3 shows the speedup achieved by each thread-sensitive scheduler. From the figure, we see that the s

achieve a wide range of performance, on average 18% across the different SMT configurations and workload

one exception, the schedulers that reflect total performance,G_IPC andIPC_MIX, consistently achieve the best

speedups, improving on a simpleRR scheme by 9% on average, with a maximum of 15%. By itself, G_IPC has 

average improvement of 11% and reaches a processor utilization in the realm of 6.6 IPC. Only at 4 contexts foSMT-

SteadyState does the performance ofG_IPC andIPC_MIX drop below another scheduler.

The resource-specific algorithms are not as effective in achieving good IPC, and surprisingly sometimes doworse

thanRR, particularly with more thread contexts, which is exactly when we would expect them to do well. To u

stand this, we need to examine in more detail the performance of the resource-specific, thread-sensitive algori

resource-specific algorithm’s performance depends on three factors: (a) how critical its targeted resource is to

machine utilization, (b) how well it is able to alleviate contention for that resource, and (c) how doing so affec

usage of other resources. In this section we will us focus on (b) and (c).

Table 3 shows the miss rates and branch mispredictions induced by our greedy schedulers in the shared har

structures for theSMTSteadyState simulation with 8 contexts. (Similar results hold for8ThreadsLeft.) First, the

data indicate the extent to which resource-specific, thread-sensitive schedulers can impact the component pe

mance metrics. For example, we see wide variation in branch prediction accuracy (1.1% to 5.5%), L2 miss rate

FIGURE 3. Speedup forSMTSteadyState and 8ThreadsLeft

RR

G_D1MR

G_L2MR

G_DTLBMR

DTLBMR_MIX

G_ADMAT

ADMAT_MIX

G_IPC

IPC_MIX

4 8

Contexts

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sp

ee
du

p
31-thread Steady State 8-thread Steady State

4 8
12



r our

relative

rce bot-

t,

es

 of

B can

limen-

unts
to 41.0%) and D-TLB miss rate (0.1% to .8%) across the different algorithms. Second, and more important fo

analysis, the resource-specific algorithms succeed in reducing contention for their specific resource, usually 

to bothRR and the other resource-specific schedulers, withG_L2MR offering the most significant (relative)

improvement. In spite of this, all cache-oriented algorithms (G_D1MR, G_L2MR andG_ADMAT) perform less

well thanG_IPC. The main reason is that greedily focusing on one resource can create or expose other resou

tlenecks, which then become dominant factors in constraining performance. For example, Table 3 shows tha

although it minimizes the L2 miss rate,G_L2MR has the highest L1 data miss rate of any scheduler, almost 1.5 tim

that ofRR. In addition, it is among the worst in branch-prediction behavior, resulting in the highest percentage

wrong-path instructions, almost 40% over that ofRR. Similarly,G_D1MR forfeits its advantage in L1 data misses by

shifting the bottleneck to the L2 cache.

With G_DTLBMR, on the other hand, factor (c) plays a smaller role. Table 3 shows that focusing on the D-TL

actually reduce contention for shared resources like branch prediction and the L1 D-cache.

In line with these results, the thread-sensitive algorithms that attempt to schedule together threads with comp

tary requirements for particular hardware resources (DTLBMR_MIX andADMAT_MIX) did not usually meet expec-

tations. They varied little from their greedy counterparts, sometimes a little better, sometimes a little worse.

Differences among the schedulers becomes less apparent in the two tail workloads,SSTail and8Tail. G_IPC and

IPC_MIX either remain the thread-sensitive schedulers of choice, or are replaced byADMAT_MIX, the worst choice

in SMTSteadyState. The consequence for executing all instructions to completion (RunToCompletion), despite its

being a short run in an SMT environment, is thatG_IPC still obtains the best performance.

Overall, the best algorithm isG_IPC, which achieves good performance across different configurations.G_IPC

directly addresses our bottom-line performance criterion, instruction throughput. In doing so, it indirectly acco

Scheduler

Miss Rate (%) Branch
misprediction

(%)

% wrong-
path

instructions
Speedup

L1 D-cache Data TLB L2 cache

RR 3.6 0.8 41.0 5.4 3.6 2.0

G_D1MR 3.7 0.1 22.2 4.3 2.7 2.0

G_DTLBMR 4.9 0.1 9.4 3.4 2.2 2.2

G_L2MR 5.3 0.2 3.8 4.6 5.0 2.0

G_ADMAT 5.1 0.2 4.6 5.5 4.5 2.0

G_IPC 3.8 0.1 31.3 1.1 0.5 2.3

Table 3: Comparing shared component usage across thread schedulers for SMTSteadyState, 8 contexts.
bold = component addressed by a resource-specific thread scheduler.
13



tion for

mory

rarchy.

ch algo-

he

First, the

ll to be

cases

gh

ore

sitive

und-

 for

lative to
for many processor resources at once. It not only achieves good processor utilization, but also reduces conten

those components that matter to SMT performance (such as the D-TLB and L1 D-cache).

