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Abstra
t

The adoption of XML promises to a

elerate 
onstru
tion of systems that integrate dis-

tributed, heterogeneous data. Query languages for XML are typi
ally based on regular path

expressions that traverse the logi
al XML graph stru
ture; the eÆ
ient evaluation of su
h path

expressions is 
entral to good query pro
essing performan
e. Most existing XML query pro
ess-

ing systems 
onvert XML do
uments to an internal representation, generally a set of tables or

obje
ts; path expressions are evaluated using either index stru
tures or join operations a
ross the

tables or obje
ts. Unfortunately, the required index 
reation or join operations are often 
ostly

even with lo
ally stored data, and they are espe
ially expensive in the data integration domain,

where the system reads data streamed from remote sour
es a
ross a network, and seldom reuses

results for subsequent queries.

This paper presents the x-s
an operator whi
h eÆ
iently pro
esses non-materialized XML

data as it is being re
eived by the data integration system. X-s
an mat
hes regular path expres-

sion patterns from the query, returning results in pipelined fashion as the data streams a
ross

the network. We experimentally demonstrate the bene�ts of the x-s
an operator versus the

approa
hes used in 
urrent systems, and we analyze the algorithm's performan
e and s
alability

a
ross a range of XML do
ument types and queries.

1 Introdu
tion

XML, the eXtensible Markup Language standard from the World Wide Web Consortium [XML98℄,

is in
reasingly being used as a proto
ol for the dissemination and ex
hange of information from

all types of data sour
es and appli
ations. XML is qui
kly be
oming the lingua fran
a for data

ex
hange, and nearly every vendor of data management tools has been ra
ing to adopt it. The

strengths of XML lie in its simpli
ity, self-des
ribing nature, and 
exibility | parti
ularly in its

ability to represent a graph stru
ture, whi
h allows it to en
ode both stru
tured and semi-stru
tured

data.

An XML do
ument (see Figure 1 for an example) 
onsists of pairs of mat
hing open- and


lose-tags (elements), ea
h of whi
h may en
lose additional elements or data values (in the form of

\
hara
ter data" strings). Additionally, an element tag may in
lude attributes further des
ribing

the element; attributes are single-valued and may have spe
ial meaning (e.g., they may serve as

�
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h Fellowship

1



<db>

<lab ID="baselab" manager="smith1">

<name>Seattle Bio Lab</name>

<lo
ation>

<
ity>Seattle</
ity>

<
ountry>USA</
ountry>

</lo
ation>

</lab>

<lab ID="lab2">

<name>PMBL</name>

<
ity>Philadelphia</
ity>

<
ountry>USA</
ountry>

</lab>

<paper ID="Smith991231" sour
e="baselab"

biologist="smith1">

<title>Auto
atalysis of Spe
tral...</title>

...

</paper>

<biologist ID="smith1">

<lastname>Smith</lastname>

...

</biologist>

</db>

Figure 1: Sample XML do
ument representing biology labs and publi
ations

element identi�ers or referen
es). In parti
ular, XML elements may have spe
ial ID and IDREF

attributes, whi
h serve to uniquely identify elements and to form links to them, respe
tively. This

linking 
apability allows XML to represent not only tree-stru
tured hierar
hi
al data, but also

graph-stru
tured information.

Several query languages have been proposed for XML [RLS98, DFF

+

99, CCD

+

98, GMW99℄.

Sin
e these languages treat XML data as a graph, variables in the query are mapped to XML

elements, whi
h are nodes in the graph. The main paradigm underlying these languages is that

of sele
ting data by mat
hing patterns des
ribed with regular path expressions against the XML

sour
e. These path expressions des
ribe traversals along subelement, attribute, and IDREF edges,

and variables get bound to nodes along these paths. Hen
e, a key operation in query pro
essing

over XML is to produ
e a set of bindings for variables, given a pattern 
onsisting of several regular

path expressions.

To date, most e�orts to build XML query pro
essors have been based on �rst loading the data

into a lo
al repository, building indexes on the repository, and then pro
essing the query. The

approa
hes di�er on whether the repository is a relational database [FK99, SGT

+

99℄, an obje
t-

oriented database [vZAW99, LAW98℄ or a repository for semi-stru
tured data [GMW99℄.

In many appli
ations involving XML, however, we must be able to pro
ess queries over streams

of in
oming XML data, without having the luxury of �rst loading the data into a lo
al repository.

In parti
ular, data integration appli
ations often involve pro
essing data over sour
es on a wide-

area network whose 
ontents 
hange 
ontinuously, and hen
e storing the data lo
ally is not a viable

approa
h. Furthermore, it is imperative that we produ
e results in
rementally as the data streams

into the system, sin
e queries are usually ad-ho
 and intera
tive.

In this paper we des
ribe XML-S
an, or x-s
an, an operator that is used at the lowest level of

an XML query plan and supplies data to other operators. The input to x-s
an is an XML data

stream and a set of regular path expressions o

urring in a query; x-s
an's output is a stream of

bindings for the variables o

uring in the expressions. A key feature of x-s
an is that it produ
es

these bindings in
rementally, as the XML data is streaming in; hen
e, x-s
an �ts naturally as the

sour
e operator to a 
omplex pipeline, and it is highly suited for data integration appli
ations.

X-s
an is motivated by the observation that IDREF links are limited to the s
ope of the 
urrent

do
ument, so in prin
iple, the entire XML query graph for a do
ument 
ould be 
onstru
ted in a

single pass. X-s
an a
hieves this by simultaneously parsing the XML data, indexing nodes by their

IDs, resolving IDREFs, and returning the nodes that mat
h the path expressions of the query. The

key 
hallenges involved in designing x-s
an stem from need to (1) deal with possibly 
y
li
 data,

(2) preserve order of elements, and (3) remove dupli
ate bindings that are generated when multiple

paths lead to the same data elements. We present a series of experiments to evaluate x-s
an's
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Figure 2: XML-QL graph representation for Figure 1. Dashed edges represent IDREFs; dotted edges

represent PCDATA.

performan
e. The experiments show that the algorithm s
ales very well to handle XML �les of

signi�
ant sizes (e.g., up to 14MB). An experimental 
omparison of x-s
an with two systems (Lore

and a 
ommeri
al XML query pro
essor based on an obje
t-oriented repository) shows that x-s
an

signi�
antly outperforms both of them | sometimes even when the expensive loading time of the

other systems is ignored.

The organization of this paper is as follows. Se
tion 2 provides a 
ontext for the path expression

evaluation problem by reviewing how XML is queried. Se
tion 3 presents the x-s
an algorithm and

its 
omponents, and Se
tion 4 des
ribes our experimental results. Se
tion 5 dis
usses how the

x-s
an operator relates to previous work. Finally, we 
on
lude in Se
tion 6 and suggest avenues of

future resear
h.

2 A Data Model and Query Language

We begin by brie
y dis
ussing the issues in 
hoosing an XML data model and XML-QL, the

language we use for querying XML.

2.1 Data Model for XML

Several proposals have been made for data models for XML. They are all based on representing

XML as a graph, and di�er on whether they 
onsider the order of the XML do
ument, whether

they distinguish between subelement edges and attribute edges, and how they represent IDREFs in

the graph. In our dis
ussion, we represent XML data as a graph, where ea
h XML tag is an edge

(labeled with the tag name) that is dire
ted towards a node (with a label equal to the tag's ID)

1

. A

given element node will have labeled edges dire
ted to its attribute values, sub-elements, and any

other elements that it referen
es via IDREF attributes. Figure 2 shows the graph representation for

the sample XML data of Figure 1. Note that IDREFs are shown in the graph as dashed lines and

are represented as edges labeled with the IDREF attribute name; these edges are dire
ted to the

referen
ed element's node. In order to allow for intermixing of \parsed 
hara
ter" (string) data

and nested elements within ea
h element, we 
reate a PCDATA edge to ea
h string embedded in the

XML do
ument. These edges are represented in Figure 2 as dotted arrows pointing to leaf nodes.

