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Abstrat

The adoption of XML promises to aelerate onstrution of systems that integrate dis-

tributed, heterogeneous data. Query languages for XML are typially based on regular path

expressions that traverse the logial XML graph struture; the eÆient evaluation of suh path

expressions is entral to good query proessing performane. Most existing XML query proess-

ing systems onvert XML douments to an internal representation, generally a set of tables or

objets; path expressions are evaluated using either index strutures or join operations aross the

tables or objets. Unfortunately, the required index reation or join operations are often ostly

even with loally stored data, and they are espeially expensive in the data integration domain,

where the system reads data streamed from remote soures aross a network, and seldom reuses

results for subsequent queries.

This paper presents the x-san operator whih eÆiently proesses non-materialized XML

data as it is being reeived by the data integration system. X-san mathes regular path expres-

sion patterns from the query, returning results in pipelined fashion as the data streams aross

the network. We experimentally demonstrate the bene�ts of the x-san operator versus the

approahes used in urrent systems, and we analyze the algorithm's performane and salability

aross a range of XML doument types and queries.

1 Introdution

XML, the eXtensible Markup Language standard from the World Wide Web Consortium [XML98℄,

is inreasingly being used as a protool for the dissemination and exhange of information from

all types of data soures and appliations. XML is quikly beoming the lingua frana for data

exhange, and nearly every vendor of data management tools has been raing to adopt it. The

strengths of XML lie in its simpliity, self-desribing nature, and exibility | partiularly in its

ability to represent a graph struture, whih allows it to enode both strutured and semi-strutured

data.

An XML doument (see Figure 1 for an example) onsists of pairs of mathing open- and

lose-tags (elements), eah of whih may enlose additional elements or data values (in the form of

\harater data" strings). Additionally, an element tag may inlude attributes further desribing

the element; attributes are single-valued and may have speial meaning (e.g., they may serve as

�
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<db>

<lab ID="baselab" manager="smith1">

<name>Seattle Bio Lab</name>

<loation>

<ity>Seattle</ity>

<ountry>USA</ountry>

</loation>

</lab>

<lab ID="lab2">

<name>PMBL</name>

<ity>Philadelphia</ity>

<ountry>USA</ountry>

</lab>

<paper ID="Smith991231" soure="baselab"

biologist="smith1">

<title>Autoatalysis of Spetral...</title>

...

</paper>

<biologist ID="smith1">

<lastname>Smith</lastname>

...

</biologist>

</db>

Figure 1: Sample XML doument representing biology labs and publiations

element identi�ers or referenes). In partiular, XML elements may have speial ID and IDREF

attributes, whih serve to uniquely identify elements and to form links to them, respetively. This

linking apability allows XML to represent not only tree-strutured hierarhial data, but also

graph-strutured information.

Several query languages have been proposed for XML [RLS98, DFF

+

99, CCD

+

98, GMW99℄.

Sine these languages treat XML data as a graph, variables in the query are mapped to XML

elements, whih are nodes in the graph. The main paradigm underlying these languages is that

of seleting data by mathing patterns desribed with regular path expressions against the XML

soure. These path expressions desribe traversals along subelement, attribute, and IDREF edges,

and variables get bound to nodes along these paths. Hene, a key operation in query proessing

over XML is to produe a set of bindings for variables, given a pattern onsisting of several regular

path expressions.

To date, most e�orts to build XML query proessors have been based on �rst loading the data

into a loal repository, building indexes on the repository, and then proessing the query. The

approahes di�er on whether the repository is a relational database [FK99, SGT

+

99℄, an objet-

oriented database [vZAW99, LAW98℄ or a repository for semi-strutured data [GMW99℄.

In many appliations involving XML, however, we must be able to proess queries over streams

of inoming XML data, without having the luxury of �rst loading the data into a loal repository.

In partiular, data integration appliations often involve proessing data over soures on a wide-

area network whose ontents hange ontinuously, and hene storing the data loally is not a viable

approah. Furthermore, it is imperative that we produe results inrementally as the data streams

into the system, sine queries are usually ad-ho and interative.

In this paper we desribe XML-San, or x-san, an operator that is used at the lowest level of

an XML query plan and supplies data to other operators. The input to x-san is an XML data

stream and a set of regular path expressions ourring in a query; x-san's output is a stream of

bindings for the variables ouring in the expressions. A key feature of x-san is that it produes

these bindings inrementally, as the XML data is streaming in; hene, x-san �ts naturally as the

soure operator to a omplex pipeline, and it is highly suited for data integration appliations.

X-san is motivated by the observation that IDREF links are limited to the sope of the urrent

doument, so in priniple, the entire XML query graph for a doument ould be onstruted in a

single pass. X-san ahieves this by simultaneously parsing the XML data, indexing nodes by their

IDs, resolving IDREFs, and returning the nodes that math the path expressions of the query. The

key hallenges involved in designing x-san stem from need to (1) deal with possibly yli data,

(2) preserve order of elements, and (3) remove dupliate bindings that are generated when multiple

paths lead to the same data elements. We present a series of experiments to evaluate x-san's
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Figure 2: XML-QL graph representation for Figure 1. Dashed edges represent IDREFs; dotted edges

represent PCDATA.

performane. The experiments show that the algorithm sales very well to handle XML �les of

signi�ant sizes (e.g., up to 14MB). An experimental omparison of x-san with two systems (Lore

and a ommerial XML query proessor based on an objet-oriented repository) shows that x-san

signi�antly outperforms both of them | sometimes even when the expensive loading time of the

other systems is ignored.

The organization of this paper is as follows. Setion 2 provides a ontext for the path expression

evaluation problem by reviewing how XML is queried. Setion 3 presents the x-san algorithm and

its omponents, and Setion 4 desribes our experimental results. Setion 5 disusses how the

x-san operator relates to previous work. Finally, we onlude in Setion 6 and suggest avenues of

future researh.

2 A Data Model and Query Language

We begin by briey disussing the issues in hoosing an XML data model and XML-QL, the

language we use for querying XML.

2.1 Data Model for XML

Several proposals have been made for data models for XML. They are all based on representing

XML as a graph, and di�er on whether they onsider the order of the XML doument, whether

they distinguish between subelement edges and attribute edges, and how they represent IDREFs in

the graph. In our disussion, we represent XML data as a graph, where eah XML tag is an edge

(labeled with the tag name) that is direted towards a node (with a label equal to the tag's ID)

1

. A

given element node will have labeled edges direted to its attribute values, sub-elements, and any

other elements that it referenes via IDREF attributes. Figure 2 shows the graph representation for

the sample XML data of Figure 1. Note that IDREFs are shown in the graph as dashed lines and

are represented as edges labeled with the IDREF attribute name; these edges are direted to the

referened element's node. In order to allow for intermixing of \parsed harater" (string) data

and nested elements within eah element, we reate a PCDATA edge to eah string embedded in the

XML doument. These edges are represented in Figure 2 as dotted arrows pointing to leaf nodes.

