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Preface

These are the lecture notes from CSE 527, a graduate cousargutational molecular biology | taught
at the University of Washington in Winter 2000. The topiclof tourse was Biological Sequence Analysis.
These notes are not intended to be a survey of that area, Bovesvthere are numerous important results
that | would have liked to cover but did not have time.

| am grateful to Phil Green, Dick Karp, Rune Lyngsg, Larry Ryzand Rimli Sengupta, who helped me
both with overview and with technical points. | am thankfoit the students who attended faithfully, served
as notetakers, asked embarassing questions, made paFa@ptiiments, carried out exciting projects, and
generally make teaching exciting and rewarding.

— Martin Tompa



Lecture 1

Basics of Molecular Biology

January 4, 2000
Notes: Michael Gates

We begin with a review of the basic molecules responsibldaHerfunctioning of all organisms’ cells.
Much of the material here comes from the introductory teskisoby Drlica [14], Lewin [31], and Watsoet
al. [52]. Later in the course, when we discuss the computatiaspécts of molecular biology, some useful
textbooks will be those by Gusfield [20], Salzbargal. [42], Setubal and Meidanis [43], and Waterman
[51].

What sorts of molecules perform the required functions efdalls of organisms? Cells have a basic
tension in the roles they need those molecules to fulfill:

1. The molecules must perform the wide variety of chemicattiens necessary for life. To perform
these reactions, cells need diverse three-dimensionaitstes of interacting molecules.

2. The molecules must pass on the instructions for credtigig ¢onstitutive components to their descen-
dents. For this purpose, a simple one-dimensional infaomatorage medium is the most effective.

We will see thatproteinsprovide the three-dimensional diversity required by thst fiole, andDNA
provides the one-dimensional information storage reguethe second. Another cellular molecuRNA
is an intermediary between DNA and proteins, and plays sdreaah of these two roles.

1.1. Proteins

Proteins have a variety of roles that they must fulfill:

They are the enzymes that rearrange chemical bonds.
They carry signals to and from the outside of the cell, aitdimthe cell.
They transport small molecules.

They form many of the cellular structures.

a & 0w poE

They regulate cell processes, turning them on and off anttaling their rates.

This variety of roles is accomplished by the variety of pidewhich collectively can assume a variety of
three-dimensional shapes.
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A protein’s three-dimensional shape, in turn, is determhibg the particular one-dimensional composi-
tion of the protein. Each protein is a linear sequence madenaifler constituent molecules callachino
acids The constituent amino acids are joined by a “backbone” aseg of a regularly repeating sequence
of bonds. (See [31, Figure 1.4].) There is an asymmetricmtat®n to this backbone imposed by its chem-
ical structure: one end is called thieterminusand the other end thé-terminus This orientation imposes
directionality on the amino acid sequence.

There are 20 different types of amino acids. The three-dénaal shape the protein assumes is deter-
mined by the specific linear sequence of amino acids fromriiteis to C-terminus. Different sequences
of amino aciddold into different three-dimensional shapes. (See, for exanip0, Figure 1.1].)

Protein size is usually measured in terms of the number oh@amacids that comprise it. Proteins can
range from fewer than 20 to more than 5000 amino acids infemdfhough an average protein is about 350
amino acids in length.

Each protein that an organism can produce is encoded in @ pi¢glse DNA called a “gene” (see Section
1.6). To give an idea of the variety of proteins one organiamproduce, the single-celled bacterincoli
has about 4300 different genes. Humans are believed to bawut 50,000 different genes (the exact number
as yet unresolved), so a human has only about 10 times as raaeyg g&. coli. The number of proteins that
can be produced by humans greatly exceeds the number of, iemesver, because a substantial fraction of
the human genes can each produce many different proteimsgthia process called “alternative splicing”.

1.1.1. Classification of the Amino Acids
Each of the 20 amino acids consists of two parts:

1. apart that is identical among all 20 amino acids; this jgansed to link one amino acid to another to
form the backbone of the protein.

2. auniqueside chain(or “R group”) that determines the distinctive physical @h@mical properties of
the amino acid.

Although each of the 20 different amino acids has unique gnt@s, they can be classified into four
categories based upon their major chemical propertiesovBate the names of the amino acids, their 3
letter abbreviations, and their standard one letter sysabol

1. Positively charged (and therefore basic) amino acids (3)

Arginine Arg R
Histidine His H
Lysine Lys K

2. Negatively charged (and therefore acidic) amino acijls (2

Asparticacid Asp D
Glutamicacid Glu E

3. Polar amino acids (7). Though uncharged overall, theseaatids have an uneven charge distribu-
tion. Because of this uneven charge distribution, thesearmacids can form hydrogen bonds with
water. As a consequence, polar amino acids are chifddphilic and are often found on the outer
surface of folded proteins, in contact with the watery emwnent of the cell.
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Asparagine Asn N
Cysteine Cys C
Glutamine GIn Q
Glycine Gly G

Serine Ser S
Threonine Thr T
Tyrosine Tyr Y

4. Nonpolar amino acids (8). These amino acids are unchanggdhave a uniform charge distribution.
Because of this, they do not form hydrogen bonds with watercalledhydrophobic¢ and tend to be

found on the inside surface of folded proteins.

Alanine Ala A
Isoleucine lle I
Leucine Leu L

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Tryptophan Trp W
Valine Val Vv

Although each amino acid is different and has unique pr@ertertain pairs have more similar proper-
ties than others. The two nonpolar amino acids leucine afdusine, for example, are far more similar to
each other in their chemical and physical properties thieeis to the charged glutamic acid. In algorithms
for comparing proteins to be discussed later, the questiamao acid similarity will be important.

1.2. DNA

DNA contains the instructions needed by the cell to carryitsufunctions. DNA consists of two long
interwoven strands that form the famous “double helix”.g$B4, Figure 3-3].) Each strand is built from a
small set of constituent molecules calledcleotides

1.2.1. Structure of a Nucleotide

A nucleotide consist of three parts [14, Figure 3-2]. The twg parts are used to form the ribbon-like
backbone of the DNA strand, and are identical in all nuctissti These two parts are (1phosphate group
and (2) a sugar calledeoxyribosgfrom which DNA, DeoxyriboNucleic Acid, gets its name). Ttierd
part of the nucleotide is tHease There are four different bases, which define the four difienucleotides:
thymine (T), cytosine (C), adenine (A), and guanine (G).

Note in [14, Figure 3-2] that the five carbon atoms of the sugaslecule are numbered
Cy,Cy,Cy,Cy, Cs. The base is attached to thecarbon. The two neighboring phosphate groups are
attached to thé’ and3’ carbons. As is the case in the protein backbone (Sectionthelasymmetry of the
sugar molecule imposes an orientation on the backbone,rmhefavhich is called thé’ endand the other

the 3’ end (See [14, Figure 3-4(a)].)
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1.2.2. Base Pair Complementarity

Why is DNA double-stranded? This is dueliase pair complementarityf specific bases of one strand are
aligned with specific bases on the other strand, the aligasd$carmybridizevia hydrogen bonds, weak
attractive forces between hydrogen and either nitrogenxygen. The specific complementary pairs are

o AwithT
e GwithC

Two hydrogen bonds form between A and T, whereas three foimeam C and G. (See [14, Figure 3-5].)
This makes C-G bonds stronger than A-T bonds.

If two DNA strands consist of complementary bases, underrfrad’ cellular conditions they will hy-
bridize and form a stable double helix. However, the tworgtsawill only hybridize if they are in “antipar-
allel configuration”. This means that the sequence of orandt{rwhen read from th& end to the3’ end,
must be complementary, base for base, to the sequence ofttiiesirand read fror’ to 5. (See [14,
Figure 3-4(b) and 3-3].)

1.2.3. Size of DNA molecules

An E. coli bacterium contains one circular, double-stranded madegfiDNA consisting of approximately
5 million nucleotides. Often the length of double-strandddA is expressed in the units of basepairs (bp),
kilobasepairs (kb), or megabasepairs (Mb), so that this sild be expressed equivalentlysas 106 bp,
5000 kb, or 5 Mb.

Each human cell contains 23 pairs dfromosomeseach of which is a long, double-stranded DNA
molecule. Collectively, the 46 chromosomes in one humahcoeisist of approximately x 10° bp of
DNA. Note that a human has about 1000 times more DNA tBanoli does, yet only about 10 times as
many genes. (See Section 1.1.) The reason for this will blaegal shortly.

1.3. RNA

Chemically, RNA is very similar to DNA. There are two mainfdiences:

1. RNA uses the sugaiboseinstead of deoxyribose in its backbone (from which RNA, Ribcleic
Acid, gets its name).

2. RNA uses the base uracil (U) instead of thymine (T). U iswgleally similar to T, and in particular is
also complementary to A.

RNA has two properties important for our purposes. First,teéhds to be single-stranded
in its “normal” cellular state. @ Second, because RNA (like ANhas base-pairing capability,
it often forms intramolecular hydrogen bonds, partiallybhglizing to itself. Because of this,
RNA, like proteins, can fold into complex three-dimensiorghapes. (For an example, see
http://www.ibc.wustl.edu/"zuker/rna/hammerhead.html )

RNA has some of the properties of both DNA and proteins. Ithasame information storage capability
as DNA due to its sequence of nucleotides. But its abilityotorf three-dimensional structures allows it to
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have enzymatic properties like those of proteins. Becatiski®dual functionality of RNA, it has been
conjectured that life may have originated from RNA alone Aoéhd proteins having evolved later.

1.4. Residues

The termresiduerefers to either a single base constituent from a nuclesgd@ence, or a single amino acid
constituent from a protein. This is a useful term when onetsvamspeak collectively about these two types
of biological sequences.

1.5. DNA Replication

What is the purpose of double-strandedness in DNA? One answet this redundancy of information is
key to how the one-dimensional instructions of the cell @gspd on to its descendant cells. During the cell
cycle, the DNA double strand is split into its two separatargls. As it is split, each individual strand is
used as a template to synthesize its complementary st@mdhith it hybridizes. (See [14, Figure 5-2 and
5-1].) The result is two exact copies of the original douttiesnded DNA.

In more detail, an enzymatic protein call@iNA polymerasesplits the DNA double strand and syn-
thesizes the complementary strand of DNA. It synthesizescbmplementary strand by addifige nu-
cleotidesavailable in the cell onto th& end of the new strand being synthesized [14, Figure 5-3].0A
polymerase will only add a nucleotide if it is complementtrythe opposing base on the template strand.
Because the DNA polymerase can only add new nucleotideg®) #tnd of a DNA strand (i.e., it can only
synthesize DNA in thé’ to 3’ direction), the actual mechanism of copying both strandeisewhat more
complicated. One strand can be synthesized continuoughei’ to 3’ direction. The other strand must
be synthesized in shobt-to-3' fragments. Another enzymatic proteDNA ligase glues these synthesized
fragments together into a single long DNA molecule. (Seeg [Fidure 5-4].)

1.6. Synthesis of RNA and Proteins

The one-dimensional storage of DNA contains the infornmatieeded by the cell to produce all its RNA
and proteins. In this section, we describe how the inforomats encoded, and how these molecules are
synthesized.

Proteins are synthesized in a two-step process. First, aa“Bdpy” of a portion of the DNA is synthe-
sized in a process callacanscription described in Section 1.6.1. Second, this RNA sequencadard
interpreted to synthesize a protein in a process c#ltetslation described in Section 1.6.2. Together, these
two steps are callegene expression

A geneis a sequence of DNA that encodes a protein or an RNA moleG#ee structure and the exact
expression process are somewhat dependent on the organgmastion. Therokaryotes which consist
of the bacteriaand thearchaea are single-celled organisms lacking nuclei. Becausegryakes have the
simplest gene structure and gene expression process, hatastilvith them. Theeukaryoteswhich include
plants and animals, have a somewhat more complex geneuserubat we will discuss after.
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1.6.1. Transcription in Prokaryotes

How do prokaryotes synthesize RNA from DNA? This procesBeddranscription, is similar to the way
DNA is replicated (Section 1.5). An enzyme callRNA polymerasecopies one strand of the DNA gene
into amessenger RNANRNA, sometimes called theeanscript The RNA polymerase temporarily splits
the double-stranded DNA, and uses one strand as a templbateldathe complementary strand of RNA.
(See [14, Figure 4-1].) It incorporates U opposite A, A opieos, G opposite C, and C opposite G. The
RNA polymerase begins this transcription at a short DNAgrattt recognizes called thieanscription start
site. When the polymerase reaches another DNA sequence caléi@iscription stop sitesignalling the
end of the gene, it drops off.

1.6.2. Translation

How is protein synthesized from mRNA? This process, calladdation, is not as simple as transcription,
because it proceeds from a 4 letter alphabet to the 20 Idjtiealaet of proteins. Because there is not a one-
to-one correspondence between the two alphabets, amit® @@ encoded by consecutive sequences of 3
nucleotides, calledodons (Taking 2 nucleotides at a time would give odl = 16 possible permutations,
whereas taking 3 nucleotides yieldfs = 64 possible permutations, more than sufficient to encode the 20
different amino acids.) The decoding table is given in Tdble and is called thgenetic codelt is rather
amazing that this same code is used almost universally lmygdinisms.

L y | c | A | G [ ]
UUuU Phe [F] UCU Ser [S] UAU Tyr [Y] UGU Cys [C] U
U UUC Phe [F] UCC Ser [S] UAC Tyr [Y] UGC Cys [C] C
UUA Leu [L] UCA Ser [S] UAA STOP UGA STOP A
UUG Leu [L] UCG Ser [S] UAG STOP UGG Trp [W] G
CUU Leu [L] CCU Pro [P] CAU His [H] CGU Arg [R] U
C CUC Leu [L] CCC Pro [P] CAC His [H] CGC Arg [R] C
CUA Leu [L] CCA Pro [P] CAA GIn [Q] CGA Arg [R] A
CUG Leu [L] CCG Pro [P] CAG GIn [Q] CGG Arg [R] G
AUU lle ] ACU Thr [T] AAU Asn [N] AGU Ser [S] U
A AUC lle |1 ACC Thr [T] AAC Asn [N] AGC Ser [S] C
AUA lle ] ACA Thr [T] AAA Lys [K] AGA Arg [R] A
AUG Met [M] ACG Thr [T] AAG Lys [K] AGG Arg [R] G
GUU Val [V] GCU Ala [A] GAU Asp [D] GGU Gly [G] U
G GUC Val [V] GCC Ala [A] GAC Asp [D] GGC Gly [G] C
GUA Val [V] GCA Ala [A] GAA Glu [E] GGA Gly [G] A
GUG Val |V] GCG Ala [A] GAG Glu [E] GGG Gly [G] G

Table 1.1: The Genetic Code

There is a necessary redundancy in the code, since therd aass8ible codons and only 20 amino acids.
Thus each amino acid (with the exceptions of Met and Trp) dad bysynonymous codonwhich are
interchangeable in the sense of producing the same amido@nly 61 of the 64 codons are used to encode
amino acids. The remaining 3, call8TOP codonssignify the end of the protein.



LECTURE 1. BASICS OF MOLECULAR BIOLOGY 8

Ribosomes are the molecular structures that read mRNA avitlipe the encoded protein according
to the genetic code. Ribosomes are large complexes cowsigtiboth proteins and a type of RNA called
ribosomal RNArRNA).

The process by which ribosomes translate mRNA into proteaken use of yet a third type of RNA
called transfer RNA(tRNA). There are 61 different transfer RNAs, one for each noritetion codon.
Each tRNA folds (see Section 1.3) to form a cloverleaf-skagteucture. This structure produces a pocket
that complexes uniquely with the amino acid encoded by tidARassociated codon, according to Table
1.1. The unique fit is accomplished analogously to a key aokl teechanism. Elsewhere on the tRNA
is theanticodon three consecutive bases that are complementary and ratith#o the associated codon,
and exposed for use by the ribosome. The ribosome bringshigeach codon of the mRNA with its
corresponding anticodon on some tRNA, and hence its encamétb acid. (See [14, Figure 4-4].)



Lecture 2

Basics of Molecular Biology (continued)

January 6, 2000
Notes: Tory McGrath

2.1. Course Projects

A typical course project might be to take some existing lgjmal sequences from the public databases on
the web, and design and run some sequence analysis expesimsing either publicly available software
or your own program. For example, there is reason to belieaesome of the existing bacterial genomes
may be misannotated, in the sense that the identified geresoaiactually located exactly as annotated.
There is existing software to identify gene locations. W# discuss more such suggested projects as the
course proceeds, but the choice of topic is quite flexibld,iampen to suggestion, provided there is a large
computational aspect. You will be required to check youfgmitopic with the instructor before embarking.

You may work on the project in groups of up to four people. Faximum effectiveness, it is recom-
mended to have a mix of biology and math/computer parti¢goemeach group.

The project will entail a short write-up as well as a shortspréation of your problem, methods, and
results.

2.2. Translation (continued)

In prokaryotes, which have no cell nucleus, translationirseghile transcription is still in progress, thé
end of the transcript being translated before the RNA pohase has transcribed tlieend. (See Drlica
[14, Figure 4-4].) In eukaryotes, the DNA is inside the nuslewhereas the ribosomes are in ¢igoplasm
outside the nucleus. Hence, transcription takes placeeimtitleus, the completed transcript is exported
from the nucleus, and translation then takes place in thepagm.

The ribosome forms a complex near tend of the mRNA, binding around thstart codon also called
the translation start site The start codon is most oftéi-AUG-3/, and the corresponding anticodonsis
CAU-3'. (Less often, the start codon 86GUG-3'or 5’-UUG-3'.) The ribosome now brings together this
start codon on the mRNA and its exposed anticodon on thesmwreling tRNA, which hybridize to each
other. (See [14, Figure 4-4].) The tRNA brings with it the ethed amino acid; in the case of the usual start
codon’’-AUG-3/, this is methionine.

Having incorporated the first amino acid of the synthesizestein, the ribosome shifts the mRNA
three bases to the next codon. A second tRNA complexed vgitbpecific amino acid hybridizes to the
second codon via its anticodon, and the ribosome bondsdhing amino acid to the first. At this point
the ribosome releases the first tRNA, moves on to the thirdrcoand repeats. (See [14, Figure 4-5].) This
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process continues until the ribosome detects one of the DAéNs, at which point it releases the mRNA
and the completed protein.

2.3. Prokaryotic Gene Structure

Recall from Section 1.6 that a gene is a relatively short eege of DNA that encodes a protein or RNA
molecule. In this section we restrict our attention to preteding genes in prokaryotes.