In this paper we 
onsider exe
ution over an ordered XML graph, following the established

semanti
s of pro
essing order in XML. There are 
ertain 
ases in whi
h XML ordering semanti
s

1

This data model is derivative of the XML-QL model, but treats both elements and attributes as edges
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WHERE <db>

<lab>

<name>$n</>

<_*><
ity>$
</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<
enter> <name> $n </>

<lo
ation> $
 </>

</>

</>

Figure 3: XML-QL query that �nds the lo
ations of labs. The WHERE 
lause spe
i�es a graph-

stru
tured pattern of nested tags. Variables are pre�xed with a dollar sign, unders
ore denotes a

wild
ard whi
h mat
hes any element or attribute, and asterisk is the Kleene star meaning \zero or

more."

are unde�ned or ambiguous (e.g. how data from di�erent sour
es should be ordered when it is


ombined); we do not attempt to address these issues. Moreover, we observe that XML 
onsiders

subelements to be ordered but attributes to be order-free; in our model, we preserve order a
ross

both attributes and subelements, but only allow queries to express ordering 
onstraints among

subelements.

2.2 Querying XML

A variety of XML query languages have been proposed, mostly based on languages for querying

semi-stru
tured data (XQL [RLS98℄, XML-QL [DFF

+

99℄, XML-GL [CCD

+

98℄, Lorel [GMW99℄).

These languages are driving the 
urrent W3C Query Language Committee whose �nal re
ommen-

dation is likely to en
ompass features from ea
h. The key features these languages have in 
ommon

is that they enable a user to mat
h regular path expressions over the data, and, to varying extents,

have the ability to 
onstru
t XML do
uments as a result of the query. In this paper we use XML-

QL, but the features of the language that are relevant to our algorithm are mostly found in the

other languages as well.

XML-QL uses a WHERE pattern1 IN sour
e1, pattern2 IN sour
e2, ... CONSTRUCT result syntax,

in whi
h the pattern template is mat
hed against the input XML data graph from sour
e (a URI)

and the result de�nes the desired stru
ture of the query output graph. An XML-QL pattern is

expressed as a set of nested tags with embedded variable names (pre�xed by leading dollar-signs)

that spe
ify bindings of graph nodes to variables. Continuing the example of Figures 1 and 2, we


an issue the query of Figure 3, whi
h returns a list of lab names and their 
ity lo
ations.

More pre
isely, this query sear
hes for all lab elements whi
h are immediately inside a db

element, with a 
hild name element and a des
endent 
ity element. The query's CONSTRUCT 
lause

returns a set of name/
ity pairs. Note that in XML-QL, we 
an abbreviate ea
h 
lose-tag with a

</>. The WHERE template 
an be thought of as a set of tree-stru
tured path expressions that get

\mat
hed" a
ross the input graph. Ea
h variable name (l, 
, and n above) is bound to the mat
hing

node at the end of the path. In our example, we take a db edge from the do
ument root. From

here, we �nd a lab edge and destination; the ELEMENT AS keyword after lab's 
lose-tag 
auses this

destination node to be bound to variable l. Next, a name edge is traversed to a node we assign to

variable 
alled n. Now, from the same db edge traversed earlier, we traverse any number of edges

and then a 
ity edge, and assign the node to the variable 
.
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<result>

<
enter> <name> Seattle Bio Lab </name>

<lo
ation> Seattle </lo
ation>

</
enter>

<
enter> <name> PMBL </name>

<lo
ation> Philadelphia </lo
ation>

</
enter>

</result>

Figure 4: The result of applying the query from Figure 3 to the XML data in Figure 1.

The result of the WHERE 
lause of the query is a set of bindings for every possible 
ombina-

tion of path expression mat
hes. Note that for ea
h 
ombination of possible lab and 
ity edges

under a 
ommon lab node l, that 
ombination of n and 
 values should be returned; all three

variables 
an be represented as a 3-tuple. In the example, there are two possible binding tuples:

hl=baselab; n=#2; 
=#4i and hl=lab2; n=#6; 
=#7i. Note that a WHERE 
lause 
an 
onsist of

several patterns, and ea
h one 
an be posed over a di�erent do
ument. The result of the WHERE


lause in this 
ase would be the join of the binding tuples produ
ed by ea
h of the patterns.

The CONSTRUCT 
lause normally spe
i�es a tree-stru
tured set of edges and nodes to add to

the output graph for ea
h tuple of variable bindings. Wherever an input variable appears in the

CONSTRUCT 
lause, its asso
iated node is inserted into the output. Additionally, we also \
arry

forward" all other nodes transitively 
onne
ted by edges radiating from the original node. In

essen
e, an XML-QL variable bound to an XML graph node always represents not simply the node,

but the entire subgraph to whi
h the node transitively 
onne
ts via \forward-pointing" edges. The


onstru
ted output for query of Figure 3 over the data in Figure 1 is shown in Figure 4. Note

that the outermost (result) tag in the CONSTRUCT 
lause only appears on
e in the output; this is

be
ause XML syntax requires a single \root" element en
losing all remaining 
ontent.

The goal of the X-s
an operator is to produ
e a set of bindings for ea
h pattern in the WHERE


lause. Hen
e, the x-s
an operator is the bottommost operator in a query exe
ution plan, and its

results are later fed into other operations su
h as joins, grouping and aggregation. As was des
ribed

above, the WHERE 
lause is a hierar
hi
al des
ription of path traversals; we 
an thus rewrite the

XML-QL template in a di�erent form using a more 
onventional dot-notation:

� E

l

= root."db"."lab"

� E

n

= E

l

."name"

� E




= E

l

._*."
ity"

Note that expressions E

n

and E




are expressed in terms of E

l

, sin
e they are paths originating

from a given l node

2

. This hierar
hi
al relationship o

urs very 
ommonly in XML-QL. Sometimes

there is an impli
it rather than expli
it set of dependen
ies | two XML-QL path expressions that

are siblings with a 
ommon parent must a
tually both have a 
ommon parent path expression, even

if an ELEMENT AS keyword is not spe
i�ed in the query, in order to preserve the 
orre
t stru
tural

and ordering relationship. If l were not spe
i�ed in Figure 3, the query plan generator would need

to 
reate a temporary variable with the same regular path expression, and would have expressed n

and 
 in terms of the temporary variable.

2

Re
all also that the unders
ore 
hara
ter , used in E




denotes wild
ard so * means zero or more edges of any

type.
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Figure 5: Data stru
tures used by x-s
an. The algorithm takes an XML do
ument and generates

an index of its stru
ture, keeping tra
k of IDs and �lling in unresolved IDREF targets as they are

en
ountered. Simultaneously, x-s
an runs a series of state ma
hines over the graph stru
ture (using

a sta
k to ba
ktra
k to previous states) and generates tables of bindings for variables.

3 The X-s
an Operator

Given the text stream of an XML do
ument and a set of regular path expressions as inputs, x-s
an

outputs a stream of tuples assigning binding values to ea
h variable in the set of regular path

expressions. The stream of binding values is generated in
rementally, and hen
e x-s
an is suitable

for in
lusion in a pipelined exe
ution plan. The 
entral me
hanism underlying the operation of

x-s
an is a set of state ma
hines that traverse the XML graph, attempting to satisfy the path

expressions.