4.4  Cache Affinity

As previously mentioned, scheduling policies using cache affinity have been widely considered in shared-me

multiprocessors. In SMT, however, cache affinity is less of an issue, because all threads share the cache hie

Table 4 provides some evidence for this; it shows the number of context switches and the IPC incurred by ea

rithm when simulated on theLARGE configuration. Although fewer context switches implies less perturbation in t

caches, and thus preserves temporal cache affinity, the data argues that this is a second-order effect on SMT.

difference in instruction throughputs between the oblivious and thread-sensitive thread schedulers is too sma

explained by the order of magnitude difference in their number of context switches. In addition, several specific

serve as counter examples.RR has over 8 times the number of context switches asRR-by-1, yet their performance is

nearly identical (see also Figure 1).G_D1MR (plusG_ADMAT andADMAT_MIX) andG_IPC are relatively close

in their number of context switches, butG_IPC has a 15% higher speedup. The conclusion we draw is that, althou

temporal cache affinity does help improve performance, selecting threads based on their characteristics is m

important.

4.5 Summary

In this section we examined both oblivious and thread-sensitive schedulers. Our results show that thread-sen

scheduling can have an advantage on SMT processors, boosting instruction throughput by up to 15% over ro

robin in the best cases ofG_IPC andIPC_MIX. Other hardware-resource-specific algorithms perform less well.

Although they reduce inter-thread contention for their particular resource, in doing so, they create contention

other resources. Consequently, their performance benefit is lower, and they may even degrade performance re

Scheduler Context switches Commit IPC Speedup

G_D1MR 144 6.1 2.0

G_DTLBMR 115 6.7 2.2

DTLBMR_MIX 117 6.7 2.2

G_L2MR  125 6.0 2.0

G_ADMAT  147 6.3 2.0

ADMAT_MIX 147 6.3 2.0

G_IPC  151 6.6 2.3

IPC_MIX 117 6.3 2.2

RR  3008 5.8 2.0

RR-by-1  370 6.0 2.1

Random  2151  5.8 2.0

Table 4: Number of context switches forSMTSteadyState, 8 contexts.Commit IPC is shown
in addition to speedup, so that the oblivious and thread-sensitive schedulers can be compared.
14



ding

like to

vation is

r

 in a

 the

para-

an of

at

e-

eing

re more

ber of
the oblivious schemes.

5  Fairness

Most of the thread-sensitive algorithms we defined greedily pick the best threads according to their correspon

performance metrics. However, as greedy algorithms, they can cause thread starvation. We would therefore 

measure how much starvation our schedulers can cause, and prevent it if possible. For a particular thread, star

defined relative to a baseline that represents how many quanta that threadshouldhave been scheduled if the schedule

were fair. In order to derive a measure of thisIdeal metric, we introduce the following terminology:

In an ideal fair schedule, each of thenj runnable threads in a particular quantumj should receive  of that quan-

tum. Without redefining the definition of a scheduler quantum, it is not possible to do this fractional allocation

given quantum. However, we can consider the total allocation over several quanta and aim to achieve that (in

limit). Thus,Ideali, the number of quanta that threadti should have been scheduled, can be computed as:

.

Let Actuali be the actual number of quanta that a thread is scheduled. The quantity is the se

tion of the ratio from the ideal ratio of 1. We can judge the fairness of the schedule by measuring the me

these ratios across the threads:

In a fair schedule,Fmeanshould be close to 0.Fmeanindicates how far a thread is from the ideal, on average. Note th

maintaining the values ofActuali andIdeali is not computationally intensive, each of them requiring a simple incr

ment to counters in the per-thread information maintained by the OS.

In Figure 4 we plotFmeanfor our greedy schedulers. As we suspected, they can be quite unfair, with a thread b

85% to 130% away from its ideal allocation of quanta. The fairness of the schedulers improves when there a

hardware contexts available. With few contexts, it is easy to starve many threads for long periods. As the num

Set of threads in the workload :

Set of time steps in the schedule :

Set of time quanta in which threadti was runnable :

Number of contexts : k

Number of runnable threads in quantumj : nj

T t1 t2 ... tn, ,{ , }=

Q 1 2 ..., , qmax{ , }=

Qi Q⊆

k nj⁄

Ideali
k
n j
-----

j Qi∈
∑=

di 1
Actuali
Ideali

-------------------–=

Actuali
Ideali

-------------------

F mean
1
n
--- di

1

n

∑=
15



will be

ed even

ads

d to

t

eduler

 in

-

can pre-

re

 well.
contexts increases, more slots become available to the scheduler, and the possibility that a particular thread 

starved is reduced.

