Quality Control in Manufacturing Oligo Arrays:
A Combinatorial Design Approach *

Rimli Sengupta and Martin Tompa

Technical Report #2000-08-03

November 20, 2000

Department of Computer Science and Engineering
Box 352350
University of Washington

Seattle, WA 98195-2350
{rimli,tompa}@cs.washington.edu

*

This material is based upon work supported in part by a Sloan/DOE Fellowship in Computational
Molecular Biology, by the National Science Foundation and DARPA under grant DBI-9601046, and by the
National Science Foundation under grant DBI-9974498.

1

Abstract

The advent of the DNA microarray technology has brought with it the exciting
possibility of simultaneously observing the expression levels of all genes in an organ-
ism. One such microarray technology, called “oligo arrays”, manufactures short single
strands of DNA (called probes) onto a glass surface using photolithography. An altered
or missed step in such a manufacturing protocol can adversely affect all probes using
this failed step, and is in general impossible to disentangle from experimental variation
when using such a defective array. The idea of designing special quality control probes
to detect a failed step was first formulated by Hubbell and Pevzner. We consider an
alternative formulation of this problem and use a combinatorial design approach to
solve it. Our results improve over prior work in guaranteeing coverage of all protocol
steps and in being able to tolerate a greater number of unreliable probe intensities.

Keywords: DNA microarray, oligo array, photolithography, quality control, combinatorial
design, error-correcting code, 2-design.

1. Introduction

Recent advances in DNA microarray technology have allowed biologists to obtain expression
profiles of the genes in an organism in a quantitative and high throughput fashion. This
has catalyzed a major paradigm shift in how biological knowledge is pursued. Computa-
tional analysis of such DNA microarray data has led to interesting biological hypotheses of
unprecedented scope. For example, analysis of the expression profiles of all 6200 genes in S.
cerevisiae during sporulation [2] revealed the possible participation of nearly 1000 genes that
were previously not known to be involved in sporulation. There has been a recent explosion
of similar experiments and analyses using DNA microarrays.

An important DNA microarray technology, called “oligo arrays”, manufactures short sin-
gle strands of DNA (called probes) onto a glass surface using photolithography [11]. The
glass surface (or array) has a well-defined set of addresses (or spots) where the probes are
grown. The manufacturing protocol is a sequence of steps N1 Ny ...N,, each with an associ-
ated nucleotide N; € {A, C, G, T}. Conceptually, at the i* step of the protocol a mask is
placed on the glass array and the array is exposed to a solution containing the nucleotide NN;.
This causes the probes at the positions on the array that are not masked to be extended by
one base, N;. The rest of the probes do not change during this step. The process is repeated
with a new mask at each step, to build a diverse assortment of probes.

When completed, the array is employed as follows. A mixture of single-stranded DNA
molecules (called targets) are each fluorescently tagged, and the mixture is applied to the
array for hybridization to the array’s probes. (See Appendix A for a brief explanation of
DNA complementarity and hybridization.) After washing away any unbound targets, the
fluorescence intensities of all array spots are measured. Since the array’s probe sequences
are known, this procedure measures the abundance of the bound complementary target
sequences.

An altered or missed step in the array’s manufacturing protocol can adversely affect
all probes using the failed step, and thus their hybridization behavior with targets. The
error ensuing from a faulty manufacturing step may well be impossible to disentangle from
experimental variation when using the defective array. The problem of developing a quality
control mechanism that detects during the manufacturing process if a step has failed is
therefore of clear practical importance.

One approach to the quality control problem, formulated first by Hubbell and Pevzner
8], is to design a small set of special quality control probes, which they called “fidelity
probes.” Their ingenious idea was to manufacture the same probe sequence at a number of
different spots, each spot using a different schedule of steps of the protocol. A protocol step
© therefore has an associated set P; of quality control spots that use this manufacturing step.
These quality control probes are then hybridized with a complementary fluorescent target.
The intensities within the set P; provide a “signature” for the quality of step 7. If many of
the intensities within P; are significantly lower than the remaining intensities, this is a good
indication of step ¢ being flawed. This is because all the spots have the same sequence and
should therefore have similar hybridization behavior (hence similar intensities) if they are
correctly manufactured. The focus of the work of Hubbell and Pevzner is to generate sets
P; that are sufficiently large and sufficiently unique that a failed step can be identified even
in the presence of some unreliable spot intensities. This method is then used repeatedly for
each probe in a supplied set S of probes. However, there may be steps in a protocol that
cannot be used in manufacturing any of the probes in a given set S. Assuming that S is
supplied implies that the failure of such a step cannot be detected. Moreover, since there is
no coordination among the solutions generated for distinct probes (the algorithm being used
separately on each probe), Hubbell and Pevzner do not exploit the ability of the probes to
collectively make the set of spots using a protocol step as large and as unique as possible.

We consider an alternative formulation of this problem that does not assume that the
quality control probe sequences are supplied. We take the choice of the probe sequences into
our own hands in order to guarantee that every protocol step is well covered by the quality
control mechanism. Our design ensures that the number of distinct probes is small and that
they hybridize poorly with themselves and with each other. This is a necessary constraint
because if probes hybridize well with themselves or each other, then their corresponding
complementary targets will too, rendering them unavailable to hybridize to the probes [15].
Our design further ensures that each probe hybridizes well only with the target that is
complementary to it, and hybridizes poorly with the targets meant for the other probes.
This property allows us to use multiple quality control targets (up to 4 in our current
designs) simultaneously, thereby relaxing the requirement of Hubbell and Pevzner [8] that
all probes are complementary to substrings of a single target.

