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Abstract 

DNA arrays yield a global view of the cell by enabling the measurement of expression levels of thousands 

of genes simultaneously.  When used to compare normal tissues and tissues at various stages of disease, or 

diseased tissues with different responses to treatment, arrays present opportunities for improved disease 

diagnosis and a deeper understanding of the molecular basis of observed phenotypes.  Several machine 

learning methods have been applied to array data to classify genes on the basis of their expression levels in 

particular samples, and to classify tissue samples on the basis of their global patterns of gene expression [2-

4,9,12,21].  These tasks are made more difficult by the noisy nature of array data, and when classifying 

tissues, by the overwhelming number of gene attributes relative to the number of training samples.  In this 

paper, we present a naive Bayes method for classifying tissues on the basis of DNA array data, and use a 

likelihood-based metric to select the most useful subset of genes for inclusion in the classifier.  We applied 

this method to data sets with tissues of two different classes, and found its accuracy to exceed that of a 

recently described method [12,21] in two of the three cases.  Furthermore, our method is easily extendible 

to multiclass classification, and performed well when applied to a data set with three different classes of 

tissues. 
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 Introduction 

 DNA arrays now offer the ability to measure the levels of expression of thousands of genes 

simultaneously.  These arrays consist of large numbers of specific oligonucleotides or cDNA sequences, 

each corresponding to a different gene, affixed to a solid surface at very precise locations.  When an array 

chip is hybridized to labeled cDNA derived from a particular tissue of interest, it yields simultaneous 

measurements of the mRNA levels in the sample for each gene represented on the chip.  Since mRNA 

levels are expected to correlate roughly with the levels of their translation products, the active molecules of 

interest, array results can be used as a crude approximation to the protein content and thus the ‘state’ of the 

sample.  Ideally, one would like in addition to measure the levels of proteins in a cell directly, and such 

technology is currently being developed [13].   

DNA arrays yield a global view of gene expression and can be used in a number of interesting 

ways.  For example, clustering can be performed in order to identify genes that are regulated in a similar 

manner under a number of different environmental conditions [1,4,9]. Such analysis can be used to surmise 

the unknown functions of genes based upon the known functions of other genes in the same cluster.  When 

applied to samples prepared at various times following specific environmental perturbations or in different 

genetic backgrounds, arrays can be used to infer regulatory pathways at the level of transcription.  Toward 

that aim, Bayesian networks have recently been inferred from array data to elucidate probabilistic 

relationships between the expression of different genes [11].  DNA arrays can be used to characterize the 

cellular differences between different tissue types, such as between normal cells and cancer cells at 

different stages of tumor progression, or between cancers with different responses to treatment, or between 

control cells and cells treated with a particular drug. Such analysis can potentially yield useful diagnostic 

tools for classifying samples on the basis of their gene expression patterns [2,12]. 

Classification of tissues on the basis of DNA array data presents several algorithmic challenges. 

For example, the data often contain ‘technical’ noise that can be introduced at a number of different stages, 

such as production of the DNA array, preparation of the samples, hybridization between cDNA and array, 

and signal analysis and extraction of the hybridization results.  Schena et al. [18] tried to reduce some of 

this noise by simultaneously hybridizing both a test and reference sample to an array, each labeled with a 

different color fluorescent dye.  Additional ‘biological’ noise can come from non-uniform genetic 

backgrounds of the samples being compared, or from the impurity or misclassification of tissue samples.  

Furthermore, array data contain an overwhelming number of attributes relative to the number of training 

samples, since each experiment yields the levels of expression of thousands of genes.  One expects that the 

majority of such genes are irrelevant to the class distinction one wants to learn.  The combined effect of 

large numbers of irrelevant genes could potentially drown out the contributions of the relevant ones.   

We describe here a naïve Bayes algorithm and gene selection scheme that has a probabilistic basis 

and should cope with the specific challenges inherent in array data such as noise and the large number of 

attributes.  The method specifically identifies those genes that are most likely to confer high classifier 

accuracy, and hence those that could likely lend insight into the biological basis of class distinction.  Unlike 
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previously described methods to classify tissues using array data, the naïve Bayes method described here is 

easily generalized for classification among any number of classes.  Furthermore, this method has scalable 

computation time and memory requirements and will likely be applicable as the amount of DNA array data 

greatly increases, and even to future experiments in which the levels of cell proteins rather than mRNAs are 

measured directly.  In section 2 we discuss algorithms applied to DNA array data and compare them with 

our method. In section 3, we evaluate the performance of the naive Bayes classifier when applied to three 

data sets.  In section 4 we discuss our findings and speculate on possible further improvements. 

 

2.  Classification Methods 

Several methods have been used to classify tissues on the basis of DNA array data.  The problem 

can be stated as follows, where a ‘sample’ consists of the levels of expression in a particular tissue of each 

gene represented on the array:  Given a set of training samples drawn from some probability distribution, 

each assigned a class, and a test sample drawn from the same probability distribution, determine the class 

of the sample.  Ben-Dor et al. explored using Nearest Neighbor classification, Support Vector Machines, 

Boosting, and a clustering based approach [3].  Each method involves a supervised learning phase, during 

which samples with known classes are used to ‘learn’ distinguishing features among the classes.  Although 

they appear to perform roughly comparably on test data sets, each method has particular strengths and 

weaknesses with regard to DNA array data, as described below. 

2.1 Nearest Neighbor (NN) 

Nearest Neighbor is a lazy classifier in which computation is deferred until classification time; 

training merely involves storing all the training samples in memory [8].  Classification of a sample consists 

of assigning it the class of the training sample that is closest to it according to a distance metric, such as 

Pearson correlation used by [3]. Sensitivity to noise in the data can be greatly reduced by classifying a 

sample according to the majority class of the N closest training samples, where N > 1.  However, most 

distance metrics, including the Pearson correlation, are expected to become less sensitive as the 

dimensionality of the ‘noisy’ data increases, thus limiting the performance of NN when applied to array 

data.  In addition, NN does not identify genes most useful for class distinctions and has large memory 

requirements, since it must maintain all training data in memory.   

