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Abstrat

The advent of the DNA miroarray tehnology has brought with it the exiting

possibility of simultaneously observing the expression levels of all genes in an organ-

ism. One suh miroarray tehnology, alled \oligo arrays", manufatures short single

strands of DNA (alled probes) onto a glass surfae using photolithography. An altered

or missed step in suh a manufaturing protool an adversely a�et all probes using

this failed step, and is in general impossible to disentangle from experimental variation

when using suh a defetive array. The idea of designing speial quality ontrol probes

to detet a failed step was �rst formulated by Hubbell and Pevzner. We onsider an

alternative formulation of this problem and use a ombinatorial design approah to

solve it. Our results improve over prior work in guaranteeing overage of all protool

steps and in being able to tolerate a greater number of unreliable probe intensities.

Keywords: DNA miroarray, oligo array, photolithography, quality ontrol, ombinatorial

design, error-orreting ode, 2-design.

1. Introdution

Reent advanes in DNA miroarray tehnology have allowed biologists to obtain expression

pro�les of the genes in an organism in a quantitative and high throughput fashion. This

has atalyzed a major paradigm shift in how biologial knowledge is pursued. Computa-

tional analysis of suh DNA miroarray data has led to interesting biologial hypotheses of

unpreedented sope. For example, analysis of the expression pro�les of all 6200 genes in S.

erevisiae during sporulation [2℄ revealed the possible partiipation of nearly 1000 genes that

were previously not known to be involved in sporulation. There has been a reent explosion

of similar experiments and analyses using DNA miroarrays.

An important DNA miroarray tehnology, alled \oligo arrays", manufatures short sin-

gle strands of DNA (alled probes) onto a glass surfae using photolithography [11℄. The

glass surfae (or array) has a well-de�ned set of addresses (or spots) where the probes are

grown. The manufaturing protool is a sequene of steps N

1

N

2

: : : N

n

, eah with an assoi-

ated nuleotide N

i

2 fA, C, G, Tg. Coneptually, at the i

th

step of the protool a mask is

plaed on the glass array and the array is exposed to a solution ontaining the nuleotide N

i

.

This auses the probes at the positions on the array that are not masked to be extended by

one base, N

i

. The rest of the probes do not hange during this step. The proess is repeated

with a new mask at eah step, to build a diverse assortment of probes.

When ompleted, the array is employed as follows. A mixture of single-stranded DNA

moleules (alled targets) are eah uoresently tagged, and the mixture is applied to the

array for hybridization to the array's probes. (See Appendix A for a brief explanation of

DNA omplementarity and hybridization.) After washing away any unbound targets, the

uoresene intensities of all array spots are measured. Sine the array's probe sequenes

are known, this proedure measures the abundane of the bound omplementary target

sequenes.
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An altered or missed step in the array's manufaturing protool an adversely a�et

all probes using the failed step, and thus their hybridization behavior with targets. The

error ensuing from a faulty manufaturing step may well be impossible to disentangle from

experimental variation when using the defetive array. The problem of developing a quality

ontrol mehanism that detets during the manufaturing proess if a step has failed is

therefore of lear pratial importane.

One approah to the quality ontrol problem, formulated �rst by Hubbell and Pevzner

[8℄, is to design a small set of speial quality ontrol probes, whih they alled \�delity

probes." Their ingenious idea was to manufature the same probe sequene at a number of

di�erent spots, eah spot using a di�erent shedule of steps of the protool. A protool step

i therefore has an assoiated set P

i

of quality ontrol spots that use this manufaturing step.

These quality ontrol probes are then hybridized with a omplementary uoresent target.

The intensities within the set P

i

provide a \signature" for the quality of step i. If many of

the intensities within P

i

are signi�antly lower than the remaining intensities, this is a good

indiation of step i being awed. This is beause all the spots have the same sequene and

should therefore have similar hybridization behavior (hene similar intensities) if they are

orretly manufatured. The fous of the work of Hubbell and Pevzner is to generate sets

P

i

that are suÆiently large and suÆiently unique that a failed step an be identi�ed even

in the presene of some unreliable spot intensities. This method is then used repeatedly for

eah probe in a supplied set S of probes. However, there may be steps in a protool that

annot be used in manufaturing any of the probes in a given set S. Assuming that S is

supplied implies that the failure of suh a step annot be deteted. Moreover, sine there is

no oordination among the solutions generated for distint probes (the algorithm being used

separately on eah probe), Hubbell and Pevzner do not exploit the ability of the probes to

olletively make the set of spots using a protool step as large and as unique as possible.

We onsider an alternative formulation of this problem that does not assume that the

quality ontrol probe sequenes are supplied. We take the hoie of the probe sequenes into

our own hands in order to guarantee that every protool step is well overed by the quality

ontrol mehanism. Our design ensures that the number of distint probes is small and that

they hybridize poorly with themselves and with eah other. This is a neessary onstraint

beause if probes hybridize well with themselves or eah other, then their orresponding

omplementary targets will too, rendering them unavailable to hybridize to the probes [15℄.

Our design further ensures that eah probe hybridizes well only with the target that is

omplementary to it, and hybridizes poorly with the targets meant for the other probes.

This property allows us to use multiple quality ontrol targets (up to 4 in our urrent

designs) simultaneously, thereby relaxing the requirement of Hubbell and Pevzner [8℄ that

all probes are omplementary to substrings of a single target.

The fat that we want balaned and suÆiently unique signatures for all steps in the

protool suggests a onnetion to the elegant theory of ombinatorial design. For our pur-

poses, a ombinatorial design is just a 0-1 matrix with appropriate balane and uniqueness

properties. The hief ontribution of this work is to solve the quality ontrol problem by

developing a framework that builds on tehniques from ombinatorial design. For a preview,

see Figure 5.
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The rest of the paper is organized as follows. In Setion 2 we state our formulation

of the quality ontrol problem along with the assumptions we make, and haraterize the

riterion that allows us to identify a failed step. Setion 3 desribes the ombinatorial

design approah we take in solving this formulation of the quality ontrol problem. Setion

4 presents the spei� ombinatorial designs that solve the quality ontrol problem for the

protool ACGT ACGT . . . and for a wide range of values of the number of protool steps, the

number of spots, and tolerane for the number of spots that may show unreliable intensities.

These results are generalized in Setion 5 to all periodi protools with period 4. Setion 6

poses some open questions.

2. The Quality Control Problem

A quality ontrol sheme for a protool with n steps using m spots an be viewed as an m�n

0-1 matrix Q, with eah olumn representing a protool step and eah row representing a

spot. Eah olumn of Q is labelled with the nuleotide used in that step. The entry Q

ij

is

1 if and only if step j was used in manufaturing the probe at spot i. We will refer to suh

a matrix Q as a Quality Control (QC) matrix. The sequene of the oligonuleotide at spot

i an be read out by onatenating the labels of the olumns at whih row i has a 1:

De�nition 2.1: Let P be a protool N

1

N

2

� � �N

n

, where N

j

is the nuleotide used at the

j

th

step, 1 � j � n. Given an m � n QC matrix Q for protool P, the probe p

i

at row i of

Q is de�ned to be p

i

= q

i1

q

i2

: : : q

in

, where

q

ij

=

(

N

j

; if Q

ij

= 1

the empty string if Q

ij

= 0

:

The probes manufatured at them quality ontrol spots are not all di�erent. There will in

general be  distint probes, with several spots ontaining the same probe but manufatured

using di�erent shedules of steps of the protool. Typial values of m, , and n based on

previous work [8℄ are m = 128,  = 4, and 60 � n � 100.

To atually perform quality ontrol of a protool, the quality ontrol probes de�ned by Q

are manufatured using the protool onto m reserved spots on eah hip of a wafer [7℄. The

manufaturer takes one hip from the wafer and tests it as follows: the hip is hybridized

with uoresent targets omplementary to the  probes, sanned, and the resulting vetor of

m intensity values is used to determine whih step, if any, failed. The remaining hips of

the wafer are thus una�eted by the quality ontrol proess and their quality an be assessed

under the assumption that a step failure a�ets every hip on a wafer.

The quality ontrol problem for oligo arrays is essentially the problem of designing a QC

matrix Q with the following property: eah step in the protool is used in a set of spots

that is suÆiently large as well as suÆiently di�erent from the set for any other step, so

that any single failed step indues a unique signature on the intensity vetor. This should

be true even when not all intensities are reliable. The problem we would like to solve is the

following:
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De�nition 2.2: (QC Problem) Given a protool P with n steps up to 1 of whih may

fail, and a budget of m quality ontrol spots up to d of whih may be unreliable, onstrut

an m� n QC matrix Q suh that an intensity vetor I of the m spots manufatured using

Q allows unique identi�ation of the failed step, if any.

One reason why there is interest in identifying the failed step, rather than simply deteting

whether some step failed, is so that the manufaturer an orret any errors in the failed

step's mask before remanufaturing the hip.

At least two natural optimization versions of the QC problem are immediate: onstrut

Q as above that (i) for given n and m maximizes the spot fault tolerane d; (ii) for given n

and d minimizes the spot usage m.

1

The problem we solve in this work is not quite as general as the one stated in De�nition

2.2. We annot hope to take arbitrary parameter values n, m, and d as input and produe

a QC matrix Q that meets the spei�ations. We explain in Setion 2.4 why solving this

general version would entail solving long-standing open questions in ombinatorial design.