The fact that we want balanced and sufficiently unique signatures for all steps in the
protocol suggests a connection to the elegant theory of combinatorial design. For our pur-
poses, a combinatorial design is just a 0-1 matrix with appropriate balance and uniqueness
properties. The chief contribution of this work is to solve the quality control problem by
developing a framework that builds on techniques from combinatorial design. For a preview,
see Figure 5.

The rest of the paper is organized as follows. In Section 2 we state our formulation
of the quality control problem along with the assumptions we make, and characterize the
criterion that allows us to identify a failed step. Section 3 describes the combinatorial
design approach we take in solving this formulation of the quality control problem. Section
4 presents the specific combinatorial designs that solve the quality control problem for the
protocol ACGT ACGT ... and for a wide range of values of the number of protocol steps, the
number of spots, and tolerance for the number of spots that may show unreliable intensities.
These results are generalized in Section 5 to all periodic protocols with period 4. Section 6
poses some open questions.

2. The Quality Control Problem

A quality control scheme for a protocol with n steps using m spots can be viewed as an m xn
0-1 matrix Q, with each column representing a protocol step and each row representing a
spot. Each column of Q is labelled with the nucleotide used in that step. The entry Q;; is
1 if and only if step j was used in manufacturing the probe at spot i. We will refer to such
a matrix Q as a Quality Control (QC) matrix. The sequence of the oligonucleotide at spot
¢ can be read out by concatenating the labels of the columns at which row ¢ has a 1:

Definition 2.1: Let P be a protocol NiN;---N,, where IN; is the nucleotide used at the
3" step, 1 < j < n. Given an m x n QC matrix Q for protocol P, the probe p; at row i of
Q is defined to be p; = ¢;1¢2 - - - Gin, Where

g the empty string if Q;; =0

The probes manufactured at the m quality control spots are not all different. There will in
general be ¢ distinct probes, with several spots containing the same probe but manufactured
using different schedules of steps of the protocol. Typical values of m, ¢, and n based on
previous work [8] are m = 128, ¢ =4, and 60 < n < 100.

To actually perform quality control of a protocol, the quality control probes defined by Q
are manufactured using the protocol onto m reserved spots on each chip of a wafer [7]. The
manufacturer takes one chip from the wafer and tests it as follows: the chip is hybridized
with fluorescent targets complementary to the ¢ probes, scanned, and the resulting vector of
m intensity values is used to determine which step, if any, failed. The remaining chips of
the wafer are thus unaffected by the quality control process and their quality can be assessed
under the assumption that a step failure affects every chip on a wafer.

The quality control problem for oligo arrays is essentially the problem of designing a QC
matrix Q with the following property: each step in the protocol is used in a set of spots
that is sufficiently large as well as sufficiently different from the set for any other step, so
that any single failed step induces a unique signature on the intensity vector. This should
be true even when not all intensities are reliable. The problem we would like to solve is the
following:

Definition 2.2: (QC Problem) Given a protocol P with n steps up to 1 of which may
fail, and a budget of m quality control spots up to d of which may be unreliable, construct
an m X n QC matrix Q such that an intensity vector Z of the m spots manufactured using
Q allows unique identification of the failed step, if any.

One reason why there is interest in identifying the failed step, rather than simply detecting
whether some step failed, is so that the manufacturer can correct any errors in the failed
step’s mask before remanufacturing the chip.

At least two natural optimization versions of the QC problem are immediate: construct
Q as above that (i) for given n and m maximizes the spot fault tolerance d; (ii) for given n
and d minimizes the spot usage m. !

The problem we solve in this work is not quite as general as the one stated in Definition
2.2. We cannot hope to take arbitrary parameter values n, m, and d as input and produce
a QC matrix Q that meets the specifications. We explain in Section 2.4 why solving this
general version would entail solving long-standing open questions in combinatorial design.
However we are able to produce QC matrices for a wide range of values of n, m, and d
that covers the desired settings in practice. We also do not solve this for arbitrary protocols
P, but rather a specific set, of 24 periodic protocols, namely, [1(ACGT)]™*, where 7 is any
permutation and n is a multiple of 4 in the range 60 < n < 132. Again, this covers the
typical protocols in practice.

2.1. Assumptions

We state the assumptions we make in formulating the QC problem, and contrast them when
possible with the assumptions of Hubbell and Pevzner [§].

1. The manufacturing protocol is [7(ACGT)]"*, where 7 is any permutation and n is a
multiple of 4. Up to one step may fail and the impact of this failure on the chip is
spatially uniform. (Hubbell and Pevzner [8] allowed an arbitrary protocol.)

2. Spot failure: up to d spots may show arbitrarily unreliable intensities due to experi-
mental variations in hybridization, or due to chip faults. (The parameter d is implicit
in both the MinSize and MinDiff parameters of Hubbell and Pevzner [8].)