2.2 Support Vector Machines (SVM) 

Support Vector Machines are a method for finding a hyperplane in high dimensional space that 

separates training samples of each class while maximizing the minimum distance between that hyperplane 

and any training sample [4,5].  If the data are not linearly separable, they can be projected onto a higher 

dimensional ‘feature’ space in which they are separable.  Upon training, the SVM identifies those samples 

that are closest to the hyperplane, and thus which play a greater role in classifying a test sample.  The SVM 

is therefore particularly effective in cases with a large number of samples, such as the use of array data to 

classify genes rather than tissues.  The method can perform well in the presence of noisy data and large 
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numbers of attributes.  However, it does not identify those attributes most useful for classification, and 

therefore could not lend any insight into the molecular basis for tissue class distinction. 

2.3 Boosting 

Boosting is a method of aggregating many models produced by a ‘weak learner’ into an effective 

classifier [10].  In each iteration of the algorithm, a new model trained to emphasize those training samples 

misclassified by models of the previous iterations is produced.  The final aggregate classifies a sample 

according to votes from its models, each weighted according to its accuracy on the data with which it was 

trained.  While the aggregation of models should reduce classifier error in general, boosting could perform 

poorly if some of the training samples are mis-labeled.  This is because in each iteration, training 

emphasizes those samples, including perhaps mis-labeled samples, which had been misclassified during 

previous iterations.  Ben-Dor et al. [3] used a single gene and a threshold value as their weak learner.  If 

that gene’s expression level in a sample is below the threshold, the model votes for one class, and if the 

gene’s expression level is above, the model votes for the other class. Since training the weak learner results 

in the selection of a single gene, the boosting aggregate of such weak learners should perform well even in 

the presence of overwhelming numbers of attributes, and furthermore, identifies a subset of genes of 

potential biological interest.  However, the method is computationally expensive since the entire training 

data set must be examined to train the weak learner during each iteration.   

2.4 Clustering-based Classification 

Ben-Dor et al. [3] describe a clustering based approach to classification of DNA array data, 

whereby training samples and the test sample to be classified are mixed together and clustered without 

supervision to produce a specified number of clusters.  The class of the test sample is then determined 

according to the majority class of the training samples with which it is clustered.  The optimal number of 

clusters must be determined by trying several different values and evaluating the homogeneity of the 

resulting clusters with respect to class.  This method should perform well in the presence of noisy data as 

long as the number of genes is limited, since like NN, the method relies on having a sensitive metric for the 

distance between two samples.  In order to reduce the dimensionality of the data, [3] implements an 

orthogonal gene selection step prior to clustering. Genes are chosen according to how accurately they can 

partition the training samples along class lines with a single threshold value, such that training samples of 

one class have values of that gene above the threshold, and training samples of the other class, below.  This 

selection improves the performance of the method, and identifies a set of genes important for classification.  

However, there is no evidence that their choice of gene selection is optimal for their algorithm.   

2.5 Golub-Slonim (G-S) algorithm 

A promising classification method for DNA array data was recently described by Golub et al. [12] 

and Slonim et al. [21], and will be referred to here as the ‘G-S algorithm’.  The algorithm, which is only 

applicable to data sets with two classes, uses the training data to compute a mean and standard deviation for 

each gene’s level of expression among samples of each class.  The class of a test sample is then determined 

according to how close its gene values are to the respective gene value means for each class.   
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The G-S algorithm includes a gene selection step to reduce the dimensionality of the data prior to 

classification.  Genes are chosen that display the best separation between means for the two classes, as 

measured by the ‘G-S correlation’ metric: 

G-S correlation (gene g)  = (µg
1- µg

2)/(σg
1+ σg

2) 

where µg
1, σg

1 and µg
2, σg

2 are the mean and standard deviation for values of gene g among training 

samples of class 1 and 2, respectively.  Genes with the most positive and most negative G-S correlation 

values are selected in parallel and grouped together in equal numbers in the final classifier.   

Given a classifier with n genes and test sample vector x = { x1, x2, ..xg.., xn }, where each 

component xg is the value of expression of gene g in that sample, classification is achieved by computing 

the difference between each gene’s vector component of x and the average of its two class means, 

(µg
1+ µg

2)/2.  The predicted class is then determined according to the sign of the sum of such differences 

over all genes in the classifier, each weighted by its G-S correlation: 

 class(x) = sign   Σ  { [ xg - (µg
1+µg

2)/2 ]  [ (µg
1- µg

2)/(σg
1+ σg

2) ] } 
                   genes g 

where a positive value of the sum indicates class 1, and a negative value, class 2. 

The G-S algorithm is simple and appears to work quite well.  However, it has some shortcomings. 

For example, the choice of threshold value for each gene, (µg
1+ µg

2)/2, is not readily justifiable; there could 

perhaps be a better choice of that divider.  Another weakness is that it does not lend itself naturally toward 

a method for multiclass classification.  Finally, its method of gene selection tends to avoid genes for which 

class values have large standard deviations with respect to the training data.  Such cases may be quite 

prevalent in array data, however, and among the most relevant and biologically informative.  For example, 

many cancerous cells are associated with elevated rates of somatic mutation [16].  One might expect some 

genes that are tightly regulated in normal tissues (and thus have a small standard deviation of expression 

values) to have highly variable levels of expression in a genetically heterogeneous population of cancerous 

cells (and thus have a large standard deviation of values).  Additionally, in cases in which a labeled tissue 

type, for example a cancer tissue, is actually impure, or composed of two different sub-types, one might 

find that some genes are expressed at ‘normal’ levels in one cancer sub-type, and at ‘cancer’ levels in the 

other sub-type.  Such genes would likely have low G-S correlation scores despite the fact that they contain 

useful information for classification and could potentially lead to an increased biological understanding of 

the nature of class differences.    

2.6 Naive Bayes (NB) algorithm 

In this section, we describe a naive Bayes classifier for array data and a gene selection scheme 

explicitly designed to optimize it.  This selection, based upon a likelihood metric, is applicable to data with 

any number of classes.   