The portion of the gene containing the codons that ultingatéll be translated into the protein is called
the coding region or open reading frame The transcription start site (see Section 1.6.1) is soraéwh
upstreamfrom the start codon, where “upstream” means “in Shéirection”. Similarly, the transcription
stop site is somewhatownstreanfrom the stop codon, where “downstream” means “in 3hdirection”.
That is, the mRNA transcript contains sequence at both s é#mat has been transcribed, but will not be
translated. The sequence between the transcription s&aarsl the start codon is called theuntranslated
region The sequence between the stop codon and the transcrippiprsite is called thed’ untranslated
region

Upstream from the transcription start site is a relativélprs sequence of DNA called thregulatory
region It containspromoters which are specific DNA sites where certain regulatory pnatdind and
regulate expression of the gene. These proteins are dadledcription factors since they regulate the
transcription process. A common way in which transcriptiactors regulate expression is to bind to the
DNA at a promoter and from there affect the ability (eithesifigely or negatively) of RNA polymerase
to perform its task of transcription. (There is also the agauis possibility ofranslational regulation in
which regulatory factors bind to the mRNA and affect the igbibf the ribosome to perform its task of
translation.)

2.4. Prokaryotic Genome Organization

Thegenomeof an organism is the entire complement of DNA in any of itdscdh prokaryotes, the genome
typically consists of a single chromosome of double-steeh®NA, and it is often circularized (its8' and

3’ ends attached) as opposed to being linear. A typical prokiargenome size would be in the millions of
base pairs.

Typically 90% of the prokaryotic genome consists of codiagions. For instance, tHe. coligenome
has size about 5 Mb and approximately 4300 coding regiort$, ebaverage length around 1000 bp. The
genes are relatively densely and uniformly distributedtighout the genome.

2.5. Eukaryotic Gene Structure

An important difference between prokaryotic and eukacygénes is that the latter may contain “introns”. In
more detail, the transcribed sequence of a general eukagge is an alternation between DNA sequences
calledexonsandintrons where the introns are sequences that ultimately will bieeglout of the mRNA
before it leaves the nucleus. Transcription in the nuclaoslyces an RNA molecule callggte-mRNA
produced as described in Section 1.6.1, that contains betbxons and introns. The introns are spliced out
of the pre-mRNA by structures callegpliceosometo produce thenature mRNAhat will be transported
out of the nucleus for translation. A eukaryotic gene mayt@ionnumerous introns, and each intron may
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be many kilobases in size. One fact that is relevant to oar @mputational studies is that the presence of
introns makes it much more difficult to identify the locatsoaf genes computationally, given the genome
sequence.

Another important difference between prokaryotic and érgrukaryotic genes is that, in the latter, there
can be multiple regulatory regions that can be quite far ftbencoding region, can be either upstream or
downstream from it, and can even be in the introns.

2.6. Eukaryotic Genome Organization

Unlike prokaryotic genomes, many eukaryotic genomes sbnsmultiple linear chromosomes as opposed
to single circular chromosomes. Depending on how simpleth@ryote is, very little of the genome may

be coding sequence. In humans, less than 3% of the genoméegebleto be coding sequence, and the
genes are distributed quite nonuniformly over the genome.

2.7. Goals and Status of Genome Projects

Molecular biology has the following two broad goals:

1. Identify all key molecules of a given organism, particlylahe proteins, since they are responsible for
the chemical reactions of the cells.

2. Identify all key interactions among molecules.

Traditionally, molecular biologists have tackled these g@als simultaneously in selected small systems
within selected model organisms. The genome projects tdifgy by focusing primarily on the first goal,
but for all the systems of a given model organism. They do thisdyuencinghe genome, which means
determining the entire DNA sequence of the organism. Theg fferform a computational analysis (to be
discussed in later lectures) on the genome sequence taydenost of) the genes. Having done this, (most
of) the proteins of the organism will have been identified.

With recent advances in sequencing technology, the genoojects have progressed very rapidly over
the past five years. The first free-living organism to be categty sequenced was the bacteritinin-
fluenzag[15], with a genome of size 1.8 Mb. Since that time, 18 baale6 archaeal, and 2 eukary-
otic genomes have been sequenced. Presently there ariapgredy an additional 95 prokaryotic and
27 eukaryotic genomes in the process of being sequencede, {@eexample, the Genomes On Line
Database ahttp://geta.life.uiuc.edu/ "nikos/genomes.html for the status of ongoing
genome projects.)

The human genome is expected to be sequenced within theweyears or so. Although every human
is a unique individual, the genome sequences of any two hsigi@about 99.9% identical, so that it makes
some sense to talk about sequendimghuman genome, which will really be an amalgamation of a small
collection of individuals. Once that is done, one of the iesting challenges is to identify the common
polymorphismswhich are genomic variations that occur in a nonnegligitdetion of the population.
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2.8. Sequence Analysis

Once a genome is completely sequenced, what sorts of asayse@erformed on it? Some of the goals of
sequence analysare the following:

1. Identify the genes.

2. Determine the function of each gene. One way to hypotldsie function is to find another gene
(possibly from another organism) whose function is knowd &m which the new gene has high
sequence similarity. This assumes that sequence similarfilies functional similarity, which may
or may not be true.

3. Identify the proteins involved in the regulation of gexpression.

4. ldentify sequence repeats.

5. Identify other functional regions, for exampegins of replication(sites at which DNA polymerase
binds and begins replication; see Section 1pgsgudogeneésequences that look like genes but are
not expressed), sequences responsible for the compactiga@iDNA, and sequences responsible for
nuclear anchoring of the DNA.

Many of these tasks are computational in nature. Given tbedlible rate at which sequence data is
being produced, the integration of computer science, madkies, and biology will be integral to analyzing
those sequences.



Lecture 3

Introduction to Sequence Similarity

January 11, 2000
Notes: Martin Tompa

3.1. Sequence Similarity

The next few lectures will deal with the topic of “sequenamikarity”, where the sequences under consid-
eration might be DNA, RNA, or amino acid sequences. Thiskislyi the most frequently performed task
in computational biology. Its usefulness is predicatedhenassumption that a high degree of similarity be-
tween two sequences often implies similar function andimrd-dimensional structure. Most of the content
of these lectures on sequence similarity is from Gusfield. [20

Why are we starting here, rather than with a discussion of hiolegists determine the sequence in the
first place? The reason is that the problems and algorithresaience similarity are reasonably simple to
state. This makes it a good context in which to ensure thatgeeeaon the language we will be using to
discuss computing and algorithms.

To begin that process, the woathorithm simply means an unambiguously specified method for solving
a problem. In this context, an algorithm may be thought of esmaputer program, although algorithms are
usually expressed in a somewhat more abstract languageghigorogramming languages.

3.2. Biological Motivation for Studying Sequence Similariy

We start with two motivating applications in which sequensteilarity is utilized.

3.2.1. Hypothesizing the Function of a New Sequence

When a new genome is sequenced, the usual first analysismpedas to identify the genes and hypothesize

their functions. Hypothesizing their functions is mosteoftdone using sequence similarity algorithms, as
follows. One first translates the coding regions into theiresponding amino acid sequences, using the
genetic code of Table 1.1. One then searches for similaresegs in a protein database that contains
sequenced proteins (from related organisms) and theitifursc Close matches allow one to make strong
conjectures about the function of each matched gene. Initasway, sequence similarity can be used to

predict the three-dimensional structure of a newly sege@mrotein, given a database of known protein

sequences and their structures.

13
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3.2.2. Researching the Effects of Multiple Sclerosis

Multiple sclerosis is an autoimmune disease in which the umensystem attacks nerve cells in the patient.
More specifically, the immune system’s T-cells, which ndiynigentify foreign bodies for immune system
attacks, mistakenly identify proteins in the nerves’ myeslheaths as foreign.

It was conjectured that the myelin sheath proteins idedtifig the T-cells were similar to viral and/or
bacterial sheath proteins from an earlier infection. Ineot test this hypothesis, the following steps were
carried out:

e the myelin sheath proteins were sequenced,
e a protein database was searched for similar bacterial aaldseéquences, and

e laboratory tests were performed to determine if the T-cdtlscked these same proteins.

The result was the identification of certain bacterial amdl\proteins that were confused with the myelin
sheath proteins.

3.3. The String Alignment Problem

The first task is to make the problem of sequence similaritgerpoecise. Astringis a sequence of characters

from some alphabet. Given two stringsbcdb andcadbd , how should we measure how similar they are?
Similarity is witnessed by finding a good “alignment” betwde/o strings. Here is one possible alignment
of these two strings.

b

ac¢c - - b c d
- cadb - d -

The special character" represents the insertion ofspace representing a deletion from its sequence (or,
equivalently, an insertion in the other sequence). We caluate the goodness of such an alignment using
a scoring function. For example, if an exact match betweendwaracters scores2, and every mismatch

or deletion (space) scoresl, then the alignment above has score

3.(2)+5-(—1) = L.

This example shows only one possible alignment for the gbtengs. For any pair of strings, there are
many possible alignments.

The following definitions generalize this example.

Definition 3.1: If z andy are each a single character or space, th@ny) denotes thecoreof aligning
x andy. o is called thescoring function

In the example above, for any two distinct characem®ndc, o(c,c) = +2, ando(c,a) = o(c,—) =
o(—,c) = —1. If one were designing a scoring function for comparing amacid sequences, one would
certainly want to incorporate into it the physico-chemisahilarities and differences among the amino
acids, such as those described in Section 1.1.1.
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Definition 3.2: If S is a string, ther}S| denotes the length &f andS[:] denotes théth character of5
(where the first character &[1] rather than, says|0]).

For example, ifS = acbcdb , then|S| = 6 andS[3] = b.

Definition 3.3: Let S andT be strings. AralignmentA mapsS andT into stringsS’ and7” that may
contain space characters, where

1. |S'|=|T"|, and

2. the removal of spaces froff andT” (without changing the order of the remaining characteim)de
S andT, respectively.

Thevalueof the alignmentd is

wherel = |S'| = |T"|.

In the example alignment above, $f = acbcdb andT = cadbd, thenS’ = ac--bcdb and7’ =
-cadb-d-

Definition 3.4: An optimal alignmenof S andT is one that has the maximum possible value for these
two strings.

Finding an optimal alignment of andT' is the way in which we will measure their similarity. For
the two strings given in the example above, is the alignmbatva optimal? We will next present some
algorithms for computing optimal alignments, which willal us to answer that question.

3.4. An Obvious Algorithm for Optimal Alignment

The most obvious algorithm is to try all possible alignmeatsd output any alignment with maximum value.
We will examine this approach in more detail.

A subsequencef a stringS means a sequence of character$ diat need not be consecutivesh but
do retain their order as given #. For instanceacd is a subsequence atbcdb .

Suppose we are given stringsand7’, and assume for the moment thét = |7'| = n. Also, consider
an arbitrary scoring functiom (z,y), subject to the reasonable restriction thét-, —) < 0. With this
restriction, there is never a reason to align a pair of spaces

The obvious algorithm for optimal alignment is given in Figu.1. This algorithm works correctly, but
is it a good algorithm? If you tried running this algorithm arpair of strings each of length 20 (which is
ridiculously modest by biology standards), you would finchiich too slow to be practical. The program
would run for an hour on such inputs, even if the computer eafopm a billion basic operations per second.
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forall 7,0 <i<mn,do
for all subsequenced of S with |A| =i do
for all subsequenceB of T" with |B| = i do
Form an alignment that matchésk| with Blk], 1 < k <,
and matches all other characters with spaces;
Determine the value of this alignment;
Retain the alignment with maximum value;
end;
end;
end,;

Figure 3.1: Enumerating all Alignments to Find the Optimal

The running time analysis of this algorithm proceeds a®¥ail A string of lengthn has(?!) subse-
quences of length. 1 Thus, there areé’z.‘)2 pairs (A, B) of subsequences each of lengthConsider one
such pair. Since there arecharacters irf, only 7 of which are matched with charactersiinthere will be
n — ¢ characters ir§ unmatched to charactersn Thus, the alignment has lengtht- (n — i) = 2n — 3.
We must look up and add the score of each pair in the alignmserthe total number of basic operations is

at least
" (n 2 " (n 2 2n
on — i) > = > 22" forn > 3.
3(0) enozax () =(%) "

i=0
(The equality has a pretty combinatorial explanation teatarth discovering. The last inequality follows

from Stirling’s approximation [39].) Thus, fat = 20, this algorithm requires more thad” = 240 basic
operations.

3.5. Asymptotic Analysis of Algorithms

In Section 4.1 we will see a cleverer algorithm that runsrimetproportional ta?. For largen, it is clear that
22" is greater tham?. As a demonstration that an algorithm that requires timpgntional ton? is far more
desirable than one that requires tif#, consider at what value of these two functions cross. Suppose
the actual running time of the cleverer algorithmi @72 + 100n + 100. The value oR?" already exceeds
this quadratic ab = 7. Suppose instead that the running time @s000n? + 100n + 100. Despite the
fact that we increased the constant of proportionality bgcidr of 10022" already exceeds this quadratic
atn = 10. This demonstration should make it clear that the rate oivtir@f the high order term is the
most important determinant of how long an algorithm runsargé inputs, independent of the constant of
proportionality and any lower order terms.

To formalize this notion, we introduce “big O” notation.

Definition 3.5: Let f(n) andg(n) be functions. Therf(n) = O(g(n)) if and only if there is a constant
¢ such that, for alk sufficiently large,|f(n)| < cg(n).

The notation(:?) denotes the number of combinationsroflistinguishable objects takenat a time. See any textbook on
combinatorial mathematics, for instance Roberts [39].
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For example]100n2 + 100m +100 and10, 000n2 + 100m + 100 are bothO(n?). For the formere = 101
works, and for the latter; = 10,001 works.



Lecture 4
Alignment by Dynamic Programming

January 13, 2000
Notes: Martin Tompa

4.1. Computing an Optimal Alignment by Dynamic Programming

Given stringsS andT', with |S| = n and|T’| = m, our goal is to compute an optimal alignment$and
T. Toward this goal, defin& (7, j) as the value of an optimal alignment of the strirgjd] - - - S[¢] and
Tj---Tf].

The value of an optimal alignment 6fandT’ is thenV (n, m). The crux of dynamic programming is to
solve the more general problems of computatigvaluesV (i, j) with 0 < i < n and0 < j < m, in order
of increasing andj. Each of these will be relatively simple to compute, givemvhlues already computed
for smaller; and/orj, using a “recurrence relation”. To start the process, we etasis” fori = 0 and/or
j=0.

BASIs:

V(0,00 = 0
V(i,0) = V(i-1,0)+0(S[i],—), fori >0
V(07j) = V(07j - 1) + U(_7T[j])7 forj >0

The basis foiV/ (z,0) says that ifi characters of are to be aligned with O characters®f then they must
all be matched with spaces. The basis¥db, ;) is analogous.

RECURRENCE: Fori > 0 andj > 0,

V(7’7]) = ma‘X( V(Z - 17] - 1) + U(S[ZLT[J]) )
V(i—1,7) + oS, -)
V(i,j—1) + o(=ThH) )
This formula can be understood by considering an optimghalient of the first characters front and

the firsty characters fromI". In particular, consider the last aligned pair of charactersuch an alignment.
This last pair must be one of the following:

1. (S[i], T'[]), in which case the remaining alignment excluding this paishibe an optimal alignment
of S[1]---S[¢ — 1] andT'[1]---T[j — 1] (i.e., must have valu¥ (: — 1,j — 1)), or

2. (S[i], —), in which case the remaining alignment excluding this paisthave valud’ (i — 1, j), or

18
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3. (—,T[j]), in which case the remaining alignment excluding this paistmust have valug (i, j —1).

The optimal alignment chooses whichever among these tlussiilities has the greatest value.

4.1.1. Example

In aligning acbcdb andcadbd , the dynamic programming algorithm fills in the followinglwas for

V (4, 7) from top to bottom and left to right, simply applying the [saand recurrence formulas. (As in the
example of Section 3.3, assume that matches seprand mismatches and spaces scete) For instance,
in the table below, the entry in row 4 and column 1 is obtaineddmputingmax(—3+2,0—-1,-4—1) =
-1.

1 cl a d b| d
0 0-1]-2|-3|-4]|-5
1 a|-1|-1 1 0O-1|-2
2 c| -2 1 0 0|-1|-2
3 b|-3| 0 0f-1 2 1
4 ¢|—-4|-1]-1|-1 1 1
5 d|—-5|-2|-2 1 0| 3
6 b|—-6|-3|-3] 0 3 2

The value of the optimal alignment¥5(n, m), and so can be read from the entry in the last row and last
column. Thus, there is an alignmentatbcdb andcadbd that has value 2, so the alignment proposed
in Section 3.3 with value 1 is not optimal. But how can one deire the optimal alignment itself, and not
just its value?

4.1.2. Recovering the Alignments

The solution is to retrace the dynamic programming stepk fram the (n, m) entry, determining which
preceding entries were responsible for the current oneinstance, in the table below, the (4,2) entry could
have followed from either the (3,1) or (3,2) entry; this imdeed by the two arrows pointing to those entries.
We can then follow any of these paths frgm m) to (0, 0), tracing out an optimal alignment:

¥ 0 1 2 3 4 5
) c a d b d
0 0|« —1 -2 =3 -4 -5
1 a|T-1 -1 1 0| -1 -2
2 ¢ 210 1 0[\0] -1 -2
3 b =37 O] O —-1|1\.2 1
4 ¢ —4 -1|1NJ-1] -1 11 1
5 d -5 -2 -2\ 1 01 .3
6 b —6 -3 -3 0] \3| .12

The optimal alignments corresponding to these three paths a
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b

a ¢c b c d b - acbcdb—and—acbcd
- ¢ - adb d|]"] - ¢ a d b d |’ c adb - d

Each of these has three matches, one mismatch, and thress sfmaca value 08 - (2) +4 - (—1) = 2, the
optimal alignment value.

4.1.3. Time Analysis

Theorem 4.1: The dynamic programming algorithm computes an optimahatignt in timeO(nm,).

Proof: This algorithm requires afw 4+ 1) x (m + 1) table to be completed. Any particular entry is
computed with a maximum of 6 table lookups, 3 additions, atfttee-way maximum, that is, in time a
constant. Thus, the complexity of the algorithm is at mg@st+ 1)(m + 1) = O(nm). Reconstructing a
single alignment can then be done in ti@én + m). O

4.2. Searching for Local Similarity

Next we will discuss some variants of the dynamic prograngnapproach to string alignment. We do
this to demonstrate the versatility of the approach, anduimee the variants themselves arise in biological
applications.

In the variant called “local similarity”, we are searching fegions of similarity between two strings,
within contexts that may be dissimilar. An example in whitlistarises is if we have two long DNA
sequences that each contain a given gene, or perhaps dlelsédd genes. Certainly the “global” alignment
problem of Definitions 3.3 and 3.4 will not in general identifiese genes.

We can formulate this problem as tleeal alignment problemGiven two stringsS andT’, with |S| = n
and|T'| = m, find substrings (i.e., contiguous subsequences)f S and B of 7' such that the optimal
(global) alignment ofd and B has the maximum value over all such substricgand B. In other words,
the optimal alignment ofi and B must have at least as great a value as the optimal alignmemyafther
substringsA’ of S andB’ of T'.