3. Step failure model: when a step fails, a spot will show a low intensity if and only if the
failed step was used in manufacturing the probe at that spot, with up to d exceptions.
When no step fails, each spot will show a high intensity, with up to d exceptions. (The
step failure model was not made explicit by Hubbell and Pevzner [8].)

'We note that this version subsumes nonadaptive combinatorial group testing [6], with columns of the QC
matrix corresponding to the elements in the universe and the rows corresponding to the query sets, in two
ways. First, answers to d of the queries could be lies. This version of the nonadaptive group testing problem
is open (Yuan Ma, personal communication). Second, in group testing the order of universe elements is
immaterial, whereas the column order of a QC matrix is critical to the probe sequences and their properties.

4. Spots containing different probes in general may have different hybridization behaviors.
(See Appendix A.) Hence we will not compare intensity values of two different probe
sequences. We will also not make the assumption that, within the set of spots sharing
the same probe, we can distinguish between all intensities high and all low. Formally,
defining the real number Z; to be the intensity value at spot i, we assume that for
every probe k there is a nonnegative constant €; such that two reliable spots i and 7’
for this probe that show both high or both low intensities must satisfy |Z; — Z;| < ¢,
and reliable spots ¢ low and ¢’ high must satisfy Z; — Z; > €. (The focus of the work
of Hubbell and Pevzner [8] is the fidelity probe generation problem. The problem of
identifying the failed step is not explicitly addressed, hence no explicit statements are
made about intensity values.)

5. We are allowed multiple quality control targets that are designed so as to hybridize
poorly to themselves and to each other. Each probe is designed to hybridize poorly to
all but one of these targets. (In the concrete test case cited by Hubbell and Pevzner
8], they assume they are supplied a single 20-mer quality control target and the probes
are the four possible 17-mers that hybridize perfectly to the length 17 substrings of this
target.) Unlike Hubbell and Pevzner, our designs use up to 4 different quality control
targets. Based on commercial availability of inexpensive oligo synthesis techniques,
manufacturing several quality control targets poses no problem.

The following definition crystallizes our assumption about what constitutes poor hy-
bridization.

Definition 2.3: We say that two single-stranded nucleotide sequences hybridize poorly if
and only if, when they are arranged in antiparallel fashion, shifted an arbitrary offset with
respect to each other, at least two out of every four consecutive pairs of aligned bases are not
complementary; see Figure 1. (See Appendix A for an explanation of DNA complementarity
and hybridization.) A set S of such sequences is said to hybridize poorly if and only if, for
every sequence s € S, (1) s hybridizes poorly to itself and to every other sequence in S,
and (2) s hybridizes poorly to the reverse complement of every sequence in S that is not a
rotation of s.

Suppose S is a set of poorly hybridizing probes. Condition (1) of Definitions 2.3 ensures
that the corresponding targets also hybridize poorly to each other, since they are reverse
complementary to the probes. Condition (2) ensures that each probe-target pair hybridizes
either poorly or perfectly. The reason for the exception of rotations is to allow, for example,
the use of both CACG CACG and its rotation ACGC ACGC as probes, with (a sufficient
quantity of) the single complementary target GCGT GCGT G.

2.2. Identifying the Failed Step

In this section we define a property of a QC matrix O, called “separation,” and establish
that high separation is sufficient to identify any one failed step when up to d spots may show
unreliable intensities.

ACGCACGCACGC ACGCACGCACGC
| | |
GCTGGCTGGCTG CAGCCAGCCAGC
ACGCACGCACGC ACGCACGCACGC
A | | |
GCTGGCTGGCTG CAGCCAGCCAGC
ACGCACGCACGC ACGCACGCACGC
s | | |
GCTGGCTGGCTG CAGCCAGCCAGC
ACGCACGCACGC ACGCACGCACGC
| | | | |
GCTGGCTGGCTG CAGCCAGCCAGC

Figure 1: ACGC ACGC ACGC hybridizes poorly to GTCG GTCG GTCG, and also to its
reverse complement CGAC CGAC CGAC.

2.2.1. Separation

Definition 2.4: Let Q be an m x n QC matrix with ¢ distinct probes {gx | 1 < k < ¢}. Let
p; be the probe at row 7, 1 < ¢ < m. By convention, define Q;p = 0 for all 1 < ¢ < m. For
any k with 1 < k < ¢, and any pair j # j' with 0 < 5,5 < n, let

Dox(j,7") = #{i|pi=q and Q; # Qyjyr},
Lox(j,5") = #{ilpi=qwand (Qy #1or Qi #0)},
RQ,k(jaj,) = #{Z |pi — gk and (Qz] 7£ 0 or Qijr 7£ 1)}

The subscript @ will be omitted when it is obvious from the context.

The separation of Q is defined to be:

sep(Q) — min Zmln(Dk(]ajl)aLk(]ajl)aRk(]ajl)) (1)
0<j,j'<n k=1
J#5'

Note that the convention concerning Q;, is just a convenience for the purpose of defining
separation. The QC matrix does not actually contain such a 0 column.

The D portion of Definition 2.4 has an intuitive explanation based on the Hamming
distance between two vectors, which is the number of corresponding positions at which the
two vectors have unequal values. A large Hamming distance between columns j and j’ of Q is
necessary in order to be able to detect the difference between step j failing and step j’ failing.
Similarly, a large Hamming distance between column j of Q and the conventional column

0 (i.e., a large number of ones in column j) is necessary in order to detect the difference
between step j failing and no step failing.