2.6.1 Naive Bayes Classifier 

 The naive Bayes method (NB) is a simple approach to probabilistic induction that has been 

successfully applied in a number of machine learning applications [8].  According to the method, given 

various class models for the data, for example model Mi for class i, and a test sample vector x = 
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{x1,x2,..xg...xn } drawn from some probability distribution, one can classify x according to the model with 

maximum a posteriori probability (or log a posteriori probability), given the sample: 

 class(x) = argmax (log p(Mi | x)) 
                                       i 

where p(Mi | x) is the Bayesian a posteriori probability that Mi is true given the test sample x.  By Bayes 

rule,  

p(Mi | x) p(x) = p(x | Mi) p(Mi) 

and assuming equal prior probabilities, p(Mi), for each model, we obtain: 

 class(x) = argmax (log p(x | Mi)) 
                i 

i.e. the computed class of the sample is the model for which the sample has the greatest likelihood.  Finally, 

the naive Bayes method makes the additional assumption that, given the class model, values for each 

component of x are independent of one another, so the above becomes: 

 class(x) = argmax ( Σ log p(xg | Mi)) 
                                      i                g  
This assumption of class attribute independence greatly facilitates computation of the likelihoods for the  

data, given each model, since it is much easier to infer individual class attribute value probabilities from the 

training data than it is to infer joint class attribute value probabilities.  This simplification has been used 

successfully in a number of domains, including some with known class attribute dependencies [6]. 

In the case of DNA array data, we model each class as a set of Gaussian distributions, one for each 

gene computed from the training samples of that class: 

Mi = { M1
i, M

2
i, ... M

g
i....M

n
i } 

where Mg
i is the class i Gaussian distribution for gene g.  The class of a test sample x is then given by: 

 class(x) = argmax  (Σ log p(xg | M
g
i)) 

                                      i              gene g  

which, when substituting  Mg
i for a Gaussian distribution with sample mean µg

i and standard deviation σg
i,  

becomes: 

 class(x) = argmax { Σ [ -log(σg
i) - 0.5 ((xg - µg

i)/σg
i)

2 ] }  
                                     i               gene g 

since p(xg | M
g
i) is proportional to (1/σg

i) exp(-0.5((xg - µg
i)/σg

i)
2 , if interpreted as the probability that the 

gene g component of x is within some small non-zero interval centered at xg.  Furthermore, if one again 

assumes equal prior probabilities for all models, the relative log probabilities between any two models Ma 

and Mb with respect to x can be expressed simply as the difference between their log likelihoods: 

 log p(Ma | x) - log p(Mb | x) = log p(x | Ma) - log p(x | Mb) = 

  Σ [ -log(σg
a) - 0.5 ((xg - µg

a)/σg
a)

2  + log(σg
b) + 0.5 ((xg - µg

b)/σg
b)

2 ] 
                       gene g 

Such a difference can be used as a confidence measure for choosing class a over class b.   

2.6.2  Likelihood Selection of Genes for the NB classifier:  Two class case 

In the two class case, genes in the NB classifier each vote for the likelihood of alternative models, 

Mg
1 and Mg

2, given the test sample vector component xg.  Intuitively, we want genes that can distinguish 
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between samples of each class, finding Mg
1 more likely than Mg

2 given a sample of class 1, and Mg
2 more 

likely than Mg
1 given a sample of class 2.  We define two relative log likelihood scores, LIK1 � and  

LIK2 � for gene g: 

LIK1 � = log p(Mg
1 | X1) - log p(Mg

2 | X1), where X1 are training samples of class 1 

LIK2 � = log p(Mg
2 | X2) - log p(Mg

1 | X2), where X2 are training samples of class 2 

The ‘ideal’ gene for the NB classifier would be expected to have both LIK scores much greater than zero, 

indicating that it on average votes for class 1 on training samples of class 1, and for class 2 on training 

samples of class 2.  If a test sample is selected from the same probability distribution as the training data, 

then one can expect this gene to likewise vote for class 1 on average for test samples of class 1, and for 

class 2 for test samples of class 2.  The greater the values of the LIK scores are above zero, the greater 

contribution one expects the gene to make toward the correct classification of a test sample. 

 In practice, it is difficult to find genes for which both LIK scores are far greater than zero (see 

Discussion).  Instead, one can select two sets of genes, GENES1 � and GENES2 �, each maximizing one 

of the two LIK scores while merely requiring the other to be greater than zero: 

GENES1 �:  LIK1 �  >> 0    and   LIK2 � > 0 

GENES2 �:  LIK1 �  > 0    and   LIK2 � >> 0 

Genes in each set are ranked according to their value of the LIK score maximized by that set.  An NB 

classifier with n genes is then produced by combining the n/2 top ranking genes from each set.   

2.6.3 Generalizing Likelihood gene selection to the case of more than two classes 

This method for using LIK scores to select genes for a naive Bayes classifier extends beyond the 

case of two classes.  In the general case where the number of classes is c, we define c(c-1) different LIK 

scores:  

LIK j N = log p(Mg
j | Xj) - log p(Mg

k | Xj), where Xj are training samples of class j 

and 1�j,k�c, j�k.  Similarly, we select c(c-1) distinct sets of genes, each maximizing one particular LIK 

score while merely requiring all others to be greater than zero: 

GENESj N: LIK j N�� >> 0 

   LIK j’ N’   > 0        j’ �k’ , 1�M’ ,k’ �F 

Genes in each GENESj N set should therefore best distinguish test samples of class j with respect to the 

alternative model Mg
k.  

When equal numbers of genes from all c(c-1) GENESj ’ N’  sets are combined, the resulting NB 

classifier should again have the desired properties.  Consider a test sample x of class j.  Genes in the c-1 

different GENESj N’  sets, 1�N’ �F��N’ �M��on average make a contribution to the log likelihood term of Mg
j 

that is much larger than its contribution to the term of Mg
k’, and at least as large as that to all other terms.  