In this paper we onsider exeution over an ordered XML graph, following the established

semantis of proessing order in XML. There are ertain ases in whih XML ordering semantis

1

This data model is derivative of the XML-QL model, but treats both elements and attributes as edges
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WHERE <db>

<lab>

<name>$n</>

<_*><ity>$</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<enter> <name> $n </>

<loation> $ </>

</>

</>

Figure 3: XML-QL query that �nds the loations of labs. The WHERE lause spei�es a graph-

strutured pattern of nested tags. Variables are pre�xed with a dollar sign, undersore denotes a

wildard whih mathes any element or attribute, and asterisk is the Kleene star meaning \zero or

more."

are unde�ned or ambiguous (e.g. how data from di�erent soures should be ordered when it is

ombined); we do not attempt to address these issues. Moreover, we observe that XML onsiders

subelements to be ordered but attributes to be order-free; in our model, we preserve order aross

both attributes and subelements, but only allow queries to express ordering onstraints among

subelements.

2.2 Querying XML

A variety of XML query languages have been proposed, mostly based on languages for querying

semi-strutured data (XQL [RLS98℄, XML-QL [DFF

+

99℄, XML-GL [CCD

+

98℄, Lorel [GMW99℄).

These languages are driving the urrent W3C Query Language Committee whose �nal reommen-

dation is likely to enompass features from eah. The key features these languages have in ommon

is that they enable a user to math regular path expressions over the data, and, to varying extents,

have the ability to onstrut XML douments as a result of the query. In this paper we use XML-

QL, but the features of the language that are relevant to our algorithm are mostly found in the

other languages as well.

XML-QL uses a WHERE pattern1 IN soure1, pattern2 IN soure2, ... CONSTRUCT result syntax,

in whih the pattern template is mathed against the input XML data graph from soure (a URI)

and the result de�nes the desired struture of the query output graph. An XML-QL pattern is

expressed as a set of nested tags with embedded variable names (pre�xed by leading dollar-signs)

that speify bindings of graph nodes to variables. Continuing the example of Figures 1 and 2, we

an issue the query of Figure 3, whih returns a list of lab names and their ity loations.

More preisely, this query searhes for all lab elements whih are immediately inside a db

element, with a hild name element and a desendent ity element. The query's CONSTRUCT lause

returns a set of name/ity pairs. Note that in XML-QL, we an abbreviate eah lose-tag with a

</>. The WHERE template an be thought of as a set of tree-strutured path expressions that get

\mathed" aross the input graph. Eah variable name (l, , and n above) is bound to the mathing

node at the end of the path. In our example, we take a db edge from the doument root. From

here, we �nd a lab edge and destination; the ELEMENT AS keyword after lab's lose-tag auses this

destination node to be bound to variable l. Next, a name edge is traversed to a node we assign to

variable alled n. Now, from the same db edge traversed earlier, we traverse any number of edges

and then a ity edge, and assign the node to the variable .
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<result>

<enter> <name> Seattle Bio Lab </name>

<loation> Seattle </loation>

</enter>

<enter> <name> PMBL </name>

<loation> Philadelphia </loation>

</enter>

</result>

Figure 4: The result of applying the query from Figure 3 to the XML data in Figure 1.

The result of the WHERE lause of the query is a set of bindings for every possible ombina-

tion of path expression mathes. Note that for eah ombination of possible lab and ity edges

under a ommon lab node l, that ombination of n and  values should be returned; all three

variables an be represented as a 3-tuple. In the example, there are two possible binding tuples:

hl=baselab; n=#2; =#4i and hl=lab2; n=#6; =#7i. Note that a WHERE lause an onsist of

several patterns, and eah one an be posed over a di�erent doument. The result of the WHERE

lause in this ase would be the join of the binding tuples produed by eah of the patterns.

The CONSTRUCT lause normally spei�es a tree-strutured set of edges and nodes to add to

the output graph for eah tuple of variable bindings. Wherever an input variable appears in the

CONSTRUCT lause, its assoiated node is inserted into the output. Additionally, we also \arry

forward" all other nodes transitively onneted by edges radiating from the original node. In

essene, an XML-QL variable bound to an XML graph node always represents not simply the node,

but the entire subgraph to whih the node transitively onnets via \forward-pointing" edges. The

onstruted output for query of Figure 3 over the data in Figure 1 is shown in Figure 4. Note

that the outermost (result) tag in the CONSTRUCT lause only appears one in the output; this is

beause XML syntax requires a single \root" element enlosing all remaining ontent.

The goal of the X-san operator is to produe a set of bindings for eah pattern in the WHERE

lause. Hene, the x-san operator is the bottommost operator in a query exeution plan, and its

results are later fed into other operations suh as joins, grouping and aggregation. As was desribed

above, the WHERE lause is a hierarhial desription of path traversals; we an thus rewrite the

XML-QL template in a di�erent form using a more onventional dot-notation:

� E

l

= root."db"."lab"

� E

n

= E

l

."name"

� E



= E

l

._*."ity"

Note that expressions E

n

and E



are expressed in terms of E

l

, sine they are paths originating

from a given l node

2

. This hierarhial relationship ours very ommonly in XML-QL. Sometimes

there is an impliit rather than expliit set of dependenies | two XML-QL path expressions that

are siblings with a ommon parent must atually both have a ommon parent path expression, even

if an ELEMENT AS keyword is not spei�ed in the query, in order to preserve the orret strutural

and ordering relationship. If l were not spei�ed in Figure 3, the query plan generator would need

to reate a temporary variable with the same regular path expression, and would have expressed n

and  in terms of the temporary variable.

2

Reall also that the undersore harater , used in E



denotes wildard so * means zero or more edges of any

type.
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Figure 5: Data strutures used by x-san. The algorithm takes an XML doument and generates

an index of its struture, keeping trak of IDs and �lling in unresolved IDREF targets as they are

enountered. Simultaneously, x-san runs a series of state mahines over the graph struture (using

a stak to baktrak to previous states) and generates tables of bindings for variables.

3 The X-san Operator

Given the text stream of an XML doument and a set of regular path expressions as inputs, x-san

outputs a stream of tuples assigning binding values to eah variable in the set of regular path

expressions. The stream of binding values is generated inrementally, and hene x-san is suitable

for inlusion in a pipelined exeution plan. The entral mehanism underlying the operation of

x-san is a set of state mahines that traverse the XML graph, attempting to satisfy the path

expressions.