Note the similarity of the Dy portion of Definition 2.4 to error-correcting codes where,
to correct up to d errors, it is sufficient that every pair of codewords (analogous to columns
in the QC matrix) be separated by a distance of at least 2d + 1. The problem of identifying
a failed step is like error correction rather than error detection, because we are interested in
the identity of the failed step rather than simply whether any step failed. (In the latter case,
the separation requirement of Theorem 2.6 below would be reduced from 2d 4+ 1 to d + 1.)

The Ly and Ry, portions of Definition 2.4, which have no analog in error-correcting codes,
capture the part of Assumption 4 from Section 2.1 that one may not be able to differentiate
between all probe intensities high and all low, which is why the D, portion alone is not
sufficient. For example, suppose step j were used in every spot i. Even if no spot failed,
if step 7 were to fail all spots would show equal (low) intensities. One might well not be
able to distinguish this case from no step failing, in which all spots would also show equal
(high) intensities. Definition 2.4 and Theorem 2.6 below guarantee that we will be able to
distinguish these cases. Using a similar explanation to one given above, this portion implies
that each column of Q has a large number of zeros.

2.2.2. Interpreting the Intensity Readings

The intensity vector Z is a vector of m real numbers, giving an intensity reading for each of the
m spots. We wish to interpret these real numbers as high (“0”), low (“1”), or unreadable
(“?7). This interpretation is subject to reasonable constraints (given in Assumption 4 of
Section 2.1, and Definition 2.5 below) that two similar intensities of the same probe are not
interpreted as one high and one low, and two distant intensities of the same probe are not
interpreted as both high or both low.

Let ®(Z) € {0,1,7}™ be such an interpretation of intensity vector 7 € R™, where R is
the set of real numbers. The reason why high intensity corresponds to “0” and low to “1”
is because the object is to use this interpretation vector to identify which column of the QC
matrix it resembles most. When step j fails and none of the spots are faulty, the intensity
vector interpretation ®(Z) one expects to see is exactly the 0-1 vector forming the j column
of the QC matrix. In general up to d spots may be unreliable, so if step j fails, ®(Z) will
equal the 7 column of the QC matrix with at most d exceptional positions. Note that not
all the d unreliable spots need be interpreted as “?”: some may be erroneously interpreted
as high or low. The next definition formalizes this notion of interpretation.

Definition 2.5: Let Q be an m x n QC matrix with ¢ distinct probes {¢gx | 1 < k < ¢}. Let
p; be the probe at row i, 1 < i < m. An interpretation ® : ®™ — {0,1,7}™ of an intensity
vector 7 satisfies the following for 1 < i, <mand 1 <k <c.

o If p, = py = q and ®(7); = ®(Z)y € {0, 1}, then |Z; — Z;| < €. (In words, if spots
i and 7' have the same probe and are interpreted as both high or both low, then their
intensities Z; and Z; are similar.)

o If p, = pyr = qx and ®(Z); = 1 and ®(Z)y = 0, then Z;; — Z; > €. (In words, if spot i
is interpreted as low and spot ' as high, then their intensities Z; and Z; are not too
similar.)

As an example, suppose there were twelve spots with probe g, their intensity readings were
2,2,3,5,6,6,6,7,7,8,8 9, and ¢, = 2. Then one possible interpretation (the one that
minimizes the number of unreadable intensities) would interpret intensites 2-3 as low (“17),
68 as high (“0”), and 5 and 9 as unreadable (“7?”).

2.2.3. Characterizing the Identity of the Failed Step

Theorem 2.6: Suppose sep(Q) > 2d + 1 and 7 is the intensity vector of the m spots.
Then, for 1 < 5 < n, step j fails if and only if there is an interpretation ® of Z such that
6(Q4j, ®(Z)) < d, where ¢ is the Hamming distance and Q,; is the 3% column of Q. No step
fails if and only if there is an interpretation ® of Z such that 6(0™, ®(Z)) < d.

Proof: “ONLY IF” CLAUSES: Suppose step j fails. Then Z; is low if and only if Q;; = 1,
with exceptions only for at most d spots that fail. (See Assumption 3 in Section 2.1.) For
each probe ¢, choose the two intensities [, and hy, with hy — [> €, to maximize the
number of spots ¢ such that

pi=qr and ((Q;; =1 and Z; € [l — e, li]) or (Q;; =0 and Z; € [hy, hy, + €))).

Assign

1, if p, =q and Z; € [lk — Gk,lk]
®(Z); =< 0, ifp; =qand Z; € [hy, hy + €]
7, ifpi=qrand I; & [lx — €k, lx] U [hg, hi + ek]

Because there are at most d exceptions to the condition that Z; is low if and only if Q;; =1,
6(Quj, ®(Z)) < d.
Suppose no step fails. Then Z; is high, with exceptions only for at most d spots that

fail. (See Assumption 3 in Section 2.1.) For each probe g, choose the intensity hj that
maximizes the number of spots i such that

pi = qr and Z; € [hy, hy + €.