Genes in the other (c-1)2 sets of GENESj ’ N’ , 1�M’ ,k’ �F��M’ �k’ , j’ �j will on average make a contribution 

to the log likelihood term of Mg
j at least as large as that to terms of the alternatives.  As a result, the 

summed log likelihood term of Mg
j will on average be larger than that of all other models, so  
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argmax log p(x | Mi) = j  and the classifier votes for class j. 
     i                  
 

3.  Results 

3.1 Data sets 

We tested the Likelihood selection and NB classifier, as well as the previously described G-S 

classifier, on the three different data sets described in Table 1. The colon data [2] contains 62 samples of 

which 22 are from normal colon tissues and the remaining from colon cancer, each including gene 

expression values for 2000 different genes measured using Affymetrix array technology.  These genes were 

selected from a total of 6600 by [2] based upon their having strong signals.  The ovary data [19,20] 

contains 31 samples, 15 of which are derived from normal tissues, and the remaining 16 from ovarian 

cancers in various stages of malignancy.  Each sample includes the levels of expression for 97802 cDNA 

clones of which approximately one third are unique.  Data was produced from hybridization to filter arrays, 

and values represent absolute levels of mRNA. Finally, the leukemia data set [12,21] contains a training set 

composed of 27 samples of acute lymphoblastic leukemia (ALL) and 11 samples of acute myeloblastic 

leukemia (AML); each includes the levels of expression of 7129 genes using Affymetrix array technology.  

These two classes of leukemia arise from different cell lineages, and differ in their prognosis and response 

to treatment.  This data set also includes an independent test set containing 20 ALL and 14 AML samples.  

The ALL samples can be further characterized as belonging to either the distinct ALL-B or ALL-T 

subclass, according to whether they arise from a B or T cell lineage. The ALL samples in the training set 

are composed of 19 ALL-B and 8 ALL-T samples, and those in the test set are composed of 19 ALL-B and 

1 ALL-T samples.  The leukemia data set thus can be used both to test two-class classification for 

distinguishing ALL from AML samples, or to test three-class classification for distinguishing the ALL-B, 

ALL-T, and AML classes.   

 

Data set Number of 

genes 

Classes Training 

data 

Test 

data 

Reference 

Colon 2000 normal 

cancer 

22   

40 

 http://www.molbio.princeton,edu/colondata 

 

Ovary 97802 normal 

cancer 

15  

16  

 

 

 

[19, 20] 

Leukemia 2-

class 

7129 ALL 

AML 

27  

11 

20  

14  

http://waldo.wi.mit.edu/MPR/data_sets.html 

Leukemia 3-

class 

7129 ALL-B 

ALL-T  

AML 

19  

8  

11  

19  

1  

14  

http://waldo.wi.mit.edu/MPR/data_sets.html 

Table 1: Data sets used in this study. 
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3.2 Evaluation of classifiers 

 The NB and G-S classification methods each describe a means for selecting genes included in the 

classifier as well as a means for using those selected genes to classify test samples.  Since the gene 

selection and classification steps are orthogonal to one another, we evaluated all four combinations of 

selection (LIK or G-S) and classification (NB or G-S), implemented as described below: 

Likelihood Selection 

 Genes are selected in parallel for all c(c-1) GENESj N�sets, where c is the number of classes.  Each 

GENESj N�set, 1�M�N�F��M�k, maintains a list of genes ordered by decreasing value of LIK j N, the particular 

LIK value to be maximized by that set.  Genes are added to the c(c-1) lists only if all of their c(c-1) LIK 

scores computed from the training data are greater than zero. A classifier with total number of genes n is 

then constructed by grouping together the top ranking n/(c(c-1)) genes from each set.   

G-S Selection 

 Genes are selected in parallel for those with the most positive and negative values of G-S 

correlation, respectively.  Each set maintains a list of genes in ranked order, one in decreasing magnitude of 

G-S correlation (Positive Correlation genes), and the other in increasing magnitude (Negative Correlation 

genes).  A classifier with total number of genes n is then constructed by grouping together the top ranking 

n/2 genes from each set.  The G-S algorithm is only applicable to data sets with two classes.  

NB Classification 

 class(x) = argmax { Σ [ -log(σg
i) - 0.5 ((xg - µg

i)/σg
i)

2 ] }  
                                     i         gene g in classifier 

where µg
i and σg

i are calculated for each gene g from training samples of each class i.   

G-S Classification 

 class(x) = sign { Σ  [ xg - (µg
1+µg

2)/2 ] [ (µg
1- µg

2)/(σg
1+ σg

2) ] }    
            gene g in classifier 

(positive for class 1 and negative for class 2) where µg
1, σg

1 and µg
2, σg

2 are computed for each gene g from 

training samples of class 1 and 2, respectively.   

Classifiers with a range of different numbers of genes were tested on the three data sets.  For the 

classifiers trained on 2-class data, this number ranged from 10 (two sets of 5 genes) to 1000 (two sets of 

500 genes).  In the case of the colon and ovary data sets, the classifiers were assessed by a leave-one-out 

cross validation method, in which different classifiers are constructed, each trained on the samples 

excluding a different single sample.  The classifier is then used to classify the sample not used in training.  

For the leukemia data set that has separate training and test samples, the training samples were used to 

construct the classifiers and the test set, for evaluation.  Classifier accuracy was computed as the fraction of 

test samples classified correctly.  

In the case of the ovary and leukemia data sets, the LIK/NB classifier outperformed the G-S/G-S 

classifier over a wide range of classifier sizes (Figure 1b,c).   In contrast, the G-S/G-S classifier had higher 

accuracy than LIK/NB in the case of the colon data set (Figure 1a).  In the majority of cases, each classifier 

worked best with its own method of selecting its genes.  However there were exceptions such as the ovary  
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Figure 1: Accuracy rate of classifiers when applied to: a. colon data set; b. ovary data set; c. leukemia 2-class data set; d. 

leukemia 3-class data set.  Four different classifiers are evaluated on the first three data sets, each resulting from a different 

combination of one of two gene selection schemes (LIK or G-S) and one of two classification schemes (NB or G-S).  Only the 

LIK/NB classifier is evaluated on the three-class leukemia data set (part d).  

 

data set, in which the G-S classifier worked better with the Likelihood selected genes (LIK/G-S classifier), 

and the colon data set, in which the NB classifier worked better with the G-S selected genes (G-S/NB 

classifier).   