The data omponents of x-san are illustrated in Figure 5. As the data streams into the system,

we reate several strutures:

� the data gets parsed and stored loally,

� a strutural index of the XML graph is reated to failitate fast traversal aross IDREFs

through the graph,

� an ID index reords the IDs of all elements and their mathing loations in the strutural

index, and

� a list of referenes to not-yet-seen element IDs is maintained.

In parallel with the onstrution of these data strutures, a set of �nite state mahines (one per

regular path expression/variable) perform a depth-�rst searh over the strutural index. When a

mahine reahes an aept state, a new value is added to the binding-value table assoiated with

the mahine. These values are then ombined to produe the binding tuples for the query. Eah of

the state mahines also maintains a stak of previously seen bindings along its urrent path, whih

is used in order to avoid yles in traversing the data.

As this setion elaborates below, several aspets onspire to make x-san more omplex than

a simple appliation of state-mahine searhing applied to XML data. First, x-san operates on

possibly yli, graph strutured data. Seond, although x-san generates tuples as the input XML

is streaming into the system, it generates binding tuples in a way that preserves the XML order,

when neessary. X-san inludes an optional timestamp omponent that allows it to prune dupliate

bindings (whih an be generated when nodes in the XML graph are reahable through multiple

paths) inrementally.

Setion 3.1 desribes the onstrution of the state mahines used by x-san, and Setion 3.2

desribes the graph index struture it reates. Setion 3.3 desribes the operation of the state
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Figure 6: Three state mahines (outlined in grey) generated for the path expressions in the XML-

QL query of Figure 3. Solid ars denote state transitions and are labeled with the token required for

traversal; the self ar from state 6 is a wildard and may followed for any token. Dashed ars denote

dependenies between mahines, and bold irles signify aept states. Note that, for simpliity,

we show non-deterministi �nite state mahines here, but that x-san exeution atually uses the

equivalent deterministi mahines.

mahines over the data and the prodution of bindings. Setion 3.4 desribes how x-san handles

yles safely, Setion 3.6 disusses handling larger-than-memory data sets, and �nally, Setion 3.5

desribes several eÆieny enhanements to the algorithm.

3.1 The State Mahines

As desribed in Setion 2, we reate one regular expression for every variable in the XML-QL query;

we refer frequently to the variable of a path expression and its inverse, the expression of a variable.

The variables in an XML-QL query are typially expressed at di�erent levels in a hierarhial

template. We say that variable x is dependent on variable y if the expression of x refers to the

expression of y, and we say that y is the parent of x. In our example, both n and  are dependent on

l. Dependenies our when a query binds one variable (e.g., l) to a node along one path expression,

and then binds another variable (e.g., ) to a node that at the end of a spei�ed path from the �rst

variable. X-san must �rst �nd a binding for l before searhing for bindings for n and .

Given a set of regular path expressions, we build a �nite-state mahine for eah expression;

Figure 6 shows the three mahines, M

l

, M

n

, and M



, for our example. State transitions in these

mahines orrespond to edge traversals in the XML data graph. The end of the path expression

yields an aept state in the mahine, whih outputs instanes of the orresponding variable. The

di�erent state mahines are related aording to the dependenies of the orresponding variables:

beause  is dependent upon l, mahineM



is dependent on M

l

; this means that M



is only enabled

one M

l

reahes an aept state. In Figure 6 dependenies are shown as dashed lines.

3.2 Indexing the XML Graph

When x-san is run on an XML soure, it parses the XML and builds a graph-strutured index of

the data. This index allows x-san to quikly traverse the XML struture one it has seen some

portion of the doument, and as a onsequene, handle graph-strutured data more eÆiently. In

addition, as we explain below, the onstrution of the strutural index ontinues even when we

need to suspend the state mahines beause of unresolved IDREFs.

Eah node in the index ontains information about an element (its ID and an o�set into the

original XML data �le so that the node's soure an be aessed quikly) as well as pointers to all

subelements, attributes, and IDREFs of the element. Essentially, the index struture looks like the

graph of Figure 2 exept that data values suh as those in the leaf (PCDATA) nodes are not stored.
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In addition, x-san reates an index on IDs that it has enountered so far, mapping from ID to

entry in the strutural index. In addition, an index of all unresolved IDs is maintained, listing all

referrers to eah unseen ID.

3.3 The Operation of X-San

X-san proeeds by building the strutural index and running a set of ative state mahines in

parallel. We now fous on the running of the state mahines.

The set of ative state mahines is determined as follows. Initially, only the top-level mahine

(M

l

in our example) is ative. When a mahineM reahes an aepting state, it produes a binding

b for the variable assoiated with it. It then ativates all of its dependent state mahines, and they

remain ative while x-san is sanning b or any element aessible by a path from b. In our example,

the mahines M

n

and M



remain ative while we san a given value of l.

Assoiated with eah mahine is a table for storing binding values. As a mahine reahes an

aept state, it writes into this table a tuple ontaining its bound node value as well as the value

of its parent variable (thus providing a means of assoiating the variable and its parent)

3

. In our

example, M

l

's table would just store values of l, while n and  would store name and ity values,

respetively, paired with their orresponding l values. The �nal output of x-san is the equi-join of

the tables maintained by the three mahines.

We illustrate the exeution of x-san on our example. Suppose M

1

is initialized to mahine

state 1, whih takes the XML root as binding value. There is one outgoing edge, and beause

it is labeled db x-san follows it, pushing M

l

's old value on the stak and setting M

l

to state 2

with value node #1. Next x-san follows the �rst of four outgoing edges, pushing the old state

value, and setting M

l

to state 3 with value baselab. Sine M

l

is now in an aepting state, x-san

writes the value baselab into M

l

's table, suspends M

l

, and ativates M

n

and M



. The next edge

takes M

n

from state 4 to 5 while M



follows the self-ar bak to state 6; both mahines have #2

as binding value. Sine M

n

is now in an aept state, x-san writes h#2; baselabi into M

n

's table;

note that the urrent value of l is written along with that of n sine l is n's parent. From this

node, no (non-PCDATA) edges remain for exploration, so x-san pops the stak and baks up the

state mahines, resetting M

n

to state 4 and M



to state 6. The next edge is labeled loation

whih M

n

an't traverse, so it deativates, while x-san advanes M



through state #3 and then

into aepting state #4. At this point x-san writes h#4; baselabi into M



's table. X-san is now

able to output its �rst tuple of bindings: hl=baselab; n=#2; =#4i.