Assign
O(T); = 0, if pi=q,and Z; € [hy, by, + €]
LY ifpi =g and I [hy, e + €]

Because there are at most d exceptions to the condition that Z; is high, 6(0™, ®(7)) < d.

“IF” cLAUSES: Suppose j does not fail, meaning some j' # j fails. (The case of no step
failing is handled by the convention j' = 0 together with the convention from Definition 2.4

8

3T 0, O 463
0 0 7 1 Z
0 # 1 a 0 0
0 0 0 0
1 1 ” 0 £ 1
1 1 1 ?
€k Dy(35,5') dy,

Figure 2: Five sample spots with probe g, illustrating why every @Q;; # @i contributes to
dk + e.

that Q. = 0™.) By the “only if” clause above, there exists an interpretation ®' such that
6(Qyj1, ®'(Z)) < d. Let ® be any interpretation, and e = 6(Q,;, ®(Z)). We will finish the
proof by showing that e > d.

For each probe ¢, let

dp = #{i|pi = qr and ®'(T); # Qi }, and
er = #{i|pi=q and ®(T); # Q,;},

so that

S di < dand
k=1

c
Zek = €.
k=1

Consider the cases for how the two interpretations of the same vector Z “line up” within
some probe gy:

Cask 1: There exists an ¢ such that p; = ¢ and ®(Z); = ®'(Z); € {0,1}. Then for all ¢’

such that p; = qx,
@(I)Zr = @I(I)Zr or (I)(I)ll =7 or (I),(I)ll :?,

since ®(Z)y = 0 and ®'(Z)y = 1 would mean |Z; — Z;| < € and |Z; — ;| > ¢. But
then every ¢ for which p; = ¢; and Q;; # Q;; contributes at least 1 to dj + ey, so that
dp + ex > Di(j,7"). The reason each such i contributes at least 1 is illustrated in Figure
2 and explained as follows. If ®(Z); = ®'(Z); and Q;; # Q;;r, then either ®'(7); # Q;; or
®(T); # Q;j. Otherwise, one of the interpretations is 7, and that certainly differs from the
corresponding Q;. entry.

CaAsE 2: There exists an ¢ such that p; = ¢ and ®(Z); = 1 and ®'(Z); = 0. Then for all
i’ such that py = qx,

(®(Z)y =1 and ®'(Z)y = 0) or ®(Z)y =7 or ®(I)y =7.

9

But then every i for which p; = ¢ and (Q;; # 1 or Q;jr # 0) contributes at least 1 to dj + ey,
so that dy + e > Lg(4,7).

Case 3: There exists an ¢ such that p; = ¢, and ®(Z); = 0 and ®'(Z); = 1. Then
di + er. > Ri(j,J'), analogous to case 2.

CASE 4: For all i, p; = q;, implies ®(Z); =7 or ®'(Z); =7. Then

di +e, > #{i | pi=a} > Di(5, 7).

Combining the conclusions of these four cases,

k=1 k=1

Hence e > d. O

2.2.4. An Algorithm that Identifies the Failed Step

Given spot failure tolerance d, an m x n QC matrix Q with sep(Q) > 2d + 1, an intensity
vector Z € R™, and an intensity window ¢, for each probe, 1 < k < ¢, Theorem 2.6 can
be applied to identify which protocol step, if any, has failed. An algorithm solving this
problem must check if, for any 7, 0 < j < n, there exists an interpretation ® such that
6(Q.j, ®(Z)) < d. If so, it returns the value j as the step that has failed. (As in Definition
2.4, Q.o by convention is the vector 0™, and a returned value of j = 0 corresponds to no
step having failed.) If no such interpretation exists, the algorithm reports that more than
one step must have failed, again by Theorem 2.6. Figure 3 describes an O(mn + mlogm)
time algorithm for performing this task.

A few definitions are prerequisites to the algorithm in Figure 3. Let vector 7 be obtained
by sorting the intensity vector Z, each set of rows corresponding to the same probe sorted
separately in nondecreasing order. Let Q be the result of performing the same permutation
on the rows of Q. Let Ry be the set of rows of Z corresponding to probe k, 1 < k < c.
Define my = |Rx|, so that Yp_, my = m.

Given a column Q*j and the vector 7 , we define two lists, £; and Hy, for each probe k.
The lists £, and Hy, are generated by partitioning the intensities in Ry according to whether
the corresponding row of Q*j has a one or zero, respectively. Note that each £, and Hj,
1 < k < ¢, is a sorted list of real-valued intensities. Letting L[] be the i item in Ly, define
#L[i] to be the number of indices i' < i such that Ly[i]| —ep < Li[i'] < Li]i]. Define #H[i]
similarly as the number of indices 7' > i such that Hy[i] < Hi[i'] < Hgli] + €.

The central idea behind the subroutine FindLH in Figure 3 is to find a “buddy” [€ £
for each item h € 'H, such that h — [> ¢ and #[is maximized. The motivation for
finding the buddy [of h is that, if [h, h + €] were chosen as the range of high intensities,
then [l — €,] would be the best choice for the range of low intensities, in the sense that it
captures the greatest possible number of observed spot intensities. The list B defined within
this subroutine maintains the index in £ of the buddy for each item in H, so that H|[j] and

10

L[B]j]] are buddies, 1 < j < |H|. Since both £ and H are sorted lists, it must be the case
that either B[j + 1] = B[j], or B[j + 1] > 4, where i is any index satisfying H[j] — L[i] > €.
Hence there is no need to backtrack in the list £ as j increases through the list H.