Figure 1d shows the results of the three-way classification of the leukemia data into the ALL-B, 

ALL-T, and AML classes using the LIK/NB classifier.  Over a wide range of classifier sizes, 100% 

accuracy was observed.  The greater accuracy of that classifier relative to the case of the two-class 

classification of the same data set may reflect a better fit of the data when two Gaussians are used to model 

the ALL class samples rather than just a single Gaussian. 

In order to gain some insight into why the LIK/NB classifier performed better on some data sets 

than on others, the LIKj N�scores of genes from each GENESj N�data set were plotted as a function of their 

rank in the set (Figure 2). The larger classifier sizes include progressively more genes, and thus include 

genes with progressively lower rank and LIK values.  One can see a correlation between the magnitude of 

LIK scores observed (as a function of gene rank) and the performance of the LIK/NB classifier.  Genes 

selected in the colon data set had the lowest overall LIK scores, those selected in the ovary data set, 

intermediate LIK scores, and those selected in the leukemia data set (either 2-class or 3-class), the highest. 

Thus in each case, the higher the LIK scores of the selected genes (as a function of gene rank), the better 

performance observed with the LIK/NB classifier on that data set.   
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 Figure 2: LIK scores of Likelihood selected genes from: a. colon data set; b. ovary data set; c. leukemia 2-class data set; d. 

leukemia 3-class data set.   LIK scores for each gene set shown are plotted against the rank of that gene (by LIK score) in the 

set.  Note that LIK values for many high-ranking genes selected from the leukemia data sets are off-scale in the figure. 

 

The relevance of gene LIK scores to the performance of the LIK/NB classifier is supported by 

evaluating the performance of classifiers constructed from the leukemia 2-class data set using genes with 

various ranges of LIK values.  Classifiers were made using the top ranking 25 genes from each of the two 

LIK-selected gene sets after first disregarding the top N genes, where N was gradually increased from 0 by 

increments of 12.  Thus, as N was increased, genes in the resulting classifiers had progressively lower 

average LIK values.  Figure 3 shows that, when applied to test samples and evaluated for accuracy, 

classifiers with genes having higher average LIK scores performed better in general than those with genes 

having lower average LIK scores.  However, some classifiers with genes having low average LIK scores 

did perform well. 
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Figure 3: Relationship between classifier accuracy and average LIK score.  NB classifiers containing genes with progressively 

lower LIK scores were tested for accuracy on the leukemia 2-class data set.  Classifiers each contained 50 genes total, two sets 

of 25, with average LIK scores indicated. 
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The LIK measure offers a standardized way to limit the number of genes in NB classifiers trained 

on various data sets.  One can require that each GENESj N�set, 1�M�N�F��M�k, contain identical numbers of 

genes, and that genes selected into each GENESj N�set have a value of LIKj N greater than or equal to a 

pre-specified minimum value.  These restrictions will limit each set to a common size, and hence will limit 

the size of the overall classifier.  Table 2 shows resulting characteristics of NB classifiers trained on the 

various data sets while requiring a minimum LIK score value of 3.0.  Notably, a small classifier resulted in 

the case of the colon data, as expected, since that data set had the fewest genes with high LIK scores.  For 

each data set, accuracy of the classifier with the minimum 3.0 LIK threshold was near the maximal 

observed previously for any classifier size tested.  

 

Data set Number of genes in classifier Classifier accuracy 

Colon 39.4 +/- 3.6 0.84 

Ovary 988 +/- 68 0.84 

Leukemia 2-class 492 1.0 

Leukemia 3-class 900 1.0 

Table 2:  Results of NB classifiers employing the minimum 3.0 LIK value criteria for gene selection.  For the colon and ovary 

data sets, cross validation produced a set of classifiers, each with its own number of genes; hence the mean and s.d. of number 

of genes for the set is indicated. 

 

3.3 Likelihood Selected genes 

 The LIK scores and G-S correlation values are alternative metrics for selecting genes in a 

classifier, and likely favor different subsets of genes.  Figure 4a shows the fraction of genes in common to 

classifiers trained on the various data sets using either Likelihood or G-S selection.  For comparison, the 

fraction expected by chance alone is shown as well.  One can readily see that in all cases, classifiers using 

Likelihood and G-S selection share many more genes than expected by chance alone.  However, it is also 

clear that they contain a significant percent of genes not shared by the other.  This is supported by a direct 

analysis of G-S correlation scores for the Likelihood selected genes from the leukemia data set.  Figure 4b 

shows that there is a wide variation in G-S correlation for genes throughout all ranks in the Likelihood 

selected sets, suggesting that classifiers of all sizes with Likelihood selected genes contain many genes not 

included in all but the largest classifiers using G-S selection.  Such genes likely contribute productively to 

the accuracy of the NB classifier since Likelihood selection proved more effective than G-S selection for 

the NB classifier when applied to the ovary and leukemia data sets (Figure 1).  Thus Likelihood selection 

could potentially identify additional genes that contribute to the biological basis for class distinction.   
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Figure 4: Comparison between Likelihood and G-S selected genes.  a.  Percent of genes in common between classifiers trained 

on various data sets using either Likelihood or G-S selection.  Also shown is the percent of common genes expected by chance.  

b.  G-S correlation scores of genes in G-S selected Positive and Negative Correlation sets, and in Likelihood selected 

GENESALL AML and GENESAML ALL sets, as a function of gene rank within that set. 