4.2.1. An Obvious Local Alignment Algorithm

The definition above immediately suggests an algorithmdoall alignment:

for all substringsA of S do
for all substringsB of T' do
Find an optimal alignment ol and B by dynamic programming;
RetainA and B with maximum alignment value, and their alignment;
end;
end,;
Output the retainedt, B, and alignment;
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There are(”jl) choices of4, and (mjl) choices ofB (excluding the length 0 substrings as choices).
Using Theorem 4.1, it is not difficult to show that the timeenlby this algorithm i€ (n3m?). We will see
in Section 5.1, however, that it is possible to compute thérap local alignment in time)(nm), that is,
the same time used for the optimal global alignment.

4.2.2. Set-Up for Local Alignment by Dynamic Programming

Definition 4.2: Theempty string\ is the string with|A| = 0.

Definition 4.3: U is aprefixof S if and only if U = S[1]--- S[k] or U = A, for somel < k < n,
wheren = |S].

Definition 4.4: U is asuffixof S ifand only if U = S[k]--- S[r] orU = A, for somel < k < n, where
n = |S].

For example, lefS = abcxdex . The prefixes ofS includeab. The suffixes ofS includexdex . The
empty string) is both a prefix and a suffix .

Definition 4.5: Let.S andT be strings with.S| = n and|T'| = m. For0 < i <n and0 < j < m, let
v(1, 7) be the maximum value of an optimal (global) alignmentwaind3 over all suffixesx of S[1]- - - S[i]
and all suffixes? of T'[1] - - - T'[5].

For example, suppose = abcxdex andT = xxxcde . Score a match as2 and a mismatch or space
as—1. Thenuv(5,5) = 3, with « = cxd , # = cd, and alignment

c X d
c - d
+2 -1 +2

The dynamic programming algorithm for optimal local aligembis similar to the dynamic programming
algorithm for optimal global alignment given in Section 4ltlproceeds by filling in a table with the values
of v(i, 7), with 4, j increasing. The value of each entry is calculated accordirggnew basis and recurrence
for v(7, 7), given in Section 5.1. Unlike the global alignment algamthhowever, the value of the optimal
local alignment can be any entry, whichever contains theimamx of all (n + 1)(m + 1) values ofv(, j).
The reason for this is that eaeffi, j) entry represents an optimal pdix, 5) of suffixes of a given pair
(S[1]--- S[&], T[1]---T[j]) of prefixes. Since a suffix of a prefix is just a substring, we fireloptimal pair
of substrings by maximizing(:, ) over all possible pair§i, 7).
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Local Alignment, and Gap Penalties

January 18, 2000
Notes: Martin Tompa

5.1. Computing an Optimal Local Alignment by Dynamic Programming
Basis : For simplicity, we will make the reasonable assumptiort tha, —) < 0 ando(—,z) < 0.
Then
v(¢,0) = 0, and
v(0,7) = 0,

since the optimal suffix to align with a string of length 0 ig tampty suffix.

ReEcURRENCE: for i > 0 andj > 0,

v(i, ) = max( 0 ,

v(i@i—1,7-1) + o(S[E,T])
v(i —1,7) + o(S[i],—) ,
v(i,j —1) + o(=Th]) )

The formula looks very similar to the recurrence for the mati global alignment in Section 4.1. Of
course, the meaning is somewhat different and we have atiadditerm in themax function. The recur-
rence is explained as follows. Consider an optimal aligrtraeaf a suffix« of S[1] - - - S[i] and a suffixs
of T'[1] - - - T'[4]. There are four possible cases:

1. « = A andg = A, in which case the alignment has value 0.

2. a # dandp # A, and the last matched pair #is (S[¢], T'[j]), in which case the remainder dfhas
valuev(i — 1,7 — 1).

3. @ # A, and the last matched pair i4 is (S[z], —), in which case the remainder of has value
U(Z - 17])

4. 5 # A, and the last matched pair i is (—,7'[j]), in which case the remainder of has value
v(i,7 —1).

The optimal alignment chooses whichever of these casesrbategt value.

22



LECTURES. LOCAL ALIGNMENT, AND GAP PENALTIES 23

5.1.1. Example

For example, le5 = abcxdex andT = xxxcde , and suppose a match score®, and a mismatch or a
space scores 1. The dynamic programming algorithm fills in the tablev®f, j) values from top to bottom
and left to right, as follows:

jl10j1{2|3/4|5|6
1 zlx|lx|c|dle
0 0/0[]010]0]0|O0
1 a{0/0]0/0]0]0{0
2 b|0[0]0]0]0]0]O
3 ¢|0(0]0]0]2]1]0
4 0222|1110
5 d(0of|1|1|1]1|3|2
6 e|0[0]0]0]0]|2]|5
7T z|0[(2122]|1|1}4

The value of the optimal local alignment$6,6) = 5. We can reconstruct optimal alignments as in
Section 4.1.2, by retracing from any maximum entry to any zgtry:

710(11]2 3 4 5 6
) |z T c d e
0 0100 0 0 0 0
1 a|0]0]0 0 0 0 0
2 b]0[0]0 0 0 0 0
3 ¢|0[0]0 0 .2 1 0
4 z|012]2|\N2] _J1 1 0
5 d|0]|1]1 1 113 2
6 e/0[0]0 0 0 AN
7T x|0]|2]2 2 1 1 4

The optimal local alignments corresponding to these paths a

X

d e
c d e

c d e X
and
c d e X

Both alignments have three matches and one space, for aofadug2) + 1 - (—1) = 5. You can also see
from this diagram how the value was derived in the examplievidghg Definition 4.5, which said that for
the same string§ and7’, v(5,5) = 3.

5.1.2. Time Analysis

Theorem 5.1: The dynamic programming algorithm computes an optimal llatignment in time
O(nm).

Proof: Computing the value for each of tlie + 1)(m + 1) entries requires at most 6 table lookups, 3
additions, and 1 max calculation. Reconstructing a singement can then be done in tini&n + m). O
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5.2. Space Analysis

The space required for either the global or local optimgratient algorithm is also quadratic in the length
of the strings being compared. This could be prohibitive domparing long DNA sequences. There is
a modification of the dynamic programming algorithm that potes an optimal alignment i@ (n + m)
space and still runs i®(nm) time. If one were interested only in the value of an optimarahent, this
could be done simply by retaining only two consecutive rodshe dynamic programming table at any
time. Reconstructing an alignment is somewhat more comuglit; but can be done (n + m) space and
O(nm) time with a divide and conquer approach (Hirschberg [24]elMyand Miller [36]).

5.3. Optimal Alignment with Gaps

Definition 5.2: A gapin an alignment ofS andT is a maximal substring of eithe¥’ or 7" consisting
only of spaces. (Recall from Definition 3.3 th&tand7” areS andT" with spaces inserted as dictated by
the alignment.)

5.3.1. Motivations

In certain applications, we may not want to have a penaltpgntipnal to the length of a gap.

1. Mutations causing insertion or deletion of large suhggimay be considered a single evolutionary
event, and may be nearly as likely as insertion or deleticmihgle residue.

2. cDNA matching: Biologists are very interested in leagwrhich genes are expressed in which types
of specialized cells, and where those genes are located chtomosomal DNA. Recall from Section
2.5 that eukaryotic genes often consist of alternating xmml introns. The mature mRNA that leaves
the nucleus after transcription has the introns spliced twstudy gene expression within specialized
cells, one procedure is as follows:

(a) Capture the mature mRNA as it leaves the nucleus.

(b) Makecomplementary DNfabbreviatedDNA) from the mRNA using an enzyme callegl/erse
transcriptase The cDNA is thus a concatenation of the gene’s exons.

(c) Sequence the cDNA.

(d) Match the sequenced cDNA against sequenced chromo&i#fato find the region of chromo-
somal DNA from which the cDNA derives. In this process we dowant to penalize heavily
for the introns, which will match gaps in the cDNA.

In general, the gap penalty may be some arbitrary fungtign of the gap lengtly. The best choice of
this function, like the best choice of a scoring functionpeleds on the application. In the cDNA matching
application, we would like the penalty to reflect what is kmoabout the common lengths of introns. In
the next section we will see ai(nm) time algorithm for the case wheyig) is an arbitrary linear affine
function, and this is adequate for many applications. Theegrograms that use piecewise linear functions
as gap penalties, and these may be more suitable in the cDhimgapplication. There a@(nm log m)
time algorithms for the case whetq) is concave downward (Galil and Giancarlo [17], Miller and &y
[35]). We could even implement an arbitrary function as a papalty function, but the known algorithm
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for this requires cubic time (Needleman and Wunsch [37§l, such an algorithm is probably not useful in
practice.

5.3.2. Affine Gap Model

We will study a model in which the penalty for a gap has twogaatpenalty for initiating a gap, and another
penalty that depends linearly on the length of a gap. Thahésgap penalty i$V, + ¢W,; whereW, and
W are both constant$y, > 0, W, > 0, andg > 1 is the length of the gap. (Note that the model with a
constant penalty regardless of gap length is the specialwils W, = 0.)

For simplicity, assume we are modifying the global aligntredgorithm of Section 4.1 to accommodate
an affine gap penalty. Similar ideas would work for local mfigent as well.

We will assumer(z, —) = o(—, ) = 0, since the spaces will be penalized as part of the gap. Olir goa

then is to maximize ,

>~ o(S'lil, T'[i]) — W, (# gaps — W, (# space}
=1

whereS’ and7” areS andT with spaces inserted, anf’| = |1"| = I.

5.3.3. Dynamic Programming Algorithm

Once again, the algorithm proceeds by alignffd] - - - S[¢] with T[1] - - - T'[j]. For these prefixes &f and
T, define the following variables:

1. V(4,7) is the value of an optimal alignment 8f1] - - - S[:] andT'[1] - - - T'[5].

2. G(1,7) is the value of an optimal alignment §f1] - - - S[¢] andT’[1] - - - T'[j] whose last pair matches
STi] with T'[5].

3. F(i,4) is the value of an optimal alignment &f1] - - - S[i] andT’[1] - - - T'[j] whose last pair matches
S|i] with a space.

4. E(i,j) is the value of an optimal alignment 8f1] - - - S[i] andT’[1] - - - T'[j] whose last pair matches
a space with'[7].

BAsiIs:
V(0,0) = 0,
V(i,0) = —Wy—1iW,, fori >0,
V(0,5) = —-Wy—jWs, forj >0,
E(i,0) = —oo, fori >0,
F(0,j) = —oo, forj >0.

RECURRENCE: Forz > 0 andj > 0,

V(Zaj) = maX(G(iaj)a F(iaj)a E(Zaj))a
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G(i,j) = V(@—1,7—1)+0(S[] T[],
F(Z,j) = max(F(i—l,j)—Ws, V(i_laj)_Wg_Ws)a
E(i,7) = max(E(i,j —1) =W, V(i,j —1) = Wy — Wy).

The equation fot¥'(7, j) (and analogously¥ (i, j)) can be understood as taking the maximum of two
cases: adding another space to an existing gap, and startigv gap. To understand why starting a
new gap can us¥ (i — 1, 7), which includes the possibility of an alignment ending inego gconsider that
V(i—1,7) =max(G(i—1,75), F(i—1,j), E(:—1,5)), sothatF'(i — 1, j) — W, — Wy is always dominated
by F(i — 1,5) — Wy, so will never be chosen by the max.

5.3.4. Time Analysis

Theorem 5.3: An optimal global alignment with affine gap penalty can be pated in timeO(nm).

Proof: The algorithm proceeds as those we have studied beforen ttisicase there are three or four
matrices to fill in simultaneously, depending on whether gtare the values of (i, j) or calculate them
from the other three matrices when needed. O

5.4. Bibliographic Notes on Alignments

Bellman [6] began the systematic study of dynamic programymilrhe original paper on global alignment
is that of Needleman and Wunsch [37]. Smith and Watermanifdfgjduced the local alignment problem,
and theO(nm) algorithm to solve it. A number of authors have studied thestjon of how to construct a
good scoring function for sequence comparison, includiagiK and Altschul [27] and Altschul [3].



Lecture 6

Multiple Sequence Alignment

January 20, 2000
Notes: Martin Tompa

While previous lectures discussed the problem of detengittie similarity between two strings, this
lecture turns to the problem of determining the similaritycang multiple strings.

6.1. Biological Motivation for Multiple Sequence Alignmert

6.1.1. Representing Protein Families

An important motivation for studying the similarity amongihiple strings is the fact that protein databases
are often categorized by protein families.pfotein familyis a collection of proteins with similar structure
(i.e., three-dimensional shape), similar function, orikimevolutionary history. When we have a newly
sequenced protein, we would like to know to which family itdmgs, as this provides hypotheses about its
structure, function, or evolutionary history. (See Sato2.1.) The new protein might not be particularly
similar to a single protein in the database, yet might stifire considerable similarity with the collective
members of a family of proteins. One approach is to consauepresentation for each protein family, for
example a good multiple sequence alignment of all its membEnen, when we have a newly sequenced
protein and want to find its family, we only have to compare ittte representation of each family.

Common structure, function, or origin of a molecule may dodyweakly reflected in its sequence. For
example, the three-dimensional structure of a proteiniig g#ficult to infer from its sequence, and yet is
very important to predict its function. Multiple sequenaamparisons may help highlight weak sequence
similarity, and shed light on structure, function, or onigi

6.1.2. Repetitive Sequences in DNA

In the DNA domain, a motivation for multiple sequence aligmarises in the study ofpetitive sequences
These are sequences of DNA, often without clearly undedsbialogical function, that are repeated many
times throughout the genome. The repetitions are genaratlgxact, but differ from each other in a small
number of insertions, deletions, and substitutions. Asxample, theAlu repeat is approximately 300 bp
long, and appears over 600,000 times in the human genoms. bilieved that as much as 60% of the
human genome may be attributable to repetitive sequendbswiiknown biological function. (See Jurka
and Batzer [26].)

In order to highlight the similarities and differences amdhe instances of such a repeat family, one
would like to display a good multiple sequence alignmento€tonstituent sequences.

27
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6.2. Formulation of the Multiple String Alignment Problem

We now define the problem more precisely.

Definition 6.1: Given strings Sy, Ss,...,Sr a multiple (global) alignmentmaps them to strings
51,55, ..., S} that may contain spaces, where
1|81 =153l =--- =1Sk], and

2. the removal of spaces frofff leavesS;, for 1 <i < k.

The question that arises next is how to assign a value to sualigmment. In a pairwise alignment, we
simply summed the similarity score of corresponding charac In the case of multiple string alignment,
there are various scoring methods, and controversy ardunduestion of which is best. We focus here on
a scoring method called the “sum-of-pairs” score. Othehas are explored in the homework.

Until now, we have been using a scoring function that assiggiser values to better alignments and
lower values to worse alignments, and we have been tryingdoafignments with maximum value. For the
remainder of this lecture, we will switch to a functiéfi, y) that measures thgistancebetween characters
z andy. That s, it will assign higher values the more distant twings are. In the case of two strings, we

will thus be trying tominimize
!

> 0(S[i, T'a)),
i=1
wherel = |S'| = |T"|.

Definition 6.2: The sum-of-pairs (SP) valutor a multiple global alignment of k strings is the sum
of the values of al(’;) pairwise alignments induced by.

In this definition we assume that the scoring function is swtrim. For simplicity, we will not discuss
the issue of a separate gap penalty.

Example 6.3: Consider the following alignment:

a C -
c

[« N AN}
o 0 o
[N el ey
o Q!

a - b
Using the distance functiof(z, z) = 0, andé(z,y) = 1 for x # y, this alignment has a sum-of-pairs
value3 + 5 + 4 = 12.

Definition 6.4: An optimal SP (global) alignmerdf stringsS;, Ss, . . ., Sk is an alignment that has the
minimum possible sum-of-pairs value for thésstrings.
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6.3. Computing an Optimal Multiple Alignment by Dynamic Programming

Givenk strings each of length, there is a generalization of the dynamic programming &lgorof Section
4.1 that finds an optimal SP alignment. Instead @fdimensional table, it fills in &-dimensional table.
This table has dimensions

m+1)x(n+1)---x(n+1),

~ v
~~

k

that is,(n + 1)* entries. Each entry depends 2 1 adjacent entries, corresponding to the possibilities for
the last match in an optimal alignment: any of fesubsets of thé strings could participate in that match,
except for the empty subset. The details of the algorithelfiend the recurrence are left as exercises for
the reader.

Because each of th{e + 1)* entries can be computed in time proportionatfothe running time of the
algorithm isO((2n)*). If n = 350 (as is typical for the length of proteins), it would be praationly for
very small values ok, perhaps 3 or 4. However, typical protein families have hedsl of members, so this
algorithm is of no use in the motivational problem posed intBa 6.1. We would like an algorithm that
works fork in the hundreds too, which would be possible only if the ragrtime were polynomial in both
andk. (In particular,k should not appear in the exponent as it does in the expreggigh.) Unfortunately,
we are very unlikely to find such an algorithm, which is a coussce of the following theorem:

Theorem 6.5 (Wang and Jiang [50]): The optimal SP alignment problemNd>-complete.

WhatNP-completeness means and what its consequences are wildaessied in the following section.

6.4. NP-completeness

In this section we give a brief introduction téP-completeness, and how problems can be proved to be
NP-complete.

Definition 6.6: A problem has golynomial time solutionf and only if there is some algorithm that
solves it in timeO(n®), wherec is a constant and is the size of the input.

Many familiar computational problems have polynomial tisodutions:

1. two-string optimal alignment problen®2(n?) (Theorem 4.1) ,
2. sorting:O(n logn) [12],
3. two-string alignment with arbitrary gap penalty functi®)(n?) (Section 5.3.1),

4. 100-string optimal alignment probler®(n'%?) (Section 6.3).

The last entry illustrates that having a polynomial timeusoh does not mean that the algorithm is
practical. In most cases the converse, though, is true:gamitdm whose running time is not polynomial is
likely to be impractical for all but the smallest size inputs

NP-completgroblems are equivalent in the sense that if any one of thema palynomial time solution,
then all of them do. One of the major open questions in com@maience is whether there is a polynomial
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time solution for any of th&lP-complete problems. Almost all experts conjecture strprighat the answer
to this question is “no”. The bulk of the evidence supportinig conjecture, however, is only the failure to
find such a polynomial time solution in thirty years.

In 1971, Cook defined the notion ®fP-completeness and showed tR€-completeness of a small
collection of problems, most of them from the domain of math#ical logic [11]. Roughly speaking, he
definedNP-complete problems to be problems that have the propertymbaan verify in polynomial time
whether a supplied solution is correct. For instance, ifgiolnot have ta&aomputean optimal SP alignment,
but simply had toverify that a given alignment had SP value at mosh given integer, it would be easy to
write a polynomial time algorithm to do so.

Shortly after Cook’s work, Karp recognized the wide apgitity of the concept oNP-completeness.
He showed that a diverse host of problems are @dlefcomplete [28]. Since then, many hundreds of
natural problems from many areas of computer science arttematics such as graph theory, combinatorial
optimization, scheduling, and symbolic computation haxerbprovemNP-complete; see Garey and Johnson
[18] for detalils.

