
EÆ
ient Evaluation of Regular Path Expressions

on Streaming XML Data

Za
hary G. Ives

�

Alon Y. Levy Daniel S. Weld

fzives, alon, weldg�
s.washington.edu

University of Washington

Seattle, WA USA

Abstra
t

The adoption of XML promises to a

elerate
onstru
tion of systems that integrate dis-

tributed, heterogeneous data. Query languages for XML are typi
ally based on regular path

expressions that traverse the logi
al XML graph stru
ture; the eÆ
ient evaluation of su
h path

expressions is
entral to good query pro
essing performan
e. Most existing XML query pro
ess-

ing systems
onvert XML do
uments to an internal representation, generally a set of tables or

obje
ts; path expressions are evaluated using either index stru
tures or join operations a
ross the

tables or obje
ts. Unfortunately, the required index
reation or join operations are often
ostly

even with lo
ally stored data, and they are espe
ially expensive in the data integration domain,

where the system reads data streamed from remote sour
es a
ross a network, and seldom reuses

results for subsequent queries.

This paper presents the x-s
an operator whi
h eÆ
iently pro
esses non-materialized XML

data as it is being re
eived by the data integration system. X-s
an mat
hes regular path expres-

sion patterns from the query, returning results in pipelined fashion as the data streams a
ross

the network. We experimentally demonstrate the bene�ts of the x-s
an operator versus the

approa
hes used in
urrent systems, and we analyze the algorithm's performan
e and s
alability

a
ross a range of XML do
ument types and queries.

1 Introdu
tion

XML, the eXtensible Markup Language standard from the World Wide Web Consortium [XML98℄,

is in
reasingly being used as a proto
ol for the dissemination and ex
hange of information from

all types of data sour
es and appli
ations. XML is qui
kly be
oming the lingua fran
a for data

ex
hange, and nearly every vendor of data management tools has been ra
ing to adopt it. The

strengths of XML lie in its simpli
ity, self-des
ribing nature, and
exibility | parti
ularly in its

ability to represent a graph stru
ture, whi
h allows it to en
ode both stru
tured and semi-stru
tured

data.

An XML do
ument (see Figure 1 for an example)
onsists of pairs of mat
hing open- and

lose-tags (elements), ea
h of whi
h may en
lose additional elements or data values (in the form of

\
hara
ter data" strings). Additionally, an element tag may in
lude attributes further des
ribing

the element; attributes are single-valued and may have spe
ial meaning (e.g., they may serve as

�

Supported in part by an IBM Resear
h Fellowship

1

<db>

<lab ID="baselab" manager="smith1">

<name>Seattle Bio Lab</name>

<lo
ation>

<
ity>Seattle</
ity>

<
ountry>USA</
ountry>

</lo
ation>

</lab>

<lab ID="lab2">

<name>PMBL</name>

<
ity>Philadelphia</
ity>

<
ountry>USA</
ountry>

</lab>

<paper ID="Smith991231" sour
e="baselab"

biologist="smith1">

<title>Auto
atalysis of Spe
tral...</title>

...

</paper>

<biologist ID="smith1">

<lastname>Smith</lastname>

...

</biologist>

</db>

Figure 1: Sample XML do
ument representing biology labs and publi
ations

element identi�ers or referen
es). In parti
ular, XML elements may have spe
ial ID and IDREF

attributes, whi
h serve to uniquely identify elements and to form links to them, respe
tively. This

linking
apability allows XML to represent not only tree-stru
tured hierar
hi
al data, but also

graph-stru
tured information.

Several query languages have been proposed for XML [RLS98, DFF

+

99, CCD

+

98, GMW99℄.

Sin
e these languages treat XML data as a graph, variables in the query are mapped to XML

elements, whi
h are nodes in the graph. The main paradigm underlying these languages is that

of sele
ting data by mat
hing patterns des
ribed with regular path expressions against the XML

sour
e. These path expressions des
ribe traversals along subelement, attribute, and IDREF edges,

and variables get bound to nodes along these paths. Hen
e, a key operation in query pro
essing

over XML is to produ
e a set of bindings for variables, given a pattern
onsisting of several regular

path expressions.

To date, most e�orts to build XML query pro
essors have been based on �rst loading the data

into a lo
al repository, building indexes on the repository, and then pro
essing the query. The

approa
hes di�er on whether the repository is a relational database [FK99, SGT

+

99℄, an obje
t-

oriented database [vZAW99, LAW98℄ or a repository for semi-stru
tured data [GMW99℄.

In many appli
ations involving XML, however, we must be able to pro
ess queries over streams

of in
oming XML data, without having the luxury of �rst loading the data into a lo
al repository.

In parti
ular, data integration appli
ations often involve pro
essing data over sour
es on a wide-

area network whose
ontents
hange
ontinuously, and hen
e storing the data lo
ally is not a viable

approa
h. Furthermore, it is imperative that we produ
e results in
rementally as the data streams

into the system, sin
e queries are usually ad-ho
 and intera
tive.

In this paper we des
ribe XML-S
an, or x-s
an, an operator that is used at the lowest level of

an XML query plan and supplies data to other operators. The input to x-s
an is an XML data

stream and a set of regular path expressions o

urring in a query; x-s
an's output is a stream of

bindings for the variables o

uring in the expressions. A key feature of x-s
an is that it produ
es

these bindings in
rementally, as the XML data is streaming in; hen
e, x-s
an �ts naturally as the

sour
e operator to a
omplex pipeline, and it is highly suited for data integration appli
ations.

X-s
an is motivated by the observation that IDREF links are limited to the s
ope of the
urrent

do
ument, so in prin
iple, the entire XML query graph for a do
ument
ould be
onstru
ted in a

single pass. X-s
an a
hieves this by simultaneously parsing the XML data, indexing nodes by their

IDs, resolving IDREFs, and returning the nodes that mat
h the path expressions of the query. The

key
hallenges involved in designing x-s
an stem from need to (1) deal with possibly
y
li
 data,

(2) preserve order of elements, and (3) remove dupli
ate bindings that are generated when multiple

paths lead to the same data elements. We present a series of experiments to evaluate x-s
an's

2

#1

db

baselab

lab2
 Smith991231

smith1

Seattle

Bio Lab

PMBL
Seattle

USA

Philadelphia

USA

Autocatalysis of...

#2
 #3

#4
 #5
 #6

#7

#8

#9

lab

name

location

city
 country

lab

name
 city

country

paper

title

biologist

biologist

#10

lastname

source

Smith

manager

Figure 2: XML-QL graph representation for Figure 1. Dashed edges represent IDREFs; dotted edges

represent PCDATA.

performan
e. The experiments show that the algorithm s
ales very well to handle XML �les of

signi�
ant sizes (e.g., up to 14MB). An experimental
omparison of x-s
an with two systems (Lore

and a
ommeri
al XML query pro
essor based on an obje
t-oriented repository) shows that x-s
an

signi�
antly outperforms both of them | sometimes even when the expensive loading time of the

other systems is ignored.

The organization of this paper is as follows. Se
tion 2 provides a
ontext for the path expression

evaluation problem by reviewing how XML is queried. Se
tion 3 presents the x-s
an algorithm and

its
omponents, and Se
tion 4 des
ribes our experimental results. Se
tion 5 dis
usses how the

x-s
an operator relates to previous work. Finally, we
on
lude in Se
tion 6 and suggest avenues of

future resear
h.

2 A Data Model and Query Language

We begin by brie
y dis
ussing the issues in
hoosing an XML data model and XML-QL, the

language we use for querying XML.

2.1 Data Model for XML

Several proposals have been made for data models for XML. They are all based on representing

XML as a graph, and di�er on whether they
onsider the order of the XML do
ument, whether

they distinguish between subelement edges and attribute edges, and how they represent IDREFs in

the graph. In our dis
ussion, we represent XML data as a graph, where ea
h XML tag is an edge

(labeled with the tag name) that is dire
ted towards a node (with a label equal to the tag's ID)

1

. A

given element node will have labeled edges dire
ted to its attribute values, sub-elements, and any

other elements that it referen
es via IDREF attributes. Figure 2 shows the graph representation for

the sample XML data of Figure 1. Note that IDREFs are shown in the graph as dashed lines and

are represented as edges labeled with the IDREF attribute name; these edges are dire
ted to the

referen
ed element's node. In order to allow for intermixing of \parsed
hara
ter" (string) data

and nested elements within ea
h element, we
reate a PCDATA edge to ea
h string embedded in the

XML do
ument. These edges are represented in Figure 2 as dotted arrows pointing to leaf nodes.

