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Abstract
DNA arrays yield a global view of the cell by enablthg measurement of expression levels of thousands
of genes simultaneously. When used to compare normasissid tissues at various stages of disease, or
diseased tissues with different responses to treatareays present opportunities for improved disease
diagnosis and a deeper understanding of the moleculardbadiserved phenotypes. Several machine
learning methods have been applied to array data tafglgeaes on the basis of their expression levels in
particular samples, and to classify tissue samples oratlig &f their global patterns of gene expression [2-
4,9,12,21]. These tasks are made more difficult by the maiture of array data, and when classifying
tissues, by the overwhelming number of gene attribvelesive to the number of training samples. In this
paper, we present a naive Bayes method for classifigages on the basis of DNA array data, and use a
likelihood-based metric to select the most useful suddsgtnes for inclusion in the classifier. We applied
this method to data sets with tissues of two diffectagses, and found its accuracy to exceed that of a
recently described method [12,21] in two of the threescaBearthermore, our method is easily extendible
to multiclass classification, and performed well whppliad to a data set with three different classes of

tissues.

'Department of Computer Science and Engineering, Univastityashington, Seattle, WA 98195
?Institute for Systems Biology, Seattle, WA 98105
3Department of Molecular Biotechnology, University oftington, Seattle, WA 98135



Introduction

DNA arrays now offer the ability to measure the Iswaf expression of thousands of genes
simultaneously. These arrays consist of large numbersegific oligonucleotides or cDNA sequences,
each corresponding to a different gene, affixed toid satface at very precise locations. When an array
chip is hybridized to labeled cDNA derived from a pattctissue of interest, it yields simultaneous
measurements of the mRNA levels in the sample fdr gane represented on the chip. Since mRNA
levels are expected to correlate roughly with the tegétheir translation products, the active molecules of
interest, array results can be used as a crude approtnt@the protein content and thus the ‘state’ of the
sample. Ideally, one would like in addition to meashesl¢vels of proteins in a cell directly, and such
technology is currently being developed [13].

DNA arrays yield a global view of gene expression and carsée in a number of interesting
ways. For example, clustering can be performed in orddetdify genes that are regulated in a similar
manner under a number of different environmental conditjth,4,9]. Such analysis can be used to surmise
the unknown functions of genes based upon the knowstidms of other genes in the same cluster. When
applied to samples prepared at various times followingfgpeavironmental perturbations or in different
genetic backgrounds, arrays can be used to infer regufsitirways at the level of transcription. Toward
that aim, Bayesian networks have recently been edefrom array data to elucidate probabilistic
relationships between the expression of different geri¢s DNA arrays can be used to characterize the
cellular differences between different tissue types, sisdbetween normal cells and cancer cells at
different stages of tumor progression, or between canath different responses to treatment, or between
control cells and cells treated with a particular d&igch analysis can potentially yield useful diagnostic
tools for classifying samples on the basis of theiregexpression patterns [2,12].

Classification of tissues on the basis of DNA arraa ¢ieesents several algorithmic challenges.
For example, the data often contain ‘technical’ noisedhatbe introduced at a number of different stages,
such as production of the DNA array, preparation oktdraples, hybridization between cDNA and array,
and signal analysis and extraction of the hybridizatezults. Schenet al. [18] tried to reduce some of
this noise by simultaneously hybridizing both a test @ference sample to an array, each labeled with a
different color fluorescent dye. Additional ‘biologicabise can come from non-uniform genetic
backgrounds of the samples being compared, or from térity or misclassification of tissue samples.
Furthermore, array data contain an overwhelming numtzegtrifutes relative to the number of training
samples, since each experiment yields the levels of eigmesfthousands of genes. One expects that the
majority of such genes are irrelevant to the classmdigin one wants to learn. The combined effect of
large numbers of irrelevant genes could potentially drowrh@itontributions of the relevant ones.

We describe here a naive Bayes algorithm and gendiselecheme that has a probabilistic basis
and should cope with the specific challenges inherentdy data such as noise and the large number of
attributes. The method specifically identifies thoseegethat are most likely to confer high classifier

accuracy, and hence those that could likely lend insigbtthe biological basis of class distinction. Unlike



previously described methods to classify tissues using data, the naive Bayes method described here is
easily generalized for classification among any nurobelasses. Furthermore, this method has scalable
computation time and memory requirements and will likelpyglicable as the amount of DNA array data
greatly increases, and even to future experiments inhwthélevels of cell proteins rather than mRNAs are
measured directly. In section 2 we discuss algorithmiealpio DNA array data and compare them with
our method. In section 3, we evaluate the performandeafdive Bayes classifier when applied to three

data sets. In section 4 we discuss our findings and speonlatssible further improvements.

2. Classification Methods

Several methods have been used to classify tissues badiseof DNA array data. The problem
can be stated as follows, where a ‘sample’ considtsedievels of expression in a particular tissue of each
gene represented on the array: Given a set ofrtgagamples drawn from some probability distribution,
each assigned a class, and a test sample drawn fraantgeprobability distribution, determine the class
of the sample. Ben-Dat al. explored using Nearest Neighbor classification, Supgector Machines,
Boosting, and a clustering based approach [3]. Each methaldés a supervised learning phase, during
which samples with known classes are used to ‘learnhdisishing features among the classes. Although
they appear to perform roughly comparably on test dédaesech method has particular strengths and
weaknesses with regard to DNA array data, as described.be
2.1 Nearest Neighbor (NN)

Nearest Neighbor is a lazy classifier in which compaieis deferred until classification time;
training merely involves storing all the training sansglememory [8]. Classification of a sample consists
of assigning it the class of the training sample thatasest to it according to a distance metric, such as
Pearson correlation used by [3]. Sensitivity to noisbéndata can be greatly reduced by classifying a
sample according to the majority class of the N dbsaining samples, where N > 1. However, most
distance metrics, including the Pearson correlatiom expected to become less sensitive as the
dimensionality of the ‘noisy’ data increases, thus limgjitthe performance of NN when applied to array
data. In addition, NN does not identify genes most usefulass distinctions and has large memory
requirements, since it must maintain all training data imang.