X-san keeps running M



but no more ities are found, and so eventually it pops bak up to

baselab. X-san tries running M



along the IDREF to smith1, but still no ities are found. So

x-san deativates M

n

and M



, and ontrol returns to their parent M

l

. X-san pops up to node #1

and a similar proess yields another binding tuple hl=lab2; n=#6; =#7i one M

l

�nds lab2. 2

Handling Forward Referenes: On oasion x-san will enounter an IDREF edge whih points

\ahead" to a node whih has not yet been parsed. This situation is easily deteted sine the ID

index reords all element IDs, and the target will not be in the index.

If preserving doument order is not important, then x-san an proeed to proess elements

out of order, but then the XML query proessor will need to do some omplex bookkeeping at

later stages in order to produe output whose struture (even beyond simply the order) properly

3

The implementation stores pointers to XML nodes as the values in these tables; this allows x-san to preserve

order in later stages. However, for expository simpliity in the example narrative below, we write as if the node IDs

were stored as the values.
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Figure 7: Graph representation for XML data fragment ontaining a yle. The dashed edge

represents an IDREF.

orresponds to the input doument. We explain the ase of order preservation, whih is oneptually

simpler and omes at little extra ost.

When x-san hits a forward referene to an (unseen) element, it pauses all state mahines and

adds an entry to the list of unresolved IDREF symbols, speifying the desired ID value and the

referrer's address. However, x-san ontinues reading the XML soure and building the strutural

index. One the target element is parsed, x-san �lls its address into eah referring IDREF in the

strutural index, removes the entry from the list of unresolved IDREFs, and awakens the state

mahines and proeeds. It is important to note that by ontinuing to build the strutural index,

x-san an proess the parsed-but-not-yet-traversed portion of the data muh more quikly.

3.4 Handling Cyles Safely

When the input XML doument ontains yles, are must be used to ensure that x-san returns

all possible binding tuples without getting trapped in an in�nite loop. Consider the XML data of

Figure 7, and suppose that the query involves the following path expression:

� E

x

= root._*."b"."a"

In other words, the query is searhing for paths of any length where the last two edges are b

followed by a. A quik inspetion of Figure 7 shows that there is a math binding x to element

#2, but the only way to �nd this math means searhing down through element #1 following a to

element #2 ontinuing on to 3, and following the IDREF bak to elements #1 and #2 again. If x-san

had refused to follow the yle and visit these elements again, then it would have missed answers

to the query.

On the other hand, if x-san follows yli paths with abandon, it ould get trapped in an

in�nite loop. Consider the behavior of the following path expression on the same XML input:

� E

y

= root._*."z"

Here, x-san is direted to look for a path of any length, ending in the token z. Quik inspetion

shows that there aren't any z's but we must ensure that x-san doesn't run around the yle

endlessly looking for one.

The solution is based on heking the stak assoiated with the state mahine. The stak

ontains pairs of the form (binding, state), desribing whih bindings have been assoiated with

states of the mahine along the urrent path. When a mahine enters a state, it heks to see

that this state has not been bound to the same binding along the urrent path. Sine x-san uses

deterministi �nite state mahines, we know that returning to a previous state will not add any

new possible ations.

9
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Figure 8: State mahines for Kleene star queries on yli graphs.

WHERE <db>

<lab manager="smith1">

<name>$n</>

<_*><ity>$</></>

</> ELEMENT_AS $l

</>

IN "fig1.xml"

CONSTRUCT <result>

<enter><name>$n</>

<loation>$</></>

</>

Figure 9: XML-QL query with a seletion prediate. We only return bindings when there is a

manager referene with value smith1.

Consider how this solution handles the last two examples. The two path expressions yield the

state mahines shown in Figure 8(a) and (b). When M

x

�rst reahes element #1, it binds the node

to state 8. Next it follows the self-loop so state 8 binds to #2; again it follows the self-loop so state

8 binds to #3. But when it follows the b edge it traverses into state 9, so this does not ount as

repetition beause state 9 has never bound to element #1 before. Now when x-san traverses the a

edge it binds state 10 to element #2 and again there is no repetition, so x-san suessfully leads

M

x

to an aept.

Contrast this with x-san's behavior on M

y

. When x-san �rst reahes element #1, it binds

the element to state 11. X-san follows M

y

's self loop as it traverses to #2, whih forms the new

binding for state 11. Next state 11 gets bound to element #3. Then, as x-san follows the IDREF

bak to #1, it attempts to bind M

y

's state 11 to #1 one again, and the dupliation hek rejets

the binding; instead, x-san fores M

y

to baktrak.

We note that this simple dupliation hek suÆes even for more omplex path expressions

involving multiple, dependent mahines. All that is required is for eah mahine to refuse to bind

any state to a partiular node more than one along a path.

3.5 Performane Enhanements

The x-san implementation inludes several optimizations that improve performane: seletion

push-down, and inremental dupliate elimination.

3.5.1 Seletion Push-Down

X-san an perform a fairly substantial amount of work in evaluating path expressions, so, wherever

possible, it is important to prevent the operator from spending time evaluating paths that are not

useful in the query's output. We thus allow the query optimizer to push seletion operators down

into the x-san operation.
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Suppose, for instane, that the query of Figure 3 is modi�ed slightly, as in Figure 9. Note the

presene of the onstraint that the lab must have a manager attribute (in this ase, an IDREF,

although we are treating it as an attribute rather than a referene edge) with value smith1. For

this query, the query plan generator must reate an additional temporary variable temp1 and a

regular path expression:

� E

temp1

= E

l

.�"manager"

where the � pre�x indiates that manager is an attribute rather than an element. The query plan

generator also adds a seletion prediate E

temp1

= "smith1".

During x-san's evaluation of the graph in Figure 1, it will initially bind the baselab node to

l, ativating the mahines for n, , and temp1. X-san evaluates all node attribute edges before

subelement edges, so the ID and manager attributes will be tested against the state mahines. In

this ase, the manager attribute exists and indeed has value smith1, so x-san will ontinue down

this portion of the doument and bind values for n and .

For the seond lab, however, things are slightly di�erent. The lab2 node has only an ID

attribute; as x-san iterates through all attributes of lab2, it �nds no manager attribute to follow

for temp1. The temp1 path expression annot be satis�ed, so x-san an \short-iruit" on this

subgraph, disarding the value for l and ignoring its hildren.

Note that a pushed-down seletion operator on a subelement (rather than an attribute) might

not always allow x-san's state mahine evaluation to short-iruit. The reason is simple: x-san

evaluates eah subelement suessively in doument order, and it will not be able to determine

whether a partiular subelement does or does not exist until it has proessed all subelements.