In this paper we
onsider exe
ution over an ordered XML graph, following the established

semanti
s of pro
essing order in XML. There are
ertain
ases in whi
h XML ordering semanti
s

1

This data model is derivative of the XML-QL model, but treats both elements and attributes as edges

3

WHERE <db>

<lab>

<name>$n</>

<_*><
ity>$
</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<
enter> <name> $n </>

<lo
ation> $
 </>

</>

</>

Figure 3: XML-QL query that �nds the lo
ations of labs. The WHERE
lause spe
i�es a graph-

stru
tured pattern of nested tags. Variables are pre�xed with a dollar sign, unders
ore denotes a

wild
ard whi
h mat
hes any element or attribute, and asterisk is the Kleene star meaning \zero or

more."

are unde�ned or ambiguous (e.g. how data from di�erent sour
es should be ordered when it is

ombined); we do not attempt to address these issues. Moreover, we observe that XML
onsiders

subelements to be ordered but attributes to be order-free; in our model, we preserve order a
ross

both attributes and subelements, but only allow queries to express ordering
onstraints among

subelements.

2.2 Querying XML

A variety of XML query languages have been proposed, mostly based on languages for querying

semi-stru
tured data (XQL [RLS98℄, XML-QL [DFF

+

99℄, XML-GL [CCD

+

98℄, Lorel [GMW99℄).

These languages are driving the
urrent W3C Query Language Committee whose �nal re
ommen-

dation is likely to en
ompass features from ea
h. The key features these languages have in
ommon

is that they enable a user to mat
h regular path expressions over the data, and, to varying extents,

have the ability to
onstru
t XML do
uments as a result of the query. In this paper we use XML-

QL, but the features of the language that are relevant to our algorithm are mostly found in the

other languages as well.

XML-QL uses a WHERE pattern1 IN sour
e1, pattern2 IN sour
e2, ... CONSTRUCT result syntax,

in whi
h the pattern template is mat
hed against the input XML data graph from sour
e (a URI)

and the result de�nes the desired stru
ture of the query output graph. An XML-QL pattern is

expressed as a set of nested tags with embedded variable names (pre�xed by leading dollar-signs)

that spe
ify bindings of graph nodes to variables. Continuing the example of Figures 1 and 2, we

an issue the query of Figure 3, whi
h returns a list of lab names and their
ity lo
ations.

More pre
isely, this query sear
hes for all lab elements whi
h are immediately inside a db

element, with a
hild name element and a des
endent
ity element. The query's CONSTRUCT
lause

returns a set of name/
ity pairs. Note that in XML-QL, we
an abbreviate ea
h
lose-tag with a

</>. The WHERE template
an be thought of as a set of tree-stru
tured path expressions that get

\mat
hed" a
ross the input graph. Ea
h variable name (l,
, and n above) is bound to the mat
hing

node at the end of the path. In our example, we take a db edge from the do
ument root. From

here, we �nd a lab edge and destination; the ELEMENT AS keyword after lab's
lose-tag
auses this

destination node to be bound to variable l. Next, a name edge is traversed to a node we assign to

variable
alled n. Now, from the same db edge traversed earlier, we traverse any number of edges

and then a
ity edge, and assign the node to the variable
.

4

<result>

<
enter> <name> Seattle Bio Lab </name>

<lo
ation> Seattle </lo
ation>

</
enter>

<
enter> <name> PMBL </name>

<lo
ation> Philadelphia </lo
ation>

</
enter>

</result>

Figure 4: The result of applying the query from Figure 3 to the XML data in Figure 1.

The result of the WHERE
lause of the query is a set of bindings for every possible
ombina-

tion of path expression mat
hes. Note that for ea
h
ombination of possible lab and
ity edges

under a
ommon lab node l, that
ombination of n and
 values should be returned; all three

variables
an be represented as a 3-tuple. In the example, there are two possible binding tuples:

hl=baselab; n=#2;
=#4i and hl=lab2; n=#6;
=#7i. Note that a WHERE
lause
an
onsist of

several patterns, and ea
h one
an be posed over a di�erent do
ument. The result of the WHERE

lause in this
ase would be the join of the binding tuples produ
ed by ea
h of the patterns.

The CONSTRUCT
lause normally spe
i�es a tree-stru
tured set of edges and nodes to add to

the output graph for ea
h tuple of variable bindings. Wherever an input variable appears in the

CONSTRUCT
lause, its asso
iated node is inserted into the output. Additionally, we also \
arry

forward" all other nodes transitively
onne
ted by edges radiating from the original node. In

essen
e, an XML-QL variable bound to an XML graph node always represents not simply the node,

but the entire subgraph to whi
h the node transitively
onne
ts via \forward-pointing" edges. The

onstru
ted output for query of Figure 3 over the data in Figure 1 is shown in Figure 4. Note

that the outermost (result) tag in the CONSTRUCT
lause only appears on
e in the output; this is

be
ause XML syntax requires a single \root" element en
losing all remaining
ontent.

The goal of the X-s
an operator is to produ
e a set of bindings for ea
h pattern in the WHERE

lause. Hen
e, the x-s
an operator is the bottommost operator in a query exe
ution plan, and its

results are later fed into other operations su
h as joins, grouping and aggregation. As was des
ribed

above, the WHERE
lause is a hierar
hi
al des
ription of path traversals; we
an thus rewrite the

XML-QL template in a di�erent form using a more
onventional dot-notation:

� E

l

= root."db"."lab"

� E

n

= E

l

."name"

� E

= E

l

._*."
ity"

Note that expressions E

n

and E

are expressed in terms of E

l

, sin
e they are paths originating

from a given l node

2

. This hierar
hi
al relationship o

urs very
ommonly in XML-QL. Sometimes

there is an impli
it rather than expli
it set of dependen
ies | two XML-QL path expressions that

are siblings with a
ommon parent must a
tually both have a
ommon parent path expression, even

if an ELEMENT AS keyword is not spe
i�ed in the query, in order to preserve the
orre
t stru
tural

and ordering relationship. If l were not spe
i�ed in Figure 3, the query plan generator would need

to
reate a temporary variable with the same regular path expression, and would have expressed n

and
 in terms of the temporary variable.

2

Re
all also that the unders
ore
hara
ter , used in E

denotes wild
ard so * means zero or more edges of any

type.

5

Structural Index

. .
 .

ID index

<db>

 <lab ID=...

 <name>Seattle...

 <location>

 <city>Seattle...

 ...

XML Document

State Machines
Stack

l
 c

#1
 #3

BV Tables

Tuple

Bindings

ID2

. .
 .

ID1

ID3

Unresolved

IDREFs

. .
 .

Figure 5: Data stru
tures used by x-s
an. The algorithm takes an XML do
ument and generates

an index of its stru
ture, keeping tra
k of IDs and �lling in unresolved IDREF targets as they are

en
ountered. Simultaneously, x-s
an runs a series of state ma
hines over the graph stru
ture (using

a sta
k to ba
ktra
k to previous states) and generates tables of bindings for variables.

3 The X-s
an Operator

Given the text stream of an XML do
ument and a set of regular path expressions as inputs, x-s
an

outputs a stream of tuples assigning binding values to ea
h variable in the set of regular path

expressions. The stream of binding values is generated in
rementally, and hen
e x-s
an is suitable

for in
lusion in a pipelined exe
ution plan. The
entral me
hanism underlying the operation of

x-s
an is a set of state ma
hines that traverse the XML graph, attempting to satisfy the path

expressions.

The data
omponents of x-s
an are illustrated in Figure 5. As the data streams into the system,

we
reate several stru
tures:

� the data gets parsed and stored lo
ally,

� a stru
tural index of the XML graph is
reated to fa
ilitate fast traversal a
ross IDREFs

through the graph,

� an ID index re
ords the IDs of all elements and their mat
hing lo
ations in the stru
tural

index, and

� a list of referen
es to not-yet-seen element IDs is maintained.

In parallel with the
onstru
tion of these data stru
tures, a set of �nite state ma
hines (one per

regular path expression/variable) perform a depth-�rst sear
h over the stru
tural index. When a

ma
hine rea
hes an a

ept state, a new value is added to the binding-value table asso
iated with

the ma
hine. These values are then
ombined to produ
e the binding tuples for the query. Ea
h of

the state ma
hines also maintains a sta
k of previously seen bindings along its
urrent path, whi
h

is used in order to avoid
y
les in traversing the data.