2.2 Support Vector Machines (SVM)

Support Vector Machines are a method for finding a hypeegtahigh dimensional space that
separates training samples of each class while maxigniize minimum distance between that hyperplane
and any training sample [4,5]. If the data are notlilyeseparable, they can be projected onto a higher
dimensional ‘feature’ space in which they are separdbfn training, the SVM identifies those samples
that are closest to the hyperplane, and thus whichaptmgater role in classifying a test sample. The SVM
is therefore particularly effective in cases with gdéanumber of samples, such as the use of array data to
classify genes rather than tissues. The method canmmpesfell in the presence of noisy data and large



numbers of attributes. However, it does not identifsthattributes most useful for classification, and
therefore could not lend any insight into the molechisis for tissue class distinction.
2.3 Boosting

Boosting is a method of aggregating many models produced bgak fwarner’ into an effective
classifier [10]. In each iteration of the algorithm,eawvmodel trained to emphasize those training samples
misclassified by models of the previous iterationg@lpced. The final aggregate classifies a sample
according to votes from its models, each weighted accotdiitg accuracy on the data with which it was
trained. While the aggregation of models should redwssidier error in general, boosting could perform
poorly if some of the training samples are mis-labelBais is because in each iteration, training
emphasizes those samples, including perhaps mis-labeled sawigleh had been misclassified during
previous iterations. Ben-Det al.[3] used a single gene and a threshold value as their weakredf
that gene’s expression level in a sample is belovhiteshold, the model votes for one class, and if the
gene’s expression level is above, the model votehéoother class. Since training the weak learner results
in the selection of a single gene, the boosting agtgedauch weak learners should perform well even in
the presence of overwhelming numbers of attributes, atttefunore, identifies a subset of genes of
potential biological interest. However, the method iegotationally expensive since the entire training
data set must be examined to train the weak learnergdesich iteration.
2.4 Clustering-based Classification

Ben-Doret al. [3] describe a clustering based approach to classificafi®NA array data,
whereby training samples and the test sample to bsifital are mixed together and clustered without
supervision to produce a specified number of clusters.class of the test sample is then determined
according to the majority class of the training sampliés which it is clustered. The optimal number of
clusters must be determined by trying several differahtes and evaluating the homogeneity of the
resulting clusters with respect to class. This methodld perform well in the presence of noisy data as
long as the number of genes is limited, since like tdiY,method relies on having a sensitive metricHer t
distance between two samples. In order to reduce threndionality of the data, [3] implements an
orthogonal gene selection step prior to clustering. Gareeshosen according to how accurately they can
partition the training samples along class lines wisingle threshold value, such that training samples of
one class have values of that gene above the threshdlttaaring samples of the other class, below. This
selection improves the performance of the methodjdendifies a set of genes important for classification.
However, there is no evidence that their choice of gefextion is optimal for their algorithm.
2.5 Golub-Slonim (G-S) algorithm

A promising classification method for DNA array data wexently described by Golwdt al.[12]
and Slonimet al.[21], and will be referred to here as the ‘G-S algorithithe algorithm, which is only
applicable to data sets with two classes, uses tmngaiata to compute a mean and standard deviation for
each gene’s level of expression among samples of eash cThe class of a test sample is then determined

according to how close its gene values are to the ridgpeene value means for each class.



The G-S algorithm includes a gene selection step to eetiecdimensionality of the data prior to
classification. Genes are chosen that display thesbparation between means for the two classes, as
measured by the ‘G-S correlation’ metric:

G-S correlation (geng) = (1P~ P)/(P1+ &%)
wheretf;, ¢°; andf,, ¢% are the mean and standard deviation for values of gam®ng training
samples of class 1 and 2, respectively. Genes vetintist positive and most negative G-S correlation
values are selected in parallel and grouped together in egurders in the final classifier.

Given a classifier witln genes and test sample veoter { X1, %, ..X.., %}, Where each
componenky is the value of expression of gem@ that sample, classification is achieved by computing
the difference between each gene’s vector componerarad the average of its two class means,

(tP1+ 1P))I2. The predicted class is then determined accordirtgtsign of the sum of such differences
over all genes in the classifier, each weighted by i ¢+relation:

clasgx) = sign gfnai [ Xg - (Pt 1£2)12] [ (1Pr- tP)I(P1+ )]}
where a positive value of the sum indicates clased aanegative value, class 2.

The G-S algorithm is simple and appears to work quité idwever, it has some shortcomings.
For example, the choice of threshold value for each,dggfie (F£,)/2, is not readily justifiable; there could
perhaps be a better choice of that divider. Anothekmess is that it does not lend itself naturally toward
a method for multiclass classification. Finally ihethod of gene selection tends to avoid genes for which
class values have large standard deviations with resgptet training data. Such cases may be quite
prevalent in array data, however, and among the miestarg and biologically informative. For example,
many cancerous cells are associated with elevatedafsematic mutation [16]. One might expect some
genes that are tightly regulated in normal tissues (anchtéuesa small standard deviation of expression
values) to have highly variable levels of expressioa genetically heterogeneous population of cancerous
cells (and thus have a large standard deviation of yalWekditionally, in cases in which a labeled tissue
type, for example a cancer tissue, is actually imparepmposed of two different sub-types, one might
find that some genes are expressed at ‘normal’ levelsercancer sub-type, and at ‘cancer’ levels in the
other sub-type. Such genes would likely have low G-S latiwe scores despite the fact that they contain
useful information for classification and could potengiddlad to an increased biological understanding of
the nature of class differences.

2.6 Naive Bayes (NB) algorithm

In this section, we describe a naive Bayes classifiearfay data and a gene selection scheme
explicitly designed to optimize it. This selection, dzsipon a likelihood metric, is applicable to data with
any number of classes.