The data 
omponents of x-s
an are illustrated in Figure 5. As the data streams into the system,

we 
reate several stru
tures:

� the data gets parsed and stored lo
ally,

� a stru
tural index of the XML graph is 
reated to fa
ilitate fast traversal a
ross IDREFs

through the graph,

� an ID index re
ords the IDs of all elements and their mat
hing lo
ations in the stru
tural

index, and

� a list of referen
es to not-yet-seen element IDs is maintained.

In parallel with the 
onstru
tion of these data stru
tures, a set of �nite state ma
hines (one per

regular path expression/variable) perform a depth-�rst sear
h over the stru
tural index. When a

ma
hine rea
hes an a

ept state, a new value is added to the binding-value table asso
iated with

the ma
hine. These values are then 
ombined to produ
e the binding tuples for the query. Ea
h of

the state ma
hines also maintains a sta
k of previously seen bindings along its 
urrent path, whi
h

is used in order to avoid 
y
les in traversing the data.

As this se
tion elaborates below, several aspe
ts 
onspire to make x-s
an more 
omplex than

a simple appli
ation of state-ma
hine sear
hing applied to XML data. First, x-s
an operates on

possibly 
y
li
, graph stru
tured data. Se
ond, although x-s
an generates tuples as the input XML

is streaming into the system, it generates binding tuples in a way that preserves the XML order,

when ne
essary. X-s
an in
ludes an optional timestamp 
omponent that allows it to prune dupli
ate

bindings (whi
h 
an be generated when nodes in the XML graph are rea
hable through multiple

paths) in
rementally.

Se
tion 3.1 des
ribes the 
onstru
tion of the state ma
hines used by x-s
an, and Se
tion 3.2

des
ribes the graph index stru
ture it 
reates. Se
tion 3.3 des
ribes the operation of the state
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Figure 6: Three state ma
hines (outlined in grey) generated for the path expressions in the XML-

QL query of Figure 3. Solid ar
s denote state transitions and are labeled with the token required for

traversal; the self ar
 from state 6 is a wild
ard and may followed for any token. Dashed ar
s denote

dependen
ies between ma
hines, and bold 
ir
les signify a

ept states. Note that, for simpli
ity,

we show non-deterministi
 �nite state ma
hines here, but that x-s
an exe
ution a
tually uses the

equivalent deterministi
 ma
hines.

ma
hines over the data and the produ
tion of bindings. Se
tion 3.4 des
ribes how x-s
an handles


y
les safely, Se
tion 3.6 dis
usses handling larger-than-memory data sets, and �nally, Se
tion 3.5

des
ribes several eÆ
ien
y enhan
ements to the algorithm.

3.1 The State Ma
hines

As des
ribed in Se
tion 2, we 
reate one regular expression for every variable in the XML-QL query;

we refer frequently to the variable of a path expression and its inverse, the expression of a variable.

The variables in an XML-QL query are typi
ally expressed at di�erent levels in a hierar
hi
al

template. We say that variable x is dependent on variable y if the expression of x refers to the

expression of y, and we say that y is the parent of x. In our example, both n and 
 are dependent on

l. Dependen
ies o

ur when a query binds one variable (e.g., l) to a node along one path expression,

and then binds another variable (e.g., 
) to a node that at the end of a spe
i�ed path from the �rst

variable. X-s
an must �rst �nd a binding for l before sear
hing for bindings for n and 
.

Given a set of regular path expressions, we build a �nite-state ma
hine for ea
h expression;

Figure 6 shows the three ma
hines, M

l

, M

n

, and M




, for our example. State transitions in these

ma
hines 
orrespond to edge traversals in the XML data graph. The end of the path expression

yields an a

ept state in the ma
hine, whi
h outputs instan
es of the 
orresponding variable. The

di�erent state ma
hines are related a

ording to the dependen
ies of the 
orresponding variables:

be
ause 
 is dependent upon l, ma
hineM




is dependent on M

l

; this means that M




is only enabled

on
e M

l

rea
hes an a

ept state. In Figure 6 dependen
ies are shown as dashed lines.

3.2 Indexing the XML Graph

When x-s
an is run on an XML sour
e, it parses the XML and builds a graph-stru
tured index of

the data. This index allows x-s
an to qui
kly traverse the XML stru
ture on
e it has seen some

portion of the do
ument, and as a 
onsequen
e, handle graph-stru
tured data more eÆ
iently. In

addition, as we explain below, the 
onstru
tion of the stru
tural index 
ontinues even when we

need to suspend the state ma
hines be
ause of unresolved IDREFs.

Ea
h node in the index 
ontains information about an element (its ID and an o�set into the

original XML data �le so that the node's sour
e 
an be a

essed qui
kly) as well as pointers to all

subelements, attributes, and IDREFs of the element. Essentially, the index stru
ture looks like the

graph of Figure 2 ex
ept that data values su
h as those in the leaf (PCDATA) nodes are not stored.

7



In addition, x-s
an 
reates an index on IDs that it has en
ountered so far, mapping from ID to

entry in the stru
tural index. In addition, an index of all unresolved IDs is maintained, listing all

referrers to ea
h unseen ID.

3.3 The Operation of X-S
an

X-s
an pro
eeds by building the stru
tural index and running a set of a
tive state ma
hines in

parallel. We now fo
us on the running of the state ma
hines.

The set of a
tive state ma
hines is determined as follows. Initially, only the top-level ma
hine

(M

l

in our example) is a
tive. When a ma
hineM rea
hes an a

epting state, it produ
es a binding

b for the variable asso
iated with it. It then a
tivates all of its dependent state ma
hines, and they

remain a
tive while x-s
an is s
anning b or any element a

essible by a path from b. In our example,

the ma
hines M

n

and M




remain a
tive while we s
an a given value of l.

Asso
iated with ea
h ma
hine is a table for storing binding values. As a ma
hine rea
hes an

a

ept state, it writes into this table a tuple 
ontaining its bound node value as well as the value

of its parent variable (thus providing a means of asso
iating the variable and its parent)

3

. In our

example, M

l

's table would just store values of l, while n and 
 would store name and 
ity values,

respe
tively, paired with their 
orresponding l values. The �nal output of x-s
an is the equi-join of

the tables maintained by the three ma
hines.

We illustrate the exe
ution of x-s
an on our example. Suppose M

1

is initialized to ma
hine

state 1, whi
h takes the XML root as binding value. There is one outgoing edge, and be
ause

it is labeled db x-s
an follows it, pushing M

l

's old value on the sta
k and setting M

l

to state 2

with value node #1. Next x-s
an follows the �rst of four outgoing edges, pushing the old state

value, and setting M

l

to state 3 with value baselab. Sin
e M

l

is now in an a

epting state, x-s
an

writes the value baselab into M

l

's table, suspends M

l

, and a
tivates M

n

and M




. The next edge

takes M

n

from state 4 to 5 while M




follows the self-ar
 ba
k to state 6; both ma
hines have #2

as binding value. Sin
e M

n

is now in an a

ept state, x-s
an writes h#2; baselabi into M

n

's table;

note that the 
urrent value of l is written along with that of n sin
e l is n's parent. From this

node, no (non-PCDATA) edges remain for exploration, so x-s
an pops the sta
k and ba
ks up the

state ma
hines, resetting M

n

to state 4 and M




to state 6. The next edge is labeled lo
ation

whi
h M

n


an't traverse, so it dea
tivates, while x-s
an advan
es M




through state #3 and then

into a

epting state #4. At this point x-s
an writes h#4; baselabi into M




's table. X-s
an is now

able to output its �rst tuple of bindings: hl=baselab; n=#2; 
=#4i.