Proving a problent) to beNP-complete proceeds in the following way. Choose a kndi#complete
problem A. Show thatA has a polynomial time algorithm if it is allowed to invoke alymmial time
subroutine for), and vice versa.

There are many computational biology problems thatNPecomplete, yet in practice we still need to
solve them somehow. There are different ways to deal withRscomplete problem:

1. We might give up on the possibility of solving the problemamything but small inputs, by using an
exhaustive (nonpolynomial time) search algorithm. We canedimes use dynamic programming or
branch-and-bound techniques to cut down the running tinseich a brute force exhaustive search.

2. We might give up guaranteed efficiency by settling for ayoathm that is sufficiently efficient on
inputs that arise in practice, but is nonpolynomial on somestvcase inputs that (hopefully) do not
arise in practice. There may be an algorithm that runs inrpmtyial time on average inputs, being
careful to define the input distribution so that the pratticauts are highly probable.

3. We might give up guaranteed optimality of solution qyatiy settling for an approximate algorithm
that gives a suboptimal solution, especially if the subuoptisolution is provably not much worse than
the optimal solution. (An example is given in Section 6.5.)

4. Heuristics (local search, simulated annealing, “gehetigorithms, and many others) can also be
used to improve the quality of solution or running time ingiiee. We will see several examples
throughout the remaining lectures. However, rigorous yamlof heuristic algorithms is generally
unavailable.

5. The problem to be solved in practice may be more specihtizan the general one that was proved
NP-complete.

In the following section we will look at the approximationm@pach to find a solution for the multiple
string alignment problem.
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6.5. An Approximation Algorithm for Multiple String Alignm ent

In this section we will show that there is a polynomial timgaithm (called theCenter Star Alignment
Algorithm) that produces multiple string alignments whose SP valteteas than twice that of the optimal
solutions. This result is due to Gusfield [19]. Although tlaetér of 2 may be unacceptable in some
applications, the result will serve to illustrate how apgmaation algorithms work.

In this section we will make the following assumptions aktihiet distance function:

1. 6(z,x) = 0, for all characters:.

2. Triangle Inequalitys(z, z) < é§(z,y) + 6(y, z), for all characters;, y, andz, and

The triangle inequality says that the distance along one eflg triangle is at most the sum of the distances
along the other two edges. Although intuitively plausilide,aware that not all distance measures used in
biology obey the triangle inequality.

6.5.1. Algorithm

Definition 6.7: For stringsS andT’, defineD(S, T') to be the value of the minimum (global) alignment
distance ofS andT'.

The approximation algorithm is as follows. The input is aBedf £ strings. First findS; € 7 that
minimizes
> D(5.,9).

SeT—{S1}

This can be done by running the dynamic programming algoribhSection 4.1 on each of tr(é) pairs of
strings in7. Call the remaining strings i Sy, ..., Sk. Add these stringss, ..., S, one at a time to a
multiple alignment that initially contains onl§;, as follows.

Supposes, S, ..., S;—; are already aligned &, S5, ..., S/_;. To addS;, run the dynamic program-
ming algorithm of Section 4.1 0f; andS; to produceS; andsS;. Adjust S5, ..., S, , by adding spaces to
those columns where spaces were added t&fjétom S’. ReplaceS] by S7'.

6.5.2. Time Analysis

Theorem 6.8: The approximation algorithm of Section 6.5.1 runs in tithg2n?) when givenk strings
each of length at most.

Proof: By Theorem 4.1, each of th@) valuesD(S,T') required to compute&; can be computed in
time O(n?), so the total time for this portion i9((¥)n?) = O(k?n?). After addingS; to the multiple string
alignment, the length of] is at mostin, so the time to add a# strings to the multiple string alignment is

k—1

Z O((in) - n) = O(k*n?).

=1
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6.5.3. Error Analysis

What remains to be shown is that the algorithm produces digolthat is less than a factor of 2 worse
than the optimal solution. Le¥ be the alignment produced by this algorithm,dét, j) be the distancé/
induces on the paif;, S;, and let
ko k
=D d, ).
1=1j=1
J#

Note thatv(M) is exactly twice the SP score 6f, since every pair of strings is counted twice.

Thend(1,1) = D(S1, S;) for all I. This is because the algorithm used an optimal alignmest agind
S, andD(S1, ) = D(S1,5;), sinced(—, —) = 0. If the algorithm later adds spaces to béthand S;, it
does so in the same columns.

Let M* be the optimal alignment]*(z, j) be the distancé/* induces on the paif;, S;, and

;éz

Theorem 6.9: U"%) < @ < 2. That is, the algorithm of Section 6.5.1 produces an aligrimen

whose SP value is iess than twice that of the optimal SP akgtm

Proof: We will derive an upper bound on(}) and a lower bound om(M*), and then take their
guotient.

k k
o(M) = > d(i,j)

1=1j=1

J#i
< ZZ (4,1) +d(1, 7)) (triangle inequality)
=1 1
2
k
= 2(k—1)) _d(1,1) (explained below)

=2

k
= 2(k—1))_D(5,5)

1=2
The third line follows because eadfl, 1) = d(1,1) occurs in2(k — 1) terms of the second line.

E
W
S
<~
<
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o(M*) =
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D(S;, S;) (Definition 6.7)

S =
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(definition of Sy)

WV
M?r

-
S
2l
o

Combining these inequalities,
v(M) 2(k - 1)
<
v(M*) ~ k

O

Note that for small values df, the approximation is significantly better than a factor oF@rthermore,
the error analysis does not mean that the approximatiortisolis always2(k — 1)/k times the optimal
solution. It means that the quality of the solution is neverse than this, and may be better in practice.

6.5.4. Other Approaches

In the Center Star Algorithm discussed in Section 6.5.1, kweys try to align the chosen center strifg
with the unaligned strings. However, there might be casesghich some of the strings are very “near” to
each other and form “clusters”. It might be an advantageitmaitrings in the same cluster first, and then
merge the clusters of strings. The problem with this is hodefine “near” and how to define “clusters”.

There are many variants on this idea, which sometimes deti¢rative pairwise alignmenmethods.
Here is one version: an unaligned string nearest to anyedigiring is picked and aligned with the previ-
ously aligned group. (For those who have seen it before, thetsimilarity to Prim’s minimum spanning
tree algorithm [12].) The “nearest” string is chosen basedmimal pairwise alignments between individ-
ual strings in the multiple alignment and unaligned strjmg¢hout regard to spaces inserted in the multiple
alignment. Now the problem is to specify how to align a stawith agroupof strings. One possible method
is to mimic the technique that was used to &jdo the center star alignment in Section 6.5.1.

6.6. The Consensus String

Given a multiple string alignment, it is sometimes usefutléoive from it a “consensus string” that can be
used to represent the entire set of strings in the alignment.

Definition 6.10: Given a multiple alignmenf/ of stringssS;, Ss, ..., Sk, theconsensus charactaf
columns of M is the charactet; that minimizes the sum of distances to it from all the chamascin column
¢; that is, it minimizesz";:1 6(8jli], ;). Letd(i) be this minimum sum. Theonsensus strings the
concatenatiom; c; - - - ¢; of all the consensus characters, whete|S]| = --- = |S}|. Thealignment error
of M is then defined to bE}_, d(i).

For instance, the consensus string for the multiple striigmaent in Example 6.3 iac-cdbd , and its
alignment error is 6, the number of characters in the aligtedgs that differ from the consensus character
in the corresponding position.
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6.7. Summary

Multiple sequence alignment is a very important problemamputational biology. It appears to be impos-
sible to obtain exact solutions in polynomial time, evenhwitery simple scoring functions. A variety of
(provably) bounded approximation algorithms are knowr, amumber of heuristic algorithms have been
suggested, but it still remains largely an open problem.



Lecture 7

Finding Instances of Known Sites

January 25, 2000
Notes: Elisabeth Rosenthal

With this lecture we begin a study of how to identify functimegions from biological sequence data.
This includes the problem of how to identify relatively lofgctional regions such as genes, but we begin
instead with the problem of identifying shorter functionedjions.

A siteis a short sequence that contains some signal, that sigeal lnéing recognized by some enzyme.
Examples of nucleotide sequence sites include the foligwin

. origins of replication, where DNA polymerase initiallinds (Section 1.5),

. transcription start and stop sites (Section 1.6.1),

1

2

3. ribosome binding sites in prokaryotes (Section 2.2),

4. promoters, or transcription factor binding sites (S®tg.3), and
5

. intron splice sites (Section 2.5).

We will further subdivide the problem of identifying siteste the problems of finding instances of
a known site, and finding instances of unknown sites. We befim the former. What makes all these
problems interesting and challenging is that instancessofgle site will generally not be identical, but will
instead vary slightly.

7.1. How to Summarize Known Sites

Suppose that we have a large samglef lengthn sites, and a large sampleof lengthn nonsites. Given

a new sequence = siss--- s, Of lengthn, is s more likely to be a site or a nonsite? If we can derive
an efficient way to determine this, we can screen an entirergentesting every length sequence, and
thereby generate a “complete” list of candidate sites (gtkog sequences where the test gives the wrong
answer).

To illustrate, thecyclic AMP receptor proteilfCRP) is a transcription factor (see Section 2.3kircoli.
Its binding sites are DNA sequences of length approxima&2lyTable 7.1, taken from Stormo and Hartzell
[47], shows just positions 3-9 (out of the 22 sequence posjiin 23pbona fideCRP binding sites.

The “signal” in Table 7.1 is not easy to detect at first glaridetice, though, that in the second column
T predominates and in the third column G predominates, famgte. Our first goal is to capture the most
relevant information from these 23 sites in a concise forirhig would clearly be more important if we

35
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TTGTGGC
TTTTGAT
AAGTGTC
ATTTGCA
CTGTGAG
ATGCAAA
GTGTTAA
ATTTGAA
TTGTGAT
ATTTATT
ACGTGAT
ATGTGAG
TTGTGAG
CTGTAAC
CTGTGAA
TTGTGAC
GCCTGAC
TTGTGAT
TTGTGAT
GTGTGAA
CTGTGAC
ATGAGAC
TTGTGAG

Table 7.1: Positions 3—9 from 23 CRP Binding Sites [47]

A|035 0043 O 0.043 0.13 0.83 0.26
C | 0.17 0.087 0.043 0.043 O 0.043 0.3

G|013 O 078 O 0.83 0.043 0.17
T(1035 087 017 091 0.043 0.087 0.26

Table 7.2: Profile for CRP Binding Sites Given in Table 7.1
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were given thousands of sites rather than just 23.) In omleotthis, suppose that the sequence residues
are from an alphabet of size Consider a x n matrix A whereA, ; is the fraction of sequences i that
have residue in positionj. Table 7.2 shows thé x 7 matrix A for the CRP sites given in Table 7.1. Such
a matrix is called arofile. The profile shows the distribution of residues in each ofritgositions. For
example, in column 1 of the matrix the residues are quite dhikecolumn 2, T occur§87% of the time, etc.

7.2. Using Probabilities to Test for Sites

An alternative way to think of4, ; is in terms of probability. Let = ¢;¢,---t, be chosen randomly
and uniformly fromA. ThenA,; = Pr(t; = r | t € A). In words, this says, A, ; is the proba-
bility that the j-th residue oft is the residuer, given thatt is chosen randomly fromd.” For instance,
AT’z = Pr(tz =T | t e .A) = 0.87.

For the time being, we will make the followinkpdependence Assumptiowhich residue occurs at
position j is independent of the residues occurring at other posititm®ther words, residues at any two
different positions are uncorrelated. Although this agstion is not always realistic, it can be justified in
some circumstances. The first justification is that it kedésrmodel and resulting analysis simple. The
second justification is its predictive power in some (but dthadly not all) situations.

The independence assumption can be made precise in pisti@bdrms:

Definition 7.1: Two probabilistic eventd andF’ are said to bendependenif the probability that they
both occur is the product of their individual probabiliti¢sat is,Pr(E & F') = Pr(E) - Pr(F).

Under the independence assumption, the probability treridomly chosen site has a specified sequence
179 - - - Ty, 1S determined by Definition 7.1 as follows:

Pr(t =ryry---ry |tisasitd = Pr(ty=r &ty=ro & --- &t, =1, |tisasitg

n
= [ Pr(t; =r; | tisasitg
J=1

n
= H A (7.1)
j=1

For example, suppose we want to know the probability thahdomly chosen CRP binding site will be
TTGTGAC. By using Equation (7.1) and Table 7.2,

Pr(t = TTGTGAC | tis a sitg = (.35)(.87)(.78)(.91)(.83)(.83)(.3) = 0.045.

Although this probability is small, it is the largest proldayp of any site sequence, because each position
contains the most probable residue.

Now form thec x n profile B from the sample&3 of nonsites in the same way. Using the profikeand
B, let us return to the question of whether a given sequensenore likely to be a site or nonsite. In order
to do this, we define the likelihood ratio.

Definition 7.2: Given the sequence = sys2 - - - s, thelikelihood ratio, denoted byLR(A, B, s), is

defined to be
Pr(t=s|tisasitg 151 As; _ mAs g
Pr(t=s|tisanonsit¢ [[}_; Bs,; By
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0.48 —2.5 —oo —2.5 —094 1.7 0.061
-052 —-15 =25 =25 —o0o —2.5 0.28
—-0.94 —o0 1.6 —o0 1.7 =25 —0.52

048 1.8 —0.52 19 =25 -1.5 0.061

HNQQ

Table 7.3: Log Likelihood Weight Matrix for CRP Binding Sste

To illustrate, letB = {A,C,T,G}7, the set of all length seven sequences. The correspondifiles has
B, j = 0.25 for all r andj. Then fors = TTGTGAC,

M= Ay 0.045

LR(A, B, s) = 732.

To test a sequence compareLR(A, B, s) to a prespecified constant “cutoff’, and declares more
likely to be a site ifLR(A, B,s) > L.

If n is not small and some entries ihand B are small, then the likelihood ratio may be intractably ¢arg
or small, causing numerical problems in the calculationalleviate this, we define the log likelihood ratio.

Definition 7.3: Given the sequence= s;ss - - - s, thelog likelihood ratiq denoted byLLR(A, B, s),

is defined to be
logy LR(A, B, ) = logy [| 220 = 3" log, 220
g9 s - g2' Bs_ ngs-'.
7j=1 jsJ j=1 5]

The corresponding test efis thats is more likely to be a site iLLR(A, B, s) > log, L.

To test for sites, it is convenient to create a scoring maifixhose entries are the log likelihood ratios,
thatis,IV, ; = log, g“i . Table 7.3 shows the weight matrix for the example CRP sasuplend5 we have

T5J
been discussing. In order to compuié R(A, B, s), Definition 7.3 says to add the corresponding scores

from W: LLR(A, B,s) = Y7 Wi, ;.

A technical difficulty arises when an ent#, ; is 0, because the corresponding eritry ; is then—oo.
If the residuer cannot possibly occur in positiofi of any site for biological reasons, then there is no
problem. More often, though, this is a result of having to@bra sampleA of sites. In this case, there
are various “small sample correction” formulas, which aeglA, ; by a small positive number (see, for
example, Lawrencet al.[29]), but we will not discuss them here.
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Relative Entropy

January 27, 2000
Notes: Anne-Louise Leutenegger

8.1. Weight Matrices

A weight matrixis anyc x n matrix W that assigns a score to each sequenees; s - - - s, according to
the formulay>"_, Wy, ;. The log likelihood ratio matrix described at the end of ®ec?.2, and illustrated
in Table 7.3, is an example of a weight matrix.

In computing log likelihood ratios, we often takg. ; to be the “background” distribution of residue
in the entire genome, or a large portion of the genome. Thdt,is is the frequency with which residue
appears in the genome as a whole. In this c&sg,is independent of, that is,B, ; = B, j for all j and;’.
Note, however, that this does not mean tBat; = 0.25 in the case of nucleotides. Although thisiform
distribution is a fair estimate for the nucleotide comgositof E. coli, it is not for other organisms. For
instance, the nucleotide composition for the archadopannaschiiis approximatelyB, ; = By j = 0.34
andBc,j = BGJ' = 0.16.

8.2. A Simple Site Example

Example 8.1: As a simpler example of a collection of sites than the CRPib@dites of Table 7.1,
Table 8.1 shows eight hypothetical translation start sitEer this example, we will assume a uniform
background distribution3, ; = 0.25. Table 8.2(a) shows the site profile matrix, and Table 8.&{b)log
likelihood ratio weight matrix, for this example. As illuations of the log likelihood ratio calculations,

ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Table 8.1: Eight Hypothetical Translation Start Sites
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A | 0.625 0 0
C 0 0 0
G| 0.25 0 1
T | 0.125 1 0
(a)
Al 132 —o0 —0o0
C| —o0o -0 -
G 0 —00 2
T -1 2 —00
(b)

[ Jo701 2 2|
()

Table 8.2: (a) Profile, (b) Log Likelihood Weight Matrix, afe) Positional Relative Entropies, for the Sites
in Table 8.1, with Respect to Uniform Background Distributi

Wra = log, 3?2 = log, g5z = logy 4 = 2, andWg,; = log, 332 = 0, meaning both distributions have

the same frequency for G in position 1.

8.3. How Informative is the Log Likelihood Ratio Test?

The next question to ask is how informative is a given weightixni¥ for distinguishing between sites
and nonsites. If the distributions for sites and nonsiteevidentical, then every entry in the weight matrix
would be 0, and it would be totally uninformative.

Definition 8.2: A sample spacé is the set of all possible values of some random variable

Definition 8.3: A probability distribution P for a sample spac# assigns a probability?(s) to every
s € S, satisfying

1. 0<P(s)<1,and

2. ZSES P(S) =1.

In our application, the sample space is the set of all lemgiequences. The site profikeinduces a
probability distribution on this sample space accordingdoation (7.1), as does the nonsite profile

Definition 8.4: Let P and() be probability distributions on the same sample sgac&herelative en-
tropy (or “information content”, or “Kullback-Leibler measunedf P with respect ta is denotedD, (P||Q)
and is defined as follows:

Dy(PIIQ) = 3 P(s) log, %
ses
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By convention, we definé’(s) log, ggz)

calculus thatim,_,o z log z = 0.

to be 0 wheneveP(s) = 0, in agreement with the fact from

~

Sincelog SES)

5)
with weightsP(s).

is the log likelihood ratio,D,(P||Q) is a weighted average of the log likelihood ratio

Definition 8.5: The expected valu®f a function f(s) with respect to probability distributio® on
sample spac§ is

B(f(s)) = >_ P(s)f(s).

seS

In these terms, the relative entropy is the expected valueldt(P, ), s) whens is picked randomly
according toP(s). That is, it is the expected log likelihood score of a randoatiosen site.