2.6.1 Naive Bayes Classifier

The naive Bayes method (NB) is a simple approacihdogpilistic induction that has been
successfully applied in a number of machine learning applitaf8]. According to the method, given
various class models for the data, for example miglédr class, and a test sample vector



{X1,%,..%...% } drawn from some probability distribution, one can sifgsx according to the model with
maximuma posterioriprobability (or loga posterioriprobability), given the sample:

clasgx) = argmax(log p(M | X))
wherep(M | X) is the Bayesiaa posterioriprobability thatVy; is true given the test sample By Bayes
rule,

PM; | X) p(x) = p(x | M) p(M)
and assuming equal prior probabilitipéiyi), for each model, we obtain:

clasgx) = argmax(log p(x | M))
i.e.the computed class of the sample is the model forhthie sample has the greatest likelihood. Finally,
the naive Bayes method makes the additional assumptbrgiven the class model, values for each
component ok are independent of one another, so the above becomes:

clasgx) = argmax( 2 log p(x, | M)
This assumption of class atgtribute independence greatligdtes computation of the likelihoods for the
data, given each model, since it is much easier toimdéridual class attribute value probabilities from the
training data than it is to infer joint class attribwalue probabilities. This simplification has beerduse
successfully in a number of domains, including some withwk class attribute dependencies [6].

In the case of DNA array data, we model each claassatof Gaussian distributions, one for each
gene computed from the training samples of that class:

M; = { M4, M3, ... MM }
whereM?, is the clas$ Gaussian distribution for geme The class of a test sampilés then given by:

clasgx) = argmax (Zlog p(% | M%))
i geng

which, when substitutindV® for a Gaussian distribution with sample mg&rand standard deviatiasf;,

becomes:

clas¢x) = argmax{ 2 [ -log(c®) - 0.5((x - tA)I )’ ]}
sincep(xy | M%) is proportiognagl tdl/ %) exp(-0.5((% - ££)/ )% , if interpreted as the probability that the
geneg component ok is within some small non-zero interval centerex,at~urthermore, if one again
assumes equal prior probabilities for all models, dhetive log probabilities between any two moddls
andM;, with respect tx can be expressed simply as the difference betweerdpdikelihoods:

log p(Ma | X) -1og p(Ms | X) = log p(x | M) -log p(x | M) =

[ -log(c%) - 0.5((xg - L T)? + l0g(cPs) + 0.5 (% - L)/ o)’ ]

geng
Such a difference can be used as a confidence measohoéming clasa over clasd.

2.6.2 Likelihood Selection of Genes for the NB classiflevo class case
In the two class case, genes in the NB classifier eatehfor the likelihood of alternative models,

M¢; andM?Y,, given the test sample vector compongntintuitively, we want genes that can distinguish



between samples of each class, findiffg more likely tharM?, given a sample of class 1, aié, more
likely thanM¥ given a sample of class 2. We define two relativdikaihood scoresl.IK,_.,and
LIK,—,; for geneg:

LIK;_, =log p(M’; | X1) - log p(M; | X1), whereX; are training samples of class 1

LIK,_; = log p(M% | X,) - log p(M; | X,), whereX, are training samples of class 2
The ‘ideal’ gene for the NB classifier would be expectetave both LIK scores much greater than zero,
indicating that it on average votes for class 1 onitrg samples of class 1, and for class 2 on training
samples of class 2. If a test sample is selected thheraame probability distribution as the training data,
then one can expect this gene to likewise vote for classalierage for test samples of class 1, and for
class 2 for test samples of class 2. The greateraies of the LIK scores are above zero, the greater
contribution one expects the gene to make toward thectatessification of a test sample.

In practice, it is difficult to find genes for which bdtIK scores are far greater than zero (see
Discussion). Instead, one can select two sets of g&i#$ES ,, and GENES ,;, each maximizing one
of the two LIK scores while merely requiring the othebe greater than zero:

GENES : LIK;—, >>0 and LIK,;>0

GENES ;: LIK;—, >0 and LIK,; >>0
Genes in each set are ranked according to their vathe &1K score maximized by that set. An NB
classifier withn genes is then produced by combiningrfztop ranking genes from each set.

2.6.3 Generalizing Likelihood gene selection to the case of morévitbariasses

This method for using LIK scores to select genes faige Bayes classifier extends beyond the
case of two classes. In the general case where thieanwf classes 5 we definec(c-1) different LIK
scores:

LIKj—¢ = log p(MS | X;) - log p(M% | X;), whereX; are training samples of clajss
andl<j,k<c, j#k. Similarly, we seleat(c-1)distinct sets of genes, each maximizing one particular LIK
score while merely requiring all others to be gretiten zero:

GENES_: LIKj—x >>0

LIK; % >0 ] =, 15" K <
Genes in each GENES set should therefore best distinguish test sampldasdjavith respect to the
alternative modeM’,.

When equal numbers of genes fromcétl-1) GENES _. sets are combined, the resulting NB
classifier should again have the desired propertiessi@emna test sampieof clasg. Genes in the-1
different GENES.\. sets1<k’ <c¢, k' #/, on average make a contribution to the log likelihood tefrvi’;

that is much larger than its contribution to the terivi$f, and at least as large as that to all other terms.