 

 Table 3 lists the top 10 genes selected on the basis of their LIKALL $0/ values from the leukemia 

2-class data set, and similarly the top 10 genes selected on the basis of their LIKAML $// values.  Many of 

these genes have class Gaussian distributions with large standard deviations and low G-S correlation 

values, as reflected in the low G-S ranks indicated.  They include several genes already implicated as 

having a role in cancer such as TCL1, associated with T-cell malignancies [23], CD24, an early tumor 

marker [14], and amphiregulin, an epidermal growth factor-related protein with tumor inhibitory activity 

[17].  The utility of these genes in classification warrants future experiments aimed at determining their 

roles, if any, in the generation and progression of the ALL and AML leukemias.   
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GENESALL AML rank G-S Positive Correlation rank Gene Description 

1 110 CD24 signal transducer 

2 73 T-cell leukemia/lymphoma 1 (TCL1) 

3 49 Immunoglobulin lamda gene locus 

4 1097 T-cell receptor delta chain 

5 306 T cell factor 1 

6 830 Thymocyte AgCd1b 

7 213 T cell Ag receptor gene t3delta 

8 526 MAL (t-cell specific proteolipid protein) 

9 605 Neuropeptide y 

10 1629 Integrin alpha 6 

   

21 235 CD2 

97 36 CD19 

114 573 CD7 (copy 1) 

170 1154 CD3 

236 905 CD10 

375 1588 CD7 (copy 2) 

996 145 CD22 

   

GENESAML ALL rank G-S Negative Correlation rank Gene Description 

1 165 Amphiregulin 

2 116 Cathepsin G (serine protease) 

3 537 Interleukin bsf-2 

4 1072 Trypsinogen IV b form gi 

5 81 Cystatin a 

6 625 B cell stimulating factor 2 

7 150 Neutrophil elastase 

8 280 Connective tissue activation peptide III 

9  5 Adipsin complement factor D 

10 123 Prostaglandin endoperoxide synthase-2 

   

46 4 CD33 

345 83 CD13 

1748 1771 CD14 

Table 3: Rankings of Likelihood selected genes from the leukemia 2-class data set.  Top 10 ranking genes, together with known 

marker genes, are shown for the GENESALL AML and GENESAML ALL  gene sets.  Gene ranks (out of a total of 7129) indicated 

in bold typeface denote genes included in the NB classifier employing the minimum 3.0 LIK value requirement.  Also indicated 

are the ranks of those genes in the Positive and Negative Correlation sets resulting from G-S selection.  The data set contained 

two different attributes corresponding to the CD7 gene, indicated as ‘copy 1’ and ‘copy 2’. 
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 Several cell markers that are differentially expressed in the ALL and AML leukemias have been 

previously identified and used to distinguish the cancer types.  They include the protein products of the 

CD2, CD3, CD7, CD10, CD19, and CD22 genes, expressed predominantly in ALL leukemias, and the 

protein products of the CD13, CD14, and CD33 genes, expressed predominantly in AML leukemias [24].  

Table 3 shows that as a result of Likelihood selection, most of the ALL-specific genes had relatively high 

ranks in the GENESALL $0/�set (reflecting high LIKALL $0/�values), and most of the AML-specific genes 

had relatively high ranks in the GENESAML $//�set.  Genes with rank values less than or equal to 246, 

indicated in bold typeface, were those included in the NB classifier employing the minimum 3.0 LIK value 

restriction.  The table also indicates the ranking for those genes in the G-S selected Positive and Negative 

Correlation sets.  It is evident that most of the ALL specific markers have a higher rank (were selected 

more strongly) with respect to the Likelihood selection than the G-S selection.  This likely reflects the 

greater heterogeneity among the ALL samples, which include both the ALL-B and ALL-T sub-classes. 

Some of the markers are expressed differentially in the ALL-B and ALL-T subclasses, leading to ALL 

class Gaussians with large standard deviations and hence lower G-S correlation scores.  These observations 

further support the premise that the NB classifier is more robust than the G-S classifier with respect to less 

well-separated class Gaussian distributions.   

 

4.  Discussion 

4.1 Improvements to the NB classifier 

The NB classifier may not perform in practice as well as expected if some of its assumptions are 

not justified.  For example, both Likelihood selection and NB classification assume equal prior 

probabilities for each class model.  Additional assumptions are that class gene data fit a Gaussian 

distribution, and that class attribute values are independent.  We discuss below whether or not these 

assumptions are justified, and how the algorithm could be improved if they are not. 

4.1.2  Gaussian distribution assumption 

A significant assumption of the Likelihood selection and NB classification scheme is that class 

values for expression levels of individual genes follow a Gaussian distribution.  Violation of this 

assumption could potentially lead to suboptimal performance of the method.  We used the Kolmogorov-

Smirnov (K-S) statistic to estimate probabilities that observed data are generated according to a Gaussian 

distribution [22].   This statistic measures the maximum difference between an observed cumulative 

probability distribution (e.g. observed gene class values) and a calculated cumulative probability 

distribution (e.g. Gaussian distributions with mean and standard deviations computed from the gene class 

values).  Initially, the probability distributions of K-S values for Gaussian-generated data sets of various 

sizes were computed by Monte Carlo simulation (Figure 6a).  These distributions were then used to 

determine the percent of observed gene class distributions having calculated K-S values within 50% and 

90% confidence intervals for the data being Gaussian generated.  The results, shown in Figure 6b, indicate 

that the gene class values overall appear to fit Gaussian distributions reasonably well.  With the exception 
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of the colon data set about 2/3 of all class data fit a Gaussian distribution with over 50% confidence, and 

1/4 with over 90% confidence.  Interestingly, the leukemia 3-class data displayed a more confident fit to 

Gaussian distributions than did the leukemia 2-class data.  This is consistent with the heterogeneous ALL 

class in the 2-class data being resolved into its ALL-B and ALL-T class components in the 3-class data. 
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Figure 5: Fit between gene class training data and Gaussian distributions.  a.  Probability distributions for Kolmogorov-

Smirnov (K-S) statistic values resulting from Gaussian-generated data sets of indicated sizes (8,11,15,16,19,22,27,40) 

corresponding to the training class sizes for various data sets.  b.  Indicated for each data set are the percent of gene class data 

having K-S values within a 50% or 90% confidence interval for being Gaussian generated. 

 

Although the assumption that class data fit a Gaussian distribution appears to be justified, it is still 

possible that more accurate classification could be achieved by rewarding those genes with class values 

having the highest confidence fit to Gaussian distributions.  For example, one could require during the 

Likelihood gene selection process that all genes have class Gaussians with at least a minimum K-S 

confidence score.  Alternatively, one could select genes as usual according to their LIK scores, yet during 

classification give higher weight to contributions from genes with more confident Gaussian fits to the 

training data.  One could also use a non-Gaussian probability distribution to model gene class data with low 

K-S scores, such as discretized value counts [7] or kernel density estimation [15].  Alternatively, some data 

sets may be transformed to better fit a Gaussian distribution by taking the logarithm or square root of gene 

expression values.  It will be interesting to implement these features in the future to determine their effects 

on classifier performance. 