However we are able to produe QC matries for a wide range of values of n, m, and d

that overs the desired settings in pratie. We also do not solve this for arbitrary protools

P, but rather a spei� set of 24 periodi protools, namely, [�(ACGT)℄

n=4

, where � is any

permutation and n is a multiple of 4 in the range 60 � n � 132. Again, this overs the

typial protools in pratie.

2.1. Assumptions

We state the assumptions we make in formulating the QC problem, and ontrast them when

possible with the assumptions of Hubbell and Pevzner [8℄.

1. The manufaturing protool is [�(ACGT)℄

n=4

, where � is any permutation and n is a

multiple of 4. Up to one step may fail and the impat of this failure on the hip is

spatially uniform. (Hubbell and Pevzner [8℄ allowed an arbitrary protool.)

2. Spot failure: up to d spots may show arbitrarily unreliable intensities due to experi-

mental variations in hybridization, or due to hip faults. (The parameter d is impliit

in both the MinSize and MinDi� parameters of Hubbell and Pevzner [8℄.)

3. Step failure model: when a step fails, a spot will show a low intensity if and only if the

failed step was used in manufaturing the probe at that spot, with up to d exeptions.

When no step fails, eah spot will show a high intensity, with up to d exeptions. (The

step failure model was not made expliit by Hubbell and Pevzner [8℄.)

1

We note that this version subsumes nonadaptive ombinatorial group testing [6℄, with olumns of the QC

matrix orresponding to the elements in the universe and the rows orresponding to the query sets, in two

ways. First, answers to d of the queries ould be lies. This version of the nonadaptive group testing problem

is open (Yuan Ma, personal ommuniation). Seond, in group testing the order of universe elements is

immaterial, whereas the olumn order of a QC matrix is ritial to the probe sequenes and their properties.
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4. Spots ontaining di�erent probes in general may have di�erent hybridization behaviors.

(See Appendix A.) Hene we will not ompare intensity values of two di�erent probe

sequenes. We will also not make the assumption that, within the set of spots sharing

the same probe, we an distinguish between all intensities high and all low. Formally,

de�ning the real number I

i

to be the intensity value at spot i, we assume that for

every probe k there is a nonnegative onstant �

k

suh that two reliable spots i and i

0

for this probe that show both high or both low intensities must satisfy jI

i

� I

i

0

j � �

k

,

and reliable spots i low and i

0

high must satisfy I

i

0

� I

i

> �

k

. (The fous of the work

of Hubbell and Pevzner [8℄ is the �delity probe generation problem. The problem of

identifying the failed step is not expliitly addressed, hene no expliit statements are

made about intensity values.)

5. We are allowed multiple quality ontrol targets that are designed so as to hybridize

poorly to themselves and to eah other. Eah probe is designed to hybridize poorly to

all but one of these targets. (In the onrete test ase ited by Hubbell and Pevzner

[8℄, they assume they are supplied a single 20-mer quality ontrol target and the probes

are the four possible 17-mers that hybridize perfetly to the length 17 substrings of this

target.) Unlike Hubbell and Pevzner, our designs use up to 4 di�erent quality ontrol

targets. Based on ommerial availability of inexpensive oligo synthesis tehniques,

manufaturing several quality ontrol targets poses no problem.

The following de�nition rystallizes our assumption about what onstitutes poor hy-

bridization.

De�nition 2.3: We say that two single-stranded nuleotide sequenes hybridize poorly if

and only if, when they are arranged in antiparallel fashion, shifted an arbitrary o�set with

respet to eah other, at least two out of every four onseutive pairs of aligned bases are not

omplementary; see Figure 1. (See Appendix A for an explanation of DNA omplementarity

and hybridization.) A set S of suh sequenes is said to hybridize poorly if and only if, for

every sequene s 2 S, (1) s hybridizes poorly to itself and to every other sequene in S,

and (2) s hybridizes poorly to the reverse omplement of every sequene in S that is not a

rotation of s.

Suppose S is a set of poorly hybridizing probes. Condition (1) of De�nitions 2.3 ensures

that the orresponding targets also hybridize poorly to eah other, sine they are reverse

omplementary to the probes. Condition (2) ensures that eah probe-target pair hybridizes

either poorly or perfetly. The reason for the exeption of rotations is to allow, for example,

the use of both CACG CACG and its rotation ACGC ACGC as probes, with (a suÆient

quantity of) the single omplementary target GCGT GCGT G.

2.2. Identifying the Failed Step

In this setion we de�ne a property of a QC matrix Q, alled \separation," and establish

that high separation is suÆient to identify any one failed step when up to d spots may show

unreliable intensities.
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ACGCACGCACGC

j j j

GCTGGCTGGCTG

ACGCACGCACGC

j j j j j j

GCTGGCTGGCTG

ACGCACGCACGC

j j j j

GCTGGCTGGCTG

ACGCACGCACGC

j j j

GCTGGCTGGCTG

ACGCACGCACGC

CAGCCAGCCAGC

ACGCACGCACGC

j j j

CAGCCAGCCAGC

ACGCACGCACGC

j j j

CAGCCAGCCAGC

ACGCACGCACGC

j j

CAGCCAGCCAGC

Figure 1: ACGC ACGC ACGC hybridizes poorly to GTCG GTCG GTCG, and also to its

reverse omplement CGAC CGAC CGAC.

2.2.1. Separation

De�nition 2.4: Let Q be an m�n QC matrix with  distint probes fq

k

j 1 � k � g. Let

p

i

be the probe at row i, 1 � i � m. By onvention, de�ne Q

i0

= 0 for all 1 � i � m. For

any k with 1 � k � , and any pair j 6= j

0

with 0 � j; j

0

� n, let

D

Q;k

(j; j

0

) = #fi j p

i

= q

k

and Q

ij

6= Q

ij

0

g;

L

Q;k

(j; j

0

) = #fi j p

i

= q

k

and (Q

ij

6= 1 or Q

ij

0

6= 0)g;

R

Q;k

(j; j

0

) = #fi j p

i

= q

k

and (Q

ij

6= 0 or Q

ij

0

6= 1)g:

The subsript Q will be omitted when it is obvious from the ontext.

The separation of Q is de�ned to be:

sep(Q) = min

0�j;j

0

�n

j 6=j

0



X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)): (1)

Note that the onvention onerning Q

i0

is just a onveniene for the purpose of de�ning

separation. The QC matrix does not atually ontain suh a 0

th

olumn.

The D

k

portion of De�nition 2.4 has an intuitive explanation based on the Hamming

distane between two vetors, whih is the number of orresponding positions at whih the

two vetors have unequal values. A large Hamming distane between olumns j and j

0

of Q is

neessary in order to be able to detet the di�erene between step j failing and step j

0

failing.

Similarly, a large Hamming distane between olumn j of Q and the onventional olumn
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0 (i.e., a large number of ones in olumn j) is neessary in order to detet the di�erene

between step j failing and no step failing.

Note the similarity of the D

k

portion of De�nition 2.4 to error-orreting odes where,

to orret up to d errors, it is suÆient that every pair of odewords (analogous to olumns

in the QC matrix) be separated by a distane of at least 2d+ 1. The problem of identifying

a failed step is like error orretion rather than error detetion, beause we are interested in

the identity of the failed step rather than simply whether any step failed. (In the latter ase,

the separation requirement of Theorem 2.6 below would be redued from 2d+ 1 to d+ 1.)

The L

k

and R

k

portions of De�nition 2.4, whih have no analog in error-orreting odes,

apture the part of Assumption 4 from Setion 2.1 that one may not be able to di�erentiate

between all probe intensities high and all low, whih is why the D

k

portion alone is not

suÆient. For example, suppose step j were used in every spot i. Even if no spot failed,

if step j were to fail all spots would show equal (low) intensities. One might well not be

able to distinguish this ase from no step failing, in whih all spots would also show equal

(high) intensities. De�nition 2.4 and Theorem 2.6 below guarantee that we will be able to

distinguish these ases. Using a similar explanation to one given above, this portion implies

that eah olumn of Q has a large number of zeros.

2.2.2. Interpreting the Intensity Readings

The intensity vetor I is a vetor ofm real numbers, giving an intensity reading for eah of the

m spots. We wish to interpret these real numbers as high (\0"), low (\1"), or unreadable

(\?"). This interpretation is subjet to reasonable onstraints (given in Assumption 4 of

Setion 2.1, and De�nition 2.5 below) that two similar intensities of the same probe are not

interpreted as one high and one low, and two distant intensities of the same probe are not

interpreted as both high or both low.

Let �(I) 2 f0; 1; ?g

m

be suh an interpretation of intensity vetor I 2 <

m

, where < is

the set of real numbers. The reason why high intensity orresponds to \0" and low to \1"

is beause the objet is to use this interpretation vetor to identify whih olumn of the QC

matrix it resembles most. When step j fails and none of the spots are faulty, the intensity

vetor interpretation �(I) one expets to see is exatly the 0-1 vetor forming the j

th

olumn

of the QC matrix. In general up to d spots may be unreliable, so if step j fails, �(I) will

equal the j

th

olumn of the QC matrix with at most d exeptional positions. Note that not

all the d unreliable spots need be interpreted as \?": some may be erroneously interpreted

as high or low. The next de�nition formalizes this notion of interpretation.

De�nition 2.5: Let Q be an m�n QC matrix with  distint probes fq

k

j 1 � k � g. Let

p

i

be the probe at row i, 1 � i � m. An interpretation � : <

m

! f0; 1; ?g

m

of an intensity

vetor I satis�es the following for 1 � i; i

0

� m and 1 � k � .