X-s
an keeps running M




but no more 
ities are found, and so eventually it pops ba
k up to

baselab. X-s
an tries running M




along the IDREF to smith1, but still no 
ities are found. So

x-s
an dea
tivates M

n

and M




, and 
ontrol returns to their parent M

l

. X-s
an pops up to node #1

and a similar pro
ess yields another binding tuple hl=lab2; n=#6; 
=#7i on
e M

l

�nds lab2. 2

Handling Forward Referen
es: On o

asion x-s
an will en
ounter an IDREF edge whi
h points

\ahead" to a node whi
h has not yet been parsed. This situation is easily dete
ted sin
e the ID

index re
ords all element IDs, and the target will not be in the index.

If preserving do
ument order is not important, then x-s
an 
an pro
eed to pro
ess elements

out of order, but then the XML query pro
essor will need to do some 
omplex bookkeeping at

later stages in order to produ
e output whose stru
ture (even beyond simply the order) properly

3

The implementation stores pointers to XML nodes as the values in these tables; this allows x-s
an to preserve

order in later stages. However, for expository simpli
ity in the example narrative below, we write as if the node IDs

were stored as the values.
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b


Figure 7: Graph representation for XML data fragment 
ontaining a 
y
le. The dashed edge

represents an IDREF.


orresponds to the input do
ument. We explain the 
ase of order preservation, whi
h is 
on
eptually

simpler and 
omes at little extra 
ost.

When x-s
an hits a forward referen
e to an (unseen) element, it pauses all state ma
hines and

adds an entry to the list of unresolved IDREF symbols, spe
ifying the desired ID value and the

referrer's address. However, x-s
an 
ontinues reading the XML sour
e and building the stru
tural

index. On
e the target element is parsed, x-s
an �lls its address into ea
h referring IDREF in the

stru
tural index, removes the entry from the list of unresolved IDREFs, and awakens the state

ma
hines and pro
eeds. It is important to note that by 
ontinuing to build the stru
tural index,

x-s
an 
an pro
ess the parsed-but-not-yet-traversed portion of the data mu
h more qui
kly.

3.4 Handling Cy
les Safely

When the input XML do
ument 
ontains 
y
les, 
are must be used to ensure that x-s
an returns

all possible binding tuples without getting trapped in an in�nite loop. Consider the XML data of

Figure 7, and suppose that the query involves the following path expression:

� E

x

= root._*."b"."a"

In other words, the query is sear
hing for paths of any length where the last two edges are b

followed by a. A qui
k inspe
tion of Figure 7 shows that there is a mat
h binding x to element

#2, but the only way to �nd this mat
h means sear
hing down through element #1 following a to

element #2 
ontinuing on to 3, and following the IDREF ba
k to elements #1 and #2 again. If x-s
an

had refused to follow the 
y
le and visit these elements again, then it would have missed answers

to the query.

On the other hand, if x-s
an follows 
y
li
 paths with abandon, it 
ould get trapped in an

in�nite loop. Consider the behavior of the following path expression on the same XML input:

� E

y

= root._*."z"

Here, x-s
an is dire
ted to look for a path of any length, ending in the token z. Qui
k inspe
tion

shows that there aren't any z's but we must ensure that x-s
an doesn't run around the 
y
le

endlessly looking for one.

The solution is based on 
he
king the sta
k asso
iated with the state ma
hine. The sta
k


ontains pairs of the form (binding, state), des
ribing whi
h bindings have been asso
iated with

states of the ma
hine along the 
urrent path. When a ma
hine enters a state, it 
he
ks to see

that this state has not been bound to the same binding along the 
urrent path. Sin
e x-s
an uses

deterministi
 �nite state ma
hines, we know that returning to a previous state will not add any

new possible a
tions.

9
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Figure 8: State ma
hines for Kleene star queries on 
y
li
 graphs.

WHERE <db>

<lab manager="smith1">

<name>$n</>

<_*><
ity>$
</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<
enter><name>$n</>

<lo
ation>$
</></>

</>

Figure 9: XML-QL query with a sele
tion predi
ate. We only return bindings when there is a

manager referen
e with value smith1.

Consider how this solution handles the last two examples. The two path expressions yield the

state ma
hines shown in Figure 8(a) and (b). When M

x

�rst rea
hes element #1, it binds the node

to state 8. Next it follows the self-loop so state 8 binds to #2; again it follows the self-loop so state

8 binds to #3. But when it follows the b edge it traverses into state 9, so this does not 
ount as

repetition be
ause state 9 has never bound to element #1 before. Now when x-s
an traverses the a

edge it binds state 10 to element #2 and again there is no repetition, so x-s
an su

essfully leads

M

x

to an a

ept.

Contrast this with x-s
an's behavior on M

y

. When x-s
an �rst rea
hes element #1, it binds

the element to state 11. X-s
an follows M

y

's self loop as it traverses to #2, whi
h forms the new

binding for state 11. Next state 11 gets bound to element #3. Then, as x-s
an follows the IDREF

ba
k to #1, it attempts to bind M

y

's state 11 to #1 on
e again, and the dupli
ation 
he
k reje
ts

the binding; instead, x-s
an for
es M

y

to ba
ktra
k.

We note that this simple dupli
ation 
he
k suÆ
es even for more 
omplex path expressions

involving multiple, dependent ma
hines. All that is required is for ea
h ma
hine to refuse to bind

any state to a parti
ular node more than on
e along a path.

3.5 Performan
e Enhan
ements

The x-s
an implementation in
ludes several optimizations that improve performan
e: sele
tion

push-down, and in
remental dupli
ate elimination.

3.5.1 Sele
tion Push-Down

X-s
an 
an perform a fairly substantial amount of work in evaluating path expressions, so, wherever

possible, it is important to prevent the operator from spending time evaluating paths that are not

useful in the query's output. We thus allow the query optimizer to push sele
tion operators down

into the x-s
an operation.

10



Suppose, for instan
e, that the query of Figure 3 is modi�ed slightly, as in Figure 9. Note the

presen
e of the 
onstraint that the lab must have a manager attribute (in this 
ase, an IDREF,

although we are treating it as an attribute rather than a referen
e edge) with value smith1. For

this query, the query plan generator must 
reate an additional temporary variable temp1 and a

regular path expression:

� E

temp1

= E

l

.�"manager"

where the � pre�x indi
ates that manager is an attribute rather than an element. The query plan

generator also adds a sele
tion predi
ate E

temp1

= "smith1".

During x-s
an's evaluation of the graph in Figure 1, it will initially bind the baselab node to

l, a
tivating the ma
hines for n, 
, and temp1. X-s
an evaluates all node attribute edges before

subelement edges, so the ID and manager attributes will be tested against the state ma
hines. In

this 
ase, the manager attribute exists and indeed has value smith1, so x-s
an will 
ontinue down

this portion of the do
ument and bind values for n and 
.

For the se
ond lab, however, things are slightly di�erent. The lab2 node has only an ID

attribute; as x-s
an iterates through all attributes of lab2, it �nds no manager attribute to follow

for temp1. The temp1 path expression 
annot be satis�ed, so x-s
an 
an \short-
ir
uit" on this

subgraph, dis
arding the value for l and ignoring its 
hildren.

Note that a pushed-down sele
tion operator on a subelement (rather than an attribute) might

not always allow x-s
an's state ma
hine evaluation to short-
ir
uit. The reason is simple: x-s
an

evaluates ea
h subelement su

essively in do
ument order, and it will not be able to determine

whether a parti
ular subelement does or does not exist until it has pro
essed all subelements.