Genes in the othdc-1Y sets of GENES .., 15" K <¢, 7/ #K , |’ #j will on average make a contribution

to the log likelihood term dff9, at least as large as that to terms of the alteematis a result, the

summed log likelihood term &f1% will on average be larger than that of all other modsls,



argmax logo(x | Mj) = j and the classifier votes for clgss

3. Results
3.1 Data sets

We tested the Likelihood selection and NB classifierywell as the previously described G-S
classifier, on the three different data sets describd@ble 1. The colon data [2] contains 62 samples of
which 22 are from normal colon tissues and the remgifngm colon cancer, each including gene
expression values for 2000 different genes measured udiymgetfix array technology. These genes were
selected from a total of 6600 by [2] based upon their havinggssignals. The ovary data [19,20]
contains 31 samples, 15 of which are derived from notissles, and the remaining 16 from ovarian
cancers in various stages of malignancy. Each sanghleles the levels of expression for 97802 cDNA
clones of which approximately one third are unique. Bats produced from hybridization to filter arrays,
and values represent absolute levels of MRNA. Finthléyleukemia data set [12,21] contains a training set
composed of 27 samples of acute lymphoblastic leukemia (Awdl )14 samples of acute myeloblastic
leukemia (AML); each includes the levels of expression of YE2f®s using Affymetrix array technology.
These two classes of leukemia arise from differentlioglages, and differ in their prognosis and response
to treatment. This data set also includes an independésttecontaining 20 ALL and 14 AML samples.
The ALL samples can be further characterized as beigrto either the distinct ALL-B or ALL-T
subclass, according to whether they arise from aBaall lineage. The ALL samples in the training set
are composed of 19 ALL-B and 8 ALL-T samples, and thodleartest set are composed of 19 ALL-B and
1 ALL-T samples. The leukemia data set thus can be uskddtest two-class classification for
distinguishing ALL from AML samples, or to test three-claksssification for distinguishing the ALL-B,
ALL-T, and AML classes.

Data set Number off Classes | Training | Test | Reference
genes data data
Colon 2000 normal | 22 http://www.molbio.princeton,edu/colondata
cancer | 40
Ovary 97802 normal | 15 [19, 20]
cancer | 16
Leukemia 2-| 7129 ALL 27 20 http://waldo.wi.mit.edu/MPR/data_sets.html
class AML 11 14
Leukemia 3-| 7129 ALL-B | 19 19 http://waldo.wi.mit.edu/MPR/data_sets.html
class ALL-T 8 1
AML 11 14

Table 1: Data sets used in this study.



3.2 Evaluation of classifiers

The NB and G-S classification methods each descnibeams for selecting genes included in the
classifier as well as a means for using those selgetees to classify test samples. Since the gene
selection and classification steps are orthogonal écaother, we evaluated all four combinations of
selection (LIK or G-S) and classification (NB or G-Bnplemented as described below:
Likelihood Selection

Genes are selected in parallel forcgt-1) GENES_,, sets, where is the number of classes. Each

GENES_set,15,k<c, j #k, maintains a list of genes ordered by decreasing valLi&ef,, the particular
LIK value to be maximized by that set. Genes are addt#itbt(c-1)lists only if all of theirc(c-1) LIK

scores computed from the training data are greaterztélvan A classifier with total number of genes
then constructed by grouping together the top ranki(cgc-1))genes from each set.
G-S Selection

Genes are selected in parallel for those with the pumstive and negative values of G-S
correlation, respectively. Each set maintains afigienes in ranked order, one in decreasing magnitude of
G-S correlation (Positive Correlation genes), anddther in increasing magnitude (Negative Correlation
genes). A classifier with total number of genés then constructed by grouping together the top ranking
n/2 genes from each set. The G-S algorithm is only appéidaldiata sets with two classes.

NB Classification
classk) = argmax X[ -log(c®) - 0.5((xg - ££)/%)*]}

i geng in classifier

wheretf; andd®, are calculated for each gegérom training samples of each class

G-S Classification

classk) = sign{ = [ xg - ((Pr+1P)2 1 [ (1tP1- 1F)(Pr+ ) 1}

geng in classifier

(positive for class 1 and negative for class 2) whéred®; andi?,, 0%, are computed for each gegpérom
training samples of class 1 and 2, respectively.

Classifiers with a range of different numbers of geneeviested on the three data sets. For the
classifiers trained on 2-class data, this number ramged X0 (two sets of 5 genes) to 1000 (two sets of
500 genes). In the case of the colon and ovary datatsetdassifiers were assessed by a leave-one-out
cross validation method, in which different classifigns constructed, each trained on the samples
excluding a different single sample. The classifiehéntused to classify the sample not used in training.
For the leukemia data set that has separate trainingsinghimples, the training samples were used to
construct the classifiers and the test set, foruatadn. Classifier accuracy was computed as the dracfi
test samples classified correctly.

In the case of the ovary and leukemia data sets, thiNBKlassifier outperformed the G-S/G-S
classifier over a wide range of classifier sizes (Fédlb,c). In contrast, the G-S/G-S classifier hgti i
accuracy than LIK/NB in the case of the colon datgfigure 1a). In the majority of cases, each classifi

worked best with its own method of selecting its gertd@wever there were exceptions such as the ovary
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Figure 1: Accuracy rate of classifiers when appliedo: a. colon data set; b. ovary data set; c. leukeia 2-class data set; d.
leukemia 3-class data set. Four different classifis are evaluated on the first three data sets, éacesulting from a different
combination of one of two gene selection schemedKlor G-S) and one of two classification schemes @lor G-S). Only the

LIK/NB classifier is evaluated on the three-classdukemia data set (part d).

data set, in which the G-S classifier worked better thighLikelihood selected genes (LIK/G-S classifier),
and the colon data set, in which the NB classifierked better with the G-S selected genes (G-S/NB
classifier).

Figure 1d shows the results of the three-way clasBditaf the leukemia data into the ALL-B,
ALL-T, and AML classes using the LIK/NB classifier.v€r a wide range of classifier sizes, 100%
accuracy was observed. The greater accuracy of tissifidarelative to the case of the two-class
classification of the same data set may reflect ibfit of the data when two Gaussians are used tolmode
the ALL class samples rather than just a single Gaussian.