We can mitigate the amount of starvation induced by these algorithms by forcing starved threads to be schedul

if they do not meet the greedy criteria. To do this, we modified the scheduler as follows: if there were any thre

such that , ( ), we first scheduled those threads. A particular greedy heuristic is then use

schedule any leftover contexts.

This scheme forces  for each threadti.
1 The largerα is, the less deviation is permitted from an ideal

“fair” schedule. Figure 5 shows the effects of adding this anti-starvation metric toG_IPC with . In

all cases, the IPC drops off systematically with a stronger anti-starvation measure. In particular, the strongesα that

we used reduces the performance ofG_IPC close to that ofRR. The slight dip ofG_IPC relative toRR atα=0.9 is

not significant; we have observed differences in speedup of that magnitude even across runs of the same sch

with slightly different initial configurations.

Thus we see that there is a very clear trade-off between guaranteeing some fairness in the OS scheduler and

improving CPU utilization. By usingG_IPC and adjusting the value ofα, a system administrator can adjust the rela

tive preference between IPC and fairness to achieve the best balance. For a throughput-oriented machine, we

vent total starvation by using a low value ofα, with only a small degradation in performance. For instance, in Figu

5, α = 0.3 results in a degradation of less than 2% relative toG_IPC for the configurations shown. However, a policy

favoring fairness would be best off with a simpleRR scheme. Using a high value ofα does not provide significant

1. Note that we do not explicitly prohibit favoring certain threads, although such measures could be added as

FIGURE 4. Fairness measurement of thread-sensitive schedulers for8ThreadsLeft. (Note: RR is 0.)

4 8

Contexts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F m
ea

n

RR

G_D1MR

G_L2MR

G_DTLBMR

DTLBMR_MIX

G_ADMAT

ADMAT_MIX

G_IPC

IPC_MIX

Actuali
Ideali

------------------- α≤ 0 α 1≤ ≤

Actuali
Ideali

------------------- α≥

α 0.3 0.6, 0.9{ , }∈
16



ause

r

ting sys-

modern

le,

e mea-

er

unters

e

e

r cache

studied

ughput-
speedup benefits overRR.

6  Summary

Simultaneous multithreading is unique in the level of fine-grained inter-thread resource sharing it permits, bec

instructions from multiple threads execute in a single cycle. SMT threads therefore have a higher potential fo

resource interference than do threads on a CMP, and hence thread scheduling for SMTs is an important opera

tem activity.

We propose that the SMT OS scheduler take advantage of hardware counters that are commonly available on

CPUs when deciding which threads to schedule. In this paper we investigated the performance of some simp

greedy algorithms that utilize this performance feedback information. For the configurations and workloads w

sured, our results showed that greedily selecting the highest-throughput threads improved CPU utilization ov

round-robin by 7% to 15% (11% on average). Since its implementation cost is minimal, both in hardware (2 co

per thread) and thread scheduling software (sampling the counters), it seems a trade-off worth making.

We have also shown that temporal cache affinity scheduling is not a reliable method for obtaining performanc

improvements on an SMT. TheG_IPC algorithm is able to consistently achieve good IPC in spite of having mor

context switches and worse L2 cache behavior than other, worse-performing schedulers. Thus, scheduling fo

affinity (another common SMP issue) has little payoff for an SMT processor.

The cost of using a greedy algorithm is that certain threads may be starved. The thread-sensitive algorithms 

here can be easily modified to prevent this, albeit at some cost in performance. Our results show that for a thro

oriented machine, we can provide weak fairness guarantees while barely degrading performance.

Bibliography

[1] A. Agarwal. Performance tradeoffs in multithreaded processors.IEEE Transactions on Parallel and Distributed
Systems, 3(5), September 1992.

FIGURE 5. The trade-off between IPC and Fairness forG_IPC (8ThreadsLeft).

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Fmean

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Sp
ee

du
p

G_IPC

α = 0.3
α = 0.6
α = 0.9
RR

8 Contexts

4 Contexts
17



n

 par-

ro-

ltipro-
es

 for

thesis,

 and
per-

 perfor-

rg/.

ors: A

ltipro-

ue on

ed,
[2] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: A processor architecture for multiprocessing. I
17th Annual International Symposium on Computer Architecture, June 1990.