4.1.3  Naive Bayes assumption of class attribute independence 

 An additional assumption of the naive Bayes classifier is that the sample values of each gene in 

the classifier are independent of one another, given the class of that sample.  We tested the validity of this 

assumption by evaluating the Pearson correlation (PC) between pairs of classifier genes with respect to 

training sample data of each class separately: 
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                PC (gene g, gene g’, class A)    =      Σ  [(xg
i - µg

i) / σg
i ] [(x

g’
i - µg’

i) / σg’
i ]  

                     training sample i 
                                                                                             of class A 

A correlation of 1 indicates positive correlation between genes, -1 indicates negative correlation, and 0 

indicates no correlation.  Table 4 shows the average gene pair-wise correlation for genes within each 

GENESj N�set of the two-class NB classifiers.  In addition, an average pair-wise correlation was computed 

for pairs of genes randomly selected from each data set.  It is evident that classifiers trained on all data sets 

contain genes with significant pair-wise correlation, suggesting that the independence assumption is 

violated.  Likelihood selected genes from the leukemia data set display the least dependence followed by 

those from the ovary and colon data sets.  The observed pair-wise correlation among genes in the ovary 

classifier could be due to the presence of redundant genes, since an estimated 2/3 of the genes in that data 

set are actually duplicates.  Particularly noteworthy is the high degree of correlation among genes in the 

colon data set, even greater among randomly selected genes than among those selected by the NB 

classifier.  This likely indicates a general problem with the data.  For example, a large number of samples 

with very weak signal (background levels) might contribute to such a correlation.  It is not known to what 

degree the observed deviations from the naive Bayes assumption of independence diminish the accuracy of 

the NB classifier.  In recent years there have been several examples in which the naive Bayes classifier 

performs well, and even optimally, despite the existence of class attribute dependencies [6]. Nevertheless, 

there does appear to be a correlation between the degree of independence among genes within a classifier 

and that classifier’s performance.  In the future, one could increase gene independence by removing genes 

highly correlated with others in the classifier, or one could try to model the observed dependencies [11].   

 

Data set Random Genes GENES1 2 GENES2 1 

Colon 0.48 +/- 0.22 0.41 +/- 0.31 0.39 +/- 0.26 

Ovary -0.03 +/- 0.27 0.23 +/- 0.42 0.21 +/- 0.34 

Leukemia 2-class 0.03 +/- 0.30 0.04 +/- 0.38 0.11 +/- 0.33 

Table 4:  Within-class Pearson Correlations for 300 pairs of genes either selected randomly, or from within the top 25 ranking 

genes from the Likelihood selected gene sets GENES1 2 and GENES2 1.  Classes 1 and 2 represent normal and cancer, 

respectively, for the colon and ovary data sets, and ALL and AML, respectively, for the leukemia data set.  The Pearson 

Correlations were computed as described in the text, over training data of the same class.  Mean values and standard 

deviations are indicated. 

 

4.1.2  Selecting multiple sets of genes 

The assertion was made that in practice it is difficult to find genes having both LIK1 ��and LIK2 ��

terms much greater than zero, where 1 and 2 are different classes.  Hence, we justified the need to select 

and combine multiple sets of genes, each maximizing a single LIK score.  If this assertion is not true, 

however, better performance could likely be achieved by selecting genes that simultaneously maximize all 

LIK scores.  We directly assessed the relationship between LIK1 ��and LIK2 � scores for all genes in the 

two-class data sets.  From Figure 6, which plots the two LIK scores against one another, anticorrelation is 
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apparent whereby genes with high LIK1 � scores tend to have low LIK2 � scores, and vice versa.  This 

relationship can be explained by the observation that gene class distributions are often asymmetric since the 

class distribution with the greater mean value also has a greater standard deviation. In conclusion, our use 

of multiple gene sets in the NB classifier, each selected to maximize one of the LIK values, appears 

justified.  
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Figure 6: Negative correlation between LIK1 ��and LIK 2 ��scores for genes in two-class data sets.  Classes 1 and 2 represent 

ALL and AML, respectively, for the leukemia data set, and normal and  cancer, respectively, for the colon and ovary data sets.  

Note:  data with large LIK values (not shown on graph) follow same trend apparent in the figure. 

 

4.2 Classification Strength 

 It is often advantageous for a classifier not only to make a decision about the class of a test 

sample, but to give a confidence measure of that decision (i.e. how likely that decision is true).  One can 

define a metric for decision confidence and determine empirically (i.e. from the training data) the 

probability that a decision of any particular confidence value according to that metric is true.  By 

employing a minimum confidence to classification, whereby test samples with decision confidence values 

below that threshold are left unclassified, one can decrease the number of false positives and false negatives 

at the expense of increasing the number of unclassified samples.  The combination of a good metric for 

decision confidence and a good threshold value of that metric will result in a low false positive and/or low 

false negative rate without a concomitant high unclassified sample rate.  The choice of appropriate decision 

confidence metric therefore ultimately depends on the particular classifier and how the classifier is 

employed.  For example, one might want to minimize the false positive rate for some applications of the 

algorithm, and minimize the false negative rate for other applications.  Possible decision strength metrics 

for the NB classifier include: 

1.  log likelihood difference of the winner class = log p(x | Mmax) - log p(x | M2nd)  

where ‘max’ and ‘2nd’ are the classes with the maximum and second largest log 

likelihoods, respectively.   
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2.  relative log likelihood difference of the winner class =  

                             [ log p(x | Mmax) - log p(x | M2nd) ] / Σ log p(x | Mi)  
                                 i 

              3.  absolute probability of the winner class = p(x | Mmax) / Σ p(x | Mi)  
                   i 

In this study, we have refrained from employing decision confidence metrics and threshold values when 

evaluating classifiers in order to enable the most general comparisons between methods.   