As this se
tion elaborates below, several aspe
ts
onspire to make x-s
an more
omplex than

a simple appli
ation of state-ma
hine sear
hing applied to XML data. First, x-s
an operates on

possibly
y
li
, graph stru
tured data. Se
ond, although x-s
an generates tuples as the input XML

is streaming into the system, it generates binding tuples in a way that preserves the XML order,

when ne
essary. X-s
an in
ludes an optional timestamp
omponent that allows it to prune dupli
ate

bindings (whi
h
an be generated when nodes in the XML graph are rea
hable through multiple

paths) in
rementally.

Se
tion 3.1 des
ribes the
onstru
tion of the state ma
hines used by x-s
an, and Se
tion 3.2

des
ribes the graph index stru
ture it
reates. Se
tion 3.3 des
ribes the operation of the state

6

M
l
:

M
n
:

M
c
:

1
 2
 3

4

6

5

7

db
 lab

name

city

Figure 6: Three state ma
hines (outlined in grey) generated for the path expressions in the XML-

QL query of Figure 3. Solid ar
s denote state transitions and are labeled with the token required for

traversal; the self ar
 from state 6 is a wild
ard and may followed for any token. Dashed ar
s denote

dependen
ies between ma
hines, and bold
ir
les signify a

ept states. Note that, for simpli
ity,

we show non-deterministi
 �nite state ma
hines here, but that x-s
an exe
ution a
tually uses the

equivalent deterministi
 ma
hines.

ma
hines over the data and the produ
tion of bindings. Se
tion 3.4 des
ribes how x-s
an handles

y
les safely, Se
tion 3.6 dis
usses handling larger-than-memory data sets, and �nally, Se
tion 3.5

des
ribes several eÆ
ien
y enhan
ements to the algorithm.

3.1 The State Ma
hines

As des
ribed in Se
tion 2, we
reate one regular expression for every variable in the XML-QL query;

we refer frequently to the variable of a path expression and its inverse, the expression of a variable.

The variables in an XML-QL query are typi
ally expressed at di�erent levels in a hierar
hi
al

template. We say that variable x is dependent on variable y if the expression of x refers to the

expression of y, and we say that y is the parent of x. In our example, both n and
 are dependent on

l. Dependen
ies o

ur when a query binds one variable (e.g., l) to a node along one path expression,

and then binds another variable (e.g.,
) to a node that at the end of a spe
i�ed path from the �rst

variable. X-s
an must �rst �nd a binding for l before sear
hing for bindings for n and
.

Given a set of regular path expressions, we build a �nite-state ma
hine for ea
h expression;

Figure 6 shows the three ma
hines, M

l

, M

n

, and M

, for our example. State transitions in these

ma
hines
orrespond to edge traversals in the XML data graph. The end of the path expression

yields an a

ept state in the ma
hine, whi
h outputs instan
es of the
orresponding variable. The

di�erent state ma
hines are related a

ording to the dependen
ies of the
orresponding variables:

be
ause
 is dependent upon l, ma
hineM

is dependent on M

l

; this means that M

is only enabled

on
e M

l

rea
hes an a

ept state. In Figure 6 dependen
ies are shown as dashed lines.

3.2 Indexing the XML Graph

When x-s
an is run on an XML sour
e, it parses the XML and builds a graph-stru
tured index of

the data. This index allows x-s
an to qui
kly traverse the XML stru
ture on
e it has seen some

portion of the do
ument, and as a
onsequen
e, handle graph-stru
tured data more eÆ
iently. In

addition, as we explain below, the
onstru
tion of the stru
tural index
ontinues even when we

need to suspend the state ma
hines be
ause of unresolved IDREFs.

Ea
h node in the index
ontains information about an element (its ID and an o�set into the

original XML data �le so that the node's sour
e
an be a

essed qui
kly) as well as pointers to all

subelements, attributes, and IDREFs of the element. Essentially, the index stru
ture looks like the

graph of Figure 2 ex
ept that data values su
h as those in the leaf (PCDATA) nodes are not stored.

7

In addition, x-s
an
reates an index on IDs that it has en
ountered so far, mapping from ID to

entry in the stru
tural index. In addition, an index of all unresolved IDs is maintained, listing all

referrers to ea
h unseen ID.

3.3 The Operation of X-S
an

X-s
an pro
eeds by building the stru
tural index and running a set of a
tive state ma
hines in

parallel. We now fo
us on the running of the state ma
hines.

The set of a
tive state ma
hines is determined as follows. Initially, only the top-level ma
hine

(M

l

in our example) is a
tive. When a ma
hineM rea
hes an a

epting state, it produ
es a binding

b for the variable asso
iated with it. It then a
tivates all of its dependent state ma
hines, and they

remain a
tive while x-s
an is s
anning b or any element a

essible by a path from b. In our example,

the ma
hines M

n

and M

remain a
tive while we s
an a given value of l.

Asso
iated with ea
h ma
hine is a table for storing binding values. As a ma
hine rea
hes an

a

ept state, it writes into this table a tuple
ontaining its bound node value as well as the value

of its parent variable (thus providing a means of asso
iating the variable and its parent)

3

. In our

example, M

l

's table would just store values of l, while n and
 would store name and
ity values,

respe
tively, paired with their
orresponding l values. The �nal output of x-s
an is the equi-join of

the tables maintained by the three ma
hines.

We illustrate the exe
ution of x-s
an on our example. Suppose M

1

is initialized to ma
hine

state 1, whi
h takes the XML root as binding value. There is one outgoing edge, and be
ause

it is labeled db x-s
an follows it, pushing M

l

's old value on the sta
k and setting M

l

to state 2

with value node #1. Next x-s
an follows the �rst of four outgoing edges, pushing the old state

value, and setting M

l

to state 3 with value baselab. Sin
e M

l

is now in an a

epting state, x-s
an

writes the value baselab into M

l

's table, suspends M

l

, and a
tivates M

n

and M

. The next edge

takes M

n

from state 4 to 5 while M

follows the self-ar
 ba
k to state 6; both ma
hines have #2

as binding value. Sin
e M

n

is now in an a

ept state, x-s
an writes h#2; baselabi into M

n

's table;

note that the
urrent value of l is written along with that of n sin
e l is n's parent. From this

node, no (non-PCDATA) edges remain for exploration, so x-s
an pops the sta
k and ba
ks up the

state ma
hines, resetting M

n

to state 4 and M

to state 6. The next edge is labeled lo
ation

whi
h M

n

an't traverse, so it dea
tivates, while x-s
an advan
es M

through state #3 and then

into a

epting state #4. At this point x-s
an writes h#4; baselabi into M

's table. X-s
an is now

able to output its �rst tuple of bindings: hl=baselab; n=#2;
=#4i.

X-s
an keeps running M

but no more
ities are found, and so eventually it pops ba
k up to

baselab. X-s
an tries running M

along the IDREF to smith1, but still no
ities are found. So

x-s
an dea
tivates M

n

and M

, and
ontrol returns to their parent M

l

. X-s
an pops up to node #1

and a similar pro
ess yields another binding tuple hl=lab2; n=#6;
=#7i on
e M

l

�nds lab2. 2

Handling Forward Referen
es: On o

asion x-s
an will en
ounter an IDREF edge whi
h points

\ahead" to a node whi
h has not yet been parsed. This situation is easily dete
ted sin
e the ID

index re
ords all element IDs, and the target will not be in the index.

If preserving do
ument order is not important, then x-s
an
an pro
eed to pro
ess elements

out of order, but then the XML query pro
essor will need to do some
omplex bookkeeping at

later stages in order to produ
e output whose stru
ture (even beyond simply the order) properly

3

The implementation stores pointers to XML nodes as the values in these tables; this allows x-s
an to preserve

order in later stages. However, for expository simpli
ity in the example narrative below, we write as if the node IDs

were stored as the values.

8

#1

#2

#4
#3

a

a

a
 a

b

Figure 7: Graph representation for XML data fragment
ontaining a
y
le. The dashed edge

represents an IDREF.

orresponds to the input do
ument. We explain the
ase of order preservation, whi
h is
on
eptually

simpler and
omes at little extra
ost.

When x-s
an hits a forward referen
e to an (unseen) element, it pauses all state ma
hines and

adds an entry to the list of unresolved IDREF symbols, spe
ifying the desired ID value and the

referrer's address. However, x-s
an
ontinues reading the XML sour
e and building the stru
tural

index. On
e the target element is parsed, x-s
an �lls its address into ea
h referring IDREF in the

stru
tural index, removes the entry from the list of unresolved IDREFs, and awakens the state

ma
hines and pro
eeds. It is important to note that by
ontinuing to build the stru
tural index,

x-s
an
an pro
ess the parsed-but-not-yet-traversed portion of the data mu
h more qui
kly.