3.5.2 Inremental Dupliate Elimination

When the XML data graph ontains IDREFs, x-san may visit an element multiple times through

di�erent paths. An unfortunate result of this is that it might generate dupliate binding tuples,

whih does not follow XML-QL's semantis. To see how dupliate bindings an our, onsider x-

san's behavior on the paper's �rst sample XML data (Figure 2) with the following path expressions:

� E

z

= root._*.("lab" | "soure")

� E

n

= E

z

."name"

� E



= E

z

."ity"

Sine E

z

will �nd multiple paths to the element lab2, x-san will produe the following binding

tuple twie: hz=lab2; n=#6; =#7i.

There are two methods of solving this partiular problem, and one must be seleted by the

query optimizer based on ost or other heuristis. The �rst method is obvious (but often highly

e�etive): post-proess the output tuples, removing dupliates. This an be done with either a

sorting or hashing sheme. This approah does not typially require that we keep an entire history

of tuples, as we might with a relational table, beause the tuples are produed with a grouping

based on the hierarhy of the regular expressions. In partiular, the above query will produe

all of the tuples for a given z value before produing the tuples for suessive values of z, so the

post-proessing stage an ush its history on eah new value of z.

There are ases where doing dupliate removal within x-san is bene�ial. If a partiular

path expression binds to a partiular node multiple times, and it has expensive dependent path
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expressions (e.g. path expressions with Kleene-star omponents), we might want to avoid generating

dupliates. In order to do this without requiring large in-memory histories, x-san annotates the

strutural index to trak when a node was last visited. For eah variable for whih x-san is to

perform dupliate elimination, it reserves spae in the strutural index for a timestamp; it also

gives every state mahine an internal \lok."

Eah time x-san binds a variable to a node, it annotates that node's index entry with the

variable's lok time. It then advanes the loks of any dependent variables by one tik. Variables

an only bind to nodes with timestamps older than their internal loks. The result is that for eah

binding of a \parent" variable, we will only see at most one binding per dependent variable to a

given node. This mirrors XML-QL semantis, whih allow multiple variables to bind to the same

node, but do not allow dupliate tuples to be produed.

3.6 Handling Large XML Douments

In proessing a large XML data stream, main memory may not be large enough to handle all of the

index strutures; this setion explains how the x-san implementation supports larger-than-memory

exeution.

The approah to handling very large XML douments is to allow paging of the XML soure

doument and of the strutural index. Index entries inlude a �eld referening their orresponding

elements in the soure doument, and a series of subelement and IDREF edge \links" to other entries

within the index itself. With both of these strutures, a onventional bu�er manager using LRU

or some similar poliy is suÆient.

There are three auxiliary data strutures that are perhaps most naturally kept in memory,

namely the ID lookup index, the list of unresolved IDREF targets, and the state mahine stak. The

ID lookup index is undoubtedly most eÆient as a hash table from IDs to addresses. However, if

this data struture runs out of memory, we may wish to swith to a paged data struture, either

a B+-tree or a multilevel hash table. The B+-tree has the property that it is sorted, but it is

unlear that this ordering will typially math the order of appearane of IDREFs; thus a paged

hash-based struture may be a good alternative. A similar approah an be taken with the list of

unresolved IDREF targets, although suh an approah would be more ostly sine x-san need to

onsult this list whenever it �nds a new ID. Fortunately, this data struture is muh less likely to

exeed memory, sine items are removed as they are resolved.

The number of states in the state mahine stak is bounded by the produt of the number

of variables and the longest non-repeating path. This is a worst-ase number in whih all state

mahines are simultaneously ative and they all math the edges in our path; typially this is not

the ase, and we do not need to store the state of an inative mahine. Even if this stak does get

very large, it an be very naturally paged to disk, as we an simply swap out the oldest entries to

make more room, and re-feth them as entries get popped o�.

4 Experimental Results

Our X-san implementation uses the IBM XML4C parser version 3.0.1 (based on the Apahe

Xeres-C library) to parse XML douments. We use the SAX [SAX98℄ parser API, whih provides

allbaks to our ode as elements are read and allows us to evaluate streaming XML data without

�rst having to build an entire in-memory parse tree.

We have implemented x-san within the Tukwila [IFF

+

99℄ data integration system, whih we

are extending to support XML queries. Tukwila supports large data soures via paging, and
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our implementation of x-san leverages these apabilities to support larger-than-memory XML

douments and strutural indies. In our urrent version, the number of elements with IDs is

onstrained by an in-memory hash table; in the future, we plan to replae the hash table with a

B+-tree to fully support out-of-memory exeution.

4.1 Comparison to Current Systems

To the best of our knowledge, x-san is the �rst algorithm developed for omputing regular path

expressions in a data integration ontext. As suh, there is no \fair" system to ompete against |

however, in order to get an idea for how it fares against previous work, we ran a series of exper-

iments against urrent XML repository systems. We examined the performane of x-san, whih

proesses the data inrementally as it parses, versus a onventional store-then-query approah. This

experiment was performed with loally stored XML �les, and thus it does not show the additional

performane bene�ts of x-san's ability to inrementally evaluate path expressions as data is slowly

streaming into the system; the other systems annot begin produing results until the XML dou-

ment has been fully read from the network and then loaded into their proprietary storage formats.

On the other hand, x-san is merely the �rst omponent of a query proessing system that is under

onstrution, so its numbers do not inlude the (typially small, espeially for the simple queries

we used) overhead required by the ompeting systems to parse and optimize input queries.

We ompared the performane of x-san, Stanford's Lore [GMW99℄ semi-strutured/XML

database system, and a ommerial OO-based XML repository, aross a number of di�erent dou-

ment sizes and query omplexities. Note that the apabilities of the three systems are somewhat

di�erent. The ommerial XML repository is based on the XQL query language, whih is tree-

strutured in nature, and its apabilities for traversing IDREFs are not eÆient. Lore supports a

graph strutured data model with its Lorel query language; however, a Lorel query on an XML

doument may result in non-XML-ompliant output if the result is not stritly a tree. Lore supports

an indexing struture alled a DataGuide [GW97℄ that an speed path expression evaluation, but

index reation failed on our data sets

4

, so we were unable to take advantage of this optimization.

Our urrent x-san implementation does not support seletion prediates, so all queries are simple

path expression evaluations over the entire data set.

All x-san and ommerial repository queries were performed on a single-proessor 450MHz

Pentium II mahine running Windows NT with 256MB of memory. The Lore queries were run on

a similarly on�gured 450MHz Pentium II running Linux, using Diet Lore 5.0. All queries were

run 7 times and their results were averaged.

We obtained a number of XML douments from the web, inluding religious texts, Shakespeare's

plays, the Mondial geographial enylopedia, and database publiation information from DBLP

onerning the VLDB onferene. Most of these douments were stritly tree-strutured, exept

for Mondial (whih has numerous referenes) and VLDB (whih has referenes from papers to their

proeedings). Table 1 summarizes the queries and data soures used.