� If p

i

= p

i

0

= q

k

and �(I)

i

= �(I)

i

0

2 f0; 1g, then jI

i

� I

i

0

j � �

k

. (In words, if spots

i and i

0

have the same probe and are interpreted as both high or both low, then their

intensities I

i

and I

i

0

are similar.)
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� If p

i

= p

i

0

= q

k

and �(I)

i

= 1 and �(I)

i

0

= 0, then I

i

0

� I

i

> �

k

: (In words, if spot i

is interpreted as low and spot i

0

as high, then their intensities I

i

and I

i

0

are not too

similar.)

As an example, suppose there were twelve spots with probe q

k

, their intensity readings were

2, 2, 3, 5, 6, 6, 6, 7, 7, 8, 8, 9, and �

k

= 2. Then one possible interpretation (the one that

minimizes the number of unreadable intensities) would interpret intensites 2{3 as low (\1"),

6{8 as high (\0"), and 5 and 9 as unreadable (\?").

2.2.3. Charaterizing the Identity of the Failed Step

Theorem 2.6: Suppose sep(Q) � 2d + 1 and I is the intensity vetor of the m spots.

Then, for 1 � j � n, step j fails if and only if there is an interpretation � of I suh that

Æ(Q

�j

;�(I)) � d, where Æ is the Hamming distane and Q

�j

is the j

th

olumn of Q. No step

fails if and only if there is an interpretation � of I suh that Æ(0

m

;�(I)) � d.

Proof: \Only if" lauses: Suppose step j fails. Then I

i

is low if and only if Q

ij

= 1,

with exeptions only for at most d spots that fail. (See Assumption 3 in Setion 2.1.) For

eah probe q

k

, hoose the two intensities l

k

and h

k

, with h

k

� l

k

> �

k

, to maximize the

number of spots i suh that

p

i

= q

k

and ((Q

ij

= 1 and I

i

2 [l

k

� �

k

; l

k

℄) or (Q

ij

= 0 and I

i

2 [h

k

; h

k

+ �

k

℄)):

Assign

�(I)

i

=

8

>

<

>

:

1; if p

i

= q

k

and I

i

2 [l

k

� �

k

; l

k

℄

0; if p

i

= q

k

and I

i

2 [h

k

; h

k

+ �

k

℄

?; if p

i

= q

k

and I

i

62 [l

k

� �

k

; l

k

℄ [ [h

k

; h

k

+ �

k

℄

:

Beause there are at most d exeptions to the ondition that I

i

is low if and only if Q

ij

= 1,

Æ(Q

�j

;�(I)) � d.

Suppose no step fails. Then I

i

is high, with exeptions only for at most d spots that

fail. (See Assumption 3 in Setion 2.1.) For eah probe q

k

, hoose the intensity h

k

that

maximizes the number of spots i suh that

p

i

= q

k

and I

i

2 [h

k

; h

k

+ �

k

℄:

Assign

�(I)

i

=

(

0; if p

i

= q

k

and I

i

2 [h

k

; h

k

+ �

k

℄

?; if p

i

= q

k

and I

i

62 [h

k

; h

k

+ �

k

℄

:

Beause there are at most d exeptions to the ondition that I

i

is high, Æ(0

m

;�(I)) � d.

\If" lauses: Suppose j does not fail, meaning some j

0

6= j fails. (The ase of no step

failing is handled by the onvention j

0

= 0 together with the onvention from De�nition 2.4
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�(I) Q

�j

Q

�j

0

�

0

(I)

0 0 6= 1 6= ?

0 6= 1 6= 0 0

0 0 0 0

1 1 6= 0 6= 1

1 1 1 ?

e

k

D

k

(j; j

0

) d

k

Figure 2: Five sample spots with probe q

k

, illustrating why every Q

ij

6= Q

ij

0

ontributes to

d

k

+ e

k

.

that Q

�0

= 0

m

.) By the \only if" lause above, there exists an interpretation �

0

suh that

Æ(Q

�j

0

;�

0

(I)) � d. Let � be any interpretation, and e = Æ(Q

�j

;�(I)). We will �nish the

proof by showing that e > d.

For eah probe q

k

, let

d

k

= #fi j p

i

= q

k

and �

0

(I)

i

6= Q

ij

0

g; and

e

k

= #fi j p

i

= q

k

and �(I)

i

6= Q

ij

g;

so that



X

k=1

d

k

� d and



X

k=1

e

k

= e:

Consider the ases for how the two interpretations of the same vetor I \line up" within

some probe q

k

:

Case 1: There exists an i suh that p

i

= q

k

and �(I)

i

= �

0

(I)

i

2 f0; 1g. Then for all i

0

suh that p

i

0

= q

k

,

�(I)

i

0

= �

0

(I)

i

0

or �(I)

i

0

=? or �

0

(I)

i

0

=?;

sine �(I)

i

0

= 0 and �

0

(I)

i

0

= 1 would mean jI

i

� I

i

0

j � �

k

and jI

i

0

� I

i

j > �

k

. But

then every i for whih p

i

= q

k

and Q

ij

6= Q

ij

0

ontributes at least 1 to d

k

+ e

k

, so that

d

k

+ e

k

� D

k

(j; j

0

). The reason eah suh i ontributes at least 1 is illustrated in Figure

2 and explained as follows. If �(I)

i

= �

0

(I)

i

and Q

ij

6= Q

ij

0

, then either �

0

(I)

i

6= Q

ij

0

or

�(I)

i

6= Q

ij

. Otherwise, one of the interpretations is ?, and that ertainly di�ers from the

orresponding Q

i�

entry.

Case 2: There exists an i suh that p

i

= q

k

and �(I)

i

= 1 and �

0

(I)

i

= 0. Then for all

i

0

suh that p

i

0

= q

k

,

(�(I)

i

0

= 1 and �

0

(I)

i

0

= 0) or �(I)

i

0

=? or �

0

(I)

i

0

=?:

9



But then every i for whih p

i

= q

k

and (Q

ij

6= 1 or Q

ij

0

6= 0) ontributes at least 1 to d

k

+e

k

,

so that d

k

+ e

k

� L

k

(j; j

0

).

Case 3: There exists an i suh that p

i

= q

k

and �(I)

i

= 0 and �

0

(I)

i

= 1. Then

d

k

+ e

k

� R

k

(j; j

0

), analogous to ase 2.

Case 4: For all i, p

i

= q

k

implies �(I)

i

=? or �

0

(I)

i

=?. Then

d

k

+ e

k

� #fi j p

i

= q

k

g � D

k

(j; j

0

):

Combining the onlusions of these four ases,

d+ e �



X

k=1

(d

k

+ e

k

) �



X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) � sep(Q) � 2d+ 1:

Hene e > d. 2

2.2.4. An Algorithm that Identi�es the Failed Step

Given spot failure tolerane d, an m� n QC matrix Q with sep(Q) � 2d+ 1, an intensity

vetor I 2 <

m

, and an intensity window �

k

for eah probe, 1 � k � , Theorem 2.6 an

be applied to identify whih protool step, if any, has failed. An algorithm solving this

problem must hek if, for any j, 0 � j � n, there exists an interpretation � suh that

Æ(Q

�j

;�(I)) � d. If so, it returns the value j as the step that has failed. (As in De�nition

2.4, Q

�0

by onvention is the vetor 0

m

, and a returned value of j = 0 orresponds to no

step having failed.) If no suh interpretation exists, the algorithm reports that more than

one step must have failed, again by Theorem 2.6. Figure 3 desribes an O(mn +m logm)

time algorithm for performing this task.

A few de�nitions are prerequisites to the algorithm in Figure 3. Let vetor

^

I be obtained

by sorting the intensity vetor I, eah set of rows orresponding to the same probe sorted

separately in nondereasing order. Let

^

Q be the result of performing the same permutation

on the rows of Q. Let R

k

be the set of rows of

^

I orresponding to probe k, 1 � k � .

De�ne m

k

= jR

k

j, so that

P



k=1

m

k

= m.

Given a olumn

^

Q

�j

and the vetor

^

I, we de�ne two lists, L

k

and H

k

, for eah probe k.

The lists L

k

and H

k

are generated by partitioning the intensities in R

k

aording to whether

the orresponding row of

^

Q

�j

has a one or zero, respetively. Note that eah L

k

and H

k

,

1 � k � , is a sorted list of real-valued intensities. Letting L

k

[i℄ be the i

th

item in L

k

, de�ne

#L

k

[i℄ to be the number of indies i

0

� i suh that L

k

[i℄� �

k

� L

k

[i

0

℄ � L

k

[i℄. De�ne #H

k

[i℄

similarly as the number of indies i

0

� i suh that H

k

[i℄ � H

k

[i

0

℄ � H

k

[i℄ + �

k

.

The entral idea behind the subroutine FindLH in Figure 3 is to �nd a \buddy" l 2 L

for eah item h 2 H, suh that h � l > �

k

and #l is maximized. The motivation for

�nding the buddy l of h is that, if [h; h + �

k

℄ were hosen as the range of high intensities,

then [l � �

k

; l℄ would be the best hoie for the range of low intensities, in the sense that it

aptures the greatest possible number of observed spot intensities. The list B de�ned within

this subroutine maintains the index in L of the buddy for eah item in H, so that H[j℄ and

10



L[B[j℄℄ are buddies, 1 � j � jHj. Sine both L and H are sorted lists, it must be the ase

that either B[j + 1℄ = B[j℄, or B[j + 1℄ > i, where i is any index satisfying H[j℄� L[i℄ > �

k

.