Note that whenP and() are the same distribution, the relative entropy will be zénageneral, the rel-
ative entropy measures how different the distributidhand() are. Since we want to be able to distinguish
between sites and nonsites, we want the relative entropy farge, and will use relative entropy as our
measure of how informative the log likelihood ratio test is.

When the sample space is all lengtlsequences, and we assume independence of plositions, it is
not difficult to prove that the relative entropy satisfies

Dy(P||Q) =D _ Du(P;]|Q;),

=1

whereP; is the distributionP imposes on thgth position and?); is the distribution?) imposes on thgth
position.

Whenb = 2, the relative entropy is measured in “bits”. This will be th&ual case, unless specifically
stated otherwise.

Continuing Example 8.1, Table 8.2(c) shows the relativeopies D, (P;||Q;) for each nucleotide po-
sition j separately. For instance, looking at position 2, residug€ ,Aand G do not contribute to the rel-
ative entropy (see Table 8.2(a)). Residue T contribute$V;» = 2 (see Tables 8.2(a) and (b)). Hence,
Dy (P,]|Q2) = 2. This means that there are 2 bits of information in positiof 2he residues were coded
withOand 1 sothat 00 = A, 01 =C, 10=G, and 11 =T, only 2 bits {&&uld be necessary to encode the
fact that this residue is always T. Position 3 has the sanagivelentropy of 2. For position 1, the relative
entropy is 0.7 so there are 0.7 bits of information, indiwgthat column 1 of Table 8.2(a) is more similar to
the background distribution than columns 2 and 3 are. Tla telative entropy of all three positions is 4.7.

Example 8.6: Let us now modify Example 8.1 to see the effect of a nonunifbankground distribu-
tion. Consider the same eight translation start sites ofeTali, but change the background distribution to
Baj; = Brj; = 0.375, B¢j = Bg,j = 0.125. The site profile matrix remains unchanged (Table 8.2(a)).
The new weight matrix and relative entropies are given irld8ts.

Note that the relative entropy of each position has changedia particular, the last two columns no
longer have equal relative entropy. The site distributiopasition 2 is now more similar to the background
distribution than the site distribution in position 3 isn&e G is rarer in the background distribution. Thus,
the relative entropy of position 3 is greater than that oftpms 2. An interpretation oDy (P3||Q3) = 3 is
that the residue G i8* = 8 times more likely to occur in the third position of a site trnonsite. The total
relative entropy of all three positions is 4.93.
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A| 0737 —o00 -

C| —o0o —o0 -—00

G 1 —00 3

T|-158 142 —oo
(b)

| ] 0512 142 3|
(©)

Table 8.3: (b) Log Likelihood Weight Matrix, and (c) Posital Relative Entropies, for the Sites in Table
8.1, with Respect to a Nonuniform Background Distribution

012 13 11 15 12 11 0.02Z7

Table 8.4: Positional Relative Entropy for CRP Binding Sié Tables 7.1 — 7.3

Example 8.7: Finally, returning to the more interesting CRP bindingsité Table 7.1, the seven posi-
tional relative entropies are given in Table 8.4. Note that(finiddle position) is the highest relative entropy
and corresponds to the most biased column (see Table 7.2)alile 0.027 (last position) is the lowest rela-
tive entropy because the distribution in this last positfotine closest to the uniform background distribution
(see Table 7.2).

8.4. Nonnegativity of Relative Entropy

In these examples, the relative entropy has always beenegative. It is by ho means obvious that this
should be, since it is the expected value of the log likelthoatio, which can take negative values. For
instance, why should the expected value of the last columFabfe 7.3 be positive (0.027, according to
Table 8.4)? The following theorem demonstrates that thistmiodeed, be the case.

Theorem 8.8: For any probability distributiong” and@ over a sample spac®, D,(P||Q) > 0, with
equality if and only if P and() are identical.

Proof: First, it is true thalnz < z — 1 for all real numbersz, with equality if and only ifz = 1.
The reason is that the curge= Inz is concave downward, and its tangentzat= 1 is the straight line
y=ux—1. Thus,ln% =In(z~!) = —Inz > 1 — . In the following derivation, we will use this inequality

i _ Q).
with z = ZOL
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Dy(PlQ)

v

43

P(s)
S;P(S) logy, a0)
15 pgn
o 2 7OmG)
1 Q)
b 2 1 =55
S Y (P(s) - QUs))
es
= (X Pl - X Q)
seS seS
07

since) " .5 P(s) = > ,c5Q(s) = 1, by Definition 8.3. Note that the relative entropy is equatid and
only if z = Q(s)/P(s) = 1forall s € S, that is,P andQ are identical probability distributions. O



Lecture 9

Relative Entropy and Binding Energy

February 1, 2000
Notes: Neil Spring

Binding energy is a measure of the affinity between two mdéscuBecause it is an expression of free
energy released rather than absorbed, a large negativeenumtventionally represents a strong affinity,
and suggests that these molecules are likely to bind. Tldirfgrenergy depends on a number of factors
such as temperature and salinity, which we will assume arearging.

This lecture describes a paper of Stormo and Fields [46chinvestigates the binding energy between
a given DNA-binding protein and various short DNA sequendasparticular, it discusses an interesting
relationship between binding energy and log likelihoodghématrices, shedding a new light on the relative
entropy.

9.1. Experimental Determination of Binding Energy

Given a DNA-binding proteinP, we would like to determine with what binding enerd@y binds to all
possible lengtlh DNA sequences. The “binary” question of whether or Rowill bind to a particular DNA
sequence oversimplifies a more complicated process: malistieally, P binds to most such sequences,
but will occupy preferred sites for a greater fraction ofdithan others. Binding energies reflect this reality
more clearly.

If ¢ is the alphabet size, then one cannot hope to perform allXperienents to measure the binding
energy of P with each of the possible™ sequences of length. Instead, Stormo and Fields proposed the
following experimental method for estimating the bindingergy of P with each lengtm sequence.

1. Choose some good sifeof lengthn.

2. Construct all sequences of lengttthat differ from S in only one residue. There ate — 1)n such
sequences.

3. For each such sequengk experimentally measure the difference in binding energyvbenP bind-
ing with S and P binding with S".

4. Record the results in@x n matrix G, whereG,. ; is the change in binding energy when resiaus
substituted at positionin S.

Stormo and Fields then make the approximating assumptetnctranges in energy are additive. That
is, the change in binding energy for any collection of substins is the sum of the changes in binding
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energy of those individual substitutions. With this asstiomp one can predict the binding energyefto
any lengthn sequence = s;s; - - - s, by the following formula:

n
Z G'sj’j'
7=1

Thus, G is a weight matrix that assigns a score to each sequemoeording to the usual weight matrix
formula given in Section 8.1.

9.2. Computational Estimation of Binding Energy

Unfortunately, creating the matri& for every DNA-binding protein in every organism of interesiil
requires an infeasible amount of experimental work. Thidivated Stormo and Fields to ask how to
approximateG computationally, given a collectiodl of good binding sites fo” and a collections of
nonsites.

ChoosingWW to be the log likelihood ratio weight matrix fod with respect toB3 assigns the highest
scores to the sites id. SinceG also assigns high (negative) scores to the site$,ithere is good reason to
expect that? approximate<s well (after the appropriate scaling).

Recall from Section 8.3 that the relative entrapy(A||B) is the expected score assignedibyto a
randomly chosen site. [l approximatess well, the relative entropyDs(A||B) then approximates the
expected binding energy @ to a randomly chosen site. This provides us a new interjoetaf relative
entropy.

It also provides an estimate of how great we should expectth@ve entropy to be for a good collection
of binding sites. There is some probability that a good siteappear in the genomic background simply
by chance. This probability increases with the dizef the genome. If the relative entropy is too small with
respect td", the expected binding energy at true sites will be too sraall, the protein will spend too much
time occupying nonsites.

Stormo and Fields suggest from experience that the relatitpy for binding sites will be close to
log, I'. A simple scenario suggests some intuition for this paldicestimate: Assume a uniform background
distribution B, ; = 0.25, and assume that the site profiehas a 1 in each column, that is, all sites are
identical. This imples that the relative entropy is 2 bits pesition (as in two of the columns of Table 8.2),
so the total relative entropy B, (A||B) = 2n. In a random sequence generated according, tone would
expect this site sequence to appear once e¥emngsidues. In order faP not to bind to too many random
locations in the background” = 227 = 2P2(41lB) must be not much less thdh so D, (A||B) must be not
much less thatog, I'.

9.3. Finding Instances of an Unknown Site

This leads us into our next topic. Suppose we are not givermplsad of known sites. We want to
find sequences that are significantly similar to each othg&howt anya priori knowledge of what those
sequences look like. A little more precisely, given a setiofdgical sequences, find instances of a short site
that occur more often than you would expect by chance, with poori knowledge about the site.

Given a collection oft such instances (ignoring, for the moment, how to find thehi} induces a
profile A as described in Section 7.1. As usual, we compute a prBfilom the background distribution.
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From A and B, we can computé),(A||B) as in Section 8.3, and use that as a measure of how good the
collection is. The goal is to find the collection that maxigsds(A||B). In particular, if we are looking

for unknownbinding sites, then the argument of Section 9.2 suggests that aveetattropy aroundog, I
would be encouraging.

A version of the computational problem, then, is to take asii®k sequences and an integerand
output one lengtm substring from each input sequence, such that the resultlagjive entropy is maxi-
mized. Let us call this theelative entropy site selection problefdnfortunately, this problem is likely to be
computationally intractable (Section 6.4):

Theorem 9.1 (Akutsu [1, 2]): The relative entropy site selection problem is NP-complete

Akutsu also proved that selecting instances so as maxith&sum-of-pairs score (Section 6.2) rather
than the relative entropy is NP-complete.
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In order to find instances of unknown sites, we would like toalde to solve the relative entropy
site selection problem (Section 9.3) exactly and efficientUnfortunately, Theorem 9.1 shows that the
relative entropy site selection problem is NP-completewsoare unlikely to find an algorithm that will
compute an optimal solution efficiently. However, if we pethe optimality constraint, it may be possible to
develop algorithms that compute “good” solutions effidgnBecause of the problem abstraction required
to model the biological problem mathematically, the matatically optimal solution need not necessarily
be the most biologically significant. Lower scoring solagcare potentially the “correct” answer in their
biological context. Therefore, giving up on the mathenataptimality of solutions to the relative entropy
site selection problem seems the right compromise.

As an example of a typical application of finding instancesrdénown sites, consider the genes involved
in digestion in yeast. It is likely that many of these genegehsome transcription factors in common,
and therefore similarities in their promoter regions. Afpd the site selection problem to the 1Kb DNA
sequences upstream of known digestion genes may well yosiek ©f these transcription factor binding
sites. As another example, we could use the site selectialgm to find common motifs in a protein
family.

As defined, the relative entropy site selection problemtsirits solution to contain exactly one site per
input sequence, which may not be realistic in all applicatioln some applications, there may be zero or
many such sites in some of the input sequences. The algaritlisnussed below are described in terms of
the single site assumption, but can be modified to handledhergl case as well.

But in the context of this general case, this is a good poimthtath to consider the effects on relative
entropy of increasing either the number of sites or the len§each site. Increasing the number of sites will
not increase the relative entropy, which is a function orfithe fractionP(s) of sites containing each residue
s, and not the absolute number of such sites. For instancerfectg conserved position haB(s) = 1,
regardless of whether it is present in all 10 sites or all liss This aspect of relative entropy is both a
strength and a weakness. The strength is that it measurelegnee of conservation, but the weakness is
that we would like the measure to increase with more instan€a conserved residue.

However, increasing the length of each sitedoesincrease the relative entropy, as it is additive and
always nonnegative (Theorem 8.8). If comparing relativieagries of different length sites is important,
one may normalize by dividing by the lengthof the site or, alternatively, subtracting the expectedtie
entropy from each position.
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10.1. Greedy Algorithm

Hertz and Stormo [23] described an efficient algorithm fa thlative entropy site selection problem that
uses a “greedy” approach. Greedy algorithms pick the lpdadkt choice at each step, without concern for
the impact on future choices. In most applications, thedyresethod will result in solutions that are far
from optimal, for some input instances. However, it doeskvadficiently, and may produce good solutions
on many of its input instances.

Hertz and Stormo’s algorithm for the relative entropy seestion problem proceeds as follows. The
user specifies the lengthof sites. The user also specifies a maximum nundlarprofiles to retain at each
step. Profiles with lower relative entropy scores than theitwill be discarded; this is precisely the greedy
aspect of the algorithm.

INPUT: sequences;, s, . .., Sg, andn, d, and the background distribution.
ALGORITHM:

1. Create a singleton set (i.e., only one member) for eackildedengthn substring of each of thg
input sequences.

2. For each sef retained so far, add each possible lengtubstring from an input sequenggnot yet
represented it¥. Compute the profile and relative entropy with respect tobidekground for each
new set. Retain theé sets with the highest relative entropy.

3. Repeat step 2 until each set lkasmiembers.

A small example from Hertz and Stormo [23] is shown in Figudell From this example it is clear that
pruning the number of sets #his crucial, in order to avoid the exponentially many possi®ts. The greedy
nature of this pruning biases the selection from the remgimput sequences. High scoring profiles chosen
from the first few sequences may not be well represented imeimaining sequences, whereas medium
scoring profiles may be well represented in most of#teequences, and thus would have yielded superior
scores.

Note that one may modify the algorithm to circumvent the ag#tion of a single site per sequence,
by permitting multiple substrings to be chosen from the sagmuence. In this case, a different stopping
condition is needed.

Hertz and Stormo applied their technique to find CRP binditeg $see Section 7.1) with some success.
With 18 genes containing 24 known CRP binding sites, thest belution contained 19 correct sites, plus 3
more that overlap correct sites.

10.2. Gibbs Sampler

Lawrenceet al. [29] developed a different approach to the relative entsipy selection problem based on
“Gibbs sampling”. The idea behind this technique istart with a complete set of substrings (candidate
sites), from which we iteratively remove one at random, dnahtadd a new one at random with probability
proportional to its score, hopefully resulting in an impedvscore. In the following description, we again
make the assumption that we choose one site per input segjuauicthis method also can be extended to
permit any number of sites per sequence.

INPUT: sequences;, s, - .., Sg, , and the background distribution.
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sequence 1 sequence 2 sequence 3
ACTGA TAGCG CTTGC
CYCLE 1 | ACTG
Ali1 00 o0
clo1o0o
cglo oo
Tlo 01 0
Lieq = 5.5
CYCLE 2 ACTG ACTG ACTG ACTG
TAGC AGCG CTTG TTGC
Al1 100 Al2 000 Al1 000 Al1 000
clo 101 clo11o0 cli1 100 clo 101
cgloo11 glo 10 2 G|lo oo 2 Ggloo11
T{1 010 Tlo 0 1 0 T|{o 1 2 0 Tl1 11 0
Tioq = 2.8 Toeq = 4.2 Tioq = 4.2 Toeq = 2.8
CYCLE 3 ACTG ACTG
AGCG AGCG
CTTG TTGC
’ Al2 000 Al2 000
cli1 11 0 clo 111
glo 10 3 Glo 11 2
Tlo 1 2 0 T|{1 11 0
Lioq = 3.2 Jyeq = 2.1

Figure 10.1: Example of Hertz and Stormo’s greedy algoritiigsaqdenotes the relative entropy.
ALGORITHM: Initialize setT to contain substrings,, ts, ..., tx, wheret; is a substring of; chosen
randomly and uniformly. Now perform a series of iteratiosach of which consists of the following steps:
1. Choose randomly and uniformly fron{1, 2, ..., k} and remove; from 7.
2. Foreveryjin{1,2,...,|s;] —n+ 1}:

(a) Lett;; be the lengtm substring ofs; that starts at positiop.
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(b) ComputeD;, the relative entropy df’ U {¢;; } with respect to the background.
(©) LetPj = Dj/Zh Dy,.

3. Randomly choosg to bet;; with probability P;, and add; to T'.

We iterate until a stopping condition is met, either a fixethber of iterations or relative stability of
the scores, and return the best solutionBaeen in all iterations. The hope with this approach is that th
random choices help to avoid some of the local optima of gredégbrithms.

Note that the Gibbs sampler may discard a substring thats/gehigher scoring profile than the one that
replaces it, or may restore the substring that was discatsldfl Neither of these occurrences is particularly
significant, since the sampling will tend toward higher sugpprofiles due to the probabilistic weighting of
the substitutions by relative entropy. The Gibbs samplasdetain some degree of greediness (which is
desirable), so that there may be cases where a strong sigmllyia few sequences incorrectly outweighs a
weaker signal in all of the sequences.

Lawrenceet al. applied their technique to find motifs in protein families.particular, they successfully
discovered a helix-turn-helix motif, as well as motifs ipdcalins and prenyltransferases.

10.3. Other Methods

Possible extensions to the Gibbs sampler technique ofd®etfl.2 include the following:

1. Weight whicht; to discard in step 1 (analogously to weighting which to adstép 3).

2. Use simulated annealing (see, for example, Johasah [25]) where, as time progresses, the proba-
bility decreases that you make a substitution that wordemsdiative entropy score, yielding a more
stable sef".

Another technique that has been used to solve the site iselgrbblem is “expectation maximization”
(for example, in the MEME system [4]).
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This lecture explores the validity of the assumption thetrésidues appearing at different positions in
a sequence are independent. In previous lectures the catigmst assumed such positional independence.
(See Section 7.2.) Here we describe a method to determinkextbeof dependence among residues in
a sequence. By calculating the relative entropy of two nmdahe modeling dependence and the other
modeling independence of positions, we can quantify thidisabf the positional independence assumption.

Most of the material for this lecture is from Phil Green’s MB®9C lecture notes, Autumn 1996.

11.1. Nonuniform Versus Uniform Distributions

We will begin with a warmup to the method that still assumesitimal independence, and proceed to the
dependence question in Section 11.2. Given the genome a§anism, a simple calculation determines the
frequency of each nucleotide. It is reasonable to suspatthiese frequencies are more informative than
the uniform nucleotide distribution, in which the probalilof each nucleotide is 0.25. One can compare
the frequency distribution (the nonuniform distributianvwhich the probability of residue is equal to the
frequency of residue in the genome as a whole) to the uniform distribution.

Example 11.1: This example calculates the relative entropy of the freguelistribution to the uniform
distribution for the archaed¥. jannaschii M. jannaschiiis athermophilicprokaryote, meaning that it lives
in extremely high temperature environments such as thespraidgs. The frequency distribution of residues
for M. jannaschiiis given in Table 11.1.

A:0.344
C:0.155
G: 0.157
T:0.343

Table 11.1: The frequency distribution of residued/finannaschii

Notice that the frequencies of residues A and T are very aimhilit not equal. Likewise, the residues
C and G have similar frequencies. When calculating thespiéecies, only one strand of DNA was used.
(Had both strands been used, base pair complementaritydvwaake ensured that these frequencies would
be exactly equal rather than just similar.) Because gerggtuer functional regions tend to occur on both
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strands of DNA equally often, any bias of such a region on d¢rang over the other (see Section 11.4) is
canceled out. This phenomenon, together with the fact lieghdses occur in complementary pairs, explains
why the frequencies of A's and T’s are similar and the fregqiesof G’'s and C’s are similar.