3.4 Handling Cy
les Safely

When the input XML do
ument
ontains
y
les,
are must be used to ensure that x-s
an returns

all possible binding tuples without getting trapped in an in�nite loop. Consider the XML data of

Figure 7, and suppose that the query involves the following path expression:

� E

x

= root._*."b"."a"

In other words, the query is sear
hing for paths of any length where the last two edges are b

followed by a. A qui
k inspe
tion of Figure 7 shows that there is a mat
h binding x to element

#2, but the only way to �nd this mat
h means sear
hing down through element #1 following a to

element #2
ontinuing on to 3, and following the IDREF ba
k to elements #1 and #2 again. If x-s
an

had refused to follow the
y
le and visit these elements again, then it would have missed answers

to the query.

On the other hand, if x-s
an follows
y
li
 paths with abandon, it
ould get trapped in an

in�nite loop. Consider the behavior of the following path expression on the same XML input:

� E

y

= root._*."z"

Here, x-s
an is dire
ted to look for a path of any length, ending in the token z. Qui
k inspe
tion

shows that there aren't any z's but we must ensure that x-s
an doesn't run around the
y
le

endlessly looking for one.

The solution is based on
he
king the sta
k asso
iated with the state ma
hine. The sta
k

ontains pairs of the form (binding, state), des
ribing whi
h bindings have been asso
iated with

states of the ma
hine along the
urrent path. When a ma
hine enters a state, it
he
ks to see

that this state has not been bound to the same binding along the
urrent path. Sin
e x-s
an uses

deterministi
 �nite state ma
hines, we know that returning to a previous state will not add any

new possible a
tions.

9

8

(a)

a
b
 9
 10
M
x
:
 11

(b)

z
 12
M
y
:

Figure 8: State ma
hines for Kleene star queries on
y
li
 graphs.

WHERE <db>

<lab manager="smith1">

<name>$n</>

<_*><
ity>$
</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<
enter><name>$n</>

<lo
ation>$
</></>

</>

Figure 9: XML-QL query with a sele
tion predi
ate. We only return bindings when there is a

manager referen
e with value smith1.

Consider how this solution handles the last two examples. The two path expressions yield the

state ma
hines shown in Figure 8(a) and (b). When M

x

�rst rea
hes element #1, it binds the node

to state 8. Next it follows the self-loop so state 8 binds to #2; again it follows the self-loop so state

8 binds to #3. But when it follows the b edge it traverses into state 9, so this does not
ount as

repetition be
ause state 9 has never bound to element #1 before. Now when x-s
an traverses the a

edge it binds state 10 to element #2 and again there is no repetition, so x-s
an su

essfully leads

M

x

to an a

ept.

Contrast this with x-s
an's behavior on M

y

. When x-s
an �rst rea
hes element #1, it binds

the element to state 11. X-s
an follows M

y

's self loop as it traverses to #2, whi
h forms the new

binding for state 11. Next state 11 gets bound to element #3. Then, as x-s
an follows the IDREF

ba
k to #1, it attempts to bind M

y

's state 11 to #1 on
e again, and the dupli
ation
he
k reje
ts

the binding; instead, x-s
an for
es M

y

to ba
ktra
k.

We note that this simple dupli
ation
he
k suÆ
es even for more
omplex path expressions

involving multiple, dependent ma
hines. All that is required is for ea
h ma
hine to refuse to bind

any state to a parti
ular node more than on
e along a path.

3.5 Performan
e Enhan
ements

The x-s
an implementation in
ludes several optimizations that improve performan
e: sele
tion

push-down, and in
remental dupli
ate elimination.

3.5.1 Sele
tion Push-Down

X-s
an
an perform a fairly substantial amount of work in evaluating path expressions, so, wherever

possible, it is important to prevent the operator from spending time evaluating paths that are not

useful in the query's output. We thus allow the query optimizer to push sele
tion operators down

into the x-s
an operation.

10

Suppose, for instan
e, that the query of Figure 3 is modi�ed slightly, as in Figure 9. Note the

presen
e of the
onstraint that the lab must have a manager attribute (in this
ase, an IDREF,

although we are treating it as an attribute rather than a referen
e edge) with value smith1. For

this query, the query plan generator must
reate an additional temporary variable temp1 and a

regular path expression:

� E

temp1

= E

l

.�"manager"

where the � pre�x indi
ates that manager is an attribute rather than an element. The query plan

generator also adds a sele
tion predi
ate E

temp1

= "smith1".

During x-s
an's evaluation of the graph in Figure 1, it will initially bind the baselab node to

l, a
tivating the ma
hines for n,
, and temp1. X-s
an evaluates all node attribute edges before

subelement edges, so the ID and manager attributes will be tested against the state ma
hines. In

this
ase, the manager attribute exists and indeed has value smith1, so x-s
an will
ontinue down

this portion of the do
ument and bind values for n and
.

For the se
ond lab, however, things are slightly di�erent. The lab2 node has only an ID

attribute; as x-s
an iterates through all attributes of lab2, it �nds no manager attribute to follow

for temp1. The temp1 path expression
annot be satis�ed, so x-s
an
an \short-
ir
uit" on this

subgraph, dis
arding the value for l and ignoring its
hildren.

Note that a pushed-down sele
tion operator on a subelement (rather than an attribute) might

not always allow x-s
an's state ma
hine evaluation to short-
ir
uit. The reason is simple: x-s
an

evaluates ea
h subelement su

essively in do
ument order, and it will not be able to determine

whether a parti
ular subelement does or does not exist until it has pro
essed all subelements.

3.5.2 In
remental Dupli
ate Elimination

When the XML data graph
ontains IDREFs, x-s
an may visit an element multiple times through

di�erent paths. An unfortunate result of this is that it might generate dupli
ate binding tuples,

whi
h does not follow XML-QL's semanti
s. To see how dupli
ate bindings
an o

ur,
onsider x-

s
an's behavior on the paper's �rst sample XML data (Figure 2) with the following path expressions:

� E

z

= root._*.("lab" | "sour
e")

� E

n

= E

z

."name"

� E

= E

z

."
ity"

Sin
e E

z

will �nd multiple paths to the element lab2, x-s
an will produ
e the following binding

tuple twi
e: hz=lab2; n=#6;
=#7i.

There are two methods of solving this parti
ular problem, and one must be sele
ted by the

query optimizer based on
ost or other heuristi
s. The �rst method is obvious (but often highly

e�e
tive): post-pro
ess the output tuples, removing dupli
ates. This
an be done with either a

sorting or hashing s
heme. This approa
h does not typi
ally require that we keep an entire history

of tuples, as we might with a relational table, be
ause the tuples are produ
ed with a grouping

based on the hierar
hy of the regular expressions. In parti
ular, the above query will produ
e

all of the tuples for a given z value before produ
ing the tuples for su

essive values of z, so the

post-pro
essing stage
an
ush its history on ea
h new value of z.

There are
ases where doing dupli
ate removal within x-s
an is bene�
ial. If a parti
ular

path expression binds to a parti
ular node multiple times, and it has expensive dependent path

11

expressions (e.g. path expressions with Kleene-star
omponents), we might want to avoid generating

dupli
ates. In order to do this without requiring large in-memory histories, x-s
an annotates the

stru
tural index to tra
k when a node was last visited. For ea
h variable for whi
h x-s
an is to

perform dupli
ate elimination, it reserves spa
e in the stru
tural index for a timestamp; it also

gives every state ma
hine an internal \
lo
k."

Ea
h time x-s
an binds a variable to a node, it annotates that node's index entry with the

variable's
lo
k time. It then advan
es the
lo
ks of any dependent variables by one ti
k. Variables

an only bind to nodes with timestamps older than their internal
lo
ks. The result is that for ea
h

binding of a \parent" variable, we will only see at most one binding per dependent variable to a

given node. This mirrors XML-QL semanti
s, whi
h allow multiple variables to bind to the same

node, but do not allow dupli
ate tuples to be produ
ed.

3.6 Handling Large XML Do
uments

In pro
essing a large XML data stream, main memory may not be large enough to handle all of the

index stru
tures; this se
tion explains how the x-s
an implementation supports larger-than-memory

exe
ution.

The approa
h to handling very large XML do
uments is to allow paging of the XML sour
e

do
ument and of the stru
tural index. Index entries in
lude a �eld referen
ing their
orresponding

elements in the sour
e do
ument, and a series of subelement and IDREF edge \links" to other entries

within the index itself. With both of these stru
tures, a
onventional bu�er manager using LRU

or some similar poli
y is suÆ
ient.