Hene there is no need to baktrak in the list L as j inreases through the list H.

The list B is thus onstruted via a single sweep through L. The ontribution from

the \while" loop (line 4:1) over the exeution of the entire \for" loop (line 4) is therefore

O(jLj+ jHj). Sine line 4:2 ontributes O(jHj) to the ost of this \for" loop, the total ost

of line 4 is O(jLj+ jHj). This dominates the O(jHj) ontribution from line 5. By similarly

using two monotonially advaning pointers, line 1 an be implemented in time O(jLj+ jHj).

The total running time of FindLH is therefore O(jLj+ jHj).

This implies that the ost of line 2:1:2 in DetetFaultyStep is O(jL

k

j+ jH

k

j) = O(m

k

).

Sine L

k

and H

k

an be onstruted through a single sweep of R

k

, the ost of line 2:1:1 is

also O(m

k

). The ost of the \for" loop in line 2:1 is then

P



k=1

O(m

k

) = O(m). The total

running time of the \for" loop in line 2 is therefore O(mn). Sine eah set of rows in R

k

is sorted separately, the ost of sorting in line 1 is

P



k=1

O(m

k

logm

k

) = O(m logm). Thus,

DetetFaultyStep is an O(mn+m logm) time algorithm. Note that when a protool step

(say j) has failed, the \for" loop in line 2 will terminate early, so the atual ost of the

algorithm would be O(mj +m logm).

2.3. Combining QC Matries

The following theorem provides one simple way to ombine QC matries, and illustrates a

tradeo� between the goals of maximizing separation and minimizing the number of spots.

Theorem 2.7: Suppose that Q

1

is an m

1

� n QC matrix, and Q

2

is an m

2

� n QC matrix.

Then the union Q

1

+Q

2

of their rows has n steps, m

1

+m

2

spots, and

sep(Q

1

+Q

2

) � sep(Q

1

) + sep(Q

2

):

Proof: For any j 6= j

0

with 0 � j; j

0

� n, let s be the separation of olumns j and j

0

in

Q

1

+Q

2

, that is,

s =



X

k=1

min (D

Q

1

+Q

2

;k

(j; j

0

); L

Q

1

+Q

2

;k

(j; j

0

); R

Q

1

+Q

2

;k

(j; j

0

))

=



X

k=1

min ( D

Q

1

;k

(j; j

0

) +D

Q

2

;k

(j; j

0

);

L

Q

1

;k

(j; j

0

) + L

Q

2

;k

(j; j

0

);

R

Q

1

;k

(j; j

0

) + R

Q

2

;k

(j; j

0

)):

Using the inequality min(a + x; b+ y; + z) � min(a; b; ) + min(x; y; z),

s �



X

k=1

min(D

Q

1

;k

(j; j

0

); L

Q

1

;k

(j; j

0

); R

Q

1

;k

(j; j

0

))

+min(D

Q

2

;k

(j; j

0

); L

Q

2

;k

(j; j

0

); R

Q

2

;k

(j; j

0

))

� sep(Q

1

) + sep(Q

2

):
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DetetFaultyStep( Q, I, d, �

1

, . . . , �



)

begin

1. Sort I, eah set of positions orresponding to the same probe sorted separately

in nondereasing order. Indue the same row permutation on matrix Q.

2. for j from 0 to n do

/* for eah j hek if there is a � with Æ(�(I);Q

�j

) � d */

2.1 for k from 1 to  do

2.1.1 Compute L

k

and H

k

.

2.1.2 max

k

= FindLH(L

k

;H

k

; �

k

)

end for

2.2 if

P



k=1

max

k

� m� d then return j

/*

P



k=1

max

k

is the number of mathes between �(I) and Q

�j

*/

end for

3. return \Multiple steps failed"

end

FindLH( L, H, � )

/* Given sorted lists L and H �nd l 2 L and h 2 H suh that h� l > � and

#h +#l is maximized. Return this maximum value. */

begin

1. For eah item L[i℄ in list L, ompute #L[i℄. Do the same for H.

2. ur = 1 /* initialize san of list L */

3. /* H[1℄ may not have a buddy. */

3.1 B[1℄ = null

3.2 #L[B[1℄℄ = 0

4. for j from 1 to jHj do

/* for eah element in H, ontinue san of L to �nd its \buddy" */

4.1 while H[j℄� L[ur℄ > � and ur � jLj do

4.1.1 if #L[ur℄ > #L[B[j℄℄ then B[j℄ = ur

4.1.2 ur = ur + 1

end while

4.2 B[j + 1℄ = B[j℄

/* arry over urrent buddy to initiate san for the next item in H */

end for

5. Compute max, the maximum of #H[j℄ + #L[B[j℄℄ for all j, 1 � j � jHj.

6. return max

end

Figure 3: An O(mn+m logm) time algorithm for deteting a failed step.
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Thus, any pair of distint olumns of Q

1

+Q

2

has separation at least sep(Q

1

) + sep(Q

2

), so

the theorem follows. 2

2.4. Preise Problem Formulation

We are now in a position to state the preise design problem we solve. The array manufa-

turer spei�es as inputs the number n of steps, the protool, and the length l of eah probe.

The QC design problem is to onstrut an m�n QC matrix Q with l ones per row suh that

the number m of spots is small and sep(Q) is large. Furthermore, the set of  distint probes

hybridizes poorly, aording to De�nition 2.3. In our designs, we never use more than  = 8

distint probes.

As disussed at the beginning of Setion 2, the manufaturer uses the QC matrix Q by

manufaturing the probes p

1

; p

2

; : : : ; p

m

onto m reserved spots, and hybridizing with the

omplementary uoresent targets. The resulting intensity vetor I is then used along with

Q to identify the failed step, if any, using the algorithm of Setion 2.2.4.

One annot expet to optimize both the objetive funtions m and sep(Q) in a single

QC matrix. For instane, Theorem 2.7 says that dupliating the spots of Q simultaneously

doubles m and sep(Q). Instead, in Setion 4 we will onstrut a variety of QC matries Q

that o�er the manufaturer a spetrum of hoies for m and sep(Q).

The following theorem demonstrates a lower bound on the number of spots, in terms of

the other parameters.

Theorem 2.8: For any m� n QC matrix Q with l ones per row,

m �

sep(Q)

l

� n:

Proof: The number of ones in Q is ml. By De�nition 2.4 (the D

k

portion with j = 0),

the number of ones per olumn is at least sep(Q). 2

One should not expet to �nd an algorithm that, given arbitrary values n and m, om-

putes an m � n QC matrix Q that maximizes sep(Q). This is likely to be infeasible at

the present time, beause even the existene of ertain ombinatorial designs (suh as a

Hadamard matrix of order 4t, whih is equivalent to a (4t � 1) � (4t � 1) QC matrix Q

with sep(Q) = 2t� 1) is a long-standing open problem [5℄. To see the equivalene, suppose

there were suh a matrix Q. Sine sep(Q) = 2t � 1, the number of ones per olumn is

between 2t� 1 and 2t. Suppose the number of ones per row (and hene olumn) is exatly

2t� 1. (If 2t, onsider the omplement of Q instead.) Sine sep(Q) = 2t� 1, the Hamming

distane between any two olumns is at least 2t � 1, so any two olumns both have ones

in at most t � 1 rows. But the total number of unordered pairs of ones in the same row,

summed over all rows, is (4t � 1)(2t � 1)(t � 1). Hene, the average pair of olumns also

both have ones in t� 1 rows, so that every pair of olumns both have ones in exatly t� 1

rows. That makes Q the inidene matrix of a 2-design (see De�nition 3.2) with parameters

13



(4t� 1; 4t� 1; 2t� 1; 2t� 1; t� 1), whih is equivalent to a Hadamard matrix of order 4t [5,

Constrution 24.7℄.

3. A Combinatorial Design Approah

We will assume for the moment that the protool is (ACGT)

n=4

, generalizing to other pro-

tools in Setion 5.

3.1. Relationship to Error-Correting Codes

A good QC matrix Q has many of the properties of a good error-orreting ode, whih is a

type of ombinatorial design: if one thinks of the olumns ofQ as binary odewords, then one

part of De�nition 2.4 (the onstraint on D

k

) guarantees that the Hamming distane between

any pair of odewords is at least sep(Q). However, good QC matries have many more

onstraints that make their design more ompliated than that of error-orreting odes:

1. The order of the olumns, whih would not matter in a ode, is ritial in a QC

matrix. In partiular, the ones in the rows must \spell out" a small number  of

probes aording to De�nition 2.1. Furthermore, these probes must hybridize poorly

aording to De�nition 2.3.

2. Eah row must ontain the same number l of ones, whih has no analogy in odes.

This is to enfore the onstraint that eah probe has the same length l.

3. Another onsequene of De�nition 2.4 (when j = 0) is that eah olumn must ontain

between sep(Q) and m� sep(Q) ones.

4. The onstraints of De�nition 2.4 on L

k

and R

k

have no analogy in odes.