Let () be the uniform probability distribution, and |ét be the frequency distribution. Notice that the
frequency of residue is equal to the probability of randomly selecting residu&om the distribution
P. How much better doe® model the actual genome tha&p? More quantitatively, how much more
information is there usind’® rather than))? Recall from Section 8.3 that the relative entropy is defigd
follows:

Dy(P||Q) = E,es P(s) logy 513

In Example 11.1 foM. jannaschij D(P||Q) = 0.103. This implies that there are 0.103 more bits
of information per position in the sequence by using distidn P over distribution). The value 0.103
might seem insignificant, but it means that a sequence of 488sbhas ten bits of extra information when
chosen according to distributiad®. Suppose a random sequenagf length 100 is selected according to the
probability distributionP. Since the relative entropy is the expected log likelihaatibrfor s, the sequence
s is approximately2!® = 1024 times more likely to have been generatediyhan by(@. The mathematics
leading to this observation is flawed, since the log funciad expectation do not “commute”: that is, for
it to be correct we would need the expected log likelihootret equal the log of the expected likelihood
ratio, which is not true in general. However, the intuitisrhielpful.

The next section explores the application of this relativieay method to the question of dependence
of nucleotides.

11.2. Dinucleotide Frequencies

How much dependence is there betwadimcentnucleotides in a DNA sequence? Since there are four nu-
cleotides, there are 16 possible pairs of nucleotides. [Dolkede the frequencies of each such gaiy) in a
sequence, a simple algorithm computes the total numbersafreéd occurrences dfollowed immediately

by j, and divides by the total number of pairs, which is the leraftthe sequence minus one. LEf; be

the frequency of the residudmmediately followed by the residuge In addition letP; be the frequency of
residuei in the single nucleotide distribution. The vaI;E% = p%% gives a score representing the valid-

ity of the positional independence assumptionPi1]f = 1, then the independence assumption is valid for
residue; followed by residug. (See Definition 7.1.) As the deviation from one increadesjridependence
assumption becomes less valid.

Example 11.2: Let us return to Example 11.1 involving the organismjannaschii ThePi’j values are
given in Table 11.2 with the residudéndexed by row and the residydndexed by column, where residue
immediately precedegin the sequence. Upon examination of the table, one can aeéhtire are sizable
deviations from one. For example the pairs (C,C) and (G,@Womuch more often than expected if they
were independent, and (A,C), (C,G), and (G,T) occur muchdéen. Also, the diagonal entries show that
two consecutive occurrences of the same residue occur rfteretban expected. Such repeats of the same
residue might result from the slippage of the DNA polymerdsgng the replication process (see Section
1.5). The DNA polymerase inserts an extra copy of the baseisgasn a copy while duplicating one of the
DNA strands. Even though there is a post-replication repatem to repair mistakes produced by the DNA
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polymerase, there is a small chance that the repeats wilgpeafter a copy mistake. (In a similar way,
dinucleotide repeats might occur during the replicatiarcpss.)

A o G T
1.13 0.73 1.10 0.94
1.03 1.37 0.32 1.11
1.05 1.12 1.39 0.71
0.83 1.056 1.03 1.14

HQQ

Table 11.2: The ratios of the observed dinucleotide frequéa the expected dinucleotide frequency (as-
suming independence) M. jannaschii

Definition 11.3: Themutual informatiorof a pair(X,Y') of random variables is

I(X;Y) = Z Z Pr(X =z &Y =y)log, ]Df;a?;g?—::xa;]iiz;::y?;).
r Yy

If the probability distributionP is the joint distribution ofX andY’, and( is the distribution ofX and
Y assuming independence, thBX;Y ) = Dy (P||Q). By Theorem 8.8, ther,(X;Y') > 0, with equality
if and only if X andY are independent, since in the equality c&se ().

By setting the random variabl¥ to be the first base and to be the second base of a pair, the value
I(X;Y) for M. jannaschiiis 0.03. For a sequence of 100 bases, there are three bitsafrdgrmation when
the sequence is chosen from the dinucleotide frequencsibdison rather than the independence model.
Thus, a random sequeng®f length 100 generated by a process according to dinudiedistributionP is
eight times more likely to have been generated?han by the independent nucleotide distributi@n

11.3. Disymbol Frequencies

A generalization of the dinucleotide frequency is callegldisymbol frequengyin which the two positions
are not restricted to be adjacent. For example, one coully sfie dependence relationship between pairs of
nucleotides separated by ten positions. The extension thfade presented above to this generalized setting
is straightforward. Studies have revealed that the mutfafrination between DNA nucleotides separated
by more than one base is lower than for adjacent residuegactnfor separations of length 2, 3, and 4, the
mutual information is an order of magnitude less than foaeglt residues.

11.4. Coding Sequence Biases

A similar application of relative entropy is finding biasesoding sequences. Recall that coding sequences
consist of codons that are three consecutive bases: saerSe@.2. Do the three positions each have the
same distribution as the background distribution? If sualisiical features of protein-coding regions are
known, they can be exploited by algorithms that locate genes

In the bacteriunH. influenzaethe residues A and G are more likely to appear in the firsttiposof
codons than in the genomic background. Using an analysiegmss to that used in Sections 11.1 and 11.2,



LECTURE 11. CORRELATION OF POSITIONS IN SEQUENCES 54

there are 0.082 bits of information in the first codon positielative to the background distribution fbir.
influenzae Since most of théd. influenzaegenome consists of coding regions, it makes little diffeeen
if the background distribution is measured genome-wideodling-region-wide. There are 0.175 bits of
information per residue in the first position of codons frjannaschii

The total relative entropy for the entire codon is simply soen of the relative entropies for the three
positions. (See Section 8.3.) The number of bits per codoth&®organisms. influenzagM. jannaschij
C. elegansandH. sapiensare 0.12, 0.21, 0.09, and 0.12, respectively. Foinfluenzaghe number of bits
of information for the second position is close to zero. Imlams there is more information is in the second
position.

11.4.1. Codon Biases

Recall from Section 1.6.2 that there are 64 possible mMRNAe®sces of length three, but there are only 20
amino acids plus the stop codon. Thus, there exigbnymous codorthat encode the same amino acid.
Another statistical clue for locating genes is whether gianism uses synonymous codons equally often or
has a bias toward certain codons in its genome.

For example, irH. influenzaethe codon TTT is used about four times as often as TTC, altindagh
TTT and TTC encode the amino acid phenylalanine. One camges to why this occurs is that the tRNA
for TTT is more abundant than the tRNA for TTC. Recall from Bet2.2 that the tRNA carries an amino
acid to the ribosome during translation. There is selegiressure on the organism to choose the codon that
is most efficiently translated, which would be affected biNfRabundance.

A similar study investigates if organisms prefer one amicid @ver another, since some amino acids
such as leucine and isoleucine are chemically similar. Stion 1.1.1.)

11.4.2. Recognizing Genes

Codon bias can be applied to the problem of recognizing gereeBNA sequence. Define a score for codon
C as follow: c

score(C) = log, C—g,
whereCy, is the frequency of codon C in the coding regions &hglis the frequency of codon C in the
background.

The score of a sequencg, Cy, ..., C, of codons is defined to be the sum of the scores of éaclivhen
recognizing genes, one facet would be to identify sequewdéshigh scores. Each reading frame must be
examined since moving the frame window to the right one sior two positions results in different
sequences of codons.

One drawback to this technique is that we must know the ca®igions (in order to estimatér) before
recognizing (those same) genes in the genome. There aresimgthods for finding long coding regions,
and once these are known they can be used to estiffiand thus used to find more genes.
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12.1. Scoring Regions of Sequences

We have studied a variety of methods to score a DNA sequentgatoegions of interest obtain a high
score. For example, Section 11.4.2 suggested codon biamaarss for finding coding regions. df is a
codon, the score associated withis log, g—g whereC'; is the frequency of” in known coding regions
(in the correct reading frame), ar@g is the frequency of in noncoding regions (usually taken as the
background distribution).

Notice that our goal is to identifpewcoding regions, but the method requires that we already know
some coding regions in order to estimd&tg. There are a few easy ways one can identify a subset of
likely coding regions. First, one could look for lormpen reading framefORF9, that is, long contiguous
reading frames without STOP codons. Since 3 of the 64 codenSEOP codons (see Table 1.1), in random
sequences one would expect a STOP codons every 64/3 tripdetevery 64 bases, if codons are distributed
uniformly. Since most genes are at least hundreds of basgs Very long ORFs are likely to be coding
regions. This method will work well if we assume that the n@mgme contains no introns (or at least many
very long exons), and if the codon distribution in long geigesimilar to that in all genes, so that we can
use it to estimat€’'z. Another easy way to find a training set of coding sequencleg sequence similarity:
compare the sequence of interest with a genome in which mangsgare known, and extract the regions
with high sequence similarity to known genes.

Then, if we assume that different triplets in the sequenegnalependent, we would like to find contigu-
ous stretches of triplets with high total score (and thu& Wwigh log likelihood ratio). These regions would
be good candidates for coding regions, to be subjected tiosiutesting.

Another relevant question is in which reading frame to lookdodons. There are 6 possible reading
frames: 3 on each of the 2 strands of DNA. When looking for igdiegion, one would search for high
scoring regions in each of these 6 reading frames.

12.2. Maximum Subsequence Problem

We can distill the following general computational problémm the preceding discussion. We are given
a sequenceXy, X, ..., X, of real numbers, wher&; corresponds to the score of tita element of the
sequence. The problem is to find a contiguous subsequence; 1, ..., X; that maximizesX; + X; 1 +

-+ + X;. We will call this amaximum subsequencBote that, if all.X;'s are nonnegative, the problem is
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not interesting, since the maximum subsequence will aMseyX,, X, ..., X,, so the interesting case is
when some of the scores are negative.

The following algorithm for finding a maximum subsequence g&en by Bates and Constable [5] and
Bentley [7, Column 7].

Suppose we already knew that the maximum subsequBrmfeX, X, ..., X has scoré. How can
we find the maximum subsequence®f, Xo, ..., Xx, X;x11? If X isincluded inB, then it is easy: if
Xi+1 > 0, we will add X, to B, and if not, we will leaveB unchanged. But what X, is not included
in B? In that case, in addition t8 we will have to keep track of the score of theaximum suffix’ of
X1, X5, ..., Xy Fis the suffix X, X,11,..., Xy that maximizesf = X, + X441 + --- + Xg. Letus

assume that’ is also known forX, X, ..., X;. We are now giverXy_ 1, and we want to updat8 and F’
accordingly:
if f+ Xkp1>b

then add X to F' and replace3 by F
elseiff + Xx11 >0

thenadd Xy, to F

elseresetF’ to be empty.

The complexity of the algorithm i©(n ), since a constant amount of work is done for every new element
Xk+1, and there are such elements.

12.3. FindingAll High Scoring Subsequences

The algorithm described in Section 12.2 works very well ifave interested in findingnemaximum sub-
sequence. However, we are generally lookingdibhigh scoring regions, for instance, all good candidates
for coding regions. We could repeatedly use the previousrilign to find them all: find the maximum
subsequence, remove it, and repeat on the two remainirg gfattie sequence. We will call the problem of
finding exactly these disjoint maximum subsequencesliihmaximum subsequencpsblem. (In practice,
one would only want to retain those reported maximum subssrps with scores sufficiently high to be
interesting.)

The problem with repeatedly running the previous algoritsrthat it will take O(n) operations per
subsequence reported, and thus possihy?) operations to identify all high scoring regions. Intuitiye
one might hope to do better, since much of the work done to fiedfitst maximum subsequence could
be reused to find the second one, and so on. We now presentaithamgthat solves the all maximum
subsequences problem in timKn), the same as the time to find just one maximum subsequencs. Thi
algorithm is due to Ruzzo and Tompa [40]. We first describatferithm, and then discuss its performance.

Algorithm. The algorithm reads the scores from left to right, and maistthe cumulative total of the
scores read so far. Additionally, it maintains a certaireoed listl, I, ..., I;_; of disjoint subsequences.
For each such subsequenkg it records the cumulative totdl; of all scores up to but not including the
leftmost score of ;, and the total?; up to and including the rightmost score f

The list is initially empty. Input scores are processed devis. A nonpositive score requires no special
processing when read. A positive score is incorporatedamew subsequendg of length oné that is then

1In practice, one could optimize this slightly by processingpnsecutive series of positive scoredas
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Cumulative Score
Cumulative Score

Sequence Position Sequence Position

Figure 12.1: An example of the algorithm. Bold segmentscatdi score sequences currently in the algo-
rithm’s list. The left figure shows the state prior to addihg tast three scores, and the right figure shows
the state after.

integrated into the list by the following process.

1. The list is searched from right to left for the maximum abf j satisfyingL; < L.
2. If there is no such, then addly, to the end of the list.
3. If there is such @, andR; > Ry, then addl;, to the end of the list.

4. Otherwise (i.e., there is suchjabut R; < R;), extend the subsequendég to the left to encom-
pass everything up to and including the leftmost scorg irDelete subsequencés, I 1, ..., lp_1
from the list (none of them is maximum) and reconsider thelyaxtended subsequendg (now
renumbered;) as in step 1.

After the end of the input is reached, all subsequences rengaon the list are maximum; output them.

As an example of the execution of the algorithm, consider thgut sequence
(4,-5,3,-3,1,2,-2,2,-2,1,5).  After reading the scores4,—5,3,—3,1,2,—2,2), suppose the
list of disjoint subsequences & = (4),I» = (3),I3 = (1,2),14 = (2), with (L1, R;) = (0,4),
(La, R9) = (-1,2), (L3, R3) = (—1,2), and(L4, R4) = (0,2). (See Figure 12.1.) At this point, the
cumulative score is 2. If the ninth input is2, the list of subsequences is unchanged, but the cumulative
score becomes 0. If the tenth input is 1, Step 1 prodiices3, becausds is the rightmost subsequence
with Lz < 0. Now Step 3 applies, sincg; > 1. Thusl; = (1) is added to the list witliL5, R5) = (0,1),
and the cumulative score becomes 1. If the eleventh input$tep 1 produceg = 5, and Step 4 applies,
replacingls by (1,5) with (L5, Rs) = (0,6). The algorithm returns to Step 1 without reading further
input, this time producing = 3. Step 4 again applies, this time mergihg I,, and I5 into a new
I; = (1,2,-2,2,-2,1,5) with (L3, R3) = (—1,6). The algorithm again returns to Step 1, but this time
Step 2 applies. If there are no further input scores, the &emfist of maximum subsequences is then
I =(4),I, = (3),Is = (1,2,-2,2,-2,1,5).

The fact that this algorithm correctly finds all maximum sedpsences is not obvious; see Ruzzo and
Tompa [40] for the details.

Analysis. There is an important optimization that may be made to therdtgn. In the case that Step 2
applies, I, ..., I | are maximum subsequences, and so may be output before geadirmore of the
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input. Thus, Step 2 of the algorithm may be replaced by thieviahg, which substantially reduces the
memory requirements of the algorithm.

2." If there is no such, all subsequenceg, I, ..., I;_; are maximum. Output them, delete them from
the list, and reinitialize the list to contain only (now renumbered;).

The algorithm as given does not run in linear time, becauseraksuccessive executions of Step 1
might re-examine a number of list items. This problem is dediby storing with each subsequenge
added during Step 3 a pointer to the subsequdndbat was discovered in Step 1. The resulting linked
list of subsequences will have monotonically decreadingalues, and can be searched in Step 1 in lieu of
searching the full list. Once a list element has been bygdsgehis chain, it will be examined again only if
it is being deleted from the list, either in Stejpa?2 Step 4. The work done in the “reconsider” loop of Step 4
can be amortized over the list item(s) being deleted. Hanaeffect, each list item is examined a bounded
number of times, and the total running time is linear.

The worst case memory complexity is also linear, although wauld expect on average that the sub-
sequence list would remain fairly short in the optimizedsi@n incorporating Step’ 2Empirically, a few
hundred stack entries suffice for processing sequencesedf miilion residues, for either synthetic or real
genomic data.
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In Lecture 11 we discovered that correlations between segupositions are significant, and should
often be taken into account. In particular, in Section 11lednated that codons displayed a significant bias,
and that this could be used as a basis for finding coding regibacture 12 then explored algorithms for
doing exactly that.

In some sense, Lecture 12 regressed from the lesson of eektuAlthough it was using codon bias to
score codons, it did not exploit the possible correlatiotwben adjacent codons. Even worse, each codon
was scored independently and the scores added, so thatibie soore does not even depend on the position
the codon occupies.

This lecture rectifies these shortcomings by taking codaretaiion into account in predicting coding
regions. In order to do so, we first introduce Markov chaina asdel of correlation.

13.1. Introduction to Markov Chains

The end of Section 11.2 mentioned “...a random sequencenergted by a process according to dinu-
cleotide distribution P”, without giving any indication wfhat such a random process might look like. Such
arandom process is called a “Markov chain”, and is more cerblan a process that draws successive ele-
ments independently from a probability distribution. Thdidition of Markov chain will actually generalize
dinucleotide dependence to the case in which the identitheturrent residue depends on the previbus
residues, rather than just the previous one.

Definition 13.1: Let S be a set of states (e.¢h,= {A,C,G,T'}). Let(Xy, X1, X»,...) be a sequence
of random variables, each with sample sp&ceé kth order Markov chairsatisfies

Pr(X; =z | Xo, X1,..., Xp—1) =Pr(Xy =2 | Xy, Xy 1,5 Xim1)

foranyt and anyz € S.

In words, in akth order Markov chain, the distribution &; depends only on thi variables immedi-
ately preceding it. In a 1st order Markov chain, for exampie, distribution ofX; depends only oX; ;.
Thus, a 1st order Markov chain models diresidue dependgnasediscussed in Section 11.2. A Oth order
Markov chain is just the familiar independence model, whére&oes not depend on any other variables.

Markov chains are not restricted to modeling positionalasiglencies in sequences. In fact, the more
usual applications are to time dependencies, as in thenfiiipillustrative example.
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Example 13.2: This example is called “a random walk on the infinite 2-dimenal grid”. Imagine an
infinite grid of streets and intersections, where all theess run either east-west or north-south. Suppose
you are trying to find a friend who is standing at one specifiersection, but you are lost and all street
signs are missing. You decide to use the following algoritifrgour friend is not standing at your current
intersection, choose one of the four directions (N, E, S, draddomly and uniformly, and walk one block
in that direction. Repeat until you find your friend.

This is an example of a 1st order Markov chain, where eachsie¢éion is a state, ans; is the inter-
section where you stand aftesteps. Notice that the distribution &f; depends only on the value &f; 1,
and is completely independent of the path that you took feeaat X;_;.