The list B is thus constructed via a single sweep through L. The contribution from
the “while” loop (line 4.1) over the execution of the entire “for” loop (line 4) is therefore
O(|L] + |H|). Since line 4.2 contributes O(|H|) to the cost of this “for” loop, the total cost
of line 4 is O(|L| + |H|). This dominates the O(|H|) contribution from line 5. By similarly

using two monotonically advancing pointers, line 1 can be implemented in time O(|£]+|H]).
The total running time of FindLH is therefore O(|L| + |H]).

This implies that the cost of line 2.1.2 in DetectFaultyStep is O(|Lx| + [Hi|) = O(my,).
Since L and Hjy can be constructed through a single sweep of Ry, the cost of line 2.1.1 is
also O(my). The cost of the “for” loop in line 2.1 is then Y ;_, O(mg) = O(m). The total
running time of the “for” loop in line 2 is therefore O(mn). Since each set of rows in Ry
is sorted separately, the cost of sorting in line 1 is Y 5_; O(my log my) = O(mlogm). Thus,
DetectFaultyStep is an O(mn + mlogm) time algorithm. Note that when a protocol step
(say j) has failed, the “for” loop in line 2 will terminate early, so the actual cost of the
algorithm would be O(mj + mlogm).

2.3. Combining QC Matrices

The following theorem provides one simple way to combine QC matrices, and illustrates a
tradeoff between the goals of maximizing separation and minimizing the number of spots.

Theorem 2.7: Suppose that Q; is an my X n QC matrix, and Qs is an ms X n QC matrix.
Then the union Q; + Q, of their rows has n steps, m; 4+ msy spots, and

sep(Qq + Qy) > sep(Qq) + sep(Qz).

Proof: For any j # j' with 0 < j, 7' < n, let s be the separation of columns 7 and j' in
Q1 + Qy, that is,

s = Zmin (DQH-Qz,k(jaj,)vLQl+Q2,k(j7j,)7RQ1+szk(jaj’))
k=1

= Z min (DQl;k('?-%?-,) + DQ2J€(:7.=..I)7
k=1 Loy k(3,7") + Layk(5,7"),
RQ1J€(]7],) + Rszk(]h],))'

Using the inequality min(a + z,b+ y, ¢ + z) > min(a, b, ¢) + min(z, y, z),

5 2 Z min(DQhk(j:jl)a LQ1,k(jaj1)7 RQ1,k(j;j,))
k=1

+min(DQZJC(j7jI)7 LQz,k(jajl)a RQQ,k(j:jl))
> sep(Q1) + sep(Qy).

11

DetectFaultyStep(Q,Z, d, €1, ..., €.)
begin

1. Sort Z, each set of positions corresponding to the same probe sorted separately

in nondecreasing order. Induce the same row permutation on matrix Q.
2. for j from 0 to n do
/* for each j check if there is a ® with 6(®(Z), Q.;) < d */
2.1 for k from 1 to ¢ do
2.1.1 Compute £, and Hy.
2.1.2 maxy = FindLH(L, Hy, €x)
end for
2.2 if i, maxy > m — d then return j

/* 35—, maxy, is the number of matches between ®(Z) and Q,; */

end for
3. return “Multiple steps failed”
end

FindLH(£, H, €)
/* Given sorted lists £ and H find [€ £ and h € H such that h — > € and
#h + #1 is maximized. Return this maximum value. */
begin
1. For each item L[i] in list £, compute #L[i]. Do the same for H.
2. cur =1 /* initialize scan of list £ */
3. /* H[1] may not have a buddy. */
3.1 B[1l] = null
3.2 #L[B[1]]=0
4. for j from 1 to |H| do
/* for each element in H, continue scan of £ to find its “buddy” */
4.1 while H[j] — L[cur] > € and cur < |L£] do
4.1.1 if #L]cur] > #L[B[j]] then B[j] = cur
4.1.2 cur =cur+1
end while
4.2 B[j+1] = B[j]

/* carry over current buddy to initiate scan for the next item in H */

end for
5. Compute max, the maximum of #H[j] + #L[B[j]] for all j, 1 < j < |H]|.
6. return max
end

Figure 3: An O(mn + mlogm) time algorithm for detecting a failed step.

12

Thus, any pair of distinct columns of Q; + Qs has separation at least sep(Q;) + sep(Qz), so
the theorem follows. O

2.4. Precise Problem Formulation

We are now in a position to state the precise design problem we solve. The array manufac-
turer specifies as inputs the number 7 of steps, the protocol, and the length [of each probe.
The QC design problem is to construct an m x n QC matrix @ with [ones per row such that
the number m of spots is small and sep(Q) is large. Furthermore, the set of ¢ distinct probes
hybridizes poorly, according to Definition 2.3. In our designs, we never use more than ¢ = 8
distinct probes.

As discussed at the beginning of Section 2, the manufacturer uses the QC matrix Q by
manufacturing the probes pi,ps,...,pn onto m reserved spots, and hybridizing with the
complementary fluorescent targets. The resulting intensity vector Z is then used along with
Q to identify the failed step, if any, using the algorithm of Section 2.2.4.