Figure 10 displays the results. The x-san bars are separated into two omponents, lower portion

showing the overhead of the parser and the Tukwila XML doument paging system, and the upper

showing the additional ost of evaluating the query path expressions using x-san. In the �rst 5

data sets, whih are all tree-strutured, the overhead of parsing dominates the osts of performing

node bindings. For the graph-strutured data sets, Mondial and VLDB, we see the x-san osts

inrease as the path expressions must now be evaluated repeatedly aross referened portions of

the graph.

4

Note that the use of DataGuides is unlikely to speed up Lore's overall performane, as the savings in query

proessing time would probably be negated by the index reation time.
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Query Data size Desription

Henry VI-q1 646 KB Shakespeare's Henry VI title, personae, speakers

Henry VI-q2 646 KB Shakespeare's Henry VI title, personae, lines

Quran 898 KB Sura titles, epigraphs, verses from Quran

NT 1023 KB Book and hapter titles from New Testament

Mormon 1510 KB Book of Mormon prefae headings, J. Smith's signed witnesses

Mondial 1332 KB Mondial enylopedia ountries, ities, ities' ref'd lo. names

VLDB 1558 KB VLDB paper authors, titles, proeedings' ISBN numbers

Table 1: Queries and data soures used in the experiment omparing x-san to Lore and a om-

merial system (Figure 10). See the Appendix for the atual queries and regular path expressions.
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Figure 10: Comparison of query performane. For X-san, (X) the light bar represents parsing and

storage overhead, and the dark bar is state mahine and binding osts. For Commerial system

(C) and Lore (L), the light bar represents query osts, and upper bar is the ost of loading the

doument into the repository.

For the existing systems, we di�erentiate the atual XML query ost from the ost of loading the

doument into the repository. In a non-data integration ontext, the ost of a load an be amortized

aross multiple queries, but in the data integration ontext this is not possible beause we reread

data on every query. Both Lore and the ommerial system gave very quik query responses to the

Mormon query, whih only asked for a very small portion of the overall XML doument; but their

load osts were higher than the exeution times for x-san. For the other queries in the �rst 5 data

sets, we �nd that Lore generally has signi�antly better load times than the ommerial system,

but the ommerial system has faster query times, and performs better overall. Lore was unable

to omplete either query on the Henry VI text within our time limit of 1000 se.

The graph-strutured Mondial data set was also a problem for Lore, whih failed in querying

it. We attempted to simulate the traversal of IDREFs in this query with the ommerial system

by using XQL's id lookup failities, but performane su�ered greatly. For the VLDB data set, we

simpli�ed the query for Lore and the ommerial produt, simply asking for the value of the papers'

IDREFs, rather than looking up this value to get the ISBN (whih we retrieved in the orresponding

x-san query). Running times were still muh higher than those for x-san.
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Figure 11: Salability results for a query over an XML tree. X-san has minimal overhead over the

parse, and grows only approximately 8% faster, even when the doument exeeds memory.

We an onlude from this setion that neither Lore nor the ommerial system sale up well

to queries aross multi-megabyte data �les, partiularly �les that ontain graph struture. X-san

outperforms them in all ases, and also sales better (partiularly for tree-strutured douments).

4.2 Salability

In order to better gauge the salability of x-san, we ran our system on a series of syntheti XML

data �les reated by a random XML graph generator. The random graph generator starts with a

small XML tree-shaped \template" and begins repliating this to form an irregular XML tree; with

75% probability it adds this template as a subtree of the graph root, and with 25% probability it

piks a random node as a parent element. The result is an XML doument onsisting of subtrees

of varying depth, with a large number of hildren o� the root. Next, the graph generator begins

randomly adding a spei�ed number of IDREF edges between nodes to transform the tree into a

graph.

The �nal graph onsists of a root node with a series of outer subelement edges emanating from

it. At the ends of these edges, there are nodes with some random number of hild edges (both

subelement and IDREF), emanating. The hild edges' destination nodes may soure additional

hild edges, and they may be the origin for sub edges that point to harater data. Most of our

queries in this setion will be \searhing" for these sub edges' destination nodes.

Sine it is possible for the random graph generator to produe graphs that are unusually favor-

able or unfavorable to the experiments, we average three di�erent runs aross eah of three di�erent

random graphs of the same generation parameters. (In pratie, we found very little di�erene in

performane aross the di�erent randomly generated graphs of the same spei�ations.)

4.2.1 Performane on trees

Sine x-san is appliable to both tree-strutured and graph-strutured data, we shall �rst examine

how it performs on douments without IDs and IDREFs. For reasons of onsisteny with later

experiments, we atually used the same graph-strutured XML �les output by the random graph
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Figure 12: Salability results for query of Figure 11, but onstruting graph index of doument.

generator, but replaed their default DTD with one that de�nes all attributes to be harater

data rather than IDs and IDREFs. We also direted x-san to not generate a strutural index of

eah XML doument's data graph, sine suh an index provides no bene�ts for tree-based regular

path expression evaluation

5

. In this experiment, x-san simply uses the state mahines to generate

bindings, whih it returns as pipelined tuples; the strutural index and the ID/referene resolution

omponents are disabled.

Our query was a simple path expression that returned all outer subelements as values for the

�rst variable, plus all nodes at distanes 1 and 2 from those nodes in the seond variable. The

graph in Figure 11 shows the results on the di�erent data sets. We an see that x-san in this ase

only adds a small amount of overhead versus simply parsing the data �le. In every experiment,

the x-san overhead grows at a rate approximately 8% faster than the parser alone, and the atual

overhead remains minimal for even the largest of the data sets (whih was approximately 14.6MB).

Note that for the 240,000-element query, the XML doument exeeded x-san's memory alloation,

and was paged to and from disk during operation.

4.2.2 Cost of graph indexing

Our next experiment was to take the same data set and query as in the previous setion, but to

use the graph DTD. From this we an determine the impat of building the strutural index and

of resolving referenes. Figure 12 (a) illustrates query performane vs. number of elements in the

doument, and (b) shows performane vs. number of IDREF edges added.

As one would expet, the running times have moderately inreased beause of the index gener-

ation overhead. Additionally, the amount of time to proess a query grows at a slightly superlinear

rate in the number of elements, as shown in part (a) of the Figure. (This was also true of both the

parser and of x-san in the previous setion, but the rate is slightly more pronouned here.) We

attribute this to the additional number of doument and index page aesses required for perform-

ing \bookkeeping" and storage on inreasingly larger XML douments. Even for a 7.5MB XML

doument, however, our total exeution time is approximately 2 minutes, and the operator atually

outputs pipelined tuples as it exeutes.