[3] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and B. Smith. Exploiting heterogeneous
allelism on a multithreaded multiprocessor. InSupercomputing ’91 Workshop on Multithreaded Architectures,
November 1991.

[4] M. Bach, editor.The Design of the Unix Operating System. Prentice-Hall, 1996.

[5] D. Black. Scheduling support for concurrency and parallelism in the Mach operating system.IEEE Computer,
23(5), May 1990.

[6] B. Boothe and A. Ranade. Improved multithreading techniques for hiding communication latency in multip
cessors. In19th Annual International Symposium on Computer Architecture, 1992.

[7] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling and page migration for mu
cessor compute servers. In6th International Conference on Architectural Support for Programming Languag
and Operating Systems, October 1994.

[8] S. Chapin. Distributed and multiprocessor scheduling.ACM Computing Surveys, 28(1), March 1996.

[9] K. Diefendorff. Compaq chooses SMT for alpha.Microprocessor Report, 13(16), December 6 1999.

[10] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tullsen. Simultaneous multithreading: A foundation
next-generation processors.IEEE Micro, 17(5), August 1997.

[11] J. Fiske. Thread scheduling mechanisms for multiple-context parallel processors. Technical report, Ph.D.
M.I.T., June 1995.

[12] L. Gwennap. Digital 21264 sets new standard.Microprocessor Report, 10(14), October 28 1996.

[13] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading technique targeting multiprocessors
workstations. In6th International Conference on Architectural Support for Programming Languages and O
ating Systems, October 1994.

[14] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, J. Levy, and S. Parekh. An analysis of database workload
mance on simultaneous multithreading processors. In25nd Annual International Symposium on Computer
Architecture, June 1998.

[15] S. McFarling. Combining branch predictors. Technical report, TN-36, DEC-WRL, June 1993.

[16] M. McKusick, K. Bostic, M. Karels, and J. Quarterman, editors.The Design and Implementation of the 4.4 BSD
Operating System. Addison-Wesley Publishing, 1997.

[17] J. Reilly. SPEC describes SPEC95 products and benchmarks. September 1995. http://www.specbench.o

[18] R. Thekkath and S. Eggers. The effectiveness of multiple hardware contexts. In6th International Conference on
Architectural Support for Programming Languages and Operating Systems, October 1994.

[19] J. Torrelas, A. Tucker, and A. Gupta. Benefits of cache-affinity scheduling in shared-memory multiprocess
summary. In1993 ACM Sigmetrics, May 1993.

[20] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed shared memory mu
cessors. InSymposium on Operating Systems Principals, December 1989.

[21] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting choice: Instruction fetch and iss
an implementable simultaneous multithreading processor. In23nd Annual International Symposium on Com-
puter Architecture, May 1996.

[22] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maximizing on-chip parallelism. In22nd
Annual International Symposium on Computer Architecture, June 1995.

[23] R. Vaswani and J. Zahorjan. The implications of cache affinity on processor scheduling for multiprogramm
shared memory multiprocessors. InSymposium on Operating Systems Principals, October 1991.
18


	Thread-Sensitive Scheduling for SMT Processors
	1 Introduction
	2 Related Work
	3 The SMT Model
	Table 1: Processor and cache parameters

	4 OS Thread Scheduling
	4.1 Methodology
	4.1.1 Workload
	4.1.2 Simulations
	4.1.3 Evaluation
	1. Using a multi-threaded workload with a particular scheduler S, we measured: wS(p) = the number...
	2. We ran each thread by itself to gather single-threaded baseline data of the form: c(p,w) = the...
	3. Then, scheduler performance was measured as the speedup over the single-threaded baseline:


	4.2 Oblivious Scheduling
	4.2.1 Performance of Oblivious Schedulers
	FIGURE 1. Speedup of the oblivious schedulers
	FIGURE 2. Effect of perfect components on commit IPC


	4.3 Thread-sensitive Scheduling
	Table 2: Characterization of SPEC95 programs
	4.3.1 Thread-sensitive Schedulers
	4.3.2 Performance of Thread-sensitive Schedulers
	FIGURE 3. Speedup for SMTSteadyState and 8ThreadsLeft
	Table 3: Comparing shared component usage across thread schedulers for SMTSteadyState, 8 contexts...


	4.4 Cache Affinity
	Table 4: Number of context switches for SMTSteadyState, 8 contexts. Commit IPC is shown in additi...

	4.5 Summary

	5 Fairness
	FIGURE 4. Fairness measurement of thread-sensitive schedulers for 8ThreadsLeft. (Note: RR is 0.)
	FIGURE 5. The trade-off between IPC and Fairness for G_IPC (8ThreadsLeft).

	6 Summary