There are three auxiliary data stru
tures that are perhaps most naturally kept in memory,

namely the ID lookup index, the list of unresolved IDREF targets, and the state ma
hine sta
k. The

ID lookup index is undoubtedly most eÆ
ient as a hash table from IDs to addresses. However, if

this data stru
ture runs out of memory, we may wish to swit
h to a paged data stru
ture, either

a B+-tree or a multilevel hash table. The B+-tree has the property that it is sorted, but it is

un
lear that this ordering will typi
ally mat
h the order of appearan
e of IDREFs; thus a paged

hash-based stru
ture may be a good alternative. A similar approa
h
an be taken with the list of

unresolved IDREF targets, although su
h an approa
h would be more
ostly sin
e x-s
an need to

onsult this list whenever it �nds a new ID. Fortunately, this data stru
ture is mu
h less likely to

ex
eed memory, sin
e items are removed as they are resolved.

The number of states in the state ma
hine sta
k is bounded by the produ
t of the number

of variables and the longest non-repeating path. This is a worst-
ase number in whi
h all state

ma
hines are simultaneously a
tive and they all mat
h the edges in our path; typi
ally this is not

the
ase, and we do not need to store the state of an ina
tive ma
hine. Even if this sta
k does get

very large, it
an be very naturally paged to disk, as we
an simply swap out the oldest entries to

make more room, and re-fet
h them as entries get popped o�.

4 Experimental Results

Our X-s
an implementation uses the IBM XML4C parser version 3.0.1 (based on the Apa
he

Xer
es-C library) to parse XML do
uments. We use the SAX [SAX98℄ parser API, whi
h provides

allba
ks to our
ode as elements are read and allows us to evaluate streaming XML data without

�rst having to build an entire in-memory parse tree.

We have implemented x-s
an within the Tukwila [IFF

+

99℄ data integration system, whi
h we

are extending to support XML queries. Tukwila supports large data sour
es via paging, and

12

our implementation of x-s
an leverages these
apabilities to support larger-than-memory XML

do
uments and stru
tural indi
es. In our
urrent version, the number of elements with IDs is

onstrained by an in-memory hash table; in the future, we plan to repla
e the hash table with a

B+-tree to fully support out-of-memory exe
ution.

4.1 Comparison to Current Systems

To the best of our knowledge, x-s
an is the �rst algorithm developed for
omputing regular path

expressions in a data integration
ontext. As su
h, there is no \fair" system to
ompete against |

however, in order to get an idea for how it fares against previous work, we ran a series of exper-

iments against
urrent XML repository systems. We examined the performan
e of x-s
an, whi
h

pro
esses the data in
rementally as it parses, versus a
onventional store-then-query approa
h. This

experiment was performed with lo
ally stored XML �les, and thus it does not show the additional

performan
e bene�ts of x-s
an's ability to in
rementally evaluate path expressions as data is slowly

streaming into the system; the other systems
annot begin produ
ing results until the XML do
u-

ment has been fully read from the network and then loaded into their proprietary storage formats.

On the other hand, x-s
an is merely the �rst
omponent of a query pro
essing system that is under

onstru
tion, so its numbers do not in
lude the (typi
ally small, espe
ially for the simple queries

we used) overhead required by the
ompeting systems to parse and optimize input queries.

We
ompared the performan
e of x-s
an, Stanford's Lore [GMW99℄ semi-stru
tured/XML

database system, and a
ommer
ial OO-based XML repository, a
ross a number of di�erent do
u-

ment sizes and query
omplexities. Note that the
apabilities of the three systems are somewhat

di�erent. The
ommer
ial XML repository is based on the XQL query language, whi
h is tree-

stru
tured in nature, and its
apabilities for traversing IDREFs are not eÆ
ient. Lore supports a

graph stru
tured data model with its Lorel query language; however, a Lorel query on an XML

do
ument may result in non-XML-
ompliant output if the result is not stri
tly a tree. Lore supports

an indexing stru
ture
alled a DataGuide [GW97℄ that
an speed path expression evaluation, but

index
reation failed on our data sets

4

, so we were unable to take advantage of this optimization.

Our
urrent x-s
an implementation does not support sele
tion predi
ates, so all queries are simple

path expression evaluations over the entire data set.

All x-s
an and
ommer
ial repository queries were performed on a single-pro
essor 450MHz

Pentium II ma
hine running Windows NT with 256MB of memory. The Lore queries were run on

a similarly
on�gured 450MHz Pentium II running Linux, using Diet Lore 5.0. All queries were

run 7 times and their results were averaged.

We obtained a number of XML do
uments from the web, in
luding religious texts, Shakespeare's

plays, the Mondial geographi
al en
y
lopedia, and database publi
ation information from DBLP

on
erning the VLDB
onferen
e. Most of these do
uments were stri
tly tree-stru
tured, ex
ept

for Mondial (whi
h has numerous referen
es) and VLDB (whi
h has referen
es from papers to their

pro
eedings). Table 1 summarizes the queries and data sour
es used.

Figure 10 displays the results. The x-s
an bars are separated into two
omponents, lower portion

showing the overhead of the parser and the Tukwila XML do
ument paging system, and the upper

showing the additional
ost of evaluating the query path expressions using x-s
an. In the �rst 5

data sets, whi
h are all tree-stru
tured, the overhead of parsing dominates the
osts of performing

node bindings. For the graph-stru
tured data sets, Mondial and VLDB, we see the x-s
an
osts

in
rease as the path expressions must now be evaluated repeatedly a
ross referen
ed portions of

the graph.

4

Note that the use of DataGuides is unlikely to speed up Lore's overall performan
e, as the savings in query

pro
essing time would probably be negated by the index
reation time.

13

Query Data size Des
ription

Henry VI-q1 646 KB Shakespeare's Henry VI title, personae, speakers

Henry VI-q2 646 KB Shakespeare's Henry VI title, personae, lines

Quran 898 KB Sura titles, epigraphs, verses from Quran

NT 1023 KB Book and
hapter titles from New Testament

Mormon 1510 KB Book of Mormon prefa
e headings, J. Smith's signed witnesses

Mondial 1332 KB Mondial en
y
lopedia
ountries,
ities,
ities' ref'd lo
. names

VLDB 1558 KB VLDB paper authors, titles, pro
eedings' ISBN numbers

Table 1: Queries and data sour
es used in the experiment
omparing x-s
an to Lore and a
om-

mer
ial system (Figure 10). See the Appendix for the a
tual queries and regular path expressions.

vldb

0.00

10.00

mondial

0.00

10.00

mormon

0.00

10.00

nt

0.00

10.00

quran

0.00

10.00

Q2 - hen_vi

0.00

10.00

Q1 - hen_vi

0

5

10

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Query

Failed

Query

Failed

51.6sec
 582sec

Query

Failed
 75.5sec
38.9sec

49.5sec
 559sec
 101sec

36.0sec

62.1sec

X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L
 X
 C
 L

Figure 10: Comparison of query performan
e. For X-s
an, (X) the light bar represents parsing and

storage overhead, and the dark bar is state ma
hine and binding
osts. For Commer
ial system

(C) and Lore (L), the light bar represents query
osts, and upper bar is the
ost of loading the

do
ument into the repository.

For the existing systems, we di�erentiate the a
tual XML query
ost from the
ost of loading the

do
ument into the repository. In a non-data integration
ontext, the
ost of a load
an be amortized

a
ross multiple queries, but in the data integration
ontext this is not possible be
ause we reread

data on every query. Both Lore and the
ommer
ial system gave very qui
k query responses to the

Mormon query, whi
h only asked for a very small portion of the overall XML do
ument; but their

load
osts were higher than the exe
ution times for x-s
an. For the other queries in the �rst 5 data

sets, we �nd that Lore generally has signi�
antly better load times than the
ommer
ial system,

but the
ommer
ial system has faster query times, and performs better overall. Lore was unable

to
omplete either query on the Henry VI text within our time limit of 1000 se
.

The graph-stru
tured Mondial data set was also a problem for Lore, whi
h failed in querying

it. We attempted to simulate the traversal of IDREFs in this query with the
ommer
ial system

by using XQL's id lookup fa
ilities, but performan
e su�ered greatly. For the VLDB data set, we

simpli�ed the query for Lore and the
ommer
ial produ
t, simply asking for the value of the papers'

IDREFs, rather than looking up this value to get the ISBN (whi
h we retrieved in the
orresponding

x-s
an query). Running times were still mu
h higher than those for x-s
an.

14

0

80

160

240

320

0
 40
 80
 120
 160
 200
 240

Number of Elements (in 1000s)

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Parse Only

X-Scan

Figure 11: S
alability results for a query over an XML tree. X-s
an has minimal overhead over the

parse, and grows only approximately 8% faster, even when the do
ument ex
eeds memory.