One cannot expect to optimize both the objective functions m and sep(Q) in a single
QC matrix. For instance, Theorem 2.7 says that duplicating the spots of Q simultaneously
doubles m and sep(Q). Instead, in Section 4 we will construct a variety of QC matrices Q
that offer the manufacturer a spectrum of choices for m and sep(Q).

The following theorem demonstrates a lower bound on the number of spots, in terms of
the other parameters.

Theorem 2.8: For any m x n QC matrix Q with [ones per row,

sep(Q)
l

m > ‘M.

Proof: The number of ones in Q is ml. By Definition 2.4 (the Dy portion with j = 0),
the number of ones per column is at least sep(Q). O

One should not expect to find an algorithm that, given arbitrary values n and m, com-
putes an m x n QC matrix Q that maximizes sep(Q). This is likely to be infeasible at
the present time, because even the existence of certain combinatorial designs (such as a
Hadamard matrix of order 4¢, which is equivalent to a (4t — 1) x (4¢ — 1) QC matrix Q
with sep(Q) = 2t — 1) is a long-standing open problem [5]. To see the equivalence, suppose
there were such a matrix Q. Since sep(Q) = 2t — 1, the number of ones per column is
between 2t — 1 and 2¢. Suppose the number of ones per row (and hence column) is exactly
2t — 1. (If 2t, consider the complement of Q instead.) Since sep(Q) = 2t — 1, the Hamming
distance between any two columns is at least 2¢ — 1, so any two columns both have ones
in at most t — 1 rows. But the total number of unordered pairs of ones in the same row,
summed over all rows, is (4t — 1)(2¢t — 1)(t — 1). Hence, the average pair of columns also
both have ones in £ — 1 rows, so that every pair of columns both have ones in exactly t — 1
rows. That makes Q the incidence matrix of a 2-design (see Definition 3.2) with parameters

13

(4t — 1,4t — 1,2t — 1,2t — 1,t — 1), which is equivalent to a Hadamard matrix of order 4¢ [5,
Construction 24.7].

3. A Combinatorial Design Approach

We will assume for the moment that the protocol is (ACGT)™*, generalizing to other pro-
tocols in Section 5.

3.1. Relationship to Error-Correcting Codes

A good QC matrix Q has many of the properties of a good error-correcting code, which is a
type of combinatorial design: if one thinks of the columns of Q as binary codewords, then one
part of Definition 2.4 (the constraint on Dy) guarantees that the Hamming distance between
any pair of codewords is at least sep(Q). However, good QC matrices have many more
constraints that make their design more complicated than that of error-correcting codes:

1. The order of the columns, which would not matter in a code, is critical in a QC
matrix. In particular, the ones in the rows must “spell out” a small number ¢ of
probes according to Definition 2.1. Furthermore, these probes must hybridize poorly
according to Definition 2.3.

2. Each row must contain the same number [of ones, which has no analogy in codes.
This is to enforce the constraint that each probe has the same length .

3. Another consequence of Definition 2.4 (when j = 0) is that each column must contain
between sep(Q) and m — sep(Q) ones.

4. The constraints of Definition 2.4 on L; and Ry have no analogy in codes.

We solve this design problem using a hierarchical approach. In Section 3.2 we introduce
a new type of combinatorial design. This is a “balanced” version of binary codes that takes
care of items 2 and 3 from the list above, and we show how to construct such a balanced
code C'. We then substitute a small appropriate matrix, called a “QC block”, for each 1 in
C, and an equal size matrix of zeros for each 0 in C'. The QC block is designed so that the
resulting cross product satisfies all four properties of the list above. An example of an 8 x 8
QC block is shown in Figure 4. The definition of QC blocks is given in Section 3.3.

3.2. Balanced Codes

Definition 3.1: A balanced binary code with parameters (v, b, Tmin, Tmax, &, dmin) 18 @ b X v
0-1 matrix with the following properties:

1. Every row contains exactly k ones.

14

2. The minimum number of ones in any column is 7.,;,, and the maximum is 7ay.

3. The minimum Hamming distance between any pair of columns is d;y.

A subset of the codewords from certain types of error-correcting codes, such as Hadamard
codes and quadratic residue codes [16], form balanced codes. (To achieve k ones per row,
choose k/2 pairs of complementary codewords.) However, our major source of balanced
code constructions comes from 2-designs:

Definition 3.2 (Colbourn and Dinitz [4]): A 2-design with parameters (v,b,r, k, \) is a
b x v 0-1 matrix D with the following properties:

1. Every row contains exactly k& ones.
2. Every column contains exactly 7 ones.

3. For every pair j,7" of distinct columns, there are exactly A rows ¢ such that D;; =
Di,j’ =1.

Proposition 3.3: Any 2-design with parameters (v,b, 7k, A) is a balanced code with pa-
rameters (v,0,r, 7, k,2(r — \)).

Proof: Since there are A rows in which columns j and j' each contain 1, there are r — A
rows in which column j contains 1 and column j' contains 0, and another r» — A rows in which
column j contains 0 and column j' contains 1. O

While most of our balanced codes come from 2-designs, the latter are more stringent than
we need: every column contains ezactly r ones, and the Hamming distance between any pair
of columns is ezactly 2(r — A). Constructing less stringent balanced codes would lead to a
richer collection of QC matrices.