3.5.2 In
remental Dupli
ate Elimination

When the XML data graph 
ontains IDREFs, x-s
an may visit an element multiple times through

di�erent paths. An unfortunate result of this is that it might generate dupli
ate binding tuples,

whi
h does not follow XML-QL's semanti
s. To see how dupli
ate bindings 
an o

ur, 
onsider x-

s
an's behavior on the paper's �rst sample XML data (Figure 2) with the following path expressions:

� E

z

= root._*.("lab" | "sour
e")

� E

n

= E

z

."name"

� E




= E

z

."
ity"

Sin
e E

z

will �nd multiple paths to the element lab2, x-s
an will produ
e the following binding

tuple twi
e: hz=lab2; n=#6; 
=#7i.

There are two methods of solving this parti
ular problem, and one must be sele
ted by the

query optimizer based on 
ost or other heuristi
s. The �rst method is obvious (but often highly

e�e
tive): post-pro
ess the output tuples, removing dupli
ates. This 
an be done with either a

sorting or hashing s
heme. This approa
h does not typi
ally require that we keep an entire history

of tuples, as we might with a relational table, be
ause the tuples are produ
ed with a grouping

based on the hierar
hy of the regular expressions. In parti
ular, the above query will produ
e

all of the tuples for a given z value before produ
ing the tuples for su

essive values of z, so the

post-pro
essing stage 
an 
ush its history on ea
h new value of z.

There are 
ases where doing dupli
ate removal within x-s
an is bene�
ial. If a parti
ular

path expression binds to a parti
ular node multiple times, and it has expensive dependent path
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expressions (e.g. path expressions with Kleene-star 
omponents), we might want to avoid generating

dupli
ates. In order to do this without requiring large in-memory histories, x-s
an annotates the

stru
tural index to tra
k when a node was last visited. For ea
h variable for whi
h x-s
an is to

perform dupli
ate elimination, it reserves spa
e in the stru
tural index for a timestamp; it also

gives every state ma
hine an internal \
lo
k."

Ea
h time x-s
an binds a variable to a node, it annotates that node's index entry with the

variable's 
lo
k time. It then advan
es the 
lo
ks of any dependent variables by one ti
k. Variables


an only bind to nodes with timestamps older than their internal 
lo
ks. The result is that for ea
h

binding of a \parent" variable, we will only see at most one binding per dependent variable to a

given node. This mirrors XML-QL semanti
s, whi
h allow multiple variables to bind to the same

node, but do not allow dupli
ate tuples to be produ
ed.

3.6 Handling Large XML Do
uments

In pro
essing a large XML data stream, main memory may not be large enough to handle all of the

index stru
tures; this se
tion explains how the x-s
an implementation supports larger-than-memory

exe
ution.

The approa
h to handling very large XML do
uments is to allow paging of the XML sour
e

do
ument and of the stru
tural index. Index entries in
lude a �eld referen
ing their 
orresponding

elements in the sour
e do
ument, and a series of subelement and IDREF edge \links" to other entries

within the index itself. With both of these stru
tures, a 
onventional bu�er manager using LRU

or some similar poli
y is suÆ
ient.

There are three auxiliary data stru
tures that are perhaps most naturally kept in memory,

namely the ID lookup index, the list of unresolved IDREF targets, and the state ma
hine sta
k. The

ID lookup index is undoubtedly most eÆ
ient as a hash table from IDs to addresses. However, if

this data stru
ture runs out of memory, we may wish to swit
h to a paged data stru
ture, either

a B+-tree or a multilevel hash table. The B+-tree has the property that it is sorted, but it is

un
lear that this ordering will typi
ally mat
h the order of appearan
e of IDREFs; thus a paged

hash-based stru
ture may be a good alternative. A similar approa
h 
an be taken with the list of

unresolved IDREF targets, although su
h an approa
h would be more 
ostly sin
e x-s
an need to


onsult this list whenever it �nds a new ID. Fortunately, this data stru
ture is mu
h less likely to

ex
eed memory, sin
e items are removed as they are resolved.

The number of states in the state ma
hine sta
k is bounded by the produ
t of the number

of variables and the longest non-repeating path. This is a worst-
ase number in whi
h all state

ma
hines are simultaneously a
tive and they all mat
h the edges in our path; typi
ally this is not

the 
ase, and we do not need to store the state of an ina
tive ma
hine. Even if this sta
k does get

very large, it 
an be very naturally paged to disk, as we 
an simply swap out the oldest entries to

make more room, and re-fet
h them as entries get popped o�.

4 Experimental Results

Our X-s
an implementation uses the IBM XML4C parser version 3.0.1 (based on the Apa
he

Xer
es-C library) to parse XML do
uments. We use the SAX [SAX98℄ parser API, whi
h provides


allba
ks to our 
ode as elements are read and allows us to evaluate streaming XML data without

�rst having to build an entire in-memory parse tree.

We have implemented x-s
an within the Tukwila [IFF

+

99℄ data integration system, whi
h we

are extending to support XML queries. Tukwila supports large data sour
es via paging, and
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our implementation of x-s
an leverages these 
apabilities to support larger-than-memory XML

do
uments and stru
tural indi
es. In our 
urrent version, the number of elements with IDs is


onstrained by an in-memory hash table; in the future, we plan to repla
e the hash table with a

B+-tree to fully support out-of-memory exe
ution.

4.1 Comparison to Current Systems

To the best of our knowledge, x-s
an is the �rst algorithm developed for 
omputing regular path

expressions in a data integration 
ontext. As su
h, there is no \fair" system to 
ompete against |

however, in order to get an idea for how it fares against previous work, we ran a series of exper-

iments against 
urrent XML repository systems. We examined the performan
e of x-s
an, whi
h

pro
esses the data in
rementally as it parses, versus a 
onventional store-then-query approa
h. This

experiment was performed with lo
ally stored XML �les, and thus it does not show the additional

performan
e bene�ts of x-s
an's ability to in
rementally evaluate path expressions as data is slowly

streaming into the system; the other systems 
annot begin produ
ing results until the XML do
u-

ment has been fully read from the network and then loaded into their proprietary storage formats.

On the other hand, x-s
an is merely the �rst 
omponent of a query pro
essing system that is under


onstru
tion, so its numbers do not in
lude the (typi
ally small, espe
ially for the simple queries

we used) overhead required by the 
ompeting systems to parse and optimize input queries.

We 
ompared the performan
e of x-s
an, Stanford's Lore [GMW99℄ semi-stru
tured/XML

database system, and a 
ommer
ial OO-based XML repository, a
ross a number of di�erent do
u-

ment sizes and query 
omplexities. Note that the 
apabilities of the three systems are somewhat

di�erent. The 
ommer
ial XML repository is based on the XQL query language, whi
h is tree-

stru
tured in nature, and its 
apabilities for traversing IDREFs are not eÆ
ient. Lore supports a

graph stru
tured data model with its Lorel query language; however, a Lorel query on an XML

do
ument may result in non-XML-
ompliant output if the result is not stri
tly a tree. Lore supports

an indexing stru
ture 
alled a DataGuide [GW97℄ that 
an speed path expression evaluation, but

index 
reation failed on our data sets

4

, so we were unable to take advantage of this optimization.

Our 
urrent x-s
an implementation does not support sele
tion predi
ates, so all queries are simple

path expression evaluations over the entire data set.

All x-s
an and 
ommer
ial repository queries were performed on a single-pro
essor 450MHz

Pentium II ma
hine running Windows NT with 256MB of memory. The Lore queries were run on

a similarly 
on�gured 450MHz Pentium II running Linux, using Diet Lore 5.0. All queries were

run 7 times and their results were averaged.