We
an
on
lude from this se
tion that neither Lore nor the
ommer
ial system s
ale up well

to queries a
ross multi-megabyte data �les, parti
ularly �les that
ontain graph stru
ture. X-s
an

outperforms them in all
ases, and also s
ales better (parti
ularly for tree-stru
tured do
uments).

4.2 S
alability

In order to better gauge the s
alability of x-s
an, we ran our system on a series of syntheti
 XML

data �les
reated by a random XML graph generator. The random graph generator starts with a

small XML tree-shaped \template" and begins repli
ating this to form an irregular XML tree; with

75% probability it adds this template as a subtree of the graph root, and with 25% probability it

pi
ks a random node as a parent element. The result is an XML do
ument
onsisting of subtrees

of varying depth, with a large number of
hildren o� the root. Next, the graph generator begins

randomly adding a spe
i�ed number of IDREF edges between nodes to transform the tree into a

graph.

The �nal graph
onsists of a root node with a series of outer subelement edges emanating from

it. At the ends of these edges, there are nodes with some random number of
hild edges (both

subelement and IDREF), emanating. The
hild edges' destination nodes may sour
e additional

hild edges, and they may be the origin for sub edges that point to
hara
ter data. Most of our

queries in this se
tion will be \sear
hing" for these sub edges' destination nodes.

Sin
e it is possible for the random graph generator to produ
e graphs that are unusually favor-

able or unfavorable to the experiments, we average three di�erent runs a
ross ea
h of three di�erent

random graphs of the same generation parameters. (In pra
ti
e, we found very little di�eren
e in

performan
e a
ross the di�erent randomly generated graphs of the same spe
i�
ations.)

4.2.1 Performan
e on trees

Sin
e x-s
an is appli
able to both tree-stru
tured and graph-stru
tured data, we shall �rst examine

how it performs on do
uments without IDs and IDREFs. For reasons of
onsisten
y with later

experiments, we a
tually used the same graph-stru
tured XML �les output by the random graph

15

0

20

40

60

80

100

120

140

0
 20000
 40000
 60000
 80000
 100000
 120000

Number of Elements

Q
u

er
y

T
im

e
(s

ec
)

500 IDREFs

1000 IDREFs

3000 IDREFs

5000 IDREFs

10000 IDREFs

15000 IDREFs

20000 IDREFs

30000 IDREFs

(a) Time vs. total elements

0

20

40

60

80

100

120

140

0
 5000
 10000
 15000
 20000
 25000
 30000

Number of IDREFs

Q
u

er
y

T
im

e
(s

ec
)

15K Elements

30K Elements

60K Elements

120K Elements

(b) Time vs. IDREF edges

Figure 12: S
alability results for query of Figure 11, but
onstru
ting graph index of do
ument.

generator, but repla
ed their default DTD with one that de�nes all attributes to be
hara
ter

data rather than IDs and IDREFs. We also dire
ted x-s
an to not generate a stru
tural index of

ea
h XML do
ument's data graph, sin
e su
h an index provides no bene�ts for tree-based regular

path expression evaluation

5

. In this experiment, x-s
an simply uses the state ma
hines to generate

bindings, whi
h it returns as pipelined tuples; the stru
tural index and the ID/referen
e resolution

omponents are disabled.

Our query was a simple path expression that returned all outer subelements as values for the

�rst variable, plus all nodes at distan
es 1 and 2 from those nodes in the se
ond variable. The

graph in Figure 11 shows the results on the di�erent data sets. We
an see that x-s
an in this
ase

only adds a small amount of overhead versus simply parsing the data �le. In every experiment,

the x-s
an overhead grows at a rate approximately 8% faster than the parser alone, and the a
tual

overhead remains minimal for even the largest of the data sets (whi
h was approximately 14.6MB).

Note that for the 240,000-element query, the XML do
ument ex
eeded x-s
an's memory allo
ation,

and was paged to and from disk during operation.

4.2.2 Cost of graph indexing

Our next experiment was to take the same data set and query as in the previous se
tion, but to

use the graph DTD. From this we
an determine the impa
t of building the stru
tural index and

of resolving referen
es. Figure 12 (a) illustrates query performan
e vs. number of elements in the

do
ument, and (b) shows performan
e vs. number of IDREF edges added.

As one would expe
t, the running times have moderately in
reased be
ause of the index gener-

ation overhead. Additionally, the amount of time to pro
ess a query grows at a slightly superlinear

rate in the number of elements, as shown in part (a) of the Figure. (This was also true of both the

parser and of x-s
an in the previous se
tion, but the rate is slightly more pronoun
ed here.) We

attribute this to the additional number of do
ument and index page a

esses required for perform-

ing \bookkeeping" and storage on in
reasingly larger XML do
uments. Even for a 7.5MB XML

do
ument, however, our total exe
ution time is approximately 2 minutes, and the operator a
tually

outputs pipelined tuples as it exe
utes.

Part (b) of the Figure demonstrates that query exe
ution time in
reases linearly with the number

5

By
omparing the result of this experiment with that of the next, we
an
al
ulate the
ost of building this index.

16

0

20

40

60

80

100

120

140

160

0
 20000
 40000
 60000
 80000
 100000
 120000

Number of Elements

Q
u

er
y

T
im

e
(s

ec
)

500 IDREFs

1000 IDREFs

3000 IDREFs

5000 IDREFs

10000 IDREFs

15000 IDREFs

20000 IDREFs

30000 IDREFs

(a) Time vs. total elements

0

20

40

60

80

100

120

140

160

0
 5000
 10000
 15000
 20000
 25000
 30000

Number of IDREFs

Q
u

er
y

T
im

e
(s

ec
)

15K Elements

30K Elements

60K Elements

120K Elements

(b) Time vs. IDREF edges

Figure 13: S
alability results for graph-traversing query requesting outer nodes, their
hild nodes,

and all sub nodes within 1 or 2 edge traversals of the outer nodes.

of IDREF edges. This query does not traverse any IDREF edges, so all
osts in
urred are for indexing

the referen
es.

4.2.3 Graph-traversing query

Sin
e mu
h of the
omplexity of the x-s
an algorithm
on
erns eÆ
ient path expression mat
hing

not just against trees, but against full graphs with IDREF edges, the next experiment tests the

e�e
tiveness of our stru
tural index when
alled to evaluate su
h referen
e edges.

The query we used in this experiment had three variables: the �rst bound to the outer nodes,

the se
ond to
hild nodes of outer and to the
hild nodes' sub
hildren, and the third variable

to sub nodes either one or two
hild edges away from the outer nodes. This query returns most

of the nodes within radius 2 of the outer nodes.

The results, shown in Figure 13, have nearly identi
al shapes to the subelement-only query

graphs from the previous se
tion. Close examination reveals that the plots in Figure 13(a) run

parallel to those in Figure 12, with a slightly higher value at ea
h point. This is small o�set is the

overhead in traversing the additional referen
es and binding to an additional (third) variable. A

omparison of the growth respe
t to number of IDREFs, in part (b) of ea
h �gure, shows that the

two queries behave similarly, but as the number of IDREFs in
reases, the graph-traversing query

begins to grow at a slightly faster rate. This is to be expe
ted be
ause the tree-only query did not

a
tually traverse IDREFs.

4.2.4 Kleene-star

Our �nal experiment measures the
osts of evaluating a query that uses a Kleene-star operator

to return all sub nodes in the graph. We would expe
t that this query would be more subje
t to

variation on di�erent random graphs, as
ertain graphs may have \hub"-like nodes that have many

out-edges and multiple in-edges. For su
h nodes, the path expression evaluation algorithm will

re-evaluate the entire subgraph for ea
h in
oming edge. If several of these hub nodes are
hained

together, the number of repeated traversals
an grow exponentially. Moreover, a high ratio of IDREF

edges to elements in the graph greatly in
reases the likelihood of su
h
hains appearing.

17

0

20

40

60

80

100

120

140

160

0
 20000
 40000
 60000
 80000
 100000
 120000

Number of Elements

Q
u

er
y

T
im

e
(s

ec
)

500 IDREFs

1000 IDREFs

3000 IDREFs

5000 IDREFs

10000 IDREFs

15000 IDREFs

20000 IDREFs

(a) Time vs. total elements

0

20

40

60

80

100

120

140

160

180

200

0
 5000
 10000
 15000
 20000
 25000
 30000

Number of IDREFs

Q
u

er
y

T
im

e
(s

ec
)

15K Elements

30K Elements

60K Elements

120K Elements

15K IDREFs did not complete

30K IDREFs did not complete

10K IDREFs did not complete

(b) Time vs. IDREF edges

Figure 14: S
alability results for Kleene-star query requesting all sub elements rea
hable from any

number of
hild edges.