In order to gain some insight into why the LIK/NB cléissiperformed better on some data sets
than on others, the L|K, scores of genes from each GENESlata set were plotted as a function of their
rank in the set (Figure 2). The larger classifier sizelside progressively more genes, and thus include
genes with progressively lower rank and LIK values. €aresee a correlation between the magnitude of
LIK scores observed (as a function of gene rank) and tfierpence of the LIK/NB classifier. Genes
selected in the colon data set had the lowest ovetélstores, those selected in the ovary data set,
intermediate LIK scores, and those selected in thielmia data set (either 2-class or 3-class), the highest.
Thus in each case, the higher the LIK scores ofdlest®ed genes (as a function of gene rank), the better

performance observed with the LIK/NB classifier ort thhata set.
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Figure 2: LIK scores of Likelihood selected genesom: a. colon data set; b. ovary data set; c. leukmia 2-class data set; d.
leukemia 3-class data set. LIK scores for each ge set shown are plotted against the rank of thateme (by LIK score) in the

set. Note that LIK values for many high-ranking g@es selected from the leukemia data sets are offede in the figure.

The relevance of gene LIK scores to the performahtieed_IK/NB classifier is supported by
evaluating the performance of classifiers constructad the leukemia 2-class data set using genes with
various ranges of LIK values. Classifiers were madegusie top ranking 25 genes from each of the two
LIK-selected gene sets after first disregarding the tgeies, where N was gradually increased from 0 by
increments of 12. Thus, as N was increased, genesriagdhiéng classifiers had progressively lower
average LIK values. Figure 3 shows that, when applitestsamples and evaluated for accuracy,
classifiers with genes having higher average LIK scordenpeed better in general than those with genes
having lower average LIK scores. However, some classifigh genes having low average LIK scores

did perform well.

LIK Score and Classifier Accuracy

* LIK aLL->AML
= LIK amL->ALL

Classifier Accuracy on Test Dats

40 60 80 100 120 140

Average LIK Score in Classifier

Figure 3: Relationship between classifier accuracgnd average LIK score. NB classifiers containingenes with progressively
lower LIK scores were tested for accuracy on the le&kemia 2-class data set. Classifiers each contathB0 genes total, two sets

of 25, with average LIK scores indicated.
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The LIK measure offers a standardized way to litréthumber of genes in NB classifiers trained

on various data sets. One can require that each GEN&S,1</,k<c, j #k, contain identical numbers of
genes, and that genes selected into each GENES have a value of LiK, greater than or equal to a
pre-specified minimum value. These restrictions wilitieach set to a common size, and hence will limit
the size of the overall classifier. Table 2 shoagilting characteristics of NB classifiers trainedtan
various data sets while requiring a minimum LIK score vafu@0. Notably, a small classifier resulted in
the case of the colon data, as expected, since tlaseldtad the fewest genes with high LIK scores. For
each data set, accuracy of the classifier with themuim 3.0 LIK threshold was near the maximal

observed previously for any classifier size tested.

Data set Number of genes in classifier Classifier accuracy
Colon 39.4 +/- 3.6 0.84
Ovary 988 +/- 68 0.84
Leukemia 2-class 492 1.0
Leukemia 3-class 900 1.0

Table 2: Results of NB classifiers employing the imimum 3.0 LIK value criteria for gene selection. For the colon and ovary
data sets, cross validation produced a set of cléésrs, each with its own number of genes; hence ¢hmean and s.d. of number

of genes for the set is indicated.

3.3 Likelihood Selected genes

The LIK scores and G-S correlation values are altesnanetrics for selecting genes in a
classifier, and likely favor different subsets of genaguife 4a shows the fraction of genes in common to
classifiers trained on the various data sets using ditkelihood or G-S selection. For comparison, the
fraction expected by chance alone is shown as well. c@meeadily see that in all cases, classifiers using
Likelihood and G-S selection share many more genes thaotegfd®/ chance alone. However, it is also
clear that they contain a significant percent of geneshreoed by the other. This is supported by a direct
analysis of G-S correlation scores for the Likelihoeléated genes from the leukemia data set. Figure 4b
shows that there is a wide variation in G-S correldtoryenes throughout all ranks in the Likelihood
selected sets, suggesting that classifiers of all sithd ikelihood selected genes contain many genes not
included in all but the largest classifiers using G-S selec Such genes likely contribute productively to
the accuracy of the NB classifier since Likelihool&sion proved more effective than G-S selection for
the NB classifier when applied to the ovary and leukefata sets (Figure 1). Thus Likelihood selection

could potentially identify additional genes that contritiotéhe biological basis for class distinction.
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Figure 4: Comparison between Likelihood and G-S setted genes. a. Percent of genes in common betwekassifiers trained
on various data sets using either Likelihood or G-Selection. Also shown is the percent of commonrgs expected by chance.

b. G-S correlation scores of genes in G-S selectedsitive and Negative Correlation sets, and in Liédihood selected

GENESa L —.am. and GENESwi AL Sets, as a function of gene rank within that set.

Table 3 lists the top 10 genes selected on the baisioLIK x| .avr Values from the leukemia
2-class data set, and similarly the top 10 genes sgélentthe basis of their LIy .z values. Many of
these genes have class Gaussian distributions withdtmgaard deviations and low G-S correlation
values, as reflected in the low G-S ranks indicated.y @ude several genes already implicated as
having a role in cancer such as TCL1, associated withl Taedignancies [23], CD24, an early tumor
marker [14], and amphiregulin, an epidermal growth fact@teel protein with tumor inhibitory activity
[17]. The utility of these genes in classification waats future experiments aimed at determining their
roles, if any, in the generation and progression of thie #&id AML leukemias.
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GENES, | _.aw. rank G-S Positive Correlation rank Gene Description

1 110 CD24 signal transducer

2 73 T-cell leukemia/lymphoma 1 (TCL1)
3 49 Immunoglobulin lamda gene locus
4 1097 T-cell receptor delta chain