We obtained a number of XML do
uments from the web, in
luding religious texts, Shakespeare's

plays, the Mondial geographi
al en
y
lopedia, and database publi
ation information from DBLP


on
erning the VLDB 
onferen
e. Most of these do
uments were stri
tly tree-stru
tured, ex
ept

for Mondial (whi
h has numerous referen
es) and VLDB (whi
h has referen
es from papers to their

pro
eedings). Table 1 summarizes the queries and data sour
es used.

Figure 10 displays the results. The x-s
an bars are separated into two 
omponents, lower portion

showing the overhead of the parser and the Tukwila XML do
ument paging system, and the upper

showing the additional 
ost of evaluating the query path expressions using x-s
an. In the �rst 5

data sets, whi
h are all tree-stru
tured, the overhead of parsing dominates the 
osts of performing

node bindings. For the graph-stru
tured data sets, Mondial and VLDB, we see the x-s
an 
osts

in
rease as the path expressions must now be evaluated repeatedly a
ross referen
ed portions of

the graph.

4

Note that the use of DataGuides is unlikely to speed up Lore's overall performan
e, as the savings in query

pro
essing time would probably be negated by the index 
reation time.
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Query Data size Des
ription

Henry VI-q1 646 KB Shakespeare's Henry VI title, personae, speakers

Henry VI-q2 646 KB Shakespeare's Henry VI title, personae, lines

Quran 898 KB Sura titles, epigraphs, verses from Quran

NT 1023 KB Book and 
hapter titles from New Testament

Mormon 1510 KB Book of Mormon prefa
e headings, J. Smith's signed witnesses

Mondial 1332 KB Mondial en
y
lopedia 
ountries, 
ities, 
ities' ref'd lo
. names

VLDB 1558 KB VLDB paper authors, titles, pro
eedings' ISBN numbers

Table 1: Queries and data sour
es used in the experiment 
omparing x-s
an to Lore and a 
om-

mer
ial system (Figure 10). See the Appendix for the a
tual queries and regular path expressions.
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Figure 10: Comparison of query performan
e. For X-s
an, (X) the light bar represents parsing and

storage overhead, and the dark bar is state ma
hine and binding 
osts. For Commer
ial system

(C) and Lore (L), the light bar represents query 
osts, and upper bar is the 
ost of loading the

do
ument into the repository.

For the existing systems, we di�erentiate the a
tual XML query 
ost from the 
ost of loading the

do
ument into the repository. In a non-data integration 
ontext, the 
ost of a load 
an be amortized

a
ross multiple queries, but in the data integration 
ontext this is not possible be
ause we reread

data on every query. Both Lore and the 
ommer
ial system gave very qui
k query responses to the

Mormon query, whi
h only asked for a very small portion of the overall XML do
ument; but their

load 
osts were higher than the exe
ution times for x-s
an. For the other queries in the �rst 5 data

sets, we �nd that Lore generally has signi�
antly better load times than the 
ommer
ial system,

but the 
ommer
ial system has faster query times, and performs better overall. Lore was unable

to 
omplete either query on the Henry VI text within our time limit of 1000 se
.

The graph-stru
tured Mondial data set was also a problem for Lore, whi
h failed in querying

it. We attempted to simulate the traversal of IDREFs in this query with the 
ommer
ial system

by using XQL's id lookup fa
ilities, but performan
e su�ered greatly. For the VLDB data set, we

simpli�ed the query for Lore and the 
ommer
ial produ
t, simply asking for the value of the papers'

IDREFs, rather than looking up this value to get the ISBN (whi
h we retrieved in the 
orresponding

x-s
an query). Running times were still mu
h higher than those for x-s
an.
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Figure 11: S
alability results for a query over an XML tree. X-s
an has minimal overhead over the

parse, and grows only approximately 8% faster, even when the do
ument ex
eeds memory.

We 
an 
on
lude from this se
tion that neither Lore nor the 
ommer
ial system s
ale up well

to queries a
ross multi-megabyte data �les, parti
ularly �les that 
ontain graph stru
ture. X-s
an

outperforms them in all 
ases, and also s
ales better (parti
ularly for tree-stru
tured do
uments).

4.2 S
alability

In order to better gauge the s
alability of x-s
an, we ran our system on a series of syntheti
 XML

data �les 
reated by a random XML graph generator. The random graph generator starts with a

small XML tree-shaped \template" and begins repli
ating this to form an irregular XML tree; with

75% probability it adds this template as a subtree of the graph root, and with 25% probability it

pi
ks a random node as a parent element. The result is an XML do
ument 
onsisting of subtrees

of varying depth, with a large number of 
hildren o� the root. Next, the graph generator begins

randomly adding a spe
i�ed number of IDREF edges between nodes to transform the tree into a

graph.

The �nal graph 
onsists of a root node with a series of outer subelement edges emanating from

it. At the ends of these edges, there are nodes with some random number of 
hild edges (both

subelement and IDREF), emanating. The 
hild edges' destination nodes may sour
e additional


hild edges, and they may be the origin for sub edges that point to 
hara
ter data. Most of our

queries in this se
tion will be \sear
hing" for these sub edges' destination nodes.

Sin
e it is possible for the random graph generator to produ
e graphs that are unusually favor-

able or unfavorable to the experiments, we average three di�erent runs a
ross ea
h of three di�erent

random graphs of the same generation parameters. (In pra
ti
e, we found very little di�eren
e in

performan
e a
ross the di�erent randomly generated graphs of the same spe
i�
ations.)

4.2.1 Performan
e on trees

Sin
e x-s
an is appli
able to both tree-stru
tured and graph-stru
tured data, we shall �rst examine

how it performs on do
uments without IDs and IDREFs. For reasons of 
onsisten
y with later

experiments, we a
tually used the same graph-stru
tured XML �les output by the random graph
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Figure 12: S
alability results for query of Figure 11, but 
onstru
ting graph index of do
ument.

generator, but repla
ed their default DTD with one that de�nes all attributes to be 
hara
ter

data rather than IDs and IDREFs. We also dire
ted x-s
an to not generate a stru
tural index of

ea
h XML do
ument's data graph, sin
e su
h an index provides no bene�ts for tree-based regular

path expression evaluation

5

. In this experiment, x-s
an simply uses the state ma
hines to generate

bindings, whi
h it returns as pipelined tuples; the stru
tural index and the ID/referen
e resolution


omponents are disabled.

Our query was a simple path expression that returned all outer subelements as values for the

�rst variable, plus all nodes at distan
es 1 and 2 from those nodes in the se
ond variable. The

graph in Figure 11 shows the results on the di�erent data sets. We 
an see that x-s
an in this 
ase

only adds a small amount of overhead versus simply parsing the data �le. In every experiment,

the x-s
an overhead grows at a rate approximately 8% faster than the parser alone, and the a
tual

overhead remains minimal for even the largest of the data sets (whi
h was approximately 14.6MB).

Note that for the 240,000-element query, the XML do
ument ex
eeded x-s
an's memory allo
ation,

and was paged to and from disk during operation.

4.2.2 Cost of graph indexing

Our next experiment was to take the same data set and query as in the previous se
tion, but to

use the graph DTD. From this we 
an determine the impa
t of building the stru
tural index and

of resolving referen
es. Figure 12 (a) illustrates query performan
e vs. number of elements in the

do
ument, and (b) shows performan
e vs. number of IDREF edges added.

As one would expe
t, the running times have moderately in
reased be
ause of the index gener-

ation overhead. Additionally, the amount of time to pro
ess a query grows at a slightly superlinear

rate in the number of elements, as shown in part (a) of the Figure. (This was also true of both the

parser and of x-s
an in the previous se
tion, but the rate is slightly more pronoun
ed here.) We

attribute this to the additional number of do
ument and index page a

esses required for perform-

ing \bookkeeping" and storage on in
reasingly larger XML do
uments. Even for a 7.5MB XML

do
ument, however, our total exe
ution time is approximately 2 minutes, and the operator a
tually

outputs pipelined tuples as it exe
utes.