The graphs in Figure 14 show x-s
an performan
e. In part (a) we see a familiar pattern for

exe
ution time versus number of elements, although the a
tual
ompletion times are slightly longer.

Part (b) shows the more interesting results,
omparing running times versus number of IDREFs

present in the do
ument. The growth is now superlinear, generally in
reasing at su

essively faster

rates as we approa
h a point in whi
h the number of IDREFs rea
hes 50% of the total number of

elements. (We note that at this value, an n-node graph a
tually has 3n=2� 1 edges, sin
e all nodes

are subelements.) At the 50% point, the x-s
an running times in
rease to some indeterminately

high value; in none of our experiments did su
h a query manage to
omplete within an hour.

We believe that XML data with su
h a high
on
entration of edges is unlikely to o

ur often in

pra
ti
e. However, we believe we have a solution that will make pro
essing of su
h data graphs more

tra
table. In parti
ular, the problem is that x-s
an spends massive amounts of time dupli
ating

previous traversals to get binding values. For this
ase, we propose \memo-izing" the bindings

produ
ed by following out-edges from a parti
ular node, annotating the stru
tural index with

pointers to su
h memo-ized values. Now if x-s
an rea
hes a previously visited node and is in a

previously en
ountered state ma
hine
on�guration, we
an simply read and return the memo-ized

results. We have a trade-o� in the extra disk a

esses required to read and write memo-ized values,

but in highly-
onne
ted graphs, this will produ
e a net gain.

5 Related Work

As XML has emerged as a medium for representing data as well as do
uments, and as query

languages for XML have been proposed, a number of approa
hes have been proposed for evaluating

XML queries. Most of these involve mapping XML to an existing database model and utilizing

onventional query engine to do the
ore work. XML mapping strategies for relational [FK99,

SGT

+

99, DFS99℄, obje
t-oriented [vZAW99, LAW98℄, and semi-stru
tured [GMW99℄ databases

have all been implemented. The system's parti
ular storage mapping may a
tually simplify
ertain

path expressions, e.g. if a set of path expressions in
ludes multiple data items that are mapped to the

same tuple in a table. However, in the general
ase, indexing te
hniques su
h as join indi
es [Val87℄,

a

ess support relations [KM90℄, DataGuides [GW97℄, and t-indi
es [MS99℄ must be used to speed

the pro
essing of path expressions. These index stru
tures des
ribe the nodes rea
hable by
ertain

lasses of path expressions. The t-index, and to some extent the DataGuide, are parti
ularly

18

powerful stru
tures that allow eÆ
ient
omputation of a wide range of regular path expression

types. However, the a
tual index generation tends to be fairly
omplex and time
onsuming:

DataGuides
an be exponential in the size of the data and t-indi
es, while not exponential, are also

ostly to generate, espe
ially for more
omplex path expression types.

X-s
an di�ers in three key ways from these te
hniques. First, x-s
an's stru
tural index es-

sentially
onverts the XML do
ument into a semi-stru
tured format that
an be more eÆ
iently

traversed without parsing; but it preserves the ordering and lo
ality of the XML do
ument, rather

than splitting it into separate tables or obje
ts that must later be re-
ombined.

Se
ond, x-s
an path expression evaluation is done through �nite state ma
hines based on the

query. By
ontrast, semi-stru
tured index te
hniques su
h as DataGuides and t-indi
es are essen-

tially �nite automata des
ribing paths through the data, with ea
h state pointing to the set of

nodes rea
hable through a parti
ular path. The bene�ts of the t-index or DataGuide are that it

is a reusable stru
ture, whi
h
an be leveraged a
ross multiple queries with di�erent regular path

expressions. However, in a data integration
ontext, we re-read data from the sour
e, so reuse does

not o

ur | thus it is more appropriate to build a stru
ture spe
i�
 to the given query.

Finally, x-s
an is a pipelining operator intended for streaming data, whereas other approa
hes

require a
ostly translation and indexing stage before the query
an be exe
uted. This pipelining

apability is key in an intera
tive ad-ho
 query system, parti
ularly if the data must be obtained

from a slow sour
e [UFA98, IFF

+

99, AH00℄.

The x-s
an pattern mat
hing approa
h is similar to the
on
ept behind the Knuth-Morris-Pratt

substring-mat
hing algorithm, whi
h
reates a �nite state ma
hine out of one string and mat
hes it

against the other string. However, x-s
an must be more sophisti
ated in order to handle mat
hing

of tree-stru
tured regular expression templates a
ross graphs: (1) it supports both \forward" and

\reverse" traversals as we en
ounter open- and
lose-tags in XML, (2) it handles
y
les in a way

that prevents in�nite loops, (3) it uses multiple dependent ma
hines in
onjun
tion, (4) it supports

arbitrary wild
ards, disjun
tion, and Kleene-
losure operations in paths, and (5) it has the ability

to avoid generating dupli
ate bindings for nodes rea
hable by several paths.

The basi
 goal of x-s
an, of
onverting from semistru
tured data to tuples in pipelined fashion,

is very similar to the s
an operator proposed by Cluet and Moerkotte in [CM97℄. However, x-s
an

di�ers in that it handles (
y
li
al) graphs as well as trees, it is for XML data rather than native

obje
t or semistru
tured data, and it in
ludes an algorithm and implementation.

6 Con
lusions and Future Work

In this paper we have presented the x-s
an algorithm, a new primitive for XML query pro
essing,

that evaluates regular path expressions to produ
e bindings. X-s
an is s
alable to larger XML

do
uments than previous approa
hes and provides important advantages for data integration, with

the following
ontributions:

� X-s
an is pipelined and produ
es bindings as data is being streamed into the system, rather

than requiring an initial stage to store and index the data.

� X-s
an handles graph-stru
tured data, in
luding
y
li
al data, by resolving and traversing

IDREF edges, and it does this following do
ument order and eliminating dupli
ate bindings.

� X-s
an generates an index of the stru
ture of the XML do
ument, while preserving the original

XML stru
ture.

19

� X-s
an uses a set of dependent �nite state ma
hines to eÆ
iently
ompute variable bindings

as edges are traversed. In
ontrast to semi-stru
tured indexing te
hniques, x-s
an
onstru
ts

�nite automata for the paths in the query, rather than for the paths in the data.

� X-s
an is very eÆ
ient, typi
ally imposing only an 8% overhead on top of the time required to

parse the XML do
ument. X-s
an s
ales to handle large XML sour
es and
ompares favorably

to Lore and a
ommeri
al XML repository, sometimes even when the
ost of loading data

into those systems is ignored.

In the short term, we plan to add several re�nements to our x-s
an implementation and inves-

tigate their e�e
ts. As was previously mentioned, we will be adding full support for out-of-memory

exe
ution and for sele
tion push-down, and we will also add the ability to memoize intermediate

results and avoid redundant
omputation in highly
onne
ted graphs. Additionally, the
urrent al-

gorithm separates the parsing and state-ma
hine traversal
omponents into di�erent stages whose

exe
ution must be interleaved. We envision the �nal implementation putting these stages in sepa-

rate threads, and to run both in parallel in a produ
er-
onsumer arrangement so x-s
an
an parse

and return results
ompletely in parallel.

Additionally, we believe that the two key
ontributions of x-s
an | state ma
hine-based eval-

uation of regular path expressions and \on-the-
y" indexing of XML | are general te
hniques

that have appli
ation beyond our
urrent domain of fo
us. For instan
e, XML-QL queries may be

omposed over other XML-QL views (\fun
tions"); this adds greater expressive power than a single

XML-QL query, and thus may require
omputation of intermediate view results that are fed into

the next query or view. As the input to the se
ond query or view, we
an use a variation of x-s
an

that works on graph data rather than \pure" XML. The graph stru
ture index may be useful in a

number of other operations. This output
an be used as the input to a t-index generator, whi
h

we believe will speed the
reation of indexing stru
tures for general path expressions on stored

XML data. The index may also be useful in
onstru
ting the results of an XML-QL query: the

semanti
s of XML-QL spe
ify that if a node is
opied from the input data graph to the output

graph, we must also
opy all nodes that are transitively
onne
ted to this node | an XML-QL node

potentially represents an entire subgraph. The graph index allows us to qui
kly �nd the required

XML fragments and
opy them over; we might even mark these in the index as having been
opied.

Finally, we are also
onsidering the use of the stru
tural index to support eÆ
ient updates on XML

data.