We solve this design problem using a hierarhial approah. In Setion 3.2 we introdue

a new type of ombinatorial design. This is a \balaned" version of binary odes that takes

are of items 2 and 3 from the list above, and we show how to onstrut suh a balaned

ode C. We then substitute a small appropriate matrix, alled a \QC blok", for eah 1 in

C, and an equal size matrix of zeros for eah 0 in C. The QC blok is designed so that the

resulting ross produt satis�es all four properties of the list above. An example of an 8� 8

QC blok is shown in Figure 4. The de�nition of QC bloks is given in Setion 3.3.

3.2. Balaned Codes

De�nition 3.1: A balaned binary ode with parameters (v; b; r

min

; r

max

; k; d

min

) is a b � v

0-1 matrix with the following properties:

1. Every row ontains exatly k ones.
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2. The minimum number of ones in any olumn is r

min

, and the maximum is r

max

.

3. The minimum Hamming distane between any pair of olumns is d

min

.

A subset of the odewords from ertain types of error-orreting odes, suh as Hadamard

odes and quadrati residue odes [16℄, form balaned odes. (To ahieve k ones per row,

hoose k=2 pairs of omplementary odewords.) However, our major soure of balaned

ode onstrutions omes from 2-designs:

De�nition 3.2 (Colbourn and Dinitz [4℄): A 2-design with parameters (v; b; r; k; �) is a

b� v 0-1 matrix D with the following properties:

1. Every row ontains exatly k ones.

2. Every olumn ontains exatly r ones.

3. For every pair j; j

0

of distint olumns, there are exatly � rows i suh that D

i;j

=

D

i;j

0

= 1.

Proposition 3.3: Any 2-design with parameters (v; b; r; k; �) is a balaned ode with pa-

rameters (v; b; r; r; k; 2(r� �)).

Proof: Sine there are � rows in whih olumns j and j

0

eah ontain 1, there are r� �

rows in whih olumn j ontains 1 and olumn j

0

ontains 0, and another r�� rows in whih

olumn j ontains 0 and olumn j

0

ontains 1. 2

While most of our balaned odes ome from 2-designs, the latter are more stringent than

we need: every olumn ontains exatly r ones, and the Hamming distane between any pair

of olumns is exatly 2(r � �). Construting less stringent balaned odes would lead to a

riher olletion of QC matries.

Another soure of balaned odes omes from the following produt onstrution.

Theorem 3.4: Let C

0

be a balaned ode with parameters (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

) and C

be a balaned ode with parameters (v; b; r

min

; r

max

; k; d

min

). Then there is a balaned ode

C

0

� C with parameters

(v

0

v; b

0

b; r

0

min

r

min

; r

0

max

r

max

; k

0

k;min(d

0

min

r

min

; d

min

r

0

min

)):

Proof: Replae every one in C

0

by a opy of C, and every zero in C

0

by a b�v matrix of

zeros. (See the leftmost twelve olumns of Figure 10(d) for an example.) If two olumns j

and j

0

of this produt both lie in the same olumn of C

0

, their Hamming distane is at least

d

min

r

0

min

. If they lie in di�erent olumns of C

0

, their Hamming distane is at least d

0

min

r

min

.

2
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A C G C

T A G T

C A C G

A G T T

A C A T

G T C G

A T A C

C G G T

Figure 4: An 8 � 8 QC blok with parameters (8,8,4,4,4,4). For ease of visualization, the

�gure shows blanks instead of zeros, and the appropriate nuleotide from the protool instead

of ones.

3.3. QC Bloks

Balaned odes do not apture the notion of poor hybridization. A \QC blok" is just a

balaned ode with an additional hybridization onstraint:

De�nition 3.5: A QC blok for a protool P is a b� v balaned ode in whih the b probes

p

1

; p

2

; : : : ; p

b

(using the length v pre�x of P as the protool in De�nition 2.1) are all distint

and, for every integer s, the set fp

s

1

; p

s

2

; : : : ; p

s

b

g hybridizes poorly (see De�nition 2.3).

An example of an 8 � 8 QC blok with parameters (8; 8; 4; 4; 4; 4) is given in Figure 4.

Its eight poorly hybridizing probes are (ACGC)

s

, (TAGT)

s

, (CACG)

s

, (AGTT)

s

, (ACAT)

s

,

(GTCG)

s

, (ATAC)

s

, and (CGGT)

s

. Its four orresponding targets are GCGT . . .GCGT G,

AACT . . . AACT A, ATGT . . . ATGT AT, and CGAC . . . CGAC CG.

3.4. Produt Constrution of QC Matries

The method we will use to onstrut good QC matries is to apply the produt onstrution

of Theorem 3.4, with C

0

a balaned ode and C a QC blok. Figure 5 shows an example,

where C

0

onsists of ten odewords from the 8-Hadamard ode [16℄, and C is the QC blok

of Figure 4.

If the parameters of C

0

are (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

) and the parameters of C are

(v; b; r

min

; r

max

; k; d

min

), then the QC matrix C

0

� C will have v

0

v steps, b

0

b spots, and b

distint probes, eah of length k

0

k and eah ourring at b

0

distint spots. More spei�ally,

if p

1

; p

2

; : : : ; p

b

are the distint probes of C, then p

k

0

1

; p

k

0

2

; : : : ; p

k

0

b

are the distint probes of

C

0

� C. By De�nition 3.5, this set of distint probes hybridizes poorly.

What remains is to determine sep(C

0

� C), in order to be able to apply Theorem 2.6.
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Figure 5: The produt of 10 odewords from the 8-Hadamard ode and the 8� 8 QC blok

of Figure 4, resulting in a 64� 80 QC matrix Q with minimum separation sep(Q) = 16.
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Theorem 3.6: If C

0

is a balaned ode with parameters (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

) and C is

a QC blok with parameters (v; b; r

min

; r

max

; k; d

min

), then

sep(C

0

� C) = min( d

0

min

r

min

;

r

0

min

min(r

min

; d

min

);

(b

0

� r

0

max

)min(r

min

; d

min

) ):

As an example, if C is the 8� 8 QC blok of Figure 4, then

sep(C

0

� C) = 4min(d

0

min

; r

0

min

; b

0

� r

0

max

):

Proof: We will identify any olumn j of the produt C

0

� C, 1 � j � v

0

v, by the

pair (g; h), where 1 � g � v

0

, 1 � h � v, and olumn j is the result of replaing every

one in olumn g of C

0

by olumn h of C, and replaing every zero by the vetor 0

b

. The

proof proeeds by examining the four possible ases for the pair j; j

0

of olumns of C

0

� C

in De�nition 2.4, and omputing the separation of these olumns. (The reader may �nd it

helpful to identify an example of eah ase in Figure 5 while reading the proof for that ase.)

Note for all four ases that the b

0

b spots of C

0

� C are partitioned into b distint probes,

orresponding to the b rows of C, as desribed above.

Case 1: j = (g; h) and j

0

= 0. (Reall the onvention from De�nition 2.4 that olumn 0

is the vetor 0

b

0

b

.) Suppose olumn g of C

0

has r

0

ones, where r

0

min

� r

0

� r

0

max

, and olumn h

of C has r ones, where r

min

� r. For any probe q

k

orresponding to a zero in olumn h of C,

D

k

(j; j

0

) = 0, so q

k

ontributes 0 to the separation of j and j

0

in Equation (1) of De�nition

2.4. For the r distint probes q

k

orresponding to the ones in olumn h of C, D

k

(j; j

0

) = r

0

,

L

k

(j; j

0

) = b

0

� r

0

, and R

k

(j; j

0

) = b

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) = rmin(r

0

; b

0

� r

0

) � r

min

�min(r

0

min

; b

0

� r

0

max

);

with equality when r = r

min

, and either r

0

= r

0

min

or b

0

� r

0

= b

0

� r

0

max

, whihever is less.

Case 2: j = (g; h) and j

0

= (g; h

0

), with h 6= h

0

. Suppose olumn g of C

0

has r

0

ones,

where r

0

min

� r

0

� r

0

max

, and olumns h and h

0

of C di�er in d positions, where d

min

� d.

For any probe q

k

orresponding to a row of C in whih olumns h and h

0

do not di�er,

D

k

(j; j

0

) = 0, so q

k

ontributes 0 to the separation of j and j

0

in Equation (1). For the

d distint probes q

k

orresponding to the rows of C in whih olumns h and h

0

do di�er,

D

k

(j; j

0

) = r

0

, one of L

k

(j; j

0

) and R

k

(j; j

0

) is b

0

� r

0

, and the other is b

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) = dmin(r

0

; b

0

� r

0

) � d

min

�min(r

0

min

; b

0

� r

0

max

);

with equality when d = d

min

, and either r

0

= r

0

min

or b

0

� r

0

= b

0

� r

0

max

, whihever is less.

Case 3: j = (g; h) and j

0

= (g

0

; h), with g 6= g

0

. Suppose olumn h of C has r ones, where

r

min

� r, and suppose there are e

0

rows i in C

0

for whih C

0

ig

= 1 and C

0

ig

0

= 0, and f

0

rows

i in C

0

for whih C

0

ig

= 0 and C

0

ig

0

= 1, where d

0

min

� e

0

+ f

0

and e

0

; f

0

� r

0

max

. For any probe
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q

k

orresponding to a row of C in whih olumn h has a zero, D

k

(j; j

0

) = 0, so q

k

ontributes

0 to the separation of j and j

0

in Equation (1). For the r distint probes q

k

orresponding

to the ones in olumn h, D

k

(j; j

0

) = e

0

+ f

0

, L

k

(j; j

0

) = b

0

� e

0

, and R

k

(j; j

0

) = b

0

� f

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) = rmin(e

0

+f

0

; b

0

�e

0

; b

0

�f

0

) � r

min

�min(d

0

min

; b

0

�r

0

max

);

with equality possible when r = r

min

and e

0

+ f

0

= d

0

min

.