Part (b) of the Figure demonstrates that query exe
ution time in
reases linearly with the number

5

By 
omparing the result of this experiment with that of the next, we 
an 
al
ulate the 
ost of building this index.
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Figure 13: S
alability results for graph-traversing query requesting outer nodes, their 
hild nodes,

and all sub nodes within 1 or 2 edge traversals of the outer nodes.

of IDREF edges. This query does not traverse any IDREF edges, so all 
osts in
urred are for indexing

the referen
es.

4.2.3 Graph-traversing query

Sin
e mu
h of the 
omplexity of the x-s
an algorithm 
on
erns eÆ
ient path expression mat
hing

not just against trees, but against full graphs with IDREF edges, the next experiment tests the

e�e
tiveness of our stru
tural index when 
alled to evaluate su
h referen
e edges.

The query we used in this experiment had three variables: the �rst bound to the outer nodes,

the se
ond to 
hild nodes of outer and to the 
hild nodes' sub 
hildren, and the third variable

to sub nodes either one or two 
hild edges away from the outer nodes. This query returns most

of the nodes within radius 2 of the outer nodes.

The results, shown in Figure 13, have nearly identi
al shapes to the subelement-only query

graphs from the previous se
tion. Close examination reveals that the plots in Figure 13(a) run

parallel to those in Figure 12, with a slightly higher value at ea
h point. This is small o�set is the

overhead in traversing the additional referen
es and binding to an additional (third) variable. A


omparison of the growth respe
t to number of IDREFs, in part (b) of ea
h �gure, shows that the

two queries behave similarly, but as the number of IDREFs in
reases, the graph-traversing query

begins to grow at a slightly faster rate. This is to be expe
ted be
ause the tree-only query did not

a
tually traverse IDREFs.

4.2.4 Kleene-star

Our �nal experiment measures the 
osts of evaluating a query that uses a Kleene-star operator

to return all sub nodes in the graph. We would expe
t that this query would be more subje
t to

variation on di�erent random graphs, as 
ertain graphs may have \hub"-like nodes that have many

out-edges and multiple in-edges. For su
h nodes, the path expression evaluation algorithm will

re-evaluate the entire subgraph for ea
h in
oming edge. If several of these hub nodes are 
hained

together, the number of repeated traversals 
an grow exponentially. Moreover, a high ratio of IDREF

edges to elements in the graph greatly in
reases the likelihood of su
h 
hains appearing.
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Figure 14: S
alability results for Kleene-star query requesting all sub elements rea
hable from any

number of 
hild edges.

The graphs in Figure 14 show x-s
an performan
e. In part (a) we see a familiar pattern for

exe
ution time versus number of elements, although the a
tual 
ompletion times are slightly longer.

Part (b) shows the more interesting results, 
omparing running times versus number of IDREFs

present in the do
ument. The growth is now superlinear, generally in
reasing at su

essively faster

rates as we approa
h a point in whi
h the number of IDREFs rea
hes 50% of the total number of

elements. (We note that at this value, an n-node graph a
tually has 3n=2� 1 edges, sin
e all nodes

are subelements.) At the 50% point, the x-s
an running times in
rease to some indeterminately

high value; in none of our experiments did su
h a query manage to 
omplete within an hour.

We believe that XML data with su
h a high 
on
entration of edges is unlikely to o

ur often in

pra
ti
e. However, we believe we have a solution that will make pro
essing of su
h data graphs more

tra
table. In parti
ular, the problem is that x-s
an spends massive amounts of time dupli
ating

previous traversals to get binding values. For this 
ase, we propose \memo-izing" the bindings

produ
ed by following out-edges from a parti
ular node, annotating the stru
tural index with

pointers to su
h memo-ized values. Now if x-s
an rea
hes a previously visited node and is in a

previously en
ountered state ma
hine 
on�guration, we 
an simply read and return the memo-ized

results. We have a trade-o� in the extra disk a

esses required to read and write memo-ized values,

but in highly-
onne
ted graphs, this will produ
e a net gain.

5 Related Work

As XML has emerged as a medium for representing data as well as do
uments, and as query

languages for XML have been proposed, a number of approa
hes have been proposed for evaluating

XML queries. Most of these involve mapping XML to an existing database model and utilizing


onventional query engine to do the 
ore work. XML mapping strategies for relational [FK99,

SGT

+

99, DFS99℄, obje
t-oriented [vZAW99, LAW98℄, and semi-stru
tured [GMW99℄ databases

have all been implemented. The system's parti
ular storage mapping may a
tually simplify 
ertain

path expressions, e.g. if a set of path expressions in
ludes multiple data items that are mapped to the

same tuple in a table. However, in the general 
ase, indexing te
hniques su
h as join indi
es [Val87℄,

a

ess support relations [KM90℄, DataGuides [GW97℄, and t-indi
es [MS99℄ must be used to speed

the pro
essing of path expressions. These index stru
tures des
ribe the nodes rea
hable by 
ertain


lasses of path expressions. The t-index, and to some extent the DataGuide, are parti
ularly
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powerful stru
tures that allow eÆ
ient 
omputation of a wide range of regular path expression

types. However, the a
tual index generation tends to be fairly 
omplex and time 
onsuming:

DataGuides 
an be exponential in the size of the data and t-indi
es, while not exponential, are also


ostly to generate, espe
ially for more 
omplex path expression types.

X-s
an di�ers in three key ways from these te
hniques. First, x-s
an's stru
tural index es-

sentially 
onverts the XML do
ument into a semi-stru
tured format that 
an be more eÆ
iently

traversed without parsing; but it preserves the ordering and lo
ality of the XML do
ument, rather

than splitting it into separate tables or obje
ts that must later be re-
ombined.

Se
ond, x-s
an path expression evaluation is done through �nite state ma
hines based on the

query. By 
ontrast, semi-stru
tured index te
hniques su
h as DataGuides and t-indi
es are essen-

tially �nite automata des
ribing paths through the data, with ea
h state pointing to the set of

nodes rea
hable through a parti
ular path. The bene�ts of the t-index or DataGuide are that it

is a reusable stru
ture, whi
h 
an be leveraged a
ross multiple queries with di�erent regular path

expressions. However, in a data integration 
ontext, we re-read data from the sour
e, so reuse does

not o

ur | thus it is more appropriate to build a stru
ture spe
i�
 to the given query.

Finally, x-s
an is a pipelining operator intended for streaming data, whereas other approa
hes

require a 
ostly translation and indexing stage before the query 
an be exe
uted. This pipelining


apability is key in an intera
tive ad-ho
 query system, parti
ularly if the data must be obtained

from a slow sour
e [UFA98, IFF

+

99, AH00℄.

The x-s
an pattern mat
hing approa
h is similar to the 
on
ept behind the Knuth-Morris-Pratt

substring-mat
hing algorithm, whi
h 
reates a �nite state ma
hine out of one string and mat
hes it

against the other string. However, x-s
an must be more sophisti
ated in order to handle mat
hing

of tree-stru
tured regular expression templates a
ross graphs: (1) it supports both \forward" and

\reverse" traversals as we en
ounter open- and 
lose-tags in XML, (2) it handles 
y
les in a way

that prevents in�nite loops, (3) it uses multiple dependent ma
hines in 
onjun
tion, (4) it supports

arbitrary wild
ards, disjun
tion, and Kleene-
losure operations in paths, and (5) it has the ability

to avoid generating dupli
ate bindings for nodes rea
hable by several paths.