Another source of balanced codes comes from the following product construction.

Theorem 3.4: Let C' be a balanced code with parameters (v', 0, 7], Thaxs K5 dhin) and C
be a balanced code with parameters (v, b, Tmin, Tmax, &, dmin). Then there is a balanced code

C'" x C with parameters

! / ! ! ! . ! !
(0", 0D, 7 Pmins Tiax Tmax, & &, min(d] . rminy @minTiin)) -

Proof: Replace every one in C’ by a copy of C', and every zero in C’ by a b x v matrix of
zeros. (See the leftmost twelve columns of Figure 10(d) for an example.) If two columns j
and j' of this product both lie in the same column of C’, their Hamming distance is at least
AminT - 1f they lie in different columns of C’, their Hamming distance is at least d ;, min-

O

15

G|T| |C|G

ClG G|T

Figure 4: An 8 x 8 QC block with parameters (8,8,4,4,4,4). For ease of visualization, the
figure shows blanks instead of zeros, and the appropriate nucleotide from the protocol instead
of ones.

3.3. QC Blocks

Balanced codes do not capture the notion of poor hybridization. A “QC block” is just a
balanced code with an additional hybridization constraint:

Definition 3.5: A QC block for a protocol P is a b x v balanced code in which the b probes
P1,D2, - -, Py (using the length v prefix of P as the protocol in Definition 2.1) are all distinct
and, for every integer s, the set {p{,p3,...,p;} hybridizes poorly (see Definition 2.3).

An example of an 8 x 8 QC block with parameters (8,8,4,4,4,4) is given in Figure 4.
Its eight poorly hybridizing probes are (ACGC)’, (TAGT)’, (CACG)’, (AGTT)’, (ACAT)’,
(GTCG)”, (ATAC)’, and (CGGT)’. Its four corresponding targets are GCGT ... GCGT G,
AACT ... AACT A, ATGT ... ATGT AT, and CGAC ... CGAC CG.

3.4. Product Construction of QC Matrices

The method we will use to construct good QC matrices is to apply the product construction
of Theorem 3.4, with C” a balanced code and C' a QC block. Figure 5 shows an example,
where C" consists of ten codewords from the 8-Hadamard code [16], and C' is the QC block
of Figure 4.

If the parameters of C" are (v',b', 7] 0, Thaxs k' dii) and the parameters of C' are
(v, b, Trmin, Tmax, Ky dmin), then the QC matrix C" x C' will have v'v steps, Vb spots, and b
distinct probes, each of length £’k and each occurring at b’ distinct spots. More specifically,
if p1,pa,...,pp are the distinct probes of C, then p’f',p’;', . ,p’,f’ are the distinct probes of

C' x C. By Definition 3.5, this set of distinct probes hybridizes poorly.
What remains is to determine sep(C’ x '), in order to be able to apply Theorem 2.6.

16

>
[0}
-
-
>
[0}
-
-
>
[o]
-
-
>
[o]
-
-
>
[0}
-
-

>
[0}
-
-
>
[0}
-
-
>
[o]
-
-
>
[o]
-
-
>
[0}
-
-

>
[0}
-
-
>
[0}
-
-
>
[o]
-
-
>
[0}
-
-
>
[0}
-
-

>
[0}
-
-
>
[0}
-
-
>
[o]
-
-
>
[0}
-
-
>
[0}
-
-

Figure 5: The product of 10 codewords from the 8-Hadamard code and the 8 x 8 QC block
of Figure 4, resulting in a 64 x 80 QC matrix Q with minimum separation sep(Q) = 16.

17

Theorem 3.6: If C' is a balanced code with parameters (v', b, 71, T k' dipin) and C'is
a QC block with parameters (v, b, min, Tmax, &y @min), then

sep(C' x C) = min(d; min,
inin

(b, - rllrnax) min(rmim dmin))

r min(Tmim dmin)7

As an example, if C' is the 8 x 8 QC block of Figure 4, then

sep(C' x C) = 4min(d] ;. iy 0 — Thoas)-

Proof: We will identify any column j of the product ¢! x C, 1 < j < v'v, by the
pair (g,h), where 1 < g < ¢', 1 < h < v, and column j is the result of replacing every
one in column g of C’ by column h of C, and replacing every zero by the vector 0°. The
proof proceeds by examining the four possible cases for the pair j, j' of columns of C' x C
in Definition 2.4, and computing the separation of these columns. (The reader may find it
helpful to identify an example of each case in Figure 5 while reading the proof for that case.)
Note for all four cases that the 0'b spots of C' x C' are partitioned into b distinct probes,
corresponding to the b rows of C, as described above.

CAsg 1: j = (g,h) and j' = 0. (Recall the convention from Definition 2.4 that column 0
is the vector 0°®.) Suppose column g of C' has 7' ones, where 7/, <1’ </ . and column h
of C' has r ones, where r,;, < r. For any probe ¢, corresponding to a zero in column h of C,
Di(j,7") = 0, so gx contributes 0 to the separation of j and j" in Equation (1) of Definition
2.4