Definition 13.3: A kth order Markov chain is said to t&ationaryif, for all ¢ andu,

Pr(Xy =2 | Xp g, Xt kg1, Xpm1) =Pr(Xy =2 | Xo g, Xu kg15- -5 Xuo1)-

Thatis, in a stationary Markov chain, the distributiongfis independent of the value gfand depends
only on the previoug variables. The random walk of Example 13.2 is an example tdteoeary 1st order
Markov chain.

13.2. Biological Application of Markov Chains

Markov chains can be used to model biological sequences. Wassume a directional dependence and
always work in one direction, for example, frdshto 3/, or N-terminal to C-terminal.

Given a sequenceg and given a Markov chaif/, a basic question to answer is, “What is the probability
that the sequencewas generated by the Markov chaii?” For instance, if we were modeling diresidue
dependencies with a 1st order Markov chaiin we would need to be able to determine what probabilities
M assigns to various sequences.

Consider, for simplicity, a stationary 1st order Markovicha/. Let A, , = Pr(X; = s | X;—1 = 7).
A is called theprobability transition matrixfor /. The dimensions of the matrig are|S| x |S|, whereS
is the state space. For nucleotide sequences, for exarhjdel, x 4.

Then the probability that the sequence- (s, s1, ..., s;) was generated by/ is

¢
Pr(sosi...st) = Pr(so)Asg,s1Asi,e0 - Asi 1,50 = P1r(s0) H Agi 1 si-

i=1
In this equation,

1. Pr(s) is estimated by the frequency &f in the genome, and

2. A, ,is estimated by, ;/N,, whereN, , is the number of occurrences in the genome of the diresidue
(r,s), andN, = >, N, ;.

Markov chains have some weaknesses as models of biologigaésces:

1. Unidirectionality: the residue; is equally dependent on bot_; ands;, yet the Markov chain
only models its dependence on theesidues on one side 6.
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2. Mononucleotide repeats are not adequately modeled. digesnuch more frequent in biological se-
guences than predicted by a Markov chain. This frequendkédly/ldue to DNA polymerase slippage
during replication, as discussed in Example 11.2.

3. Codon position biases (as discussed in Section 11.4)oacourately modeled.

13.3. Using Markov Chains to Find Genes

We will consider two gene finding algorithms, GeneMark [8a@H Glimmer [13, 41]. Both are commonly
used to find intron-free protein-coding regions (usuallypiokaryotes), and both are based on the ideas of
Markov chains. As in Section 12.1, both assume that a trgisét of coding regions is available, but unlike
that method, the training set is used to train a Markov chain.

GeneMark [8, 9] uses kth order Markov chain to find coding regions, whére- 5. This choice allows
any residue to depend on all the residues in its codon andriimediately preceding codon.

The training set consists of coding sequences identifiedithgrelong open reading frames or high
sequence similarity to know genes.

Three separate Markov chains are constructed from thartgaset, one for each of the three possible
positions in the reading frame. For any one of these readamgd positions, the Markov chain is built by
tabulating the frequencies of gt + 1)-mers (that is, all lengttk + 1 substrings) that end in that reading
frame position. These three Markov chains are then altedntd form a single nonstationadth order
Markov chainM that models the training set.

Given a candidate ORE, we can compute the probabilip/thatz was generated by/, as described
in Section 13.2. This ORF will be selected for further comsadion if p is above some predetermined
threshold. The “further consideration” will deal with pdde pairwise overlaps of such selected ORFs, in a
way to be described in the next lecture.
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14.1. Problems with Markov Chains for Finding Genes

The Markov chain is an effective model for finding genes, axdeed in Section 13.3. However, such a
tool is not 100% accurate. The problem is thatta order Markov chain require&*! probabilities in each
of three reading frame positions. There is a tension betweedingk large to produce a good gene model,
and needing: small because there is insufficient data in the training Bet.example, whet = 5 as in
GeneMark, we needl x 45 ~ 12,000 6-mers to build the model. Each of these 12,000 6-mast occur
often enough in the training set to support a statisticaliable sample.

Some 5-mers are too infrequent in microbial training sed$,spme 8-mers are frequent enough to be
statistically reliable. Section 14.2 describes a gene fitlt# was designed to have the flexibility to deal
with these extremes.

14.2. Glimmer

Glimmer [13, 41] is a gene prediction tool that uses a modelesohat more general than a Markov chain.
In particular, Glimmer 2.0 [13] uses what the authors callitiberpolated context modé@iCM).

The contextof a particular residue consists of theharacters immediately preceding it. A typical con-
text size might bé = 12. For contextC = b1 b, . .. by, the interpolated context model assigns a probability
distribution forby 1, using only as many residues frathas the training data supports. Furthermore, those
residues need not be consecutive in the context.

Glimmer has three phases for finding genes: training, ifleation, and resolving overlaps.

14.2.1. Training Phase

As in Sections 12.1 and 13.3, Glimmer uses long ORFs and segsissimilar to known genes from other
organisms as training data for the model. For each of the tle@ding frame positions, consider @H-1)-
mers that end in that reading frame position. Ketbe a random variable whose distribution is given by the
frequencies of the residues in positibaf these(k + 1)-mers.

In general, we will not have sufficient training data to udekakesidues from this context to predict the
(k +1)stresiduey ;. Our goal is to determine which variabl; has most correlation wit;, ;, and use
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Figure 14.1: Interpolated context model tree.

it to predictb,, 1. The mutual information of Definition 11.3 is used to makes thetermination. We first
find the maximum among the mutual information values

I(X15 Xpg1), I(Xo; Xig1)s - oo I(Xges Xgg1)-

SupposeX; maximizes this mutual information. Then thth residueb; will be used first to predict the
value ofby 1.

To determine which position has the next highest correiatice do not simply take the second highest
mutual information from the list above. The identity of thexhposition instead depends on the value of the
first selected residulg. Glimmer builds a tree of influences o6y, 1, illustrated in Figure 14.1, as follows.
The (k + 1)-mers from this reading frame position are partitioned fotor subsets according to the residue
b;. Then we repeat the mutual information calculation aboveefrh of these subsets. In the example of
Figure 14.1,X; was found to have the greatest mutual information . ,, and the(k + 1)-mers were
partitioned according to the value of residiye For those withh; = A, Xy was found to have the greatest
mutual information withX ;, and they were further partitioned into four subsets adgogrtb the value of
residueb; .

A branch is terminated when the remaining subsétof 1)-mers becomes too small to support further
partitioning. Each such leaf of the tree is labeled with thabpbility distribution ofXj, 1, given the residue
values along the path from the root to that leaf. For examiplé¢he tree shown in Figure 14.1, the leaf
shaded gray would be labeled with the distribution

P’/‘(Xk+1 :$|X7:A&X10:A&X4:T)

Note how this tree generalizes the notion of Markov chairgiin Definition 13.1.

14.2.2. Identification Phase

Once the interpolated context model has been trained, dmifitation phase begins. Given a candidate
ORFz, compute the probability of each residig.; of = by following the appropriate path in the tree that
corresponds té,1’s position in the reading frame. Here is a rough algorithmtiie identification phase:

1. Pick the tree for the correct reading frame position.

2. Number the residues in the contexbgf ;, so that the previous residuebig the one before thaj, _,
and so on.
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A A A A
B B B B
- —_— —_— —_—
(a) (b) (c) (d)

Figure 14.2: Overlapping gene candidates. The arrow ptoritse3’ end of the sequence.

3. Trace down the tree, selecting the edges according toatieylar residues in the sequence, until
reaching a leaf. Read the probabiliey( X1 = bx41 | ...) from that leaf.

4. Shift to the next residue in the sequence and repeat.

The product of these probabilities (times the probabilityhe first & residues ofz, as in Section 13.2)
yields the probability that was generated by this interpolated context model. To tadkéetingth ofz into
account, combine these probabilities by adding their litlyais, and normalize by dividing by the length of
x. Selectx for further investigation if this score is above some predained threshold.

Note: Glimmer actually stores a probability distributiar X, ; at every node of the tree, not just the
leaves, and uses a combination of the distributions alomgrech to predicty ;. This is where the modifier
“interpolated” would enter, but we will not discuss this addcomplication. See the papers [13, 41] for
details.

14.2.3. Resolving Overlap

In the final phase, Glimmer resolves candidate gene segsimmsoverlap. The main flexibility in resolving
overlap is the possibility of shortening an ORF by choosirdifierent start codon. Suppose sequendes
and B overlap, and that A has the greater score. There are fouibfiEes for the way they overlap, as
depicted in Figure 14.2. Each arrow in that figure points &®ttend of the sequence.

(a) Supposed and B overlap as shown in Figure 14.2(a). Moving either start cockmnot eliminate the
overlap in this case. Ifi is significantly longer thaB, then rejectB. Otherwise, accept both and
B with an annotation that they have a suspicious overlap.

(b) Supposed and B overlap as shown in Figure 14.2(b). If moviigs start codon resolves the overlap
in such a way thaB still has great enough score and great enough length, dootptlif not, proceed
as in Case (a).

(c) Supposed and B overlap as shown in Figure 14.2(c). If the score of the opeda small fraction of
A’s score, and movingl's start codon resolves the overlap in such a way #hstill has great enough
length, accept both. Otherwise rejdgt

(d) Supposed and B overlap as shown in Figure 14.2(d). Mo#s start codon until the overlap scores
higher for B than for A. Then moveA'’s start codon until the overlap scores higher fothan for B.
Repeat until there is no more overlap, and accept both.

If there are more than two overlapping sequences, treatvédaps in decreasing order of score. In this
way, if A overlapsB and B overlapsC, and A has the highest score, théhmay be rejected before its
overlap withC would cause” to be rejected.
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15.1. Experimental Results of Glimmer

The experimental results of Glimmer were presented by ektal. [13]. They used the method described
in Section 14.2 to predict genes in ten sequenced microbimdmes. The procedure was automated so as
not to require human intervention. For each of the ten miat@®nomes, the procedure was as follows.

In the training phase, they constructed a training set stingi of all ORFs longer than 500 bp with no
overlap. The authors state that this set has more than erdaigho train the interpolated context model
accurately. The then trained the interpolated context tnodehe training set, as described in Section
14.2.1.

The identification phase and overlap resolution were themecbout as described in Sections 14.2.2 and
14.2.3. In each of the ten genomes, 99% of the annotated gesrescorrectly identified. The authors did
not mention whether the start codons had been correctlyifdehin all cases.

Glimmer thus achieved a false negative rate of 1%, but alsalsa fpositive rate of 7-25% on each
genome. The false negative rate is the percentage of aadajanes that were not identified by Glimmer.
The false positive rate is the percentage of ORFs identifig@limmer as genes, but not so annotated in the
database. Of course, some of the annotations could be @utorr

15.2. Start Codon Prediction

The accurate prediction of the translation start site, ihathe correct start codon, is important in order
to analyze the putative protein product of a gene. Given tradityy of the rest of the process, accurate
start codon prediction is the most difficult remaining pdrpkaryotic gene prediction. The gene-finding
techniques discussed so far do little to predict the costet codon among all the candidates.

Among the possible start codon candidates, what extra estdean be used to identify the true transla-
tion start site? Recall from Section 2.2 that the ribosonthaeasstructure that translates mRNA into protein
and, at the initiation of that translation, is responsite iflentifying the true translation start site. How
does the ribosome perform this identification? Can we imprstart codon prediction by mimicking the
ribosome’s process?

At the initiation of protein synthesis, the ribosome bindstte mRNA at a region near ttend of the
MRNA called thaibosome binding siteThis is a region of approximately 30 nucleotides of the mRNat
is protected by the ribosome during initiation. The ribogdninding site is approximately centered on the
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Bacillus subtilis 5 ... CUGGAUCACCUCCUUUGUA
Lactobacillus delbrueckii 5 ... CUGGAUCACCUCCUUUGUA
Mycoplasma pneumoniae 5 ... GUGGAUCACCUCCUUUGUA
Mycobacterium bovis 5 ... CUGGAUCACCUCCUUUGU
Aquifex aeolicus 5 ... CUGGAUCACCUCCUUUA'
Synechocystis sp. 5 ... CUGGAUCACCucCCcuUuU 3’
Escherichia coli 5 ... UUGGAUCACCUCCUUA 3’
Haemophilus influenzae 5 ... UUGGAUCACCUCCUUA 3’
Helicobacter pylori 5 ... UUGGAUCAcCcuccu 3
Archaeoglobus fulgidus 5 ... CUGGAUCAcCcuccu 3
Methanobacterium thermoautotrophicun®’ ... CUGGAUCACCUCCU 3
Pyrococcus horikoshii 5 ... CUCGAUCACcCuUccu 3
Methanococcus jannaschii 5 ... CUGGAUCACCUCC 3
Mycoplasma genitalium 5 ... GUGGAUCACCUC 3

Table 15.1:3' end of 16S rRNA for various prokaryotes

start codon (usually AUG). That is, the ribosome binding sibntains not only the first few codons to be
translated, but also part of téuntranslated region of the mRNA (see Section 2.3).

The ribosome identifies where to bind to the mRNA at initiatiwt only by recognizing the start codon,
but also by recognizing a short sequence inthentranslated region within the ribosome binding site. This
short mMRNA sequence will be called t&® site for reasons that will become clear below. The mechanism
by which the ribosome recognizes the SD site is relativehpst base-pairing: the SD site is complementary
to a short sequence near theend of the ribosome’'$6S rRNAone of its ribosomal RNAs.

The SD site was first postulated by Shine and Dalgarno [44faoli. Subsequent experiments demon-
strated that the SD site iB. coli MRNA usually matches at least 4 or 5 consecutive bases iretfigeace
AAGGAGG, and is usually separated from the translatiort sige by approximately 7 nucleotides, although
this distance is variable. Numerous other researchersagigbllanoweth and Rabinowitz [49] and Mikko-
nenet al. [34] describe very similar SD sites in the mRNA of other pngkdes. It is not too surprising
that SD sites should be so similar in various prokaryotas;esthe3’ end of the 16S rRNA of all these
prokaryotes is well conserved (Mikkonehal. [34]). Table 15.1 shows a humber of these rRNA sequences.
Note their similarity, and in particular the omnipresené¢¢he sequence CCUCCU, complementary to the
Shine-Dalgarno sequence AGGAGG.

This SD site can be used to improve start codon predictione Simplest way to identify whether
a candidate start codon is likely to be correct is by checkamgapproximate base pair complementarity
between th&’ end of the 16S rRNA sequence and the DNA sequence just upstfihe candidate codon.
We say “approximate” complementarity because the ribogosteeeds sufficient binding energy between
the 16S rRNA and the mRNA, not necessarily perfect compleanigyn

Several papers do use this SD site information to improvestation start site prediction. These papers
are described briefly below.

Hayes and Borodovsky [22] found candidate SD sites by rgnaiibbs sampler (Section 10.2) on the
DNA sequences just upstream of a given genome’s purpordetcstdons. They then used tfeend of the
genome’s annotated 16S rRNA sequence to validate the SBosftaind.

Frishmaret al. [16] used a greedy version of the Gibbs sampler to find liké&ysies. In addition, they



LECTURE 15. START CODON PREDICTION 67

took into account the distance from the SD site to the statbepwhich should be about 7 bp.

Hannenhalliet al. [21] used multiple features to score potential start coddhg features used were the
following:

1. the binding energy between the SD site and3thend of the 16S rRNA, allowing “bulges” (that is,
insertions and deletions) in the binding,

2. the identity of the start codon (AUG, UUG, or GUG),

3. coding potential downstream from the start codon and oding potential upstream, using Gene-
Mark’s scoring function (Section 13.3),

4. the distance from SD site to start codon, and

5. the distance from the start codon to the maximal startiwodbich is as far upstream in this ORF as
possible.

They took the score of any start codon to be a weighted linearbination of the scores on these five
features. The coefficients of the linear combination wetaiobd using mixed integer programming.

15.3. Finding SD Sites

Do all prokaryotes have SD sites very similar to the ShinéggBrao sequences &:. coli? Given the col-
lection of DNA sequences upstream from its putative genew, ¢an we identify a prokaryote’'s SD site,
without reliance on the annotation of its 16S rRNA?

Tompa [48] proposed a method to discover SD sites by lookingthatistically significant patterns (or
motifg in the sequences upstream from the putative genes. Thedistreminiscent of the relative entropy
site selection problem of Lecture 10 but, unlike the al¢yoni$ discussed there, this one is exhaustive, and
guaranteed to find the most statistically significant molihe statistical significance is measured by the
“z-score”, defined below. The sites with the highesicores are very unlikely to be from the background
and very likely to be potential SD sites.

For each possiblé-mer s, this approach takes into account both the absolute nuibef upstream
sequences containing (an approximation Qfand the background distribution. It then calculates the un
likelihood of seeingV, such occurrences, if the sequences had been drawn at ranatonthie background
distribution. The random process used in this calculaganlist order Markov chain based on the sequences’
dinucleotide frequencies. (See Section 13.2.)

The measure of unlikelihood used is based on:tlseore, defined as follows. L&f be the number of
upstream sequences that are input, anthe probability that a single random upstream sequenceaicent
at least one occurrence of (an approximationsof{See Tompa [48] for a description of how to compute
ps.) ThenNp, is the expected number of input sequences contaisjgd/Nps(1 — ps) is its standard

deviation. Thez-scoreis defined as
Ny — Nps

B VNps(l _ps)'

The measure; is the number of standard deviations by which the observiest V&, exceeds its expectation,
and is sometimes called the “normal deviate” or “deviatiorstandard units”. See Leurg al. [30] for a
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detailed discussion of this statistic. The measyris normalized to have mean 0 and standard deviation 1,
making it suitable for comparing different motifs

The algorithm was run on fourteen prokaryotic genomes. &mogtifs with highest-score showed a
strong predominance of motifs complementary to 3hend of their genome’s 16S rRNA. For the bacte-
ria, these were usually a standard Shine-Dalarno sequemnsisting of 4-5 consecutive bases from AAG-
GAGG. For the thermophilic archaéafulgidus M. jannaschij M. thermoautotrophicurmrandP. horikoshij
however, the significant SD sites uncovered were somewfiatatit. What is interesting about these is that
their highest scoring sequences display a predominante ittern GGTGA or GGTG, which satisfies the
requirement of complementarity to a substring neamthend of the 16S rRNA (see Table 15.1). However,
that 16S substring is shifted a few nucleotides upstreanpeoed to the bacterial sites discussed above.
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16.1. RNA Secondary Structure

Recall from Section 1.3 that RNA is usually single-strandeis “normal” state, and this strand folds into
a functional shape by forming intramolecular base pairsrajyremme of its bases. (See Figure 16.1 for an
illustration.) The geometry of this base-pairing is knovertlze “secondary structure” of the RNA.