Part (b) of the Figure demonstrates that query exeution time inreases linearly with the number

5

By omparing the result of this experiment with that of the next, we an alulate the ost of building this index.
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Figure 13: Salability results for graph-traversing query requesting outer nodes, their hild nodes,

and all sub nodes within 1 or 2 edge traversals of the outer nodes.

of IDREF edges. This query does not traverse any IDREF edges, so all osts inurred are for indexing

the referenes.

4.2.3 Graph-traversing query

Sine muh of the omplexity of the x-san algorithm onerns eÆient path expression mathing

not just against trees, but against full graphs with IDREF edges, the next experiment tests the

e�etiveness of our strutural index when alled to evaluate suh referene edges.

The query we used in this experiment had three variables: the �rst bound to the outer nodes,

the seond to hild nodes of outer and to the hild nodes' sub hildren, and the third variable

to sub nodes either one or two hild edges away from the outer nodes. This query returns most

of the nodes within radius 2 of the outer nodes.

The results, shown in Figure 13, have nearly idential shapes to the subelement-only query

graphs from the previous setion. Close examination reveals that the plots in Figure 13(a) run

parallel to those in Figure 12, with a slightly higher value at eah point. This is small o�set is the

overhead in traversing the additional referenes and binding to an additional (third) variable. A

omparison of the growth respet to number of IDREFs, in part (b) of eah �gure, shows that the

two queries behave similarly, but as the number of IDREFs inreases, the graph-traversing query

begins to grow at a slightly faster rate. This is to be expeted beause the tree-only query did not

atually traverse IDREFs.

4.2.4 Kleene-star

Our �nal experiment measures the osts of evaluating a query that uses a Kleene-star operator

to return all sub nodes in the graph. We would expet that this query would be more subjet to

variation on di�erent random graphs, as ertain graphs may have \hub"-like nodes that have many

out-edges and multiple in-edges. For suh nodes, the path expression evaluation algorithm will

re-evaluate the entire subgraph for eah inoming edge. If several of these hub nodes are hained

together, the number of repeated traversals an grow exponentially. Moreover, a high ratio of IDREF

edges to elements in the graph greatly inreases the likelihood of suh hains appearing.
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Figure 14: Salability results for Kleene-star query requesting all sub elements reahable from any

number of hild edges.

The graphs in Figure 14 show x-san performane. In part (a) we see a familiar pattern for

exeution time versus number of elements, although the atual ompletion times are slightly longer.

Part (b) shows the more interesting results, omparing running times versus number of IDREFs

present in the doument. The growth is now superlinear, generally inreasing at suessively faster

rates as we approah a point in whih the number of IDREFs reahes 50% of the total number of

elements. (We note that at this value, an n-node graph atually has 3n=2� 1 edges, sine all nodes

are subelements.) At the 50% point, the x-san running times inrease to some indeterminately

high value; in none of our experiments did suh a query manage to omplete within an hour.

We believe that XML data with suh a high onentration of edges is unlikely to our often in

pratie. However, we believe we have a solution that will make proessing of suh data graphs more

tratable. In partiular, the problem is that x-san spends massive amounts of time dupliating

previous traversals to get binding values. For this ase, we propose \memo-izing" the bindings

produed by following out-edges from a partiular node, annotating the strutural index with

pointers to suh memo-ized values. Now if x-san reahes a previously visited node and is in a

previously enountered state mahine on�guration, we an simply read and return the memo-ized

results. We have a trade-o� in the extra disk aesses required to read and write memo-ized values,

but in highly-onneted graphs, this will produe a net gain.

5 Related Work

As XML has emerged as a medium for representing data as well as douments, and as query

languages for XML have been proposed, a number of approahes have been proposed for evaluating

XML queries. Most of these involve mapping XML to an existing database model and utilizing

onventional query engine to do the ore work. XML mapping strategies for relational [FK99,

SGT

+

99, DFS99℄, objet-oriented [vZAW99, LAW98℄, and semi-strutured [GMW99℄ databases

have all been implemented. The system's partiular storage mapping may atually simplify ertain

path expressions, e.g. if a set of path expressions inludes multiple data items that are mapped to the

same tuple in a table. However, in the general ase, indexing tehniques suh as join indies [Val87℄,

aess support relations [KM90℄, DataGuides [GW97℄, and t-indies [MS99℄ must be used to speed

the proessing of path expressions. These index strutures desribe the nodes reahable by ertain

lasses of path expressions. The t-index, and to some extent the DataGuide, are partiularly
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powerful strutures that allow eÆient omputation of a wide range of regular path expression

types. However, the atual index generation tends to be fairly omplex and time onsuming:

DataGuides an be exponential in the size of the data and t-indies, while not exponential, are also

ostly to generate, espeially for more omplex path expression types.

X-san di�ers in three key ways from these tehniques. First, x-san's strutural index es-

sentially onverts the XML doument into a semi-strutured format that an be more eÆiently

traversed without parsing; but it preserves the ordering and loality of the XML doument, rather

than splitting it into separate tables or objets that must later be re-ombined.

Seond, x-san path expression evaluation is done through �nite state mahines based on the

query. By ontrast, semi-strutured index tehniques suh as DataGuides and t-indies are essen-

tially �nite automata desribing paths through the data, with eah state pointing to the set of

nodes reahable through a partiular path. The bene�ts of the t-index or DataGuide are that it

is a reusable struture, whih an be leveraged aross multiple queries with di�erent regular path

expressions. However, in a data integration ontext, we re-read data from the soure, so reuse does

not our | thus it is more appropriate to build a struture spei� to the given query.

Finally, x-san is a pipelining operator intended for streaming data, whereas other approahes

require a ostly translation and indexing stage before the query an be exeuted. This pipelining

apability is key in an interative ad-ho query system, partiularly if the data must be obtained

from a slow soure [UFA98, IFF

+

99, AH00℄.

The x-san pattern mathing approah is similar to the onept behind the Knuth-Morris-Pratt

substring-mathing algorithm, whih reates a �nite state mahine out of one string and mathes it

against the other string. However, x-san must be more sophistiated in order to handle mathing

of tree-strutured regular expression templates aross graphs: (1) it supports both \forward" and

\reverse" traversals as we enounter open- and lose-tags in XML, (2) it handles yles in a way

that prevents in�nite loops, (3) it uses multiple dependent mahines in onjuntion, (4) it supports

arbitrary wildards, disjuntion, and Kleene-losure operations in paths, and (5) it has the ability

to avoid generating dupliate bindings for nodes reahable by several paths.

The basi goal of x-san, of onverting from semistrutured data to tuples in pipelined fashion,

is very similar to the san operator proposed by Cluet and Moerkotte in [CM97℄. However, x-san

di�ers in that it handles (ylial) graphs as well as trees, it is for XML data rather than native

objet or semistrutured data, and it inludes an algorithm and implementation.