Case 4: j = (g; h) and j

0

= (g

0

; h

0

), with g 6= g

0

and h 6= h

0

. Suppose olumns h and h

0

of C di�er in d positions, where d

min

� d. For a probe q

k

orresponding to a row i of C in

whih olumns h and h

0

di�er, assume without loss of generality that C

ih

= 1 and C

ih

0

= 0.

Suppose that olumn g of C

0

has r

0

ones, where r

0

min

� r

0

� r

0

max

. Then D

k

(j; j

0

) = r

0

,

L

k

(j; j

0

) = b

0

� r

0

, and R

k

(j; j

0

) = b

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) � dmin(r

0

; b

0

� r

0

) � d

min

�min(r

0

min

; b

0

� r

0

max

):

2

4. Results: Ahieved QC Matries

Table 1 shows some of the QC matries ahievable by using the produt onstrution of

Setion 3.4. Eah row of the table desribes a QC matrix that is the produt of the balaned

ode spei�ed in the last olumn and the QC blok spei�ed in the penultimate olumn. For

example, the QC matrix shown in Figure 5 orresponds to the row of the table with 80 steps

and 64 spots.

Table 1 fouses on ranges of parameters omparable to those of Hubbell and Pevzner

[8℄, namely between 60 and 132 protool steps, probe lengths between 16 and 20, and fewer

than 400 spots. (These parameters are given in olumns 1{3 of the table.) The separations

in olumn 4 of the table are alulated using Theorem 3.6. For eah �xed number of steps

(olumn 1), the table o�ers a small spetrum of designs to suit the manufaturer's spot

budget and spot failure tolerane (olumns 3{4). Arbitrary linear ombinations of these

designs an be formed aording to Theorem 2.7, to provide a broader spetrum of hoies.

The manufaturer uses Table 1 to look up the QC matrix Q for the appropriate hoie

of parameters in the �rst four olumns of the table, where the \sep" parameter is hosen

to be greater than twie the number of faulty spots the manufaturer is willing to tolerate.

The QC matrix Q is used to manufature the quality ontrol probes onto reserved spots,

whih are hybridized with omplementary uoresent targets. The resulting intensity vetor

I is then used along with Q to identify the failed step, if any, using the algorithm of Setion

2.2.4.

The 8 � 8 QC blok has already been presented in Figure 4. The 6 � 12, 6 � 8, and

4� 4 QC bloks are given in Figures 6, 7, and 8, respetively. They eah use a subset of the

probes used by the 8� 8 QC blok.
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Table 1: Some basi QC matries ahievable by the produt onstrution of Setion 3.4.

The seond olumn shows the probe length. The last two olumns show the QC blok and

balaned ode whose produt yields the QC matrix. In the last olumn, a list of 5 parame-

ters indiates a 2-design (De�nition 3.2), \�" indiates a produt ode (Theorem 3.4), \+i"

indiates the addition of i extra olumns that maintain the balaned ode properties (see

Appendix C), and GF(q) refers to balaned odes derived from polynomials over �nite �elds

(see Appendix D). The 2-designs referened in the last olumn an be found in the om-

pendium of Mathon and Rosa [13℄, and the error-orreting odes in the survey of Tonhev

[16℄. For the latter, the balaned ode employs odewords in omplementary pairs, and

the number of odewords used is n=v, where n is the number of steps and v the number of

olumns in the QC blok.

20



A C G C

T A G T

C A C G

A G T T

G T C G

A T A C

Figure 6: A 6� 12 QC blok with parameters (12,6,2,2,4,2).

A C G C

T A G T

A C A T

G T C G

A T A C

C G G T

Figure 7: A 6� 8 QC blok with parameters (8,6,3,3,4,2).

QC matries involving 4 � 4 QC bloks are onstruted in a slightly di�erent manner

from the others. These are atually a pair of mated bloks, as shown in Figure 8. When

forming the produt with a balaned ode C

0

, these two mates are alternately substituted

for the ones in any given row of C

0

. An example of this produt onstrution is shown in

Figure 9, in whih C

0

is a 2-design with parameters (19,19,9,9,4) [13, Table 1.26℄. Beause

the proof of Theorem 3.6 relies on the substitution of a single QC blok for all the ones in

C

0

, that theorem is not general enough to provide the separation values for QC matries

onstruted from the mated 4� 4 QC bloks. The same result does in fat hold for suh QC

matries, and the proof is given in Appendix B.

QC matries using the 4 � 4 QC bloks require only two targets, ATGT . . . ATGT AT

and CGAC . . . CGAC CG. There are two entries in Table 1 that appear as though they

ould be derived by ombining earlier entries via Theorem 2.7: (1) the 276� 96 QC matrix

has the same probe length, number of spots, and separation as four opies of the 48�96 plus

one opy of the 84�96, and (2) the 348�120 the same as �ve opies of the 48�120 plus one

opy of the 108� 120. However, in both ases the single larger QC matrix, onstruted via

the 4� 4 QC blok, requires only two targets, whereas the ombined equivalent QC matrix

requires four targets.

By Theorem 2.8, olumn 5 of Table 1 is no less than olumn 6. When they are equal,

the QC matrix is optimal, in the sense that it uses the fewest possible number of spots for

its separation.

An open problem in ombinatorial design theory [13℄ that has bearing on our pratial

range of parameters is the existene of a 2-design with parameters (22; 33; 12; 8; 4) whih,

together with the 4� 4 QC blok, would yield a QC matrix with 88 steps, probe length 16,
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A C

G T

A T

C G

A T

C G

A C

G T

Figure 8: A pair of 4� 4 QC bloks eah with parameters (4,4,2,2,2,2).

132 spots, and separation 24.

5. Covering Protools Other Than ACGT ACGT . . .

In this setion we show that all the ahievable parameter settings for the protool P =

(ACGT)

n=4

obtained in Setion 4 an also be ahieved for any protool P

0

= [�(ACGT)℄

n=4

,

where � is any permutation. To obtain a QC matrix for any protool P

0

we an start

with a QC matrix Q with its olumns labelled aording to the steps in protool P, and

relabel the olumns aording to the steps in P

0

. The resulting QC matrix Q

0

ertainly

has the same parameter values as Q. The only possible impediment to this being a valid

QC matrix for P

0

is that the probe set assoiated with Q

0

may no longer hybridize poorly

aording to De�nition 2.3. We overome this impediment and exhibit transformations on

valid QC matries that preserve the validity of the resulting probe set for all 24 protools

[�(ACGT)℄

n=4

. Of these, 16 permutations are obtained via general transformations that

operate on the total QC design, and would apply to any valid QC matrix with periodi

probes. The remaining 8 are spei� to the QC bloks used in the produt designs desribed

in Setion 4.

5.1. Rotations

All our probes are periodi, with period 4. Given suh a periodi probe set S, the probe set

obtained by rotating some of the probes some number of positions has the same hybridization

behavior as S with respet to De�nition 2.3. Thus, a poorly hybridizing probe set remains

so under suh rotations.

Given a QC matrix Q for (ACGT)

n=4

, we an rotate the olumns of Q right one position

(the n

th

olumn beomes the 1

st

, and the i

th

olumn beomes the (i + 1)

st

, 1 � i � n � 1)

to obtain a QC matrix of idential parameters as Q, for the protool (TACG)

n=4

. Similarly,

QC matries of idential parameters for the protools (GTAC)

n=4

and (CGTA)

n=4

an be

obtained from Q by rotating the olumns right two and three positions, respetively.

Note that the resulting QC matries are not neessarily produt designs as onstruted

in Setion 3.4. Note also that similar rotations ould be performed on valid QC matries for

any protool, not just (ACGT)

n=4

. In the following setions, we will do exatly that.
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Figure 9: The produt of a (19,19,9,9,4) 2-design and the pair of 4� 4 QC bloks of Figure

8, resulting in a 76� 76 QC matrix Q with minimum separation sep(Q) = 18.
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5.2. Substitutions Within Complementary Bases

Given a probe set, substituting eah A with T (and vie versa), or eah C with G (and

vie versa) in every probe, does not hange its hybridization behavior. This is beause the

substitutions are between omplementary bases, so the hybridization eÆieny of any two

given probes remains unhanged. Hene a poorly hybridizing probe set remains so under

this transformation.

Given a QC matrix Q for (ACGT)

n=4

, to enfore the type of transformation on the probe

set mentioned above we replae the label of every A olumn with T and every T olumn

with A, and/or every G olumn with C and every C olumn with G. This leads to valid

QC matries of idential parameters as that of Q, for the protools (TCGA)

n=4

, (TGCA)

n=4

,

and (AGCT)

n=4

. The resulting designs an then be rotated, as in Setion 5.1, to get valid

QC matries for (ATCG)

n=4

, (GATC)

n=4

, (CGAT)

n=4

, (ATGC)

n=4

, et.

5.3. The Remaining Permutations

The two transformations above over 16 of the 24 permutations. To get the remaining 8, we

over the two permutations �

1

: ACGT ! CAGT and �

2

: ACGT ! ACTG, and get the

rest via rotations as in Setion 5.1. The permutations �

1

and �

2

are overed by heking

that the probe set of the 8� 8 QC blok of Figure 4 remains poorly hybridizing under the

transformation that substitutes A with C and vie versa (for �

1

) or G with T and vie versa

(for �

2

), in eah probe. Sine the probe sets of the 4� 4, 6 � 8, and 6 � 12 QC bloks are

all subsets of that of the 8� 8 QC blok, these probe sets remain valid as well.