The basi
 goal of x-s
an, of 
onverting from semistru
tured data to tuples in pipelined fashion,

is very similar to the s
an operator proposed by Cluet and Moerkotte in [CM97℄. However, x-s
an

di�ers in that it handles (
y
li
al) graphs as well as trees, it is for XML data rather than native

obje
t or semistru
tured data, and it in
ludes an algorithm and implementation.

6 Con
lusions and Future Work

In this paper we have presented the x-s
an algorithm, a new primitive for XML query pro
essing,

that evaluates regular path expressions to produ
e bindings. X-s
an is s
alable to larger XML

do
uments than previous approa
hes and provides important advantages for data integration, with

the following 
ontributions:

� X-s
an is pipelined and produ
es bindings as data is being streamed into the system, rather

than requiring an initial stage to store and index the data.

� X-s
an handles graph-stru
tured data, in
luding 
y
li
al data, by resolving and traversing

IDREF edges, and it does this following do
ument order and eliminating dupli
ate bindings.

� X-s
an generates an index of the stru
ture of the XML do
ument, while preserving the original

XML stru
ture.
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� X-s
an uses a set of dependent �nite state ma
hines to eÆ
iently 
ompute variable bindings

as edges are traversed. In 
ontrast to semi-stru
tured indexing te
hniques, x-s
an 
onstru
ts

�nite automata for the paths in the query, rather than for the paths in the data.

� X-s
an is very eÆ
ient, typi
ally imposing only an 8% overhead on top of the time required to

parse the XML do
ument. X-s
an s
ales to handle large XML sour
es and 
ompares favorably

to Lore and a 
ommeri
al XML repository, sometimes even when the 
ost of loading data

into those systems is ignored.

In the short term, we plan to add several re�nements to our x-s
an implementation and inves-

tigate their e�e
ts. As was previously mentioned, we will be adding full support for out-of-memory

exe
ution and for sele
tion push-down, and we will also add the ability to memoize intermediate

results and avoid redundant 
omputation in highly 
onne
ted graphs. Additionally, the 
urrent al-

gorithm separates the parsing and state-ma
hine traversal 
omponents into di�erent stages whose

exe
ution must be interleaved. We envision the �nal implementation putting these stages in sepa-

rate threads, and to run both in parallel in a produ
er-
onsumer arrangement so x-s
an 
an parse

and return results 
ompletely in parallel.

Additionally, we believe that the two key 
ontributions of x-s
an | state ma
hine-based eval-

uation of regular path expressions and \on-the-
y" indexing of XML | are general te
hniques

that have appli
ation beyond our 
urrent domain of fo
us. For instan
e, XML-QL queries may be


omposed over other XML-QL views (\fun
tions"); this adds greater expressive power than a single

XML-QL query, and thus may require 
omputation of intermediate view results that are fed into

the next query or view. As the input to the se
ond query or view, we 
an use a variation of x-s
an

that works on graph data rather than \pure" XML. The graph stru
ture index may be useful in a

number of other operations. This output 
an be used as the input to a t-index generator, whi
h

we believe will speed the 
reation of indexing stru
tures for general path expressions on stored

XML data. The index may also be useful in 
onstru
ting the results of an XML-QL query: the

semanti
s of XML-QL spe
ify that if a node is 
opied from the input data graph to the output

graph, we must also 
opy all nodes that are transitively 
onne
ted to this node | an XML-QL node

potentially represents an entire subgraph. The graph index allows us to qui
kly �nd the required

XML fragments and 
opy them over; we might even mark these in the index as having been 
opied.

Finally, we are also 
onsidering the use of the stru
tural index to support eÆ
ient updates on XML

data.

Currently, x-s
an represents a new operator whi
h will be at the 
ore of the new version of the

Tukwila data integration system [IFF

+

99℄. However, this is just a �rst step. As we pro
eed, we

plan to investigate the potential uses des
ribed above | to develop a family of algorithms derived

from or assisted by x-s
an.
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Appendix: Queries Used in Experiments

The tables on the next page present the di�erent queries used in the experimental se
tion of this paper.
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Name System Query

Henry VI-q1 x-s
an p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",

a = p."ACT", as = a."SCENE"."SPEECH"."SPEAKER"


ommer
ial /play/title j /PLAY/PERSONAE/PERSONA j

/PLAY/ACT/SCENE/SPEECH/SPEAKER

Lore sele
t t, p, s from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,

pl.ACT.SCENE.SPEECH.SPEAKER s

Henry VI-q2 x-s
an p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",

a = p."ACT", l = a."SCENE"."SPEECH"."LINE"


ommer
ial /play/title j /PLAY/PERSONAE/PERSONA j

/PLAY/ACT/SCENE/SPEECH/LINE

Lore sele
t t, p, l from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,

pl.ACT.SCENE.SPEECH.LINE l

Quran x-s
an r = root."tstmt"."sura
oll", s = r."sura", e = s."epigraph",

t = s."bktlong", v = s."v"


ommer
ial /tstmt/sura
oll/sura/epigraph j /tstmt/sura
oll/sura/bktlong j

/tstmt/sura
oll/sura/v

Lore sele
t e,t,v from

tstmt.sura
oll r, r.sura s, s.epigraph e, s.bktlong t, s.v v

NT x-s
an b = root.."tstmt"."book
oll", bk = b."book", t = bk."bktlong",


 = bk."
hapter"."title"


ommer
ial /tstmt/book
oll/book/bktlong j /tstmt/book
oll/book/
hapter/
htitle

Lore sele
t t, 
 from tstmt.book
oll.book b, b.bktlong t, b.
hapter 


Mormon x-s
an pref = root."tstmt"._, t = pref."ptitle", w = pref."witlist",

per = w."witness"


ommer
ial /tstmt/*/ptitle j /tsmt/t/*/witlist j /tstmt/*/witlist/witness

Lore sele
t t,w from tstmt.% pref, pref.ptitle t, pref.witlist.witness w

Mondial x-s
an 
 = root."mondial"."
ountry", n = 
."name", 
it = 
."
ity", 
n = 
it."name",

at = 
it."lo
ated"."ref"."name"


ommer
ial /mondial/
ountry/name j /mondial/
ountry/
ity/name

j id(/mondial/
ountry/
ity/lo
ated/�ref)/name

Lore sele
t 
try, 
it, lo
 from mondial.
ountry 
o, 
o.name 
try, 
o.
ity 
i, 
i.name 
it,


i.lo
ated.ref.name lo


VLDB x-s
an i = root."
onf"."inpro
eedings", a = i."author", t = i."title",

p = i."
rossref"."IDREF"."isbn"


ommer
ial /
onf/inpro
eedings/author j /
onf/inpro
eedings/title j

/
onf/inpro
eedings/
rossref/�IDREF

Lore sele
t a, t, r from 
onf.inpro
eedings i, i.author a, i.title t, i.
rossref.IDREF r

Table 2: Queries used in the experiment 
omparing systems (Figure 10). X-s
an uses a series of

path expressions, the 
ommer
ial system uses XPath/XQL, and Lore uses Lorel.

Se
tion Query

4.2.1 o = root."do
"."outer", s = o~("
hild"|"
hild"."sub")

4.2.2 o = root."do
"."outer", s = o~("
hild"|"
hild"."sub")

4.2.3 o = root."do
"."outer", s = o.("
hild"|"
hild"."sub"),

t = o.("
hild"."sub"|"
hild"."
hild"."sub")

4.2.4 o = root."do
"."outer", s = o."
hild"*."sub"

Table 3: Queries used in the s
alability experiments. Note that the tilde (�) 
hara
ter is a path

segment separator mu
h like the dot operator, but it spe
i�es that the next edge is 
an only be a

subelement (as opposed to an IDREF).
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