5 306 T cell factor 1

6 830 Thymocyte AgCdlb

7 213 T cell Ag receptor gene t3delta

8 526 MAL (t-cell specific proteolipid protein)
9 605 Neuropeptide y

10 1629 Integrin alpha 6

21 235 CD2

97 36 CD19

114 573 CD7 (copy 1)

170 1154 CD3

236 905 CD10

375 1588 CD7 (copy 2)

996 145 CD22

GENESw_aLL rank G-S Negative Correlation rank Gene Description

1 165 Amphiregulin

2 116 Cathepsin G (serine protease)

3 537 Interleukin bsf-2

4 1072 Trypsinogen IV b form gi

5 81 Cystatin a

6 625 B cell stimulating factor 2

7 150 Neutrophil elastase

8 280 Connective tissue activation peptide 11l
9 5 Adipsin complement factor D

10 123 Prostaglandin endoperoxide synthase-2
46 4 CD33

345 83 CD13

1748 1771 CD14

Table 3: Rankings of Likelihood selected genes froe leukemia 2-class data set. Top 10 ranking ges, together with known

marker genes, are shown for the GENES, _.av. and GENES\w —.a. gene sets. Gene ranks (out of a total of 7129ylinated

in bold typeface denote genes included in the NBadsifier employing the minimum 3.0 LIK value requirement. Also indicated

are the ranks of those genes in the Positive and dltive Correlation sets resulting from G-S selectio. The data set contained

two different attributes corresponding to the CD7 @ne, indicated as ‘copy 1’ and ‘copy 2'.




Several cell markers that are differentially expressédarALL and AML leukemias have been
previously identified and used to distinguish the cancer typagy include the protein products of the
CD2, CD3, CD7, CD10, CD19, and CD22 genes, expressed predominatlL leukemias, and the
protein products of the CD13, CD14, and CD33 genes, expressgominantly in AML leukemias [24].
Table 3 shows that as a result of Likelihood selectioost of the ALL-specific genes had relatively high
ranks in the GENES, s Set (reflecting high LIK . o Values), and most of the AML-specific genes
had relatively high ranks in the GENES a1 Set. Genes with rank values less than or equal to 246,
indicated in bold typeface, were those included in the Id8sdier employing the minimum 3.0 LIK value
restriction. The table also indicates the ranking fos¢hgenes in the G-S selected Positive and Negative
Correlation sets. It is evident that most of the Adecific markers have a higher rank (were selected
more strongly) with respect to the Likelihood selectizen the G-S selection. This likely reflects the
greater heterogeneity among the ALL samples, whicludlecboth the ALL-B and ALL-T sub-classes.
Some of the markers are expressed differentially in tHeBand ALL-T subclasses, leading to ALL
class Gaussians with large standard deviations and leemeeG-S correlation scores. These observations
further support the premise that the NB classifiendge robust than the G-S classifier with respect to less

well-separated class Gaussian distributions.

4. Discussion
4.1 Improvements to the NB classifier

The NB classifier may not perform in practice as \&sliexpected if some of its assumptions are
not justified. For example, both Likelihood selection &B classification assume equal prior
probabilities for each class model. Additional assuomgtiare that class gene data fit a Gaussian
distribution, and that class attribute values are independféatdiscuss below whether or not these
assumptions are justified, and how the algorithm could beowegrif they are not.
4.1.2 Gaussian distribution assumption

A significant assumption of the Likelihood selection arigl dlassification scheme is that class
values for expression levels of individual genes follow asSian distribution. Violation of this
assumption could potentially lead to suboptimal performantieeainethod. We used the Kolmogorov-
Smirnov (K-S) statistic to estimate probabilitibatt observed data are generated according to a Gaussian
distribution [22]. This statistic measures the maxintliffierence between an observed cumulative
probability distribution €.g.observed gene class values) and a calculated cumulativebility
distribution €.g.Gaussian distributions with mean and standard deviationgutethfrom the gene class
values). Initially, the probability distributions KfS values for Gaussian-generated data sets of various
sizes were computed by Monte Carlo simulation (Figure Bagse distributions were then used to
determine the percent of observed gene class distribiitanisg calculated K-S values within 50% and
90% confidence intervals for the data being Gaussian geder@he results, shown in Figure 6b, indicate

that the gene class values overall appear to fit Gaudisigitbutions reasonably well. With the exception
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of the colon data set about 2/3 of all class dataGiaassian distribution with over 50% confidence, and
1/4 with over 90% confidence. Interestingly, the leukemita8s data displayed a more confident fit to
Gaussian distributions than did the leukemia 2-class ddtia. is consistent with the heterogeneous ALL

class in the 2-class data being resolved into its AldnB ALL-T class components in the 3-class data.

a' Monte Carlo distributions for Gaussian generated data
1
®
L) -
G © 08 —+-n=8
x2 —&—n=11
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8206 n=15
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°T 04 ——n=
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=% -
2802 = 27
2 —+—n=40
=
0 ~ d
0 0.2 0.4 0.6 0.8
Kolmogorov-Smirnov (K-S) statistic value
b Gene class distributionsfit to Gaussian
data set % with >= 50% confidence % with >= 90% confidence
colon 39 7
ovary 82 28
leukemia 2-class 73 24
leukemia 3-class 78 28

Figure 5: Fit between gene class training data anGaussian distributions. a. Probability distributions for Kolmogorov-
Smirnov (K-S) statistic values resulting from Gausgn-generated data sets of indicated sizes (8,11,16,19,22,27,40)
corresponding to the training class sizes for varios data sets. b. Indicated for each data set atlee percent of gene class data

having K-S values within a 50% or 90% confidence iterval for being Gaussian generated.