To obtain valid QC matries for (CAGT)

n=4

or (ACTG)

n=4

from a valid QC matrix Q

for (ACGT)

n=4

, we relabel the olumns in Q by replaing eah A with C and vie versa (for

�

1

) or eah G with T and vie versa (for �

2

). The resulting design an then be rotated, as in

Setion 5.1, to get valid QC matries for (TCAG)

n=4

, (GACT)

n=4

, (GTCA)

n=4

, (TGAC)

n=4

,

(AGTC)

n=4

, and (CTGA)

n=4

.

6. Open Problems

The work reported here an be extended in various diretions and raises several interesting

open questions. We list a few here in no partiular order.

1. Handle more than one step failure. Binary superimposed odes [9℄ appear to be a

promising way to extend our hierarhial design approah to handle multiple step

failures.

2. Relax the step fault model. When a step fails, not every spot using that step will have

the same low intensity. The hange in intensity more realistially will be a funtion of

how far from the enter of the probe the failed step is (Lipshutz et al. [11℄).
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3. Relax the assumption that the intensity window �

k

is supplied for eah probe.

4. Handle a wider variety of protools, i.e., with period greater than four.

5. Develop a general tehnique for designing balaned odes. These designs appear not

to have been studied prior to this, even in the ombinatorial design literature [3℄. Alon

et al. [1℄ have developed suh tehniques, resulting in many new balaned odes and

QC matries.

6. Improve the results of Table 1 by �lling in more entries, or optimizing those entries

for whih m=sep(Q) > n=l (see Theorem 2.8). For instane, we have no optimal QC

matries with 60 steps. On this partiular question, it is interesting to note that the

produt onstrution with our urrent QC bloks annot produe QC matries Q with

m=sep(Q) < 4: From Theorem 3.6,

sep(C

0

� C) � d

min

�min(r

0

min

; b

0

� r

0

max

) � d

min

� b

0

=2 = d

min

�m=(2b);

so that m=sep(C

0

�C) � 2b=d

min

. For the 8� 8 and 4� 4 QC bloks, 2b=d

min

= 4; for

the 6� 12 and 6� 8 QC bloks, 2b=d

min

= 6.
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Appendies

A. Basis of DNA Hybridization

Single-stranded DNA is a moleule omposed by onatenating building bloks alled nu-

leotides. Nuleotides ome in four types alled A, C, G, and T, named after the nuleotide's

base omponent, so that a DNA moleule an be abstrated as a string over the alphabet

fA;C;G;Tg. The nuleotides our in the omplementary base pairs fA;Tg and fC;Gg:

these pairs bind or hybridize well to eah other via hydrogen bonds.

Two entire DNA moleules an only hybridize if they are arranged in an antiparallel

alignment, meaning that they are aligned with one of them reversed. Thus, for example,

the two DNA moleules ACGC ACGC ACGC and GCGT GCGT GCGT would hybridize

extremely well to eah other, beause when they are aligned in antiparallel fashion

A C G C A C G C A C G C

j j j j j j j j j j j j

T G C G T G C G T G C G
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all the aligned base pairs are omplementary. Two suh moleules are alled reverse om-

plements. This is a desirable situation if one of these moleules is a DNA array probe and

the other is a target. However, it is undesirable if both of these moleules are targets, be-

ause then the target moleules bind to eah other and are unavailable for binding to their

omplementary probes on the array.

A DNA moleule need not be exatly the reverse omplement of another DNA moleule in

order for the two to hybridize. Near omplementarity suÆes for reasonably good hybridiza-

tion. However, if they are far from reverse omplementarity, then they will not hybridize

well at all.

All pairs of reverse omplementary DNA moleules do not hybridize with equal aÆnity or

binding energy. There are many ompliated reasons for this, but the simplest is that C and

G hybridize with three hydrogen bonds whereas A and T form only two. This means that

reverse omplementary moleules with high G-C ontent tend to hybridize better than reverse

omplementary moleules with low G-C ontent. This observation underlies Assumption 4

in Setion 2.1.

For more information on hybridization and binding energy, see any textbook on moleular

biology, for instane Lewin [10℄.

B. Theorem 3.6 for Mated QC Bloks

In order to extend Theorem 3.6 to handle mated QC bloks suh as the 4 � 4 bloks of

Figure 8, we need to impose some onditions on the mates. Note, though, that the following

theorem is general enough to apply to all of the QC bloks in this paper, sine a single QC

blok suh as the 8� 8 an be onsidered as being mated with itself.

Theorem B.1: Let C

0

be a balaned ode with parameters (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

). Let

C and D be a pair of mated QC blok eah with parameters (v; b; r

min

; r

max

; k; d

min

), and

satisfying the following additional onditions:

1. d

min

� r

min

.

2. For any j, the olumns C

�j

and D

�j

are either idential or omplementary. That is,

either C

ij

= D

ij

for all rows i, or C

ij

= 1�D

ij

for all rows i.

3. Any olumn of C and any olumn of D are either idential, or have Hamming distane

at least d

min

.

Let Q be the QC matrix that results from alternately substituting C and D for the ones in

eah row of C

0

, and substituting a b� v matrix of zeros for eah zero of C

0

. Then

sep(Q) � min(d

0

min

r

min

; r

0

min

d

min

; (b

0

� r

0

max

)d

min

):
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As an example, if C and D are the 4� 4 QC bloks of Figure 8, then

sep(Q) = 2min(d

0

min

; r

0

min

; b

0

� r

0

max

):

Proof: As in the proof of Theorem 3.6, we will identify any olumn j of the produt Q,

1 � j � v

0

v, by the pair (g; h), where 1 � g � v

0

, 1 � h � v, and j = (g � 1)v + h. What

ompliates this proof is that eah suh olumn j generally ontains a mixture of olumn h

from C and olumn h from D. The proof proeeds by examining four possible ases for the

pair j; j

0

of olumns of Q in De�nition 2.4, and omputing the separation of these olumns.

(The reader may �nd it helpful to identify an example of eah ase in Figure 9 while reading

the proof for that ase.)

Reall for all four ases that the b

0

b spots of Q are partitioned into b distint probes,

orresponding to the b rows of C and D. Without loss of generality, assume that probe q

k

orresponds to row k of C and D, for 1 � k � b. For any k, 1 � k � b, let e

k

be the number

of rows of Q with probe q

k

that ontain a one in olumn j and a zero in olumn j

0

, and

f

k

be the number of rows of Q with probe q

k

that ontain a zero in olumn j and a one in

olumn j

0

. Thus, 0 � e

k

� r

0

max

, 0 � f

k

� r

0

max

, D

k

(j; j

0

) = e

k

+ f

k

, L

k

(j; j

0

) = b

0

� e

k

, and

R

k

(j; j

0

) = b

0

� f

k

. Let the separation between olumns j and j

0

be

s =

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) =

b

X

k=1

min(e

k

+ f

k

; b

0

� e

k

; b

0

� f

k

):

Case 1: j = (g; h) and j

0

= 0. (Reall the onvention from De�nition 2.4 that olumn 0

is the vetor 0

b

0

b

.) Then

P

b

k=1

e

k

� r

min

� r

0

min

and f

k

= 0.

Case 1.1: For every k, e

k

� b

0

� e

k

. Then

s =

b

X

k=1

e

k

� r

min

� r

0

min

:

Case 1.2: There exists k suh that b

0

� e

k

< e

k

. Suppose that C

kh

= 1, the ase where

D

kh

= 1 being dual. By property 2 of the theorem, eah of the values of k

0

with C

k

0

h

= 1,

of whih there are at least r

min

, satis�es e

k

0

= e

k

, sine the olumn D

�h

is either idential or

omplementary to C

�h

. Thus,

s � r

min

(b

0

� e

k

) � r

min

(b

0

� r

0

max

):

Case 2: j = (g; h) and j

0

= (g; h

0

), with h 6= h

0

. Then

P

b

k=1

(e

k

+ f

k

) � d

min

� r

0

min

.

Case 2.1: For every k, e

k

+ f

k

� b

0

�max(e

k

; f

k

). Then

s =

b

X

k=1

(e

k

+ f

k

) � d

min

� r

0

min

:

Case 2.2: There exists k suh that b

0

�max(e

k

; f

k

) < e

k

+ f

k

. Without loss of generality,

suppose e

k

� f

k

, and that C

kh

= 1 and C

kh

0

= 0, the ase where this ours in D being dual.
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By property 2 of the theorem, eah of the values of k

0

with C

k

0

h

6= C

k

0

h

0

, of whih there are at

least d

min

, satis�es fe

k

0

; f

k

0

g = fe

k

; f

k

g, sine the olumns D

�h

and D

�h

0

are either idential

or omplementary to C

�h

and C

�h

0

, respetively. Thus,

s � d

min

(b

0

� e

k

) � d

min

(b

0

� r

0

max

):

Case 3: j = (g; h) and j

0

= (g

0

; h

0

), with g 6= g

0

, and olumns h of C and h

0

ofD are either

idential or omplementary. (The possibility h = h

0

is inluded in this ase.) By property 2

of the theorem, this means that olumn h of C is either idential or omplementary to eah of

olumn h

0

of C, olumn h of D, and olumn h

0

of D. Sine g 6= g

0

,

P

b

k=1

(e

k

+f

k

) � r

min

�d

0

min

.

Case 3.1: For every k, e

k

+ f

k

� b

0

�max(e

k

; f

k

). Then

s =

b

X

k=1

(e

k

+ f

k

) � r

min

� d

0

min

:

Case 3.2: There exists k suh that b

0

�max(e

k

; f

k

) < e

k

+ f

k

. Without loss of generality,

suppose e

k

� f

k

, and that C

kh

= 1, the ase where D

kh

= 1 being dual. Eah of the values

of k

0

with C

k

0

h

= 1, of whih there are at least r

min

, satis�es e

k

0

= e

k

and f

k

0

= f

k

, sine

C

kh

= C

k

0

h

implies D

kh

= D

k

0

h

, C

kh

0

= C

k

0

h

0

, and D

kh

0

= D

k

0

h

0

, all these olumns being

either idential or omplementary. Thus,

s � r

min

(b

0

� e

k

) � r

min

(b

0

� r

0

max

):

Case 4: j = (g; h) and j

0

= (g

0

; h

0

), with g 6= g

0

, and olumns h of C and h

0

of D

are neither idential nor omplementary. By property 2 of the theorem this means that,

if hoosing olumn h either from C or from D, and hoosing olumn h

0

either from C or

from D, the two hosen olumns annot be idential. Hene, by property 3, the two hosen

olumns must have Hamming distane at least d

min

.

Let r

0

1

and r

0

2

be the number of ones in olumns g and g

0

of C

0

, respetively, and d

0

be

the Hamming distane between these two olumns of C

0

. Then the number of rows of C

0

in

whih both of these olumns ontain a one is

1

2

(r

0

1

+ r

0

2

� d

0

), so that

b

X

k=1

(e

k

+ f

k

) � r

min

� d

0

+

1

2

d

min

(r

0

1

+ r

0

2

� d

0

):

Suppose that there are t values of k for whih e

k

+ f

k

> b

0

�max(e

k

; f

k

).

Case 4.1: t > d

min

. Then

s � t(b

0

� r

0

max

) > d

min

(b

0

� r

0

max

):

Case 4.2: 0 � t � d

min

. Eah of the t values of k an redue s by at most

1

2

(r

0

1

+ r

0

2

+ d

0

)

from

P

b

k=1

(e

k

+ f

k

), namely the d

0

rows of C

0

where olumns g and g

0

di�er, plus the
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1

2

(r

0

1

+ r

0

2

� d

0

) where both olumns ontain a one. Eah of these t values also inreases s by

at least b

0

� r

0

max

. Thus,

s �

b

X

k=1

(e

k

+ f

k

)�

1

2

t(r

0

1

+ r

0

2

+ d

0

) + t(b

0

� r

0

max

)

� r

min

� d

0

+

1

2

d

min

(r

0

1

+ r

0

2

� d

0

)�

1

2

t(r

0

1

+ r

0

2

+ d

0

) + t(b

0

� r

0

max

): (2)

Sine expression (2) is a linear funtion of t, it ahieves its minimum value at one of its

endpoints t = 0 or t = d

min

.

Case 4.2.1: t = 0. Sine d

0

� r

0

1

+ r

0

2

, Inequality (2) yields

s � r

min

� d

0

� r

min

� d

0

min

:

Case 4.2.2: t = d

min

. Then

s � r

min

� d

0

� d

min

� d

0

+ d

min

(b

0

� r

0

max

) � d

min

(b

0

� r

0

max

);

the last inequality following from property 1 of the theorem.

Combining the results of all of the ases,

sep(Q) � min(r

min

d

0

min

;min(r

min

; d

min

)r

0

min

;min(r

min

; d

min

)(b

0

� r

0

max

))

= min(r

min

d

0

min

; d

min

r

0

min

; d

min

(b

0

� r

0

max

)):

2

C. Balaned Codes with Added Columns

This appendix provides onstrutions for those balaned odes in Table 1 labeled \+i",

meaning that i extra olumns have been added to some other balaned ode. A few of these

augmented balaned odes ome from the following simple onstrution.

Proposition C.1: If there is a 2-design D with parameters (v; b; r; k; �), then there is a

balaned ode with parameters

(v + 2; 2b;min(b; 2r);max(b; 2r); k + 1;min(b; 4(r � �))):

Proof: Dupliate the rows of D to obtain a 2-design D

0

with parameters (v; 2b; 2r; k; 2�).

By Proposition 3.3, D

0

is a balaned ode with parameters (v; 2b; 2r; 2r; k; 4(r � �)). Add

two additional olumns to D

0

with entries (1; 0) in those rows orresponding to one opy of

D, and (0; 1) in those rows orresponding to the seond opy of D. (See the leftmost nine

olumns of Figure 10(a) for an illustration.) These two new olumns eah have exatly b

ones, Hamming distane exatly b from eah of the olumns of D

0

, and Hamming distane

exatly 2b from eah other. 2

Proposition C.1 yields two of the balaned odes of Table 1:
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1110000 10 10

1001100 10 10

1000011 10 10

0101010 10 10

0100101 10 01

0011001 10 01

0010110 10 01

1110000 01 01

1001100 01 01

1000011 01 01

0101010 01 01

0100101 01 10

0011001 01 10

0010110 01 10

(a)

1111000000 10

1000111000 10

1000000111 10

1100100100 01

1010010010 01

1001001001 01

0100100011 10

0010010101 10

0001001110 10

0100011100 01

0010101010 01

0001110001 01

0110001001 01

0101010010 01

0011100100 01

(b)

100110001 10

010011001 10

001011100 10

100101010 10

110001100 01

011010010 10

001100101 01

000101110 10

000010111 01

100010110 01

010001011 01

101001001 01

010100101 10

101000011 10

110110000 01

111000100 10

011100010 01

001111000 01

()

1100 1100 0000 10

1010 1010 0000 10

1001 1001 0000 10

0110 0110 0000 10

0101 0101 0000 10

0011 0011 0000 01

1100 0000 1100 10

1010 0000 1010 01

1001 0000 1001 01

0110 0000 0110 01

0101 0000 0101 01

0011 0000 0011 10

0000 1100 1100 10

0000 1010 1010 01

0000 1001 1001 01

0000 0110 0110 01

0000 0101 0101 01

0000 0011 0011 10

(d)

Figure 10: These balaned odes have the following parameters, and the following labels in

Table 1: (a) Balaned ode (11; 14; 6; 7; 5; 6), labeled (7; 14; 6; 3; 2) + 4. (b) Balaned ode

(12; 15; 6; 9; 5; 6), labeled (10; 15; 6; 4; 2) + 2. () Balaned ode (11; 18; 8; 9; 5; 9), labeled

(9; 18; 8; 4; 3)+2. (d) Balaned ode (14; 18; 6; 9; 5; 6), labeled (3; 3; 2; 2; 1)� (4; 6; 3; 2; 1)+2.

1. the entry labeled \(7; 14; 8; 4; 4)+2", whih is derived from the 2-design with parameters

(7; 7; 4; 4; 2), and is a balaned ode with parameters (9; 14; 7; 8; 5; 7), and

2. the entry labeled \(8; 28; 14; 4; 6)+ 2", whih is derived from the 2-design with param-

eters (8; 14; 7; 4; 3), and is a balaned ode with parameters (10; 28; 14; 14; 5; 14).

The 2-designs from whih these are derived an be found in the ompendium of Mathon and

Rosa [13℄.

The remaining \+i" balaned odes were augmented from known 2-designs [13℄ by a

simple exhaustive program, and are given in Figure 10.
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D. Balaned Codes from Polynomials Over Finite

Fields

This setion desribes the onstrution of those balaned odes labeled \degree d over GF(q)"

in Table 1. These odes have appeared numerous times in the literature. For example, they

were desribed by Nisan and Wigderson [14, Lemma 2.5℄, who alled them simply \(d; q)-

designs", as part of a onstrution for pseudorandom number generators.

Theorem D.1: Let q be any integral power of a prime number, and d be any nonnegative

integer. Then there is a balaned ode C with parameters (q

d+1

; q

2

; q; q; q

d

; 2(q � d)).

Proof: Let F be the �nite �eld with q elements, and F [x℄ the integral domain of polyno-

mials in the indeterminate x with oeÆients in F . (See Lipson [12℄ for an introdution to the

algebra of �nite �elds and polynomials.) C has a row for eah of the q

2

pairs (x

0

; y

0

) 2 F�F ,

and a olumn for eah of the q

d+1

polynomials p(x) 2 F [x℄ of degree at most d. The entry

in C for row (x

0

; y

0

) and olumn p(x) is 1 if p(x

0

) = y

0

, and 0 otherwise. Thus there are

exatly q ones per olumn (sine any x

0

and p(x) uniquely determine y

0

= p(x

0

)) and q

d

ones

per row (sine any x

0

, y

0

, and the d high degree oeÆients of p(x) uniquely determine the

lowest degree oeÆient). Finally, the Interpolation Theorem [12, Setion IV.3.3, Theorem

5℄ states that any d + 1 points (x

0

; y

0

) uniquely determine a polynomial p(x) of degree at

most d that passes through these points, so that any two olumns of D an have at most d

rows in whih both olumns ontain a one. Thus, the Hamming distane between any two

olumns is at least 2(q � d). 2
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