When RNA is folded, some bases are paired with other whilerstremain free, forming “loops” in the
molecule. Speaking qualitatively, bases that are bondedl te stabilize the RNA (i.e., have negative free
energy), whereas unpaired bases form destabilizing Iquopsitive free energy). Through thermodynamics
experiments, it has been possible to estimate the free ywérgpome of the common types of loops that
arise.

Because the secondary structure is related to the fundtidie &NA, we would like to be able to predict
the secondary structure. Given an RNA sequenceRiNA Folding Problemis to predict the secondary
structure that minimizes the total free energy of the folB&A molecule.

The prediction algorithm that will be described is by Lyngs@l. [33].

Hairpin Loop

Multi-branched Loop
Stacked Pair

/

Bulge

External Base™

Internal Loop

Figure 16.1: RNA Secondary Structure. The solid line inisahe backbone, and the jagged lines indicate
paired bases.
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Figure 16.2: A Pseudoknot

16.2. Notation and Definitions
If s =s152...5,is an RNA sequence and< : < j < n, then: - j denotes the base-pairing gfwith s;.

Definition 16.1: A secondary structuref s = s1s5... s, IS a setS of base pairs such that each base is
paired at most once. More precisely, forallj € S andi’ - j' € S,7=1i"ifand only if j = j'.

The configuration shown in Figure 16.2 is known agsaudoknot For the prediction algorithm that
follows, we will assume that the secondary structure dod¢scaotain any pseudoknots. The ostensible
justifications for this are that pseudoknots do not occurfesas the more common types of loops, and
secondary structure prediction is moderately successtn & pseudoknots are prohibited. However, the
real justification for this assumption is that it greatly plifies the model and algorithm. (Certain types
of pseudoknots are handled by the algorithm of Rivas and E8Rly but the general problem was shown
NP-complete by Lyngsg and Pedersen [32].)

Definition 16.2: A pseudoknoin a secondary structutg is a pair of base pairs- j € Sandi’ - j' € S
withi < i’ <j <j'.

16.3. Anatomy of Secondary Structure

Given the assumption of no pseudoknots, the secondantgteucan be decomposed into a few types of
simple loops, described as follows and illustrated in Féglé.1.

Definition 16.3:

¢ A hairpin loopcontains exactly one base pair.
e An internal loopcontains exactly two base pairs.
e A bulgeis an internal loop with one base from each of its two bases@aljacent on the backbone.

e A stacked paiiis a loop formed by two base paiis j and (i + 1) - (j — 1), thus havingooth ends
adjacent on the backbone. (This is the only type of loop ttadiilizes the secondary structure. All
other loops are destabilizing, to varying degrees.)
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e A multibranched loops a loop that contains more than two base pairs.

e An external baseés a base not contained in any loop.

Definition 16.4: Given a loop, one base pair in the loop is closest to the entteedRNA strand. This
is known as thexterior or closingpair. All other pairs arénterior. More precisely, the exterior pair is the
one that maximizeg — i over all pairs; - 5 in the loop.

Note that one base pair may be the exterior pair of one loogtanihterior pair of another.

16.4. Free Energy Functions

The assumption of no pseudoknots leads to the followingegélassumptions:

1. The free energy of a secondary structure is the sum of éleecinergies of its loops.

2. The free energy of a loop is independent of all other loops.

These assumptions imply that, to evaluate the free energya ofjiven secondary struc-
ture, all that is needed is a set of functions that provide flee energies of the allow-
able constituent loop types. These functions are free energy functions which we will
assume are provided by experimentalists and are availabte tie algorithm’s use. See
http://www.ibc.wustl.edu/"zuker/rna/energy/node2.ht mMI#SECTION20 for typical
tables and formulas that can be used.

Definition 16.5: There are four free energy functions:

e e5(i, 7). This function gives the free energy of a stacked pair thasists ofi - j and(i +1) - ( — 1).
eS(, ) depends on all the bases involved in the stack, namely, s; .1, ands;_;. Because stacked
complementary base pairs are stabilizing,values will be negative if both stacked base pairs are
complementary. In addition to the usual complementaryspaitJ and C-G, the pair G-U forms a
weak bond in RNA, and is sometimes called a “wobble pair’. #h&alues involving such pairs will
also be negative.

e ¢H(i, 7). This function gives the free energy of a hairpin loop clobgd - j. This function depends
on several factors, including the length of the lospands;, and the unpaired bases adjacent;to
ands; on the loop.

e ¢L(i,4,4',j'). This function gives the free energy of an internal loop dgbwvith exterior pair - j
and interior pairi’ - /. Similar toeH, this function depends oit — 7, ; — j', the four paired bases,
and the unpaired bases adjacent to the paired bases on phe loo

e eM(4,7,%1,71,-- -,k jk). This function gives the free energy of a multibranched lolmsed by - j
with interior pairsiy - j1,-. ., % - jx- This function is the least well understood at this time.
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16.5. Dynamic Programming Arrays

The algorithm described by Lyngsd# al. [33] uses dynamic programming, the technique that was wsed t
find optimal alignments (Section 4.1). Like the affine gapgignalgorithm of Section 5.3.3, this one fills
in several tables simultaneously. The five tables used aited below.

W{(j): the free energy of the optimal structure of the firsesiduess; sy ... s;. This is the key array: if
we can computd? (n) (and find its associated secondary structure), we are done.

V(i,j): the free energy of the optimal structure gt . . s;, assuming-j forms a base pair in that structure.

VBI(i,7): the free energy of the optimal structure fqr... s;, assuming - j closes a bulge or internal
loop.

VM (i,7): the free energy of the optimal structure #gr.. . s;, assuming - j closes a multibranched loop.

WM(i,5): used to computd/M, in a manner to be revealed later.

Despite the similarity in their number and descriptionss itmportant to understand the distinction between
the free energy functions of Section 16.4 and these dynaragramming arrays. The free energy functions
give the energy of a single specified loop. The arrays willegalty contain free energy values for a collec-
tion of consecutive loops. For example, referring to Figléel,eL(a, b, ¢, d) gives the free energy of the
internal loop closed by - b andc - d, wheread/ (a, b) gives the total free energy of all the loops to the right
of a - b, including the stacked pairs and the hairpin.
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17.1. Recurrence Relations

The core of the dynamic programming algorithm for RNA se@pdstructure prediction lies in the re-
currence relations used to fill the arrays introduced iniBec6.5. This section develops the recurrence
relations forW, V, VBI, and VM, which are interdependent.

17.1.1. W(y)
W) = 0
W(5) = min(W(5 —1), min (V(z,5) + W(i - 1)), forj >0
1]
The terms in the second equation correspond to choosingrthetlse for basesy, s», ..., s; having

the lesser free energy of two possible structures:

e The bases; does not pair with any other base and is therefore an exteasal (see Figure 16.1). The
recurrence forl¥ (j) makes the implicit assumption that the external bases deaomitibute to the
overall free energy of the structure. In this case the totafgy is thereforé¥ (5 — 1).

e The bases; pairs with some other basg in si,ss,...,s;_1, where: is chosen to minimize the
resulting free energy. That energy is the sum of the enéfgjy j) of the compound structure closed
byi - j, plus the energy¥ (i — 1) of the remaindes,, ss, ..., s;1.

17.1.2. V(i,j)

V(i) = +00, fori>j
)= min(eH(i, j),eS(i,j) + V(i + 1,5 — 1), VBI(i, j), VM (i,5)), fori<j

The terms in the second equation correspond to choosingitlimmm free energy structure among the
following possible solutions:

e i - jis the exterior pair in a hairpin loop, whose free energy é&efore given byH(i, 7).
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e i-j isthe exterior pair of stacked pair. In this case the freeggnis the energyS(s, j) of the stacked
pair, plus the energy (i + 1,5 — 1) of the compound structure closed fy+ 1) - (5 — 1). We know
in this case thati + 1) - (j — 1) forms a base pair becausej is the exterior pair of a stacked pair.

e ;- j is the exterior pair of a bulge or internal loop, whose freergn is therefore given b¥'BI(i, j).

e i - j is the exterior pair of a multibranched loop, whose free gyés therefore given by M (i, 7).
17.1.3. VBI(i,j)

VBI(i,j) = min (eL(3,, i' i)+ V@i, 5")
i<i3%]j’<j

In this casej - j is the exterior pair of a bulge or interior loop, and we mustrek all possible interior
pairsi’ - 5’ for the pair that results in the minimum free energy. For eagth interior pair, the resulting free
energy is sum of the energ¥. (4, j, ', j') of the bulge or internal loop, plus the energy(i’, ;') of the com-
pound structure closed hy- 5. Itis easy to see that this search for the best interior paiomputationally
intensive, simply because of the number of possibilitieg thust be considered. We will see later how to
speed up this calculation, which is the new contribution yidsget al. [33].

17.1.4. VM (i, j)

k
VM(%]): kin mln o (eM(iajailajlai%j?)"'77:k7jk)+Z V(Zhajh))
z<11<]111<]1121<2];2<<”:k]2]k<] h=1
k>2

In the same way that the recurrence f@BI requires a search for the best structure among all the
possible interior pairs, the calculation fé@\/ is even more intensive, requiring a search/anterior pairs
in * jn, €ach of which closes its own branch out of the multibrancloegp and contributes free energy
V (in,jn). A direct implementation of the calculation shown fgi/ is infeasibly slow. Section 17.3 will
discuss simplifying assumptions about multibranched $abjat allow us to speed this up substantially.

17.2. Order of Computation

The interdependence of these recurrences requires a lcargéning of the calculations to ensure that we
only rely on array entries whose values have already beenrdigted. Specifically, the entries are computed
in order from interior pairs to exterior pairs. This corresgs to filling the arrayd’, VBI, and VM in order

of increasing values of — 7. An inspection of the recurrences in Sections 17.1.2 — 4f&lieals that this
order will always guarantee that the needed array entries een computed.

Within the calculations involving a given value— 4, we computeVBI(i,j) and VM (i, j) before
V(z,7), in order to accommodate the recurrence in Section 17.1ofe that the calculations for the three
tables are interleaved: we calculate the entry in each fable given pairi, ; before advancing to the next
pair.

Because none of these entries depend on the values of entri¢s the computation ofi¥’ can be
deferred until the other three tables have been completed.
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17.3. Speeding Up the Multibranched Computation

As mentioned in Section 16.4, the actual free energy valtiesutiibranched loops are not yet well under-
stood. Given this state, the approximation we will descisdriven more by a desire to reduce the running
time of the dynamic program than to produce a very accuragsipdl model of the loop.

For this approximation, we assume that the free energy of libranched loop is given by an affine
linear function of the numbet of branches and the size of the loop (measured as the numbepafred
bases):

k—1

eM(i7j7i17j17---7ik7jk) =a+ bk—i_c((zl — 1= 1) + (] _jk - 1) + Z(ih-i-l _jh - 1))7
h=1

wherea, b, andc are constants. (Lyngsat al. [33] suggest that it would be more accurate to approximate
the free energy as a logarithmic function of the loop size.)

Assuming this linear approximation, we can devise a muchenefficient dynamic programming so-
lution for computing VM than the one given in Section 17.1.4. This solution requaresdditional array
WM, where WM (i, j) gives the free energy of an optimal structure fgr. . ., s;, assuming thag; ands;
are on a multibranched loog¥Mis defined by the following recurrence relation:

WM(i,i) = c

WM(i,j) = min(V(4,7) + b, .Lr}liE.(WM(i,h — 1)+ WM(h,j))), fori < j
1<hy)

The terms in the second equation correspond to the follopossible solutions:

e i - j forms a base pair and therefore defines one oftheanches, whose free energyligi, j).

e s; ands; are not paired with each other, so the free energy is givemdéyrtinimum partition of the
sequence into two contiguous subsequences.

Calculating VM then reduces to partitioning the loop into at least two @ee#h the minimum total
free energy:

VM(i,j) = ng}llgjil(WM(z +1,h—-1)+ WM(h,j—1)+a)

17.4. Running Time

The running time to fill in each of the complete tables (assigntie values on which it depends have already
been computed and stored in their tables, and that we arg tiginmultibranched approximation of Section
17.3) is determined as follows:

e W: O(n?). Each ofn entries requires the computation of the minfn) terms.

e V:O(n?). Each ofO(n?) entries requires the computation of the min of 4 terms.
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e VBI: O(n"). Each ofO(n?) entries requires the computation of the min((fn?) terms.
e WM: O(n?®). Each ofO(n?) entries requires the computation of the min(xf) terms.

e VM: O(n3). Each ofO(n?) entries requires the computation of the minfz) terms.

With the speedup of the multibranched loop computation ritest in Section 17.3, the new bottleneck
has become th@(n?*) time computation of the free energy of bulges and interngpso We will see next
how to eliminate this bottleneck.
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Recall from Section 17.4 that the running time for deterngrihe internal loop free energy calculation
is O(n?): each of theD(n?) exterior pairs; - j requires a search through thgn?) interior pairsi’ - 5’ for
one that minimizes the resulting free energy. We will adsitess O(n?*) running time computation of the
free energy of bulges and internal loops, and show that ibeagtecreased 0 (n?). This is the main result
of Lyngsget al. [33] and, combined with the remaining analysis in Sectiod 13hows that the entire RNA
secondary structure prediction problem can be solved ie €fn?). O(n?) running time is not practical
for long RNA sequences, but it does allow for secondary &irecprediction for RNA sequences that are
hundreds of bases in length, which would be prohibitive \aitin* time algorithm.

18.1. Assumptions About Internal Loop Free Energy

To speed up the running time it is necessary to make some pfisusi about the form of the internal
loop free energy functionL(z, j,4', ') (see Definition 16.5). The authors cite thermodynamicsiasutthat
support the fact that these assumptions are realistic.

The authors first assume thdt is the sum of 3 contributions:
1. aterm %ize(s’ — i+ j — j' — 2)" that is a function of the size of the loop, plus

2. stacking energiesstacking(, j) + stacking(é’, /)" for the unpaired bases adjacent on the loop to the
two base pairs, plus

3. an asymmetry penaltySymmetry (i’ —i— 1,5 — j' — 1)”, wheres’ — i — 1 is the number of unpaired
bases between the two base pairs on one side of the loop,-arft— 1 the number on the other side.

The free energy function for bulges and internal loops is thiven by

eL(i,7,1,j') = size(i’ —i+j —j' —2)+stacking(i, j) +stacking (i’, 5') +asymmetry (i’ —i— 1,7 —j' —1).

(18.1)
18.2. Asymmetry Penalty
The currently used asymmetry functions are of the form
asymmetry(n1,ng) = min(Emax, [n1 — na|f(m)), (18.2)
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whereFE .« is the maximum asymmetry penalty assesgad,a function whose details need not concern us,
m = min(ny,ns,c), andc is a small constant (equal to 5 and 1, respectively, in tweddihermodynamics
studies).

What is important for our purposes is that this asymmetnafigmyrows linearly injn; — ny|, provided
thatn, > candny > c. In particular, the only assumption we will need to make dlloe penalty is that

asymmetry(ni,ng) = asymmetry(ny + 1,n9 + 1) (18.3)

forall n; > candny > c. This is certainly true for the particular form given in Egoa (18.2).

18.3. Comparing Interior Pairs

Recall from Section 17.1.3 the recurrence

VBI(i,j) = min (V(i',j') +eL(,54,7,5")).
i<il’<,]j’<j

We are going to save time by not searching through all theiawtpairs:’ - j'. Suppose that, for exterior pair

i- 7, the interior pair’ - j' is better than” - 5, and that both of these loops have the same size. Then, under
the assumptions from Sections 18.1 and 18.2, Theorem 1R\ ldemonstrates that- ;' is also better for
exterior pair(i — 1) - (j + 1). The intuition behind this theorem is that the asymmetryaftgrior i’ - j' is

the same for the two different exterior pairs by Equation3}L8s is the asymmetry penalty dr- ;”, and

neither interior pair gains an advantage in loop size okétgoenergies when you change from the smaller
to the bigger loop.

Theorem 18.1: Let
j/ _ Z'/ — j” _ Z'// (18.4)

(so as to compare internal loops of identical size).iLeti — 1,5 —j' — 1, —i —1,andj — j” — 1 each
be at least (so that Equation (18.3) applies to both loops). Suppoge tha

V(i',j') +eL(i, i, j) < V(" ") + eL(i, j,i", j"). (18.5)

Then
V(ilaj,) + EL(Z - 17.7 + 17i,7j,) S V(iﬂaj") + eL(Z - 17] + 17i,’7j,,)'
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Proof:
V(@' 5" +el(i — 1,5 +1,4,5)
= V(,j") +size(i’ —i+j —j') + stacking(i — 1,7 + 1) + stacking(é', j')
+ asymmetry (i’ — 4,5 — j) Equation (18.1)
= V@) + eli,5,i, )
—size(i' —i+j—j —2)+size(i' —i+j—j)
— stacking(, j) + stacking(i — 1,7 + 1)
—asymmetry (s —i— 1,5 — 5" — 1) + asymmetry (i’ — 1,5 — j') Equation (18.1)
= V@) + eli,5,i, )
—size(i' —i+j—5 —2)+size(i' —i+j—j)
— stacking(, j) + stacking(i — 1,5 + 1) Equation (18.3)
V(@i",3") + eL(,5,4", ")

IN

—size(i”" —i+7j — 5" —2) +size(i”" —i+j—35")

— stacking(, j) + stacking(i — 1,5 + 1) Equations (18.4) & (18.5)
= V(@E",j") +eL(i,5,1",5")

—size(i” —i+7j —j" —2) +size(d" —i+j —j")

— stacking(i, j) + stacking(i — 1,5 + 1)

— asymmetry(i” —i — 1,5 — 5" — 1) + asymmetry(s" —i,5 —5”)  Equation (18.3)

= V(@E",j") +size(”" —i+j — j") + stacking(i — 1, + 1) + stacking(i”, ;")

+ asymmetry (i” — 4,5 — j") Equation (18.1)
= V(@",j") +eL(i—1,5+1,", ;") Equation (18.1)
O

Instead of using a two-dimensional arr&I(i, j), use a three-dimensional arrdB1 (i, j, (), wherel
is the loop size. This array will be filled in using dynamic gramming. The entrWBI (i, j,1) will store
not only the free energy, but also the best interior pair’ (subjecttoi’ — i —1 > candj —j' —1 > ¢)
that gives this energy.

Now suppose that the entrYBI(i,j,1) has been calculated, and we want to calculate the entry
VBI(i— 1,5+ 1,1+ 2). By Theorem 18.1, the interior paif - j' stored in VBI(i,4,1) is the best in-
terior pair for VBI(i — 1,5 + 1,1 + 2), with only two possible exceptions. These possible exoaptare
the loops with exterior paifi — 1) - (j + 1), lengthl + 2, and having one or the other loop side of length
exactlyc.

Thus, for each of)(n?) entries inVBI, it is necessary to compare 3 loop energies and store the mini
mum, which takes constant time. Itis also necessary to crertpase loops with exterior pajii—1)-(j+1)
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and lengthl + 2 having one or the other loop side of length less thdout there are only a constant number
of these.
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