Although the assumption that class data fit a Gaussitibdigon appears to be justified, it is still
possible that more accurate classification could be esthiey rewarding those genes with class values
having the highest confidence fit to Gaussian distributidtes example, one could require during the
Likelihood gene selection process that all genes hags ¢Gaussians with at least a minimum K-S
confidence score. Alternatively, one could select gasassual according to their LIK scores, yet during
classification give higher weight to contributions frgenes with more confident Gaussian fits to the
training data. One could also use a non-Gaussian plivpdistribution to model gene class data with low
K-S scores, such as discretized value counts [7] or kernsitgestimation [15]. Alternatively, some data
sets may be transformed to better fit a Gaussiantgison by taking the logarithm or square root of gene
expression values. It will be interesting to implenthaese features in the future to determine their effect
on classifier performance.

4.1.3 Naive Bayes assumption of class attribute independence

An additional assumption of the naive Bayes clasd#idat the sample values of each gene in
the classifier are independent of one another, givertlass of that sample. We tested the validity of this
assumption by evaluating the Pearson correlation (R@gba pairs of classifier genes with respect to

training sample data of each class separately:
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PC (geng geneg’, classA) = X [(x%- 1A) 1 A [ - 1F3) | ]
training sampie
of clakss

A correlation of 1 indicates positive correlation betwegenes, -1 indicates negative correlation, and 0
indicates no correlation. Table 4 shows the average p&in-wise correlation for genes within each
GENES._.« set of the two-class NB classifiers. In addition, @erage pair-wise correlation was computed
for pairs of genes randomly selected from each datdtsistevident that classifiers trained on all datis s
contain genes with significant pair-wise correlatisumggesting that the independence assumption is
violated. Likelihood selected genes from the leukemia skttdisplay the least dependence followed by
those from the ovary and colon data sets. The obderair-wise correlation among genes in the ovary
classifier could be due to the presence of redundant ggnes,an estimated 2/3 of the genes in that data
set are actually duplicates. Particularly noteworthtiiéshigh degree of correlation among genes in the
colon data set, even greater among randomly selected tfean among those selected by the NB
classifier. This likely indicates a general probleithwhe data. For example, a large number of samples
with very weak signal (background levels) might contriiatsuch a correlation. It is not known to what
degree the observed deviations from the naive Bayes psarof independence diminish the accuracy of
the NB classifier. In recent years there have lseseral examples in which the naive Bayes classifier
performs well, and even optimally, despite the existafiodass attribute dependencies [6]. Nevertheless,
there does appear to be a correlation between the de#fignelependence among genes within a classifier
and that classifier’s performance. In the future, anéddccincrease gene independence by removing genes

highly correlated with others in the classifier, or aonald try to model the observed dependencies [11].

Data set Random Genes GENES GENES._,;

Colon 0.48 +/- 0.22 0.41 +/- 0.31 0.39 +/- 0.26
Ovary -0.03 +/- 0.27 0.23 +/- 0.42 0.21 +/-0.34
Leukemia 2-class 0.03 +/- 0.30 0.04 +/- 0.38 0.11 +/- 0.33

Table 4: Within-class Pearson Correlations for 30@airs of genes either selected randomly, or from wiin the top 25 ranking
genes from the Likelihood selected gene sets GENEgand GENES._.;. Classes 1 and 2 represent normal and cancer,
respectively, for the colon and ovary data sets, @ALL and AML, respectively, for the leukemia dataset. The Pearson
Correlations were computed as described in the texbver training data of the same class. Mean valseand standard
deviations are indicated.

4.1.2 Selecting multiple sets of genes

The assertion was made that in practice it is diffituftnd genes having both LIK;and LIK; .,
terms much greater than zero, where 1 and 2 are diffdessses. Hence, we justified the need to select
and combine multiple sets of genes, each maximizingglesiLIK score. If this assertion is not true,
however, better performance could likely be achieved lBe8ef genes that simultaneously maximize all
LIK scores. We directly assessed the relationshiwd®n LIK; ., and LIK; ,; scores for all genes in the

two-class data sets. From Figure 6, which plotswioed 1K scores against one another, anticorrelaton i
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apparent whereby genes with high LIK scores tend to have low LJK; scores, andice versa This
relationship can be explained by the observation tha gxss distributions are often asymmetric since the
class distribution with the greater mean value also lggsater standard deviation. In conclusion, our use
of multiple gene sets in the NB classifier, each setktd maximize one of the LIK values, appears

justified.

Negative Correlation between LIK scores

x leukemia (1 = ALL, 2 = AML)

ovary (1 = normal, 2 = cancer)

LIK 2->1

x colon (1 = normal, 2 = cancer)

LIK1->2

Figure 6: Negative correlation between LIK_,and LIK ,_,; scores for genes in two-class data sets. Classesd 2 represent
ALL and AML, respectively, for the leukemia data se, and normal and cancer, respectively, for the don and ovary data sets.

Note: data with large LIK values (not shown on gr@h) follow same trend apparent in the figure.

4.2 Classification Strength

It is often advantageous for a classifier not onlynake a decision about the class of a test
sample, but to give a confidence measure of that dadistohow likely that decision is true). One can
define a metric for decision confidence and determingirgally (i.e. from the training data) the
probability that a decision of any particular confidenakig according to that metric is true. By
employing a minimum confidence to classification, whertelsy samples with decision confidence values
below that threshold are left unclassified, one can deeris@ number of false positives and false negatives
at the expense of increasing the number of unclagsifieples. The combination of a good metric for
decision confidence and a good threshold value of thatowell result in a low false positive and/or low
false negative rate without a concomitant high undiagssample rate. The choice of appropriate decision
confidence metric therefore ultimately depends on thécpkat classifier and how the classifier is
employed. For example, one might want to minimizedhse positive rate for some applications of the
algorithm, and minimize the false negative rate foepapplications. Possible decision strength metrics
for the NB classifier include:

1. log likelihood difference of the winner class = g | Mimay - 109 p& | Mang)

where ‘max’ and ‘2nd’ are the classes with the maximumsacdnd largest log

likelihoods, respectively.