6 Conlusions and Future Work

In this paper we have presented the x-san algorithm, a new primitive for XML query proessing,

that evaluates regular path expressions to produe bindings. X-san is salable to larger XML

douments than previous approahes and provides important advantages for data integration, with

the following ontributions:

� X-san is pipelined and produes bindings as data is being streamed into the system, rather

than requiring an initial stage to store and index the data.

� X-san handles graph-strutured data, inluding ylial data, by resolving and traversing

IDREF edges, and it does this following doument order and eliminating dupliate bindings.

� X-san generates an index of the struture of the XML doument, while preserving the original

XML struture.
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� X-san uses a set of dependent �nite state mahines to eÆiently ompute variable bindings

as edges are traversed. In ontrast to semi-strutured indexing tehniques, x-san onstruts

�nite automata for the paths in the query, rather than for the paths in the data.

� X-san is very eÆient, typially imposing only an 8% overhead on top of the time required to

parse the XML doument. X-san sales to handle large XML soures and ompares favorably

to Lore and a ommerial XML repository, sometimes even when the ost of loading data

into those systems is ignored.

In the short term, we plan to add several re�nements to our x-san implementation and inves-

tigate their e�ets. As was previously mentioned, we will be adding full support for out-of-memory

exeution and for seletion push-down, and we will also add the ability to memoize intermediate

results and avoid redundant omputation in highly onneted graphs. Additionally, the urrent al-

gorithm separates the parsing and state-mahine traversal omponents into di�erent stages whose

exeution must be interleaved. We envision the �nal implementation putting these stages in sepa-

rate threads, and to run both in parallel in a produer-onsumer arrangement so x-san an parse

and return results ompletely in parallel.

Additionally, we believe that the two key ontributions of x-san | state mahine-based eval-

uation of regular path expressions and \on-the-y" indexing of XML | are general tehniques

that have appliation beyond our urrent domain of fous. For instane, XML-QL queries may be

omposed over other XML-QL views (\funtions"); this adds greater expressive power than a single

XML-QL query, and thus may require omputation of intermediate view results that are fed into

the next query or view. As the input to the seond query or view, we an use a variation of x-san

that works on graph data rather than \pure" XML. The graph struture index may be useful in a

number of other operations. This output an be used as the input to a t-index generator, whih

we believe will speed the reation of indexing strutures for general path expressions on stored

XML data. The index may also be useful in onstruting the results of an XML-QL query: the

semantis of XML-QL speify that if a node is opied from the input data graph to the output

graph, we must also opy all nodes that are transitively onneted to this node | an XML-QL node

potentially represents an entire subgraph. The graph index allows us to quikly �nd the required

XML fragments and opy them over; we might even mark these in the index as having been opied.

Finally, we are also onsidering the use of the strutural index to support eÆient updates on XML

data.

Currently, x-san represents a new operator whih will be at the ore of the new version of the

Tukwila data integration system [IFF

+

99℄. However, this is just a �rst step. As we proeed, we

plan to investigate the potential uses desribed above | to develop a family of algorithms derived

from or assisted by x-san.
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Appendix: Queries Used in Experiments

The tables on the next page present the di�erent queries used in the experimental setion of this paper.
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Name System Query

Henry VI-q1 x-san p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",

a = p."ACT", as = a."SCENE"."SPEECH"."SPEAKER"

ommerial /play/title j /PLAY/PERSONAE/PERSONA j

/PLAY/ACT/SCENE/SPEECH/SPEAKER

Lore selet t, p, s from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,

pl.ACT.SCENE.SPEECH.SPEAKER s

Henry VI-q2 x-san p = root."PLAY", t = p."TITLE", per = p."PERSONAE"."PERSONA",

a = p."ACT", l = a."SCENE"."SPEECH"."LINE"

ommerial /play/title j /PLAY/PERSONAE/PERSONA j

/PLAY/ACT/SCENE/SPEECH/LINE

Lore selet t, p, l from PLAY pl, pl.TITLE t, pl.PERSONAE.PERSONA p,

pl.ACT.SCENE.SPEECH.LINE l

Quran x-san r = root."tstmt"."suraoll", s = r."sura", e = s."epigraph",

t = s."bktlong", v = s."v"

ommerial /tstmt/suraoll/sura/epigraph j /tstmt/suraoll/sura/bktlong j

/tstmt/suraoll/sura/v

Lore selet e,t,v from

tstmt.suraoll r, r.sura s, s.epigraph e, s.bktlong t, s.v v

NT x-san b = root.."tstmt"."bookoll", bk = b."book", t = bk."bktlong",

 = bk."hapter"."title"

ommerial /tstmt/bookoll/book/bktlong j /tstmt/bookoll/book/hapter/htitle

Lore selet t,  from tstmt.bookoll.book b, b.bktlong t, b.hapter 

Mormon x-san pref = root."tstmt"._, t = pref."ptitle", w = pref."witlist",

per = w."witness"

ommerial /tstmt/*/ptitle j /tsmt/t/*/witlist j /tstmt/*/witlist/witness

Lore selet t,w from tstmt.% pref, pref.ptitle t, pref.witlist.witness w

Mondial x-san  = root."mondial"."ountry", n = ."name", it = ."ity", n = it."name",

at = it."loated"."ref"."name"

ommerial /mondial/ountry/name j /mondial/ountry/ity/name

j id(/mondial/ountry/ity/loated/�ref)/name

Lore selet try, it, lo from mondial.ountry o, o.name try, o.ity i, i.name it,

i.loated.ref.name lo

VLDB x-san i = root."onf"."inproeedings", a = i."author", t = i."title",

p = i."rossref"."IDREF"."isbn"

ommerial /onf/inproeedings/author j /onf/inproeedings/title j

/onf/inproeedings/rossref/�IDREF

Lore selet a, t, r from onf.inproeedings i, i.author a, i.title t, i.rossref.IDREF r

Table 2: Queries used in the experiment omparing systems (Figure 10). X-san uses a series of

path expressions, the ommerial system uses XPath/XQL, and Lore uses Lorel.

Setion Query

4.2.1 o = root."do"."outer", s = o~("hild"|"hild"."sub")

4.2.2 o = root."do"."outer", s = o~("hild"|"hild"."sub")

4.2.3 o = root."do"."outer", s = o.("hild"|"hild"."sub"),

t = o.("hild"."sub"|"hild"."hild"."sub")

4.2.4 o = root."do"."outer", s = o."hild"*."sub"

Table 3: Queries used in the salability experiments. Note that the tilde (�) harater is a path

segment separator muh like the dot operator, but it spei�es that the next edge is an only be a

subelement (as opposed to an IDREF).

22