Currently, x-s
an represents a new operator whi
h will be at the
ore of the new version of the

Tukwila data integration system [IFF

+

99℄. However, this is just a �rst step. As we pro
eed, we

plan to investigate the potential uses des
ribed above | to develop a family of algorithms derived

from or assisted by x-s
an.

Referen
es

[AH00℄ Ron Avnur and Joseph M. Hellerstein. Continuous query optimization. In Pro
. of ACM SIGMOD

Conf. on Management of Data, Dallas, TX, 2000.

[CCD

+

98℄ Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Parabos
hi, and Letizia

Tan
a. XML-GL: A graphi
al language for querying and reshaping XML do
uments. W3C Query

Language Workshop, http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html, De
ember 1998.

[CM97℄ Sophie Cluet and Guido Moerkotte. Query pro
essing in the s
hemaless and semistru
tured

ontext. Unpublished manus
ript, 1997.

20

[DFF

+

99℄ Alin Deuts
h, Mary F. Fernandez, Daniela Flores
u, Alon Levy, and Dan Su
iu. A query language

for XML. In Pro
eedings of the International Word Wide Web Conferen
e, Toronto, CA, 1999.

[DFS99℄ Alin Deuts
h, Mary F. Fernandez, and Dan Su
iu. Storing semistru
tured data with STORED. In

SIGMOD 1999, Pro
eedings ACM SIGMOD International Conferen
e on Management of Data,

June 1-3, 1999, Philadephia, Pennsylvania, USA, pages 431{442, 1999.

[FK99℄ Daniela Flores
u and Donald Kossman. A performan
e evaluation of alternative mapping s
hemes

for storing XML data in a relational database. Te
hni
al Report 3684, INRIA, Mar
h 1999.

[GMW99℄ Roy Goldman, Jason M
Hugh, and Jennifer Widom. From semistru
tured data to XML: Migrat-

ing the Lore data model and query language. In ACM SIGMOD Workshop on the Web (WebDB),

Philadelphia, PA, pages 25{30, 1999.

[GW97℄ Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and optimization

in semistru
tured databases. In VLDB'97, Pro
eedings of 23rd International Conferen
e on Very

Large Data Bases, August 25-29, 1997, Athens, Gree
e, pages 436{445, 1997.

[IFF

+

99℄ Za
hary G. Ives, Daniela Flores
u, Mar
 T. Friedman, Alon Y. Levy, and Daniel S. Weld. An

adaptive query exe
ution system for data integration. In SIGMOD 1999, Pro
eedings ACM SIG-

MOD International Conferen
e on Management of Data, June 1-3, 1999, Philadephia, Pennsyl-

vania, USA, pages 299{310, 1999.

[KM90℄ Alfons Kemper and Guido Moerkotte. A

ess support in obje
t bases. In Pro
eedings of the

1990 ACM SIGMOD International Conferen
e on Management of Data, Atlanti
 City, NJ, May

23-25, 1990, pages 364{374, 1990.

[LAW98℄ Tirthankar Lahiri, Serge Abiteboul, and Jennifer Widom. Ozone: Integrating stru
tured and

semistru
tured data. Te
hni
al report, Stanford University, O
tober 1998.

[MS99℄ Tova Milo and Dan Su
iu. Index stru
tures for path expressions. In ICDT '99, 7th International

Conferen
e, Jerusalem, Israel, January 10-12, 1999, pages 277{295, 1999.

[RLS98℄ Jonathan Robie, Joe Lapp, and David S
ha
h. XML Query Language (XQL).

http://www.w3.org/TandS/QL/QL98/pp/xql.html, De
ember 1998.

[SAX98℄ SAX 1.0: The simple API for XML. http://www.megginson.
om/SAX/index.html, May 1998.

[SGT

+

99℄ Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun Zhang, David J. DeWitt, and Jef-

frey F. Naughton. Relational databases for querying XML do
uments: Limitations and oppor-

tunities. In VLDB'99, Pro
eedings of 25th International Conferen
e on Very Large Data Bases,

Edinburgh, S
otland, pages 302{304, 1999.

[UFA98℄ Tolga Urhan, Mi
hael J. Franklin, and Laurent Amsaleg. Cost based query s
rambling for initial

delays. In Pro
. of ACM SIGMOD Conf. on Management of Data, pages 130{141, Seattle, WA,

1998.

[Val87℄ Patri
k Valduriez. Join indi
es. TODS, 12(2):218{246, 1987.

[vZAW99℄ Roelof van Zwol, Peter M.G. Apers, and Annita N. Wils
hut. Modelling and querying semistru
-

tured data with MOA. In Pro
eedings of the Workshop on Semi-Stru
tured Data and Non-

Standard Data Formats, Jerusalem, Israel, 1999.

[XML98℄ Extensible markup language (XML) 1.0. http://www.w3.org/TR/1998/REC-xml-19980210, 10

February 1998. World Wide Web Consortium (W3C) Re
ommendation.

Appendix: Queries Used in Experiments

The tables on the next page present the di�erent queries used in the experimental se
tion of this paper.

21

Name System Query

Henry VI-q1 x-s
an p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",

a = p."ACT", as = a."SCENE"."SPEECH"."SPEAKER"

ommer
ial /play/title j /PLAY/PERSONAE/PERSONA j

/PLAY/ACT/SCENE/SPEECH/SPEAKER

Lore sele
t t, p, s from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,

pl.ACT.SCENE.SPEECH.SPEAKER s

Henry VI-q2 x-s
an p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",

a = p."ACT", l = a."SCENE"."SPEECH"."LINE"

ommer
ial /play/title j /PLAY/PERSONAE/PERSONA j

/PLAY/ACT/SCENE/SPEECH/LINE

Lore sele
t t, p, l from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,

pl.ACT.SCENE.SPEECH.LINE l

Quran x-s
an r = root."tstmt"."sura
oll", s = r."sura", e = s."epigraph",

t = s."bktlong", v = s."v"

ommer
ial /tstmt/sura
oll/sura/epigraph j /tstmt/sura
oll/sura/bktlong j

/tstmt/sura
oll/sura/v

Lore sele
t e,t,v from

tstmt.sura
oll r, r.sura s, s.epigraph e, s.bktlong t, s.v v

NT x-s
an b = root.."tstmt"."book
oll", bk = b."book", t = bk."bktlong",

 = bk."
hapter"."title"

ommer
ial /tstmt/book
oll/book/bktlong j /tstmt/book
oll/book/
hapter/
htitle

Lore sele
t t,
 from tstmt.book
oll.book b, b.bktlong t, b.
hapter

Mormon x-s
an pref = root."tstmt"._, t = pref."ptitle", w = pref."witlist",

per = w."witness"

ommer
ial /tstmt/*/ptitle j /tsmt/t/*/witlist j /tstmt/*/witlist/witness

Lore sele
t t,w from tstmt.% pref, pref.ptitle t, pref.witlist.witness w

Mondial x-s
an
 = root."mondial"."
ountry", n =
."name",
it =
."
ity",
n =
it."name",

at =
it."lo
ated"."ref"."name"

ommer
ial /mondial/
ountry/name j /mondial/
ountry/
ity/name

j id(/mondial/
ountry/
ity/lo
ated/�ref)/name

Lore sele
t
try,
it, lo
 from mondial.
ountry
o,
o.name
try,
o.
ity
i,
i.name
it,

i.lo
ated.ref.name lo

VLDB x-s
an i = root."
onf"."inpro
eedings", a = i."author", t = i."title",

p = i."
rossref"."IDREF"."isbn"

ommer
ial /
onf/inpro
eedings/author j /
onf/inpro
eedings/title j

/
onf/inpro
eedings/
rossref/�IDREF

Lore sele
t a, t, r from
onf.inpro
eedings i, i.author a, i.title t, i.
rossref.IDREF r

Table 2: Queries used in the experiment
omparing systems (Figure 10). X-s
an uses a series of

path expressions, the
ommer
ial system uses XPath/XQL, and Lore uses Lorel.

Se
tion Query

4.2.1 o = root."do
"."outer", s = o~("
hild"|"
hild"."sub")

4.2.2 o = root."do
"."outer", s = o~("
hild"|"
hild"."sub")

4.2.3 o = root."do
"."outer", s = o.("
hild"|"
hild"."sub"),

t = o.("
hild"."sub"|"
hild"."
hild"."sub")

4.2.4 o = root."do
"."outer", s = o."
hild"*."sub"

Table 3: Queries used in the s
alability experiments. Note that the tilde (�)
hara
ter is a path

segment separator mu
h like the dot operator, but it spe
i�es that the next edge is
an only be a

subelement (as opposed to an IDREF).

22