2. relative log likelihood difference of the winner das
[1og(X | Mmay) - 10g p(x | Mzng) ] / 2 log p(x | M;)
3. absolute probability of the winneassl (X | Mmay) / 2 p(x | M)

In this study, we have refrained from employing decisiorfidence metrics and threshold values when
evaluating classifiers in order to enable the mostrgéreemparisons between methods.

Ben-Doret al. [3] evaluated several classifiers (NN, SVM, boostary] a clustering based
approach) on the same colon and ovary data set used $tuttys However, they employed a decision
confidence metric and thus left many ‘low confidencehpkes unclassified in an attempt to increase
accuracy. As a result, we can only compare the perforrairttieir classifiers with that of ours if we make
some assumption, such as interpreting the fractionedf thassified samples that were correctly classified
as a best-case estimate of the accuracy of thefidassi all samples. With regard to the colon data set
the clustering based approach and SVM algorithm (ewareccuracy of .89 and .86, respectively)
performed comparably to the G-S/G-S while NN and bogdestimated accuracy of .81 and .80,
respectively) performed comparably to LIK/NB. With reytw the ovary data set, SVM (estimated
accuracy .95) performed better than both G-S/G-S andNBKboosting (estimated accuracy .89)
comparable to LIK/NB, and the clustering based approach Bhgestimated accuracy .71 for both), worse
than both algorithms. Thus, the SVM algorithm appearsibst promising with respect to those two data
sets. However, a more objective comparison among methibbdsquire the actual rather than estimated
accuracy of each method with respect to all sampleeafdte sets.

4.3 Bayesian interpretation of the G-S algorithm

It is interesting to note the similarities betweba NB and G-S classifiers. For example, it has
been argued that the G-S algorithm has a Bayesian irtsipneunder the assumptions of the NB classifier
plus the additional restriction that for each gene, thecta&s standard deviations computed from the
training data are equale. g; = ¢* = ¢, [21]. The argument justifies the G-S method under those
assumptions, since the difference in log likelihoods esadample given the two models is given by:

2;@[13(9' Py + 15)12] [( 11 - 1£2)I( 0y )]
However, the G-S classifier does not actually compwgebove sum, but rather:

Zg ng - (P + ()21 [(P1 - 1)l (20y)]
which is only equal to the difference in log likelihoodsha# two models under the additional assumption
that gy has a value of 2, and only proportional to the log likelhdifference if the standard deviations for
all genes are the same. Nevertheless, we werestgerin determining whether the assumption of equal
class standard deviations was justifiable for the tginiata sets used in our study. For each data set with
two classes, 1 and 2, we computed the average vamaxf®,/ %, ¢®,/c®;) among all genes in the data

set, and among those genes selected by the G-S andddifiers. It is quite apparent that the two class

standard deviations are rarely equal, even among tfevses selected by the G-S classifiers (Table 5).
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Data set All genes G-S top 50 Likelihood top 50
Colon 1.5+/-0.5 2.5+/-0.9 3.4+/-0.9

Ovary 1.3+/-0.4 1.9 +/- 0.7 5.8+/-1.8
Leukemia 2-class 1.8+/-23 4.6 +/-3.2 22.6 +/-12.1

Table 5: Ratios between standard deviations of genelues for alternative classesmax(o%/d%, 0%/ 1), computed for

indicated sets of selected genes.

Though the G-S classifier appears to have very limitecg8ay justification, it nonetheless
performs remarkably well. Perhaps its selection sehawids overfitting the training data. Alternatively,
it is possible that its evaluation functiog; (tf1 + ££,)/2, is more robust to the presence of non-Gaussian
data or data with class attribute dependencies. lbilhteresting to note in the future under what
conditions the NB and G-S classifiers each perforrihesrder to gain further insight into how to produce
the most accurate classifier for a particular data set.

4.4 Conclusion

We have described a naive Bayes (NB) algorithm fasdiaation of DNA array data, and a
novel means of gene selection aimed at optimizingiflzegson accuracy. We compared the accuracy of
this NB method to the previously described Golub-Slof@8) method when applied to three different
data sets. We found that the NB classifier performégren two of the data sets (ovary and leukemia),
whereas the G-S performed better on the third (col@vg.find a direct correlation between the
performance of the NB classifier and the magnitudé®iiK scores of its selected genes. For example,
the average LIK score of the top 5 genes from both getsdn the NB classifiers trained on the colon data
set (12.7) was 82 fold lower than that of the classifiaiaed on the leukemia data set (1039), which had
the highest observed accuracy. These results suggethtet@aerage LIK value of selected genes could be
used to determine whether the NB classifier should e unspreference to the G-S method on a particular
data set.

We use a novel Likelihood gene selection scheme basedrelative log likelihood terms with
respect to pairs of class models. The Likelihood seleéavors genes that increase the expected accuracy
of the NB classifier, including genes avoided by G-S seledtr having large class value standard
deviations. Table 5 compares the relative class atdrakviations for Likelihood and G-S selected genes
from the two-class data sets. It is evident that llikeld selection includes genes with much greater
discrepancy between class standard deviations relati@eS selection.

The Likelihood selection offers a simple means totlthee number of genes in the NB classifier
and generalizes to data sets with more than two classestraightforward manner. We incorporated a
minimum 3.0 LIK value requirement into our gene selectirese and achieved good results. On all data
sets, the resulting classifiers performed with the maxa@nakar-maximal accuracy observed for any
classifier tested with a pre-designated size. Weddswonstrated excellent results when the NB classifier
was applied to a three-way classification of the leuketata. In general, the method requires evaluating a

number of LIK scores that increases as the squateafumber of classes, thus limiting its usefulness to
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moderate number of classes. In practice, howeverdoas not envision the need to distinguish many
more than a few tissue classes simultaneously. In nemg®sdnvolving large numbers of classes, the data
has a hierarchical structure enabling one to perform seguelassifications with fewer classes,

classifying the ‘parent’ classes prior to their ‘chitisses.
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