Ben-Dor et al. [3] evaluated several classifiers (NN, SVM, boosting, and a clustering based 

approach) on the same colon and ovary data set used in this study.  However, they employed a decision 

confidence metric and thus left many ‘low confidence’ samples unclassified in an attempt to increase 

accuracy. As a result, we can only compare the performance of their classifiers with that of ours if we make 

some assumption, such as interpreting the fraction of their classified samples that were correctly classified 

as a best-case estimate of the accuracy of the classifier on all samples.  With regard to the colon data set, 

the clustering based approach and SVM algorithm (estimated accuracy of .89 and .86, respectively) 

performed comparably to the G-S/G-S while NN and boosting (estimated accuracy of .81 and .80, 

respectively) performed comparably to LIK/NB.  With regard to the ovary data set, SVM (estimated 

accuracy .95) performed better than both G-S/G-S and LIK/NB, boosting (estimated accuracy .89) 

comparable to LIK/NB, and the clustering based approach and NN (estimated accuracy .71 for both), worse 

than both algorithms.  Thus, the SVM algorithm appears the most promising with respect to those two data 

sets.  However, a more objective comparison among methods will require the actual rather than estimated 

accuracy of each method with respect to all samples of the data sets. 

4.3 Bayesian interpretation of the G-S algorithm 

It is interesting to note the similarities between the NB and G-S classifiers.  For example, it has 

been argued that the G-S algorithm has a Bayesian interpretation under the assumptions of the NB classifier 

plus the additional restriction that for each gene, the two class standard deviations computed from the 

training data are equal, i.e. σg = σg
1 = σg

2 [21].  The argument justifies the G-S method under those 

assumptions, since the difference in log likelihoods of a test sample x given the two models is given by:  

                              Σ [ xg - (µg
1 + µg

2)/2 ] [( µg
1 - µg

2)/(
 σg

 2)]  
                                               gene g 

However, the G-S classifier does not actually compute the above sum, but rather: 

Σ [ xg - (µg
1 + µg

2)/2 ] [( µg
1 - µg

2)/(
 2σg)]  

                                              gene g 

which is only equal to the difference in log likelihoods of the two models under the additional assumption 

that σg has a value of 2, and only proportional to the log likelihood difference if the standard deviations for 

all genes are the same.  Nevertheless, we were interested in determining whether the assumption of equal 

class standard deviations was justifiable for the training data sets used in our study.  For each data set with 

two classes, 1 and 2, we computed the average value of max(σg
1/σg

2, σg
2/σg

1) among all genes in the data 

set, and among those genes selected by the G-S and NB classifiers.  It is quite apparent that the two class 

standard deviations are rarely equal, even among those genes selected by the G-S classifiers (Table 5).  
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Data set All genes G-S top 50 Likelihood top 50 

Colon 1.5 +/- 0.5 2.5 +/- 0.9 3.4 +/- 0.9 

Ovary 1.3 +/- 0.4 1.9 +/- 0.7 5.8 +/- 1.8 

Leukemia 2-class 1.8 +/- 2.3 4.6 +/- 3.2 22.6 +/- 12.1 

Table 5: Ratios between standard deviations of gene values for alternative classes,  max(σg
1/σg

2, σg
2/σg

1), computed for 

indicated sets of selected genes.  

 

Though the G-S classifier appears to have very limited Bayesian justification, it nonetheless 

performs remarkably well.  Perhaps its selection scheme avoids overfitting the training data.  Alternatively, 

it is possible that its evaluation function, xg - (µg
1 + µg

2)/2, is more robust to the presence of non-Gaussian 

data or data with class attribute dependencies.  It will be interesting to note in the future under what 

conditions the NB and G-S classifiers each perform best in order to gain further insight into how to produce 

the most accurate classifier for a particular data set.   

4.4 Conclusion 

 We have described a naive Bayes (NB) algorithm for classification of DNA array data, and a 

novel means of gene selection aimed at optimizing classification accuracy.  We compared the accuracy of 

this NB method to the previously described Golub-Slonim (G-S) method when applied to three different 

data sets.  We found that the NB classifier performed better on two of the data sets (ovary and leukemia), 

whereas the G-S performed better on the third (colon).  We find a direct correlation between the 

performance of the NB classifier and the magnitude of the LIK scores of its selected genes.  For example, 

the average LIK score of the top 5 genes from both gene sets in the NB classifiers trained on the colon data 

set (12.7) was 82 fold lower than that of the classifiers trained on the leukemia data set (1039), which had 

the highest observed accuracy.  These results suggest that the average LIK value of selected genes could be 

used to determine whether the NB classifier should be used in preference to the G-S method on a particular 

data set. 

 We use a novel Likelihood gene selection scheme based upon relative log likelihood terms with 

respect to pairs of class models.  The Likelihood selection favors genes that increase the expected accuracy 

of the NB classifier, including genes avoided by G-S selection for having large class value standard 

deviations.  Table 5 compares the relative class standard deviations for Likelihood and G-S selected genes 

from the two-class data sets.  It is evident that Likelihood selection includes genes with much greater 

discrepancy between class standard deviations relative to G-S selection.   

The Likelihood selection offers a simple means to limit the number of genes in the NB classifier 

and generalizes to data sets with more than two classes in a straightforward manner.  We incorporated a 

minimum 3.0 LIK value requirement into our gene selection scheme and achieved good results.  On all data 

sets, the resulting classifiers performed with the maximal or near-maximal accuracy observed for any 

classifier tested with a pre-designated size. We also demonstrated excellent results when the NB classifier 

was applied to a three-way classification of the leukemia data.  In general, the method requires evaluating a 

number of LIK scores that increases as the square of the number of classes, thus limiting its usefulness to a 
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moderate number of classes.  In practice, however, one does not envision the need to distinguish many 

more than a few tissue classes simultaneously.  In many cases involving large numbers of classes, the data 

has a hierarchical structure enabling one to perform sequential classifications with fewer classes, 

classifying the ‘parent’ classes prior to their ‘child’ classes.   
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