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Abstra
t

The advent of the DNA mi
roarray te
hnology has brought with it the ex
iting

possibility of simultaneously observing the expression levels of all genes in an organ-

ism. One su
h mi
roarray te
hnology, 
alled \oligo arrays", manufa
tures short single

strands of DNA (
alled probes) onto a glass surfa
e using photolithography. An altered

or missed step in su
h a manufa
turing proto
ol 
an adversely a�e
t all probes using

this failed step, and is in general impossible to disentangle from experimental variation

when using su
h a defe
tive array. The idea of designing spe
ial quality 
ontrol probes

to dete
t a failed step was �rst formulated by Hubbell and Pevzner. We 
onsider an

alternative formulation of this problem and use a 
ombinatorial design approa
h to

solve it. Our results improve over prior work in guaranteeing 
overage of all proto
ol

steps and in being able to tolerate a greater number of unreliable probe intensities.

Keywords: DNA mi
roarray, oligo array, photolithography, quality 
ontrol, 
ombinatorial

design, error-
orre
ting 
ode, 2-design.

1. Introdu
tion

Re
ent advan
es in DNA mi
roarray te
hnology have allowed biologists to obtain expression

pro�les of the genes in an organism in a quantitative and high throughput fashion. This

has 
atalyzed a major paradigm shift in how biologi
al knowledge is pursued. Computa-

tional analysis of su
h DNA mi
roarray data has led to interesting biologi
al hypotheses of

unpre
edented s
ope. For example, analysis of the expression pro�les of all 6200 genes in S.


erevisiae during sporulation [2℄ revealed the possible parti
ipation of nearly 1000 genes that

were previously not known to be involved in sporulation. There has been a re
ent explosion

of similar experiments and analyses using DNA mi
roarrays.

An important DNA mi
roarray te
hnology, 
alled \oligo arrays", manufa
tures short sin-

gle strands of DNA (
alled probes) onto a glass surfa
e using photolithography [11℄. The

glass surfa
e (or array) has a well-de�ned set of addresses (or spots) where the probes are

grown. The manufa
turing proto
ol is a sequen
e of steps N

1

N

2

: : : N

n

, ea
h with an asso
i-

ated nu
leotide N

i

2 fA, C, G, Tg. Con
eptually, at the i

th

step of the proto
ol a mask is

pla
ed on the glass array and the array is exposed to a solution 
ontaining the nu
leotide N

i

.

This 
auses the probes at the positions on the array that are not masked to be extended by

one base, N

i

. The rest of the probes do not 
hange during this step. The pro
ess is repeated

with a new mask at ea
h step, to build a diverse assortment of probes.

When 
ompleted, the array is employed as follows. A mixture of single-stranded DNA

mole
ules (
alled targets) are ea
h 
uores
ently tagged, and the mixture is applied to the

array for hybridization to the array's probes. (See Appendix A for a brief explanation of

DNA 
omplementarity and hybridization.) After washing away any unbound targets, the


uores
en
e intensities of all array spots are measured. Sin
e the array's probe sequen
es

are known, this pro
edure measures the abundan
e of the bound 
omplementary target

sequen
es.
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An altered or missed step in the array's manufa
turing proto
ol 
an adversely a�e
t

all probes using the failed step, and thus their hybridization behavior with targets. The

error ensuing from a faulty manufa
turing step may well be impossible to disentangle from

experimental variation when using the defe
tive array. The problem of developing a quality


ontrol me
hanism that dete
ts during the manufa
turing pro
ess if a step has failed is

therefore of 
lear pra
ti
al importan
e.

One approa
h to the quality 
ontrol problem, formulated �rst by Hubbell and Pevzner

[8℄, is to design a small set of spe
ial quality 
ontrol probes, whi
h they 
alled \�delity

probes." Their ingenious idea was to manufa
ture the same probe sequen
e at a number of

di�erent spots, ea
h spot using a di�erent s
hedule of steps of the proto
ol. A proto
ol step

i therefore has an asso
iated set P

i

of quality 
ontrol spots that use this manufa
turing step.

These quality 
ontrol probes are then hybridized with a 
omplementary 
uores
ent target.

The intensities within the set P

i

provide a \signature" for the quality of step i. If many of

the intensities within P

i

are signi�
antly lower than the remaining intensities, this is a good

indi
ation of step i being 
awed. This is be
ause all the spots have the same sequen
e and

should therefore have similar hybridization behavior (hen
e similar intensities) if they are


orre
tly manufa
tured. The fo
us of the work of Hubbell and Pevzner is to generate sets

P

i

that are suÆ
iently large and suÆ
iently unique that a failed step 
an be identi�ed even

in the presen
e of some unreliable spot intensities. This method is then used repeatedly for

ea
h probe in a supplied set S of probes. However, there may be steps in a proto
ol that


annot be used in manufa
turing any of the probes in a given set S. Assuming that S is

supplied implies that the failure of su
h a step 
annot be dete
ted. Moreover, sin
e there is

no 
oordination among the solutions generated for distin
t probes (the algorithm being used

separately on ea
h probe), Hubbell and Pevzner do not exploit the ability of the probes to


olle
tively make the set of spots using a proto
ol step as large and as unique as possible.

We 
onsider an alternative formulation of this problem that does not assume that the

quality 
ontrol probe sequen
es are supplied. We take the 
hoi
e of the probe sequen
es into

our own hands in order to guarantee that every proto
ol step is well 
overed by the quality


ontrol me
hanism. Our design ensures that the number of distin
t probes is small and that

they hybridize poorly with themselves and with ea
h other. This is a ne
essary 
onstraint

be
ause if probes hybridize well with themselves or ea
h other, then their 
orresponding


omplementary targets will too, rendering them unavailable to hybridize to the probes [15℄.

Our design further ensures that ea
h probe hybridizes well only with the target that is


omplementary to it, and hybridizes poorly with the targets meant for the other probes.

This property allows us to use multiple quality 
ontrol targets (up to 4 in our 
urrent

designs) simultaneously, thereby relaxing the requirement of Hubbell and Pevzner [8℄ that

all probes are 
omplementary to substrings of a single target.

The fa
t that we want balan
ed and suÆ
iently unique signatures for all steps in the

proto
ol suggests a 
onne
tion to the elegant theory of 
ombinatorial design. For our pur-

poses, a 
ombinatorial design is just a 0-1 matrix with appropriate balan
e and uniqueness

properties. The 
hief 
ontribution of this work is to solve the quality 
ontrol problem by

developing a framework that builds on te
hniques from 
ombinatorial design. For a preview,

see Figure 5.
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The rest of the paper is organized as follows. In Se
tion 2 we state our formulation

of the quality 
ontrol problem along with the assumptions we make, and 
hara
terize the


riterion that allows us to identify a failed step. Se
tion 3 des
ribes the 
ombinatorial

design approa
h we take in solving this formulation of the quality 
ontrol problem. Se
tion

4 presents the spe
i�
 
ombinatorial designs that solve the quality 
ontrol problem for the

proto
ol ACGT ACGT . . . and for a wide range of values of the number of proto
ol steps, the

number of spots, and toleran
e for the number of spots that may show unreliable intensities.

These results are generalized in Se
tion 5 to all periodi
 proto
ols with period 4. Se
tion 6

poses some open questions.

2. The Quality Control Problem

A quality 
ontrol s
heme for a proto
ol with n steps using m spots 
an be viewed as an m�n

0-1 matrix Q, with ea
h 
olumn representing a proto
ol step and ea
h row representing a

spot. Ea
h 
olumn of Q is labelled with the nu
leotide used in that step. The entry Q

ij

is

1 if and only if step j was used in manufa
turing the probe at spot i. We will refer to su
h

a matrix Q as a Quality Control (QC) matrix. The sequen
e of the oligonu
leotide at spot

i 
an be read out by 
on
atenating the labels of the 
olumns at whi
h row i has a 1:

De�nition 2.1: Let P be a proto
ol N

1

N

2

� � �N

n

, where N

j

is the nu
leotide used at the

j

th

step, 1 � j � n. Given an m � n QC matrix Q for proto
ol P, the probe p

i

at row i of

Q is de�ned to be p

i

= q

i1

q

i2

: : : q

in

, where

q

ij

=

(

N

j

; if Q

ij

= 1

the empty string if Q

ij

= 0

:

The probes manufa
tured at them quality 
ontrol spots are not all di�erent. There will in

general be 
 distin
t probes, with several spots 
ontaining the same probe but manufa
tured

using di�erent s
hedules of steps of the proto
ol. Typi
al values of m, 
, and n based on

previous work [8℄ are m = 128, 
 = 4, and 60 � n � 100.

To a
tually perform quality 
ontrol of a proto
ol, the quality 
ontrol probes de�ned by Q

are manufa
tured using the proto
ol onto m reserved spots on ea
h 
hip of a wafer [7℄. The

manufa
turer takes one 
hip from the wafer and tests it as follows: the 
hip is hybridized

with 
uores
ent targets 
omplementary to the 
 probes, s
anned, and the resulting ve
tor of

m intensity values is used to determine whi
h step, if any, failed. The remaining 
hips of

the wafer are thus una�e
ted by the quality 
ontrol pro
ess and their quality 
an be assessed

under the assumption that a step failure a�e
ts every 
hip on a wafer.

The quality 
ontrol problem for oligo arrays is essentially the problem of designing a QC

matrix Q with the following property: ea
h step in the proto
ol is used in a set of spots

that is suÆ
iently large as well as suÆ
iently di�erent from the set for any other step, so

that any single failed step indu
es a unique signature on the intensity ve
tor. This should

be true even when not all intensities are reliable. The problem we would like to solve is the

following:
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De�nition 2.2: (QC Problem) Given a proto
ol P with n steps up to 1 of whi
h may

fail, and a budget of m quality 
ontrol spots up to d of whi
h may be unreliable, 
onstru
t

an m� n QC matrix Q su
h that an intensity ve
tor I of the m spots manufa
tured using

Q allows unique identi�
ation of the failed step, if any.

One reason why there is interest in identifying the failed step, rather than simply dete
ting

whether some step failed, is so that the manufa
turer 
an 
orre
t any errors in the failed

step's mask before remanufa
turing the 
hip.

At least two natural optimization versions of the QC problem are immediate: 
onstru
t

Q as above that (i) for given n and m maximizes the spot fault toleran
e d; (ii) for given n

and d minimizes the spot usage m.

1

The problem we solve in this work is not quite as general as the one stated in De�nition

2.2. We 
annot hope to take arbitrary parameter values n, m, and d as input and produ
e

a QC matrix Q that meets the spe
i�
ations. We explain in Se
tion 2.4 why solving this

general version would entail solving long-standing open questions in 
ombinatorial design.

However we are able to produ
e QC matri
es for a wide range of values of n, m, and d

that 
overs the desired settings in pra
ti
e. We also do not solve this for arbitrary proto
ols

P, but rather a spe
i�
 set of 24 periodi
 proto
ols, namely, [�(ACGT)℄

n=4

, where � is any

permutation and n is a multiple of 4 in the range 60 � n � 132. Again, this 
overs the

typi
al proto
ols in pra
ti
e.

2.1. Assumptions

We state the assumptions we make in formulating the QC problem, and 
ontrast them when

possible with the assumptions of Hubbell and Pevzner [8℄.

1. The manufa
turing proto
ol is [�(ACGT)℄

n=4

, where � is any permutation and n is a

multiple of 4. Up to one step may fail and the impa
t of this failure on the 
hip is

spatially uniform. (Hubbell and Pevzner [8℄ allowed an arbitrary proto
ol.)

2. Spot failure: up to d spots may show arbitrarily unreliable intensities due to experi-

mental variations in hybridization, or due to 
hip faults. (The parameter d is impli
it

in both the MinSize and MinDi� parameters of Hubbell and Pevzner [8℄.)

3. Step failure model: when a step fails, a spot will show a low intensity if and only if the

failed step was used in manufa
turing the probe at that spot, with up to d ex
eptions.

When no step fails, ea
h spot will show a high intensity, with up to d ex
eptions. (The

step failure model was not made expli
it by Hubbell and Pevzner [8℄.)

1

We note that this version subsumes nonadaptive 
ombinatorial group testing [6℄, with 
olumns of the QC

matrix 
orresponding to the elements in the universe and the rows 
orresponding to the query sets, in two

ways. First, answers to d of the queries 
ould be lies. This version of the nonadaptive group testing problem

is open (Yuan Ma, personal 
ommuni
ation). Se
ond, in group testing the order of universe elements is

immaterial, whereas the 
olumn order of a QC matrix is 
riti
al to the probe sequen
es and their properties.

4



4. Spots 
ontaining di�erent probes in general may have di�erent hybridization behaviors.

(See Appendix A.) Hen
e we will not 
ompare intensity values of two di�erent probe

sequen
es. We will also not make the assumption that, within the set of spots sharing

the same probe, we 
an distinguish between all intensities high and all low. Formally,

de�ning the real number I

i

to be the intensity value at spot i, we assume that for

every probe k there is a nonnegative 
onstant �

k

su
h that two reliable spots i and i

0

for this probe that show both high or both low intensities must satisfy jI

i

� I

i

0

j � �

k

,

and reliable spots i low and i

0

high must satisfy I

i

0

� I

i

> �

k

. (The fo
us of the work

of Hubbell and Pevzner [8℄ is the �delity probe generation problem. The problem of

identifying the failed step is not expli
itly addressed, hen
e no expli
it statements are

made about intensity values.)

5. We are allowed multiple quality 
ontrol targets that are designed so as to hybridize

poorly to themselves and to ea
h other. Ea
h probe is designed to hybridize poorly to

all but one of these targets. (In the 
on
rete test 
ase 
ited by Hubbell and Pevzner

[8℄, they assume they are supplied a single 20-mer quality 
ontrol target and the probes

are the four possible 17-mers that hybridize perfe
tly to the length 17 substrings of this

target.) Unlike Hubbell and Pevzner, our designs use up to 4 di�erent quality 
ontrol

targets. Based on 
ommer
ial availability of inexpensive oligo synthesis te
hniques,

manufa
turing several quality 
ontrol targets poses no problem.

The following de�nition 
rystallizes our assumption about what 
onstitutes poor hy-

bridization.

De�nition 2.3: We say that two single-stranded nu
leotide sequen
es hybridize poorly if

and only if, when they are arranged in antiparallel fashion, shifted an arbitrary o�set with

respe
t to ea
h other, at least two out of every four 
onse
utive pairs of aligned bases are not


omplementary; see Figure 1. (See Appendix A for an explanation of DNA 
omplementarity

and hybridization.) A set S of su
h sequen
es is said to hybridize poorly if and only if, for

every sequen
e s 2 S, (1) s hybridizes poorly to itself and to every other sequen
e in S,

and (2) s hybridizes poorly to the reverse 
omplement of every sequen
e in S that is not a

rotation of s.

Suppose S is a set of poorly hybridizing probes. Condition (1) of De�nitions 2.3 ensures

that the 
orresponding targets also hybridize poorly to ea
h other, sin
e they are reverse


omplementary to the probes. Condition (2) ensures that ea
h probe-target pair hybridizes

either poorly or perfe
tly. The reason for the ex
eption of rotations is to allow, for example,

the use of both CACG CACG and its rotation ACGC ACGC as probes, with (a suÆ
ient

quantity of) the single 
omplementary target GCGT GCGT G.

2.2. Identifying the Failed Step

In this se
tion we de�ne a property of a QC matrix Q, 
alled \separation," and establish

that high separation is suÆ
ient to identify any one failed step when up to d spots may show

unreliable intensities.
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ACGCACGCACGC

j j j

GCTGGCTGGCTG

ACGCACGCACGC

j j j j j j

GCTGGCTGGCTG

ACGCACGCACGC

j j j j

GCTGGCTGGCTG

ACGCACGCACGC

j j j

GCTGGCTGGCTG

ACGCACGCACGC

CAGCCAGCCAGC

ACGCACGCACGC

j j j

CAGCCAGCCAGC

ACGCACGCACGC

j j j

CAGCCAGCCAGC

ACGCACGCACGC

j j

CAGCCAGCCAGC

Figure 1: ACGC ACGC ACGC hybridizes poorly to GTCG GTCG GTCG, and also to its

reverse 
omplement CGAC CGAC CGAC.

2.2.1. Separation

De�nition 2.4: Let Q be an m�n QC matrix with 
 distin
t probes fq

k

j 1 � k � 
g. Let

p

i

be the probe at row i, 1 � i � m. By 
onvention, de�ne Q

i0

= 0 for all 1 � i � m. For

any k with 1 � k � 
, and any pair j 6= j

0

with 0 � j; j

0

� n, let

D

Q;k

(j; j

0

) = #fi j p

i

= q

k

and Q

ij

6= Q

ij

0

g;

L

Q;k

(j; j

0

) = #fi j p

i

= q

k

and (Q

ij

6= 1 or Q

ij

0

6= 0)g;

R

Q;k

(j; j

0

) = #fi j p

i

= q

k

and (Q

ij

6= 0 or Q

ij

0

6= 1)g:

The subs
ript Q will be omitted when it is obvious from the 
ontext.

The separation of Q is de�ned to be:

sep(Q) = min

0�j;j

0

�n

j 6=j

0




X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)): (1)

Note that the 
onvention 
on
erning Q

i0

is just a 
onvenien
e for the purpose of de�ning

separation. The QC matrix does not a
tually 
ontain su
h a 0

th


olumn.

The D

k

portion of De�nition 2.4 has an intuitive explanation based on the Hamming

distan
e between two ve
tors, whi
h is the number of 
orresponding positions at whi
h the

two ve
tors have unequal values. A large Hamming distan
e between 
olumns j and j

0

of Q is

ne
essary in order to be able to dete
t the di�eren
e between step j failing and step j

0

failing.

Similarly, a large Hamming distan
e between 
olumn j of Q and the 
onventional 
olumn

6



0 (i.e., a large number of ones in 
olumn j) is ne
essary in order to dete
t the di�eren
e

between step j failing and no step failing.

Note the similarity of the D

k

portion of De�nition 2.4 to error-
orre
ting 
odes where,

to 
orre
t up to d errors, it is suÆ
ient that every pair of 
odewords (analogous to 
olumns

in the QC matrix) be separated by a distan
e of at least 2d+ 1. The problem of identifying

a failed step is like error 
orre
tion rather than error dete
tion, be
ause we are interested in

the identity of the failed step rather than simply whether any step failed. (In the latter 
ase,

the separation requirement of Theorem 2.6 below would be redu
ed from 2d+ 1 to d+ 1.)

The L

k

and R

k

portions of De�nition 2.4, whi
h have no analog in error-
orre
ting 
odes,


apture the part of Assumption 4 from Se
tion 2.1 that one may not be able to di�erentiate

between all probe intensities high and all low, whi
h is why the D

k

portion alone is not

suÆ
ient. For example, suppose step j were used in every spot i. Even if no spot failed,

if step j were to fail all spots would show equal (low) intensities. One might well not be

able to distinguish this 
ase from no step failing, in whi
h all spots would also show equal

(high) intensities. De�nition 2.4 and Theorem 2.6 below guarantee that we will be able to

distinguish these 
ases. Using a similar explanation to one given above, this portion implies

that ea
h 
olumn of Q has a large number of zeros.

2.2.2. Interpreting the Intensity Readings

The intensity ve
tor I is a ve
tor ofm real numbers, giving an intensity reading for ea
h of the

m spots. We wish to interpret these real numbers as high (\0"), low (\1"), or unreadable

(\?"). This interpretation is subje
t to reasonable 
onstraints (given in Assumption 4 of

Se
tion 2.1, and De�nition 2.5 below) that two similar intensities of the same probe are not

interpreted as one high and one low, and two distant intensities of the same probe are not

interpreted as both high or both low.

Let �(I) 2 f0; 1; ?g

m

be su
h an interpretation of intensity ve
tor I 2 <

m

, where < is

the set of real numbers. The reason why high intensity 
orresponds to \0" and low to \1"

is be
ause the obje
t is to use this interpretation ve
tor to identify whi
h 
olumn of the QC

matrix it resembles most. When step j fails and none of the spots are faulty, the intensity

ve
tor interpretation �(I) one expe
ts to see is exa
tly the 0-1 ve
tor forming the j

th


olumn

of the QC matrix. In general up to d spots may be unreliable, so if step j fails, �(I) will

equal the j

th


olumn of the QC matrix with at most d ex
eptional positions. Note that not

all the d unreliable spots need be interpreted as \?": some may be erroneously interpreted

as high or low. The next de�nition formalizes this notion of interpretation.

De�nition 2.5: Let Q be an m�n QC matrix with 
 distin
t probes fq

k

j 1 � k � 
g. Let

p

i

be the probe at row i, 1 � i � m. An interpretation � : <

m

! f0; 1; ?g

m

of an intensity

ve
tor I satis�es the following for 1 � i; i

0

� m and 1 � k � 
.

� If p

i

= p

i

0

= q

k

and �(I)

i

= �(I)

i

0

2 f0; 1g, then jI

i

� I

i

0

j � �

k

. (In words, if spots

i and i

0

have the same probe and are interpreted as both high or both low, then their

intensities I

i

and I

i

0

are similar.)
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� If p

i

= p

i

0

= q

k

and �(I)

i

= 1 and �(I)

i

0

= 0, then I

i

0

� I

i

> �

k

: (In words, if spot i

is interpreted as low and spot i

0

as high, then their intensities I

i

and I

i

0

are not too

similar.)

As an example, suppose there were twelve spots with probe q

k

, their intensity readings were

2, 2, 3, 5, 6, 6, 6, 7, 7, 8, 8, 9, and �

k

= 2. Then one possible interpretation (the one that

minimizes the number of unreadable intensities) would interpret intensites 2{3 as low (\1"),

6{8 as high (\0"), and 5 and 9 as unreadable (\?").

2.2.3. Chara
terizing the Identity of the Failed Step

Theorem 2.6: Suppose sep(Q) � 2d + 1 and I is the intensity ve
tor of the m spots.

Then, for 1 � j � n, step j fails if and only if there is an interpretation � of I su
h that

Æ(Q

�j

;�(I)) � d, where Æ is the Hamming distan
e and Q

�j

is the j

th


olumn of Q. No step

fails if and only if there is an interpretation � of I su
h that Æ(0

m

;�(I)) � d.

Proof: \Only if" 
lauses: Suppose step j fails. Then I

i

is low if and only if Q

ij

= 1,

with ex
eptions only for at most d spots that fail. (See Assumption 3 in Se
tion 2.1.) For

ea
h probe q

k

, 
hoose the two intensities l

k

and h

k

, with h

k

� l

k

> �

k

, to maximize the

number of spots i su
h that

p

i

= q

k

and ((Q

ij

= 1 and I

i

2 [l

k

� �

k

; l

k

℄) or (Q

ij

= 0 and I

i

2 [h

k

; h

k

+ �

k

℄)):

Assign

�(I)

i

=

8

>

<

>

:

1; if p

i

= q

k

and I

i

2 [l

k

� �

k

; l

k

℄

0; if p

i

= q

k

and I

i

2 [h

k

; h

k

+ �

k

℄

?; if p

i

= q

k

and I

i

62 [l

k

� �

k

; l

k

℄ [ [h

k

; h

k

+ �

k

℄

:

Be
ause there are at most d ex
eptions to the 
ondition that I

i

is low if and only if Q

ij

= 1,

Æ(Q

�j

;�(I)) � d.

Suppose no step fails. Then I

i

is high, with ex
eptions only for at most d spots that

fail. (See Assumption 3 in Se
tion 2.1.) For ea
h probe q

k

, 
hoose the intensity h

k

that

maximizes the number of spots i su
h that

p

i

= q

k

and I

i

2 [h

k

; h

k

+ �

k

℄:

Assign

�(I)

i

=

(

0; if p

i

= q

k

and I

i

2 [h

k

; h

k

+ �

k

℄

?; if p

i

= q

k

and I

i

62 [h

k

; h

k

+ �

k

℄

:

Be
ause there are at most d ex
eptions to the 
ondition that I

i

is high, Æ(0

m

;�(I)) � d.

\If" 
lauses: Suppose j does not fail, meaning some j

0

6= j fails. (The 
ase of no step

failing is handled by the 
onvention j

0

= 0 together with the 
onvention from De�nition 2.4

8



�(I) Q

�j

Q

�j

0

�

0

(I)

0 0 6= 1 6= ?

0 6= 1 6= 0 0

0 0 0 0

1 1 6= 0 6= 1

1 1 1 ?

e

k

D

k

(j; j

0

) d

k

Figure 2: Five sample spots with probe q

k

, illustrating why every Q

ij

6= Q

ij

0


ontributes to

d

k

+ e

k

.

that Q

�0

= 0

m

.) By the \only if" 
lause above, there exists an interpretation �

0

su
h that

Æ(Q

�j

0

;�

0

(I)) � d. Let � be any interpretation, and e = Æ(Q

�j

;�(I)). We will �nish the

proof by showing that e > d.

For ea
h probe q

k

, let

d

k

= #fi j p

i

= q

k

and �

0

(I)

i

6= Q

ij

0

g; and

e

k

= #fi j p

i

= q

k

and �(I)

i

6= Q

ij

g;

so that




X

k=1

d

k

� d and




X

k=1

e

k

= e:

Consider the 
ases for how the two interpretations of the same ve
tor I \line up" within

some probe q

k

:

Case 1: There exists an i su
h that p

i

= q

k

and �(I)

i

= �

0

(I)

i

2 f0; 1g. Then for all i

0

su
h that p

i

0

= q

k

,

�(I)

i

0

= �

0

(I)

i

0

or �(I)

i

0

=? or �

0

(I)

i

0

=?;

sin
e �(I)

i

0

= 0 and �

0

(I)

i

0

= 1 would mean jI

i

� I

i

0

j � �

k

and jI

i

0

� I

i

j > �

k

. But

then every i for whi
h p

i

= q

k

and Q

ij

6= Q

ij

0


ontributes at least 1 to d

k

+ e

k

, so that

d

k

+ e

k

� D

k

(j; j

0

). The reason ea
h su
h i 
ontributes at least 1 is illustrated in Figure

2 and explained as follows. If �(I)

i

= �

0

(I)

i

and Q

ij

6= Q

ij

0

, then either �

0

(I)

i

6= Q

ij

0

or

�(I)

i

6= Q

ij

. Otherwise, one of the interpretations is ?, and that 
ertainly di�ers from the


orresponding Q

i�

entry.

Case 2: There exists an i su
h that p

i

= q

k

and �(I)

i

= 1 and �

0

(I)

i

= 0. Then for all

i

0

su
h that p

i

0

= q

k

,

(�(I)

i

0

= 1 and �

0

(I)

i

0

= 0) or �(I)

i

0

=? or �

0

(I)

i

0

=?:

9



But then every i for whi
h p

i

= q

k

and (Q

ij

6= 1 or Q

ij

0

6= 0) 
ontributes at least 1 to d

k

+e

k

,

so that d

k

+ e

k

� L

k

(j; j

0

).

Case 3: There exists an i su
h that p

i

= q

k

and �(I)

i

= 0 and �

0

(I)

i

= 1. Then

d

k

+ e

k

� R

k

(j; j

0

), analogous to 
ase 2.

Case 4: For all i, p

i

= q

k

implies �(I)

i

=? or �

0

(I)

i

=?. Then

d

k

+ e

k

� #fi j p

i

= q

k

g � D

k

(j; j

0

):

Combining the 
on
lusions of these four 
ases,

d+ e �




X

k=1

(d

k

+ e

k

) �




X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) � sep(Q) � 2d+ 1:

Hen
e e > d. 2

2.2.4. An Algorithm that Identi�es the Failed Step

Given spot failure toleran
e d, an m� n QC matrix Q with sep(Q) � 2d+ 1, an intensity

ve
tor I 2 <

m

, and an intensity window �

k

for ea
h probe, 1 � k � 
, Theorem 2.6 
an

be applied to identify whi
h proto
ol step, if any, has failed. An algorithm solving this

problem must 
he
k if, for any j, 0 � j � n, there exists an interpretation � su
h that

Æ(Q

�j

;�(I)) � d. If so, it returns the value j as the step that has failed. (As in De�nition

2.4, Q

�0

by 
onvention is the ve
tor 0

m

, and a returned value of j = 0 
orresponds to no

step having failed.) If no su
h interpretation exists, the algorithm reports that more than

one step must have failed, again by Theorem 2.6. Figure 3 des
ribes an O(mn +m logm)

time algorithm for performing this task.

A few de�nitions are prerequisites to the algorithm in Figure 3. Let ve
tor

^

I be obtained

by sorting the intensity ve
tor I, ea
h set of rows 
orresponding to the same probe sorted

separately in nonde
reasing order. Let

^

Q be the result of performing the same permutation

on the rows of Q. Let R

k

be the set of rows of

^

I 
orresponding to probe k, 1 � k � 
.

De�ne m

k

= jR

k

j, so that

P




k=1

m

k

= m.

Given a 
olumn

^

Q

�j

and the ve
tor

^

I, we de�ne two lists, L

k

and H

k

, for ea
h probe k.

The lists L

k

and H

k

are generated by partitioning the intensities in R

k

a

ording to whether

the 
orresponding row of

^

Q

�j

has a one or zero, respe
tively. Note that ea
h L

k

and H

k

,

1 � k � 
, is a sorted list of real-valued intensities. Letting L

k

[i℄ be the i

th

item in L

k

, de�ne

#L

k

[i℄ to be the number of indi
es i

0

� i su
h that L

k

[i℄� �

k

� L

k

[i

0

℄ � L

k

[i℄. De�ne #H

k

[i℄

similarly as the number of indi
es i

0

� i su
h that H

k

[i℄ � H

k

[i

0

℄ � H

k

[i℄ + �

k

.

The 
entral idea behind the subroutine FindLH in Figure 3 is to �nd a \buddy" l 2 L

for ea
h item h 2 H, su
h that h � l > �

k

and #l is maximized. The motivation for

�nding the buddy l of h is that, if [h; h + �

k

℄ were 
hosen as the range of high intensities,

then [l � �

k

; l℄ would be the best 
hoi
e for the range of low intensities, in the sense that it


aptures the greatest possible number of observed spot intensities. The list B de�ned within

this subroutine maintains the index in L of the buddy for ea
h item in H, so that H[j℄ and

10



L[B[j℄℄ are buddies, 1 � j � jHj. Sin
e both L and H are sorted lists, it must be the 
ase

that either B[j + 1℄ = B[j℄, or B[j + 1℄ > i, where i is any index satisfying H[j℄� L[i℄ > �

k

.

Hen
e there is no need to ba
ktra
k in the list L as j in
reases through the list H.

The list B is thus 
onstru
ted via a single sweep through L. The 
ontribution from

the \while" loop (line 4:1) over the exe
ution of the entire \for" loop (line 4) is therefore

O(jLj+ jHj). Sin
e line 4:2 
ontributes O(jHj) to the 
ost of this \for" loop, the total 
ost

of line 4 is O(jLj+ jHj). This dominates the O(jHj) 
ontribution from line 5. By similarly

using two monotoni
ally advan
ing pointers, line 1 
an be implemented in time O(jLj+ jHj).

The total running time of FindLH is therefore O(jLj+ jHj).

This implies that the 
ost of line 2:1:2 in Dete
tFaultyStep is O(jL

k

j+ jH

k

j) = O(m

k

).

Sin
e L

k

and H

k


an be 
onstru
ted through a single sweep of R

k

, the 
ost of line 2:1:1 is

also O(m

k

). The 
ost of the \for" loop in line 2:1 is then

P




k=1

O(m

k

) = O(m). The total

running time of the \for" loop in line 2 is therefore O(mn). Sin
e ea
h set of rows in R

k

is sorted separately, the 
ost of sorting in line 1 is

P




k=1

O(m

k

logm

k

) = O(m logm). Thus,

Dete
tFaultyStep is an O(mn+m logm) time algorithm. Note that when a proto
ol step

(say j) has failed, the \for" loop in line 2 will terminate early, so the a
tual 
ost of the

algorithm would be O(mj +m logm).

2.3. Combining QC Matri
es

The following theorem provides one simple way to 
ombine QC matri
es, and illustrates a

tradeo� between the goals of maximizing separation and minimizing the number of spots.

Theorem 2.7: Suppose that Q

1

is an m

1

� n QC matrix, and Q

2

is an m

2

� n QC matrix.

Then the union Q

1

+Q

2

of their rows has n steps, m

1

+m

2

spots, and

sep(Q

1

+Q

2

) � sep(Q

1

) + sep(Q

2

):

Proof: For any j 6= j

0

with 0 � j; j

0

� n, let s be the separation of 
olumns j and j

0

in

Q

1

+Q

2

, that is,

s =




X

k=1

min (D

Q

1

+Q

2

;k

(j; j

0

); L

Q

1

+Q

2

;k

(j; j

0

); R

Q

1

+Q

2

;k

(j; j

0

))

=




X

k=1

min ( D

Q

1

;k

(j; j

0

) +D

Q

2

;k

(j; j

0

);

L

Q

1

;k

(j; j

0

) + L

Q

2

;k

(j; j

0

);

R

Q

1

;k

(j; j

0

) + R

Q

2

;k

(j; j

0

)):

Using the inequality min(a + x; b+ y; 
+ z) � min(a; b; 
) + min(x; y; z),

s �




X

k=1

min(D

Q

1

;k

(j; j

0

); L

Q

1

;k

(j; j

0

); R

Q

1

;k

(j; j

0

))

+min(D

Q

2

;k

(j; j

0

); L

Q

2

;k

(j; j

0

); R

Q

2

;k

(j; j

0

))

� sep(Q

1

) + sep(Q

2

):
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Dete
tFaultyStep( Q, I, d, �

1

, . . . , �




)

begin

1. Sort I, ea
h set of positions 
orresponding to the same probe sorted separately

in nonde
reasing order. Indu
e the same row permutation on matrix Q.

2. for j from 0 to n do

/* for ea
h j 
he
k if there is a � with Æ(�(I);Q

�j

) � d */

2.1 for k from 1 to 
 do

2.1.1 Compute L

k

and H

k

.

2.1.2 max

k

= FindLH(L

k

;H

k

; �

k

)

end for

2.2 if

P




k=1

max

k

� m� d then return j

/*

P




k=1

max

k

is the number of mat
hes between �(I) and Q

�j

*/

end for

3. return \Multiple steps failed"

end

FindLH( L, H, � )

/* Given sorted lists L and H �nd l 2 L and h 2 H su
h that h� l > � and

#h +#l is maximized. Return this maximum value. */

begin

1. For ea
h item L[i℄ in list L, 
ompute #L[i℄. Do the same for H.

2. 
ur = 1 /* initialize s
an of list L */

3. /* H[1℄ may not have a buddy. */

3.1 B[1℄ = null

3.2 #L[B[1℄℄ = 0

4. for j from 1 to jHj do

/* for ea
h element in H, 
ontinue s
an of L to �nd its \buddy" */

4.1 while H[j℄� L[
ur℄ > � and 
ur � jLj do

4.1.1 if #L[
ur℄ > #L[B[j℄℄ then B[j℄ = 
ur

4.1.2 
ur = 
ur + 1

end while

4.2 B[j + 1℄ = B[j℄

/* 
arry over 
urrent buddy to initiate s
an for the next item in H */

end for

5. Compute max, the maximum of #H[j℄ + #L[B[j℄℄ for all j, 1 � j � jHj.

6. return max

end

Figure 3: An O(mn+m logm) time algorithm for dete
ting a failed step.
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Thus, any pair of distin
t 
olumns of Q

1

+Q

2

has separation at least sep(Q

1

) + sep(Q

2

), so

the theorem follows. 2

2.4. Pre
ise Problem Formulation

We are now in a position to state the pre
ise design problem we solve. The array manufa
-

turer spe
i�es as inputs the number n of steps, the proto
ol, and the length l of ea
h probe.

The QC design problem is to 
onstru
t an m�n QC matrix Q with l ones per row su
h that

the number m of spots is small and sep(Q) is large. Furthermore, the set of 
 distin
t probes

hybridizes poorly, a

ording to De�nition 2.3. In our designs, we never use more than 
 = 8

distin
t probes.

As dis
ussed at the beginning of Se
tion 2, the manufa
turer uses the QC matrix Q by

manufa
turing the probes p

1

; p

2

; : : : ; p

m

onto m reserved spots, and hybridizing with the


omplementary 
uores
ent targets. The resulting intensity ve
tor I is then used along with

Q to identify the failed step, if any, using the algorithm of Se
tion 2.2.4.

One 
annot expe
t to optimize both the obje
tive fun
tions m and sep(Q) in a single

QC matrix. For instan
e, Theorem 2.7 says that dupli
ating the spots of Q simultaneously

doubles m and sep(Q). Instead, in Se
tion 4 we will 
onstru
t a variety of QC matri
es Q

that o�er the manufa
turer a spe
trum of 
hoi
es for m and sep(Q).

The following theorem demonstrates a lower bound on the number of spots, in terms of

the other parameters.

Theorem 2.8: For any m� n QC matrix Q with l ones per row,

m �

sep(Q)

l

� n:

Proof: The number of ones in Q is ml. By De�nition 2.4 (the D

k

portion with j = 0),

the number of ones per 
olumn is at least sep(Q). 2

One should not expe
t to �nd an algorithm that, given arbitrary values n and m, 
om-

putes an m � n QC matrix Q that maximizes sep(Q). This is likely to be infeasible at

the present time, be
ause even the existen
e of 
ertain 
ombinatorial designs (su
h as a

Hadamard matrix of order 4t, whi
h is equivalent to a (4t � 1) � (4t � 1) QC matrix Q

with sep(Q) = 2t� 1) is a long-standing open problem [5℄. To see the equivalen
e, suppose

there were su
h a matrix Q. Sin
e sep(Q) = 2t � 1, the number of ones per 
olumn is

between 2t� 1 and 2t. Suppose the number of ones per row (and hen
e 
olumn) is exa
tly

2t� 1. (If 2t, 
onsider the 
omplement of Q instead.) Sin
e sep(Q) = 2t� 1, the Hamming

distan
e between any two 
olumns is at least 2t � 1, so any two 
olumns both have ones

in at most t � 1 rows. But the total number of unordered pairs of ones in the same row,

summed over all rows, is (4t � 1)(2t � 1)(t � 1). Hen
e, the average pair of 
olumns also

both have ones in t� 1 rows, so that every pair of 
olumns both have ones in exa
tly t� 1

rows. That makes Q the in
iden
e matrix of a 2-design (see De�nition 3.2) with parameters

13



(4t� 1; 4t� 1; 2t� 1; 2t� 1; t� 1), whi
h is equivalent to a Hadamard matrix of order 4t [5,

Constru
tion 24.7℄.

3. A Combinatorial Design Approa
h

We will assume for the moment that the proto
ol is (ACGT)

n=4

, generalizing to other pro-

to
ols in Se
tion 5.

3.1. Relationship to Error-Corre
ting Codes

A good QC matrix Q has many of the properties of a good error-
orre
ting 
ode, whi
h is a

type of 
ombinatorial design: if one thinks of the 
olumns ofQ as binary 
odewords, then one

part of De�nition 2.4 (the 
onstraint on D

k

) guarantees that the Hamming distan
e between

any pair of 
odewords is at least sep(Q). However, good QC matri
es have many more


onstraints that make their design more 
ompli
ated than that of error-
orre
ting 
odes:

1. The order of the 
olumns, whi
h would not matter in a 
ode, is 
riti
al in a QC

matrix. In parti
ular, the ones in the rows must \spell out" a small number 
 of

probes a

ording to De�nition 2.1. Furthermore, these probes must hybridize poorly

a

ording to De�nition 2.3.

2. Ea
h row must 
ontain the same number l of ones, whi
h has no analogy in 
odes.

This is to enfor
e the 
onstraint that ea
h probe has the same length l.

3. Another 
onsequen
e of De�nition 2.4 (when j = 0) is that ea
h 
olumn must 
ontain

between sep(Q) and m� sep(Q) ones.

4. The 
onstraints of De�nition 2.4 on L

k

and R

k

have no analogy in 
odes.

We solve this design problem using a hierar
hi
al approa
h. In Se
tion 3.2 we introdu
e

a new type of 
ombinatorial design. This is a \balan
ed" version of binary 
odes that takes


are of items 2 and 3 from the list above, and we show how to 
onstru
t su
h a balan
ed


ode C. We then substitute a small appropriate matrix, 
alled a \QC blo
k", for ea
h 1 in

C, and an equal size matrix of zeros for ea
h 0 in C. The QC blo
k is designed so that the

resulting 
ross produ
t satis�es all four properties of the list above. An example of an 8� 8

QC blo
k is shown in Figure 4. The de�nition of QC blo
ks is given in Se
tion 3.3.

3.2. Balan
ed Codes

De�nition 3.1: A balan
ed binary 
ode with parameters (v; b; r

min

; r

max

; k; d

min

) is a b � v

0-1 matrix with the following properties:

1. Every row 
ontains exa
tly k ones.
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2. The minimum number of ones in any 
olumn is r

min

, and the maximum is r

max

.

3. The minimum Hamming distan
e between any pair of 
olumns is d

min

.

A subset of the 
odewords from 
ertain types of error-
orre
ting 
odes, su
h as Hadamard


odes and quadrati
 residue 
odes [16℄, form balan
ed 
odes. (To a
hieve k ones per row,


hoose k=2 pairs of 
omplementary 
odewords.) However, our major sour
e of balan
ed


ode 
onstru
tions 
omes from 2-designs:

De�nition 3.2 (Colbourn and Dinitz [4℄): A 2-design with parameters (v; b; r; k; �) is a

b� v 0-1 matrix D with the following properties:

1. Every row 
ontains exa
tly k ones.

2. Every 
olumn 
ontains exa
tly r ones.

3. For every pair j; j

0

of distin
t 
olumns, there are exa
tly � rows i su
h that D

i;j

=

D

i;j

0

= 1.

Proposition 3.3: Any 2-design with parameters (v; b; r; k; �) is a balan
ed 
ode with pa-

rameters (v; b; r; r; k; 2(r� �)).

Proof: Sin
e there are � rows in whi
h 
olumns j and j

0

ea
h 
ontain 1, there are r� �

rows in whi
h 
olumn j 
ontains 1 and 
olumn j

0


ontains 0, and another r�� rows in whi
h


olumn j 
ontains 0 and 
olumn j

0


ontains 1. 2

While most of our balan
ed 
odes 
ome from 2-designs, the latter are more stringent than

we need: every 
olumn 
ontains exa
tly r ones, and the Hamming distan
e between any pair

of 
olumns is exa
tly 2(r � �). Constru
ting less stringent balan
ed 
odes would lead to a

ri
her 
olle
tion of QC matri
es.

Another sour
e of balan
ed 
odes 
omes from the following produ
t 
onstru
tion.

Theorem 3.4: Let C

0

be a balan
ed 
ode with parameters (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

) and C

be a balan
ed 
ode with parameters (v; b; r

min

; r

max

; k; d

min

). Then there is a balan
ed 
ode

C

0

� C with parameters

(v

0

v; b

0

b; r

0

min

r

min

; r

0

max

r

max

; k

0

k;min(d

0

min

r

min

; d

min

r

0

min

)):

Proof: Repla
e every one in C

0

by a 
opy of C, and every zero in C

0

by a b�v matrix of

zeros. (See the leftmost twelve 
olumns of Figure 10(d) for an example.) If two 
olumns j

and j

0

of this produ
t both lie in the same 
olumn of C

0

, their Hamming distan
e is at least

d

min

r

0

min

. If they lie in di�erent 
olumns of C

0

, their Hamming distan
e is at least d

0

min

r

min

.

2
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A C G C

T A G T

C A C G

A G T T

A C A T

G T C G

A T A C

C G G T

Figure 4: An 8 � 8 QC blo
k with parameters (8,8,4,4,4,4). For ease of visualization, the

�gure shows blanks instead of zeros, and the appropriate nu
leotide from the proto
ol instead

of ones.

3.3. QC Blo
ks

Balan
ed 
odes do not 
apture the notion of poor hybridization. A \QC blo
k" is just a

balan
ed 
ode with an additional hybridization 
onstraint:

De�nition 3.5: A QC blo
k for a proto
ol P is a b� v balan
ed 
ode in whi
h the b probes

p

1

; p

2

; : : : ; p

b

(using the length v pre�x of P as the proto
ol in De�nition 2.1) are all distin
t

and, for every integer s, the set fp

s

1

; p

s

2

; : : : ; p

s

b

g hybridizes poorly (see De�nition 2.3).

An example of an 8 � 8 QC blo
k with parameters (8; 8; 4; 4; 4; 4) is given in Figure 4.

Its eight poorly hybridizing probes are (ACGC)

s

, (TAGT)

s

, (CACG)

s

, (AGTT)

s

, (ACAT)

s

,

(GTCG)

s

, (ATAC)

s

, and (CGGT)

s

. Its four 
orresponding targets are GCGT . . .GCGT G,

AACT . . . AACT A, ATGT . . . ATGT AT, and CGAC . . . CGAC CG.

3.4. Produ
t Constru
tion of QC Matri
es

The method we will use to 
onstru
t good QC matri
es is to apply the produ
t 
onstru
tion

of Theorem 3.4, with C

0

a balan
ed 
ode and C a QC blo
k. Figure 5 shows an example,

where C

0


onsists of ten 
odewords from the 8-Hadamard 
ode [16℄, and C is the QC blo
k

of Figure 4.

If the parameters of C

0

are (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

) and the parameters of C are

(v; b; r

min

; r

max

; k; d

min

), then the QC matrix C

0

� C will have v

0

v steps, b

0

b spots, and b

distin
t probes, ea
h of length k

0

k and ea
h o

urring at b

0

distin
t spots. More spe
i�
ally,

if p

1

; p

2

; : : : ; p

b

are the distin
t probes of C, then p

k

0

1

; p

k

0

2

; : : : ; p

k

0

b

are the distin
t probes of

C

0

� C. By De�nition 3.5, this set of distin
t probes hybridizes poorly.

What remains is to determine sep(C

0

� C), in order to be able to apply Theorem 2.6.

16



Figure 5: The produ
t of 10 
odewords from the 8-Hadamard 
ode and the 8� 8 QC blo
k

of Figure 4, resulting in a 64� 80 QC matrix Q with minimum separation sep(Q) = 16.

17



Theorem 3.6: If C

0

is a balan
ed 
ode with parameters (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

) and C is

a QC blo
k with parameters (v; b; r

min

; r

max

; k; d

min

), then

sep(C

0

� C) = min( d

0

min

r

min

;

r

0

min

min(r

min

; d

min

);

(b

0

� r

0

max

)min(r

min

; d

min

) ):

As an example, if C is the 8� 8 QC blo
k of Figure 4, then

sep(C

0

� C) = 4min(d

0

min

; r

0

min

; b

0

� r

0

max

):

Proof: We will identify any 
olumn j of the produ
t C

0

� C, 1 � j � v

0

v, by the

pair (g; h), where 1 � g � v

0

, 1 � h � v, and 
olumn j is the result of repla
ing every

one in 
olumn g of C

0

by 
olumn h of C, and repla
ing every zero by the ve
tor 0

b

. The

proof pro
eeds by examining the four possible 
ases for the pair j; j

0

of 
olumns of C

0

� C

in De�nition 2.4, and 
omputing the separation of these 
olumns. (The reader may �nd it

helpful to identify an example of ea
h 
ase in Figure 5 while reading the proof for that 
ase.)

Note for all four 
ases that the b

0

b spots of C

0

� C are partitioned into b distin
t probes,


orresponding to the b rows of C, as des
ribed above.

Case 1: j = (g; h) and j

0

= 0. (Re
all the 
onvention from De�nition 2.4 that 
olumn 0

is the ve
tor 0

b

0

b

.) Suppose 
olumn g of C

0

has r

0

ones, where r

0

min

� r

0

� r

0

max

, and 
olumn h

of C has r ones, where r

min

� r. For any probe q

k


orresponding to a zero in 
olumn h of C,

D

k

(j; j

0

) = 0, so q

k


ontributes 0 to the separation of j and j

0

in Equation (1) of De�nition

2.4. For the r distin
t probes q

k


orresponding to the ones in 
olumn h of C, D

k

(j; j

0

) = r

0

,

L

k

(j; j

0

) = b

0

� r

0

, and R

k

(j; j

0

) = b

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) = rmin(r

0

; b

0

� r

0

) � r

min

�min(r

0

min

; b

0

� r

0

max

);

with equality when r = r

min

, and either r

0

= r

0

min

or b

0

� r

0

= b

0

� r

0

max

, whi
hever is less.

Case 2: j = (g; h) and j

0

= (g; h

0

), with h 6= h

0

. Suppose 
olumn g of C

0

has r

0

ones,

where r

0

min

� r

0

� r

0

max

, and 
olumns h and h

0

of C di�er in d positions, where d

min

� d.

For any probe q

k


orresponding to a row of C in whi
h 
olumns h and h

0

do not di�er,

D

k

(j; j

0

) = 0, so q

k


ontributes 0 to the separation of j and j

0

in Equation (1). For the

d distin
t probes q

k


orresponding to the rows of C in whi
h 
olumns h and h

0

do di�er,

D

k

(j; j

0

) = r

0

, one of L

k

(j; j

0

) and R

k

(j; j

0

) is b

0

� r

0

, and the other is b

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) = dmin(r

0

; b

0

� r

0

) � d

min

�min(r

0

min

; b

0

� r

0

max

);

with equality when d = d

min

, and either r

0

= r

0

min

or b

0

� r

0

= b

0

� r

0

max

, whi
hever is less.

Case 3: j = (g; h) and j

0

= (g

0

; h), with g 6= g

0

. Suppose 
olumn h of C has r ones, where

r

min

� r, and suppose there are e

0

rows i in C

0

for whi
h C

0

ig

= 1 and C

0

ig

0

= 0, and f

0

rows

i in C

0

for whi
h C

0

ig

= 0 and C

0

ig

0

= 1, where d

0

min

� e

0

+ f

0

and e

0

; f

0

� r

0

max

. For any probe
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q

k


orresponding to a row of C in whi
h 
olumn h has a zero, D

k

(j; j

0

) = 0, so q

k


ontributes

0 to the separation of j and j

0

in Equation (1). For the r distin
t probes q

k


orresponding

to the ones in 
olumn h, D

k

(j; j

0

) = e

0

+ f

0

, L

k

(j; j

0

) = b

0

� e

0

, and R

k

(j; j

0

) = b

0

� f

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) = rmin(e

0

+f

0

; b

0

�e

0

; b

0

�f

0

) � r

min

�min(d

0

min

; b

0

�r

0

max

);

with equality possible when r = r

min

and e

0

+ f

0

= d

0

min

.

Case 4: j = (g; h) and j

0

= (g

0

; h

0

), with g 6= g

0

and h 6= h

0

. Suppose 
olumns h and h

0

of C di�er in d positions, where d

min

� d. For a probe q

k


orresponding to a row i of C in

whi
h 
olumns h and h

0

di�er, assume without loss of generality that C

ih

= 1 and C

ih

0

= 0.

Suppose that 
olumn g of C

0

has r

0

ones, where r

0

min

� r

0

� r

0

max

. Then D

k

(j; j

0

) = r

0

,

L

k

(j; j

0

) = b

0

� r

0

, and R

k

(j; j

0

) = b

0

. Thus,

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) � dmin(r

0

; b

0

� r

0

) � d

min

�min(r

0

min

; b

0

� r

0

max

):

2

4. Results: A
hieved QC Matri
es

Table 1 shows some of the QC matri
es a
hievable by using the produ
t 
onstru
tion of

Se
tion 3.4. Ea
h row of the table des
ribes a QC matrix that is the produ
t of the balan
ed


ode spe
i�ed in the last 
olumn and the QC blo
k spe
i�ed in the penultimate 
olumn. For

example, the QC matrix shown in Figure 5 
orresponds to the row of the table with 80 steps

and 64 spots.

Table 1 fo
uses on ranges of parameters 
omparable to those of Hubbell and Pevzner

[8℄, namely between 60 and 132 proto
ol steps, probe lengths between 16 and 20, and fewer

than 400 spots. (These parameters are given in 
olumns 1{3 of the table.) The separations

in 
olumn 4 of the table are 
al
ulated using Theorem 3.6. For ea
h �xed number of steps

(
olumn 1), the table o�ers a small spe
trum of designs to suit the manufa
turer's spot

budget and spot failure toleran
e (
olumns 3{4). Arbitrary linear 
ombinations of these

designs 
an be formed a

ording to Theorem 2.7, to provide a broader spe
trum of 
hoi
es.

The manufa
turer uses Table 1 to look up the QC matrix Q for the appropriate 
hoi
e

of parameters in the �rst four 
olumns of the table, where the \sep" parameter is 
hosen

to be greater than twi
e the number of faulty spots the manufa
turer is willing to tolerate.

The QC matrix Q is used to manufa
ture the quality 
ontrol probes onto reserved spots,

whi
h are hybridized with 
omplementary 
uores
ent targets. The resulting intensity ve
tor

I is then used along with Q to identify the failed step, if any, using the algorithm of Se
tion

2.2.4.

The 8 � 8 QC blo
k has already been presented in Figure 4. The 6 � 12, 6 � 8, and

4� 4 QC blo
ks are given in Figures 6, 7, and 8, respe
tively. They ea
h use a subset of the

probes used by the 8� 8 QC blo
k.
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Table 1: Some basi
 QC matri
es a
hievable by the produ
t 
onstru
tion of Se
tion 3.4.

The se
ond 
olumn shows the probe length. The last two 
olumns show the QC blo
k and

balan
ed 
ode whose produ
t yields the QC matrix. In the last 
olumn, a list of 5 parame-

ters indi
ates a 2-design (De�nition 3.2), \�" indi
ates a produ
t 
ode (Theorem 3.4), \+i"

indi
ates the addition of i extra 
olumns that maintain the balan
ed 
ode properties (see

Appendix C), and GF(q) refers to balan
ed 
odes derived from polynomials over �nite �elds

(see Appendix D). The 2-designs referen
ed in the last 
olumn 
an be found in the 
om-

pendium of Mathon and Rosa [13℄, and the error-
orre
ting 
odes in the survey of Ton
hev

[16℄. For the latter, the balan
ed 
ode employs 
odewords in 
omplementary pairs, and

the number of 
odewords used is n=v, where n is the number of steps and v the number of


olumns in the QC blo
k.
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A C G C

T A G T

C A C G

A G T T

G T C G

A T A C

Figure 6: A 6� 12 QC blo
k with parameters (12,6,2,2,4,2).

A C G C

T A G T

A C A T

G T C G

A T A C

C G G T

Figure 7: A 6� 8 QC blo
k with parameters (8,6,3,3,4,2).

QC matri
es involving 4 � 4 QC blo
ks are 
onstru
ted in a slightly di�erent manner

from the others. These are a
tually a pair of mated blo
ks, as shown in Figure 8. When

forming the produ
t with a balan
ed 
ode C

0

, these two mates are alternately substituted

for the ones in any given row of C

0

. An example of this produ
t 
onstru
tion is shown in

Figure 9, in whi
h C

0

is a 2-design with parameters (19,19,9,9,4) [13, Table 1.26℄. Be
ause

the proof of Theorem 3.6 relies on the substitution of a single QC blo
k for all the ones in

C

0

, that theorem is not general enough to provide the separation values for QC matri
es


onstru
ted from the mated 4� 4 QC blo
ks. The same result does in fa
t hold for su
h QC

matri
es, and the proof is given in Appendix B.

QC matri
es using the 4 � 4 QC blo
ks require only two targets, ATGT . . . ATGT AT

and CGAC . . . CGAC CG. There are two entries in Table 1 that appear as though they


ould be derived by 
ombining earlier entries via Theorem 2.7: (1) the 276� 96 QC matrix

has the same probe length, number of spots, and separation as four 
opies of the 48�96 plus

one 
opy of the 84�96, and (2) the 348�120 the same as �ve 
opies of the 48�120 plus one


opy of the 108� 120. However, in both 
ases the single larger QC matrix, 
onstru
ted via

the 4� 4 QC blo
k, requires only two targets, whereas the 
ombined equivalent QC matrix

requires four targets.

By Theorem 2.8, 
olumn 5 of Table 1 is no less than 
olumn 6. When they are equal,

the QC matrix is optimal, in the sense that it uses the fewest possible number of spots for

its separation.

An open problem in 
ombinatorial design theory [13℄ that has bearing on our pra
ti
al

range of parameters is the existen
e of a 2-design with parameters (22; 33; 12; 8; 4) whi
h,

together with the 4� 4 QC blo
k, would yield a QC matrix with 88 steps, probe length 16,
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A C

G T

A T

C G

A T

C G

A C

G T

Figure 8: A pair of 4� 4 QC blo
ks ea
h with parameters (4,4,2,2,2,2).

132 spots, and separation 24.

5. Covering Proto
ols Other Than ACGT ACGT . . .

In this se
tion we show that all the a
hievable parameter settings for the proto
ol P =

(ACGT)

n=4

obtained in Se
tion 4 
an also be a
hieved for any proto
ol P

0

= [�(ACGT)℄

n=4

,

where � is any permutation. To obtain a QC matrix for any proto
ol P

0

we 
an start

with a QC matrix Q with its 
olumns labelled a

ording to the steps in proto
ol P, and

relabel the 
olumns a

ording to the steps in P

0

. The resulting QC matrix Q

0


ertainly

has the same parameter values as Q. The only possible impediment to this being a valid

QC matrix for P

0

is that the probe set asso
iated with Q

0

may no longer hybridize poorly

a

ording to De�nition 2.3. We over
ome this impediment and exhibit transformations on

valid QC matri
es that preserve the validity of the resulting probe set for all 24 proto
ols

[�(ACGT)℄

n=4

. Of these, 16 permutations are obtained via general transformations that

operate on the total QC design, and would apply to any valid QC matrix with periodi


probes. The remaining 8 are spe
i�
 to the QC blo
ks used in the produ
t designs des
ribed

in Se
tion 4.

5.1. Rotations

All our probes are periodi
, with period 4. Given su
h a periodi
 probe set S, the probe set

obtained by rotating some of the probes some number of positions has the same hybridization

behavior as S with respe
t to De�nition 2.3. Thus, a poorly hybridizing probe set remains

so under su
h rotations.

Given a QC matrix Q for (ACGT)

n=4

, we 
an rotate the 
olumns of Q right one position

(the n

th


olumn be
omes the 1

st

, and the i

th


olumn be
omes the (i + 1)

st

, 1 � i � n � 1)

to obtain a QC matrix of identi
al parameters as Q, for the proto
ol (TACG)

n=4

. Similarly,

QC matri
es of identi
al parameters for the proto
ols (GTAC)

n=4

and (CGTA)

n=4


an be

obtained from Q by rotating the 
olumns right two and three positions, respe
tively.

Note that the resulting QC matri
es are not ne
essarily produ
t designs as 
onstru
ted

in Se
tion 3.4. Note also that similar rotations 
ould be performed on valid QC matri
es for

any proto
ol, not just (ACGT)

n=4

. In the following se
tions, we will do exa
tly that.
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Figure 9: The produ
t of a (19,19,9,9,4) 2-design and the pair of 4� 4 QC blo
ks of Figure

8, resulting in a 76� 76 QC matrix Q with minimum separation sep(Q) = 18.
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5.2. Substitutions Within Complementary Bases

Given a probe set, substituting ea
h A with T (and vi
e versa), or ea
h C with G (and

vi
e versa) in every probe, does not 
hange its hybridization behavior. This is be
ause the

substitutions are between 
omplementary bases, so the hybridization eÆ
ien
y of any two

given probes remains un
hanged. Hen
e a poorly hybridizing probe set remains so under

this transformation.

Given a QC matrix Q for (ACGT)

n=4

, to enfor
e the type of transformation on the probe

set mentioned above we repla
e the label of every A 
olumn with T and every T 
olumn

with A, and/or every G 
olumn with C and every C 
olumn with G. This leads to valid

QC matri
es of identi
al parameters as that of Q, for the proto
ols (TCGA)

n=4

, (TGCA)

n=4

,

and (AGCT)

n=4

. The resulting designs 
an then be rotated, as in Se
tion 5.1, to get valid

QC matri
es for (ATCG)

n=4

, (GATC)

n=4

, (CGAT)

n=4

, (ATGC)

n=4

, et
.

5.3. The Remaining Permutations

The two transformations above 
over 16 of the 24 permutations. To get the remaining 8, we


over the two permutations �

1

: ACGT ! CAGT and �

2

: ACGT ! ACTG, and get the

rest via rotations as in Se
tion 5.1. The permutations �

1

and �

2

are 
overed by 
he
king

that the probe set of the 8� 8 QC blo
k of Figure 4 remains poorly hybridizing under the

transformation that substitutes A with C and vi
e versa (for �

1

) or G with T and vi
e versa

(for �

2

), in ea
h probe. Sin
e the probe sets of the 4� 4, 6 � 8, and 6 � 12 QC blo
ks are

all subsets of that of the 8� 8 QC blo
k, these probe sets remain valid as well.

To obtain valid QC matri
es for (CAGT)

n=4

or (ACTG)

n=4

from a valid QC matrix Q

for (ACGT)

n=4

, we relabel the 
olumns in Q by repla
ing ea
h A with C and vi
e versa (for

�

1

) or ea
h G with T and vi
e versa (for �

2

). The resulting design 
an then be rotated, as in

Se
tion 5.1, to get valid QC matri
es for (TCAG)

n=4

, (GACT)

n=4

, (GTCA)

n=4

, (TGAC)

n=4

,

(AGTC)

n=4

, and (CTGA)

n=4

.

6. Open Problems

The work reported here 
an be extended in various dire
tions and raises several interesting

open questions. We list a few here in no parti
ular order.

1. Handle more than one step failure. Binary superimposed 
odes [9℄ appear to be a

promising way to extend our hierar
hi
al design approa
h to handle multiple step

failures.

2. Relax the step fault model. When a step fails, not every spot using that step will have

the same low intensity. The 
hange in intensity more realisti
ally will be a fun
tion of

how far from the 
enter of the probe the failed step is (Lips
hutz et al. [11℄).
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3. Relax the assumption that the intensity window �

k

is supplied for ea
h probe.

4. Handle a wider variety of proto
ols, i.e., with period greater than four.

5. Develop a general te
hnique for designing balan
ed 
odes. These designs appear not

to have been studied prior to this, even in the 
ombinatorial design literature [3℄. Alon

et al. [1℄ have developed su
h te
hniques, resulting in many new balan
ed 
odes and

QC matri
es.

6. Improve the results of Table 1 by �lling in more entries, or optimizing those entries

for whi
h m=sep(Q) > n=l (see Theorem 2.8). For instan
e, we have no optimal QC

matri
es with 60 steps. On this parti
ular question, it is interesting to note that the

produ
t 
onstru
tion with our 
urrent QC blo
ks 
annot produ
e QC matri
es Q with

m=sep(Q) < 4: From Theorem 3.6,

sep(C

0

� C) � d

min

�min(r

0

min

; b

0

� r

0

max

) � d

min

� b

0

=2 = d

min

�m=(2b);

so that m=sep(C

0

�C) � 2b=d

min

. For the 8� 8 and 4� 4 QC blo
ks, 2b=d

min

= 4; for

the 6� 12 and 6� 8 QC blo
ks, 2b=d

min

= 6.
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Appendi
es

A. Basi
s of DNA Hybridization

Single-stranded DNA is a mole
ule 
omposed by 
on
atenating building blo
ks 
alled nu-


leotides. Nu
leotides 
ome in four types 
alled A, C, G, and T, named after the nu
leotide's

base 
omponent, so that a DNA mole
ule 
an be abstra
ted as a string over the alphabet

fA;C;G;Tg. The nu
leotides o

ur in the 
omplementary base pairs fA;Tg and fC;Gg:

these pairs bind or hybridize well to ea
h other via hydrogen bonds.

Two entire DNA mole
ules 
an only hybridize if they are arranged in an antiparallel

alignment, meaning that they are aligned with one of them reversed. Thus, for example,

the two DNA mole
ules ACGC ACGC ACGC and GCGT GCGT GCGT would hybridize

extremely well to ea
h other, be
ause when they are aligned in antiparallel fashion

A C G C A C G C A C G C

j j j j j j j j j j j j

T G C G T G C G T G C G
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all the aligned base pairs are 
omplementary. Two su
h mole
ules are 
alled reverse 
om-

plements. This is a desirable situation if one of these mole
ules is a DNA array probe and

the other is a target. However, it is undesirable if both of these mole
ules are targets, be-


ause then the target mole
ules bind to ea
h other and are unavailable for binding to their


omplementary probes on the array.

A DNA mole
ule need not be exa
tly the reverse 
omplement of another DNA mole
ule in

order for the two to hybridize. Near 
omplementarity suÆ
es for reasonably good hybridiza-

tion. However, if they are far from reverse 
omplementarity, then they will not hybridize

well at all.

All pairs of reverse 
omplementary DNA mole
ules do not hybridize with equal aÆnity or

binding energy. There are many 
ompli
ated reasons for this, but the simplest is that C and

G hybridize with three hydrogen bonds whereas A and T form only two. This means that

reverse 
omplementary mole
ules with high G-C 
ontent tend to hybridize better than reverse


omplementary mole
ules with low G-C 
ontent. This observation underlies Assumption 4

in Se
tion 2.1.

For more information on hybridization and binding energy, see any textbook on mole
ular

biology, for instan
e Lewin [10℄.

B. Theorem 3.6 for Mated QC Blo
ks

In order to extend Theorem 3.6 to handle mated QC blo
ks su
h as the 4 � 4 blo
ks of

Figure 8, we need to impose some 
onditions on the mates. Note, though, that the following

theorem is general enough to apply to all of the QC blo
ks in this paper, sin
e a single QC

blo
k su
h as the 8� 8 
an be 
onsidered as being mated with itself.

Theorem B.1: Let C

0

be a balan
ed 
ode with parameters (v

0

; b

0

; r

0

min

; r

0

max

; k

0

; d

0

min

). Let

C and D be a pair of mated QC blo
k ea
h with parameters (v; b; r

min

; r

max

; k; d

min

), and

satisfying the following additional 
onditions:

1. d

min

� r

min

.

2. For any j, the 
olumns C

�j

and D

�j

are either identi
al or 
omplementary. That is,

either C

ij

= D

ij

for all rows i, or C

ij

= 1�D

ij

for all rows i.

3. Any 
olumn of C and any 
olumn of D are either identi
al, or have Hamming distan
e

at least d

min

.

Let Q be the QC matrix that results from alternately substituting C and D for the ones in

ea
h row of C

0

, and substituting a b� v matrix of zeros for ea
h zero of C

0

. Then

sep(Q) � min(d

0

min

r

min

; r

0

min

d

min

; (b

0

� r

0

max

)d

min

):
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As an example, if C and D are the 4� 4 QC blo
ks of Figure 8, then

sep(Q) = 2min(d

0

min

; r

0

min

; b

0

� r

0

max

):

Proof: As in the proof of Theorem 3.6, we will identify any 
olumn j of the produ
t Q,

1 � j � v

0

v, by the pair (g; h), where 1 � g � v

0

, 1 � h � v, and j = (g � 1)v + h. What


ompli
ates this proof is that ea
h su
h 
olumn j generally 
ontains a mixture of 
olumn h

from C and 
olumn h from D. The proof pro
eeds by examining four possible 
ases for the

pair j; j

0

of 
olumns of Q in De�nition 2.4, and 
omputing the separation of these 
olumns.

(The reader may �nd it helpful to identify an example of ea
h 
ase in Figure 9 while reading

the proof for that 
ase.)

Re
all for all four 
ases that the b

0

b spots of Q are partitioned into b distin
t probes,


orresponding to the b rows of C and D. Without loss of generality, assume that probe q

k


orresponds to row k of C and D, for 1 � k � b. For any k, 1 � k � b, let e

k

be the number

of rows of Q with probe q

k

that 
ontain a one in 
olumn j and a zero in 
olumn j

0

, and

f

k

be the number of rows of Q with probe q

k

that 
ontain a zero in 
olumn j and a one in


olumn j

0

. Thus, 0 � e

k

� r

0

max

, 0 � f

k

� r

0

max

, D

k

(j; j

0

) = e

k

+ f

k

, L

k

(j; j

0

) = b

0

� e

k

, and

R

k

(j; j

0

) = b

0

� f

k

. Let the separation between 
olumns j and j

0

be

s =

b

X

k=1

min(D

k

(j; j

0

); L

k

(j; j

0

); R

k

(j; j

0

)) =

b

X

k=1

min(e

k

+ f

k

; b

0

� e

k

; b

0

� f

k

):

Case 1: j = (g; h) and j

0

= 0. (Re
all the 
onvention from De�nition 2.4 that 
olumn 0

is the ve
tor 0

b

0

b

.) Then

P

b

k=1

e

k

� r

min

� r

0

min

and f

k

= 0.

Case 1.1: For every k, e

k

� b

0

� e

k

. Then

s =

b

X

k=1

e

k

� r

min

� r

0

min

:

Case 1.2: There exists k su
h that b

0

� e

k

< e

k

. Suppose that C

kh

= 1, the 
ase where

D

kh

= 1 being dual. By property 2 of the theorem, ea
h of the values of k

0

with C

k

0

h

= 1,

of whi
h there are at least r

min

, satis�es e

k

0

= e

k

, sin
e the 
olumn D

�h

is either identi
al or


omplementary to C

�h

. Thus,

s � r

min

(b

0

� e

k

) � r

min

(b

0

� r

0

max

):

Case 2: j = (g; h) and j

0

= (g; h

0

), with h 6= h

0

. Then

P

b

k=1

(e

k

+ f

k

) � d

min

� r

0

min

.

Case 2.1: For every k, e

k

+ f

k

� b

0

�max(e

k

; f

k

). Then

s =

b

X

k=1

(e

k

+ f

k

) � d

min

� r

0

min

:

Case 2.2: There exists k su
h that b

0

�max(e

k

; f

k

) < e

k

+ f

k

. Without loss of generality,

suppose e

k

� f

k

, and that C

kh

= 1 and C

kh

0

= 0, the 
ase where this o

urs in D being dual.
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By property 2 of the theorem, ea
h of the values of k

0

with C

k

0

h

6= C

k

0

h

0

, of whi
h there are at

least d

min

, satis�es fe

k

0

; f

k

0

g = fe

k

; f

k

g, sin
e the 
olumns D

�h

and D

�h

0

are either identi
al

or 
omplementary to C

�h

and C

�h

0

, respe
tively. Thus,

s � d

min

(b

0

� e

k

) � d

min

(b

0

� r

0

max

):

Case 3: j = (g; h) and j

0

= (g

0

; h

0

), with g 6= g

0

, and 
olumns h of C and h

0

ofD are either

identi
al or 
omplementary. (The possibility h = h

0

is in
luded in this 
ase.) By property 2

of the theorem, this means that 
olumn h of C is either identi
al or 
omplementary to ea
h of


olumn h

0

of C, 
olumn h of D, and 
olumn h

0

of D. Sin
e g 6= g

0

,

P

b

k=1

(e

k

+f

k

) � r

min

�d

0

min

.

Case 3.1: For every k, e

k

+ f

k

� b

0

�max(e

k

; f

k

). Then

s =

b

X

k=1

(e

k

+ f

k

) � r

min

� d

0

min

:

Case 3.2: There exists k su
h that b

0

�max(e

k

; f

k

) < e

k

+ f

k

. Without loss of generality,

suppose e

k

� f

k

, and that C

kh

= 1, the 
ase where D

kh

= 1 being dual. Ea
h of the values

of k

0

with C

k

0

h

= 1, of whi
h there are at least r

min

, satis�es e

k

0

= e

k

and f

k

0

= f

k

, sin
e

C

kh

= C

k

0

h

implies D

kh

= D

k

0

h

, C

kh

0

= C

k

0

h

0

, and D

kh

0

= D

k

0

h

0

, all these 
olumns being

either identi
al or 
omplementary. Thus,

s � r

min

(b

0

� e

k

) � r

min

(b

0

� r

0

max

):

Case 4: j = (g; h) and j

0

= (g

0

; h

0

), with g 6= g

0

, and 
olumns h of C and h

0

of D

are neither identi
al nor 
omplementary. By property 2 of the theorem this means that,

if 
hoosing 
olumn h either from C or from D, and 
hoosing 
olumn h

0

either from C or

from D, the two 
hosen 
olumns 
annot be identi
al. Hen
e, by property 3, the two 
hosen


olumns must have Hamming distan
e at least d

min

.

Let r

0

1

and r

0

2

be the number of ones in 
olumns g and g

0

of C

0

, respe
tively, and d

0

be

the Hamming distan
e between these two 
olumns of C

0

. Then the number of rows of C

0

in

whi
h both of these 
olumns 
ontain a one is

1

2

(r

0

1

+ r

0

2

� d

0

), so that

b

X

k=1

(e

k

+ f

k

) � r

min

� d

0

+

1

2

d

min

(r

0

1

+ r

0

2

� d

0

):

Suppose that there are t values of k for whi
h e

k

+ f

k

> b

0

�max(e

k

; f

k

).

Case 4.1: t > d

min

. Then

s � t(b

0

� r

0

max

) > d

min

(b

0

� r

0

max

):

Case 4.2: 0 � t � d

min

. Ea
h of the t values of k 
an redu
e s by at most

1

2

(r

0

1

+ r

0

2

+ d

0

)

from

P

b

k=1

(e

k

+ f

k

), namely the d

0

rows of C

0

where 
olumns g and g

0

di�er, plus the
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1

2

(r

0

1

+ r

0

2

� d

0

) where both 
olumns 
ontain a one. Ea
h of these t values also in
reases s by

at least b

0

� r

0

max

. Thus,

s �

b

X

k=1

(e

k

+ f

k

)�

1

2

t(r

0

1

+ r

0

2

+ d

0

) + t(b

0

� r

0

max

)

� r

min

� d

0

+

1

2

d

min

(r

0

1

+ r

0

2

� d

0

)�

1

2

t(r

0

1

+ r

0

2

+ d

0

) + t(b

0

� r

0

max

): (2)

Sin
e expression (2) is a linear fun
tion of t, it a
hieves its minimum value at one of its

endpoints t = 0 or t = d

min

.

Case 4.2.1: t = 0. Sin
e d

0

� r

0

1

+ r

0

2

, Inequality (2) yields

s � r

min

� d

0

� r

min

� d

0

min

:

Case 4.2.2: t = d

min

. Then

s � r

min

� d

0

� d

min

� d

0

+ d

min

(b

0

� r

0

max

) � d

min

(b

0

� r

0

max

);

the last inequality following from property 1 of the theorem.

Combining the results of all of the 
ases,

sep(Q) � min(r

min

d

0

min

;min(r

min

; d

min

)r

0

min

;min(r

min

; d

min

)(b

0

� r

0

max

))

= min(r

min

d

0

min

; d

min

r

0

min

; d

min

(b

0

� r

0

max

)):

2

C. Balan
ed Codes with Added Columns

This appendix provides 
onstru
tions for those balan
ed 
odes in Table 1 labeled \+i",

meaning that i extra 
olumns have been added to some other balan
ed 
ode. A few of these

augmented balan
ed 
odes 
ome from the following simple 
onstru
tion.

Proposition C.1: If there is a 2-design D with parameters (v; b; r; k; �), then there is a

balan
ed 
ode with parameters

(v + 2; 2b;min(b; 2r);max(b; 2r); k + 1;min(b; 4(r � �))):

Proof: Dupli
ate the rows of D to obtain a 2-design D

0

with parameters (v; 2b; 2r; k; 2�).

By Proposition 3.3, D

0

is a balan
ed 
ode with parameters (v; 2b; 2r; 2r; k; 4(r � �)). Add

two additional 
olumns to D

0

with entries (1; 0) in those rows 
orresponding to one 
opy of

D, and (0; 1) in those rows 
orresponding to the se
ond 
opy of D. (See the leftmost nine


olumns of Figure 10(a) for an illustration.) These two new 
olumns ea
h have exa
tly b

ones, Hamming distan
e exa
tly b from ea
h of the 
olumns of D

0

, and Hamming distan
e

exa
tly 2b from ea
h other. 2

Proposition C.1 yields two of the balan
ed 
odes of Table 1:
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1110000 10 10

1001100 10 10

1000011 10 10

0101010 10 10

0100101 10 01

0011001 10 01

0010110 10 01

1110000 01 01

1001100 01 01

1000011 01 01

0101010 01 01

0100101 01 10

0011001 01 10

0010110 01 10

(a)

1111000000 10

1000111000 10

1000000111 10

1100100100 01

1010010010 01

1001001001 01

0100100011 10

0010010101 10

0001001110 10

0100011100 01

0010101010 01

0001110001 01

0110001001 01

0101010010 01

0011100100 01

(b)

100110001 10

010011001 10

001011100 10

100101010 10

110001100 01

011010010 10

001100101 01

000101110 10

000010111 01

100010110 01

010001011 01

101001001 01

010100101 10

101000011 10

110110000 01

111000100 10

011100010 01

001111000 01

(
)

1100 1100 0000 10

1010 1010 0000 10

1001 1001 0000 10

0110 0110 0000 10

0101 0101 0000 10

0011 0011 0000 01

1100 0000 1100 10

1010 0000 1010 01

1001 0000 1001 01

0110 0000 0110 01

0101 0000 0101 01

0011 0000 0011 10

0000 1100 1100 10

0000 1010 1010 01

0000 1001 1001 01

0000 0110 0110 01

0000 0101 0101 01

0000 0011 0011 10

(d)

Figure 10: These balan
ed 
odes have the following parameters, and the following labels in

Table 1: (a) Balan
ed 
ode (11; 14; 6; 7; 5; 6), labeled (7; 14; 6; 3; 2) + 4. (b) Balan
ed 
ode

(12; 15; 6; 9; 5; 6), labeled (10; 15; 6; 4; 2) + 2. (
) Balan
ed 
ode (11; 18; 8; 9; 5; 9), labeled

(9; 18; 8; 4; 3)+2. (d) Balan
ed 
ode (14; 18; 6; 9; 5; 6), labeled (3; 3; 2; 2; 1)� (4; 6; 3; 2; 1)+2.

1. the entry labeled \(7; 14; 8; 4; 4)+2", whi
h is derived from the 2-design with parameters

(7; 7; 4; 4; 2), and is a balan
ed 
ode with parameters (9; 14; 7; 8; 5; 7), and

2. the entry labeled \(8; 28; 14; 4; 6)+ 2", whi
h is derived from the 2-design with param-

eters (8; 14; 7; 4; 3), and is a balan
ed 
ode with parameters (10; 28; 14; 14; 5; 14).

The 2-designs from whi
h these are derived 
an be found in the 
ompendium of Mathon and

Rosa [13℄.

The remaining \+i" balan
ed 
odes were augmented from known 2-designs [13℄ by a

simple exhaustive program, and are given in Figure 10.
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D. Balan
ed Codes from Polynomials Over Finite

Fields

This se
tion des
ribes the 
onstru
tion of those balan
ed 
odes labeled \degree d over GF(q)"

in Table 1. These 
odes have appeared numerous times in the literature. For example, they

were des
ribed by Nisan and Wigderson [14, Lemma 2.5℄, who 
alled them simply \(d; q)-

designs", as part of a 
onstru
tion for pseudorandom number generators.

Theorem D.1: Let q be any integral power of a prime number, and d be any nonnegative

integer. Then there is a balan
ed 
ode C with parameters (q

d+1

; q

2

; q; q; q

d

; 2(q � d)).

Proof: Let F be the �nite �eld with q elements, and F [x℄ the integral domain of polyno-

mials in the indeterminate x with 
oeÆ
ients in F . (See Lipson [12℄ for an introdu
tion to the

algebra of �nite �elds and polynomials.) C has a row for ea
h of the q

2

pairs (x

0

; y

0

) 2 F�F ,

and a 
olumn for ea
h of the q

d+1

polynomials p(x) 2 F [x℄ of degree at most d. The entry

in C for row (x

0

; y

0

) and 
olumn p(x) is 1 if p(x

0

) = y

0

, and 0 otherwise. Thus there are

exa
tly q ones per 
olumn (sin
e any x

0

and p(x) uniquely determine y

0

= p(x

0

)) and q

d

ones

per row (sin
e any x

0

, y

0

, and the d high degree 
oeÆ
ients of p(x) uniquely determine the

lowest degree 
oeÆ
ient). Finally, the Interpolation Theorem [12, Se
tion IV.3.3, Theorem

5℄ states that any d + 1 points (x

0

; y

0

) uniquely determine a polynomial p(x) of degree at

most d that passes through these points, so that any two 
olumns of D 
an have at most d

rows in whi
h both 
olumns 
ontain a one. Thus, the Hamming distan
e between any two


olumns is at least 2(q � d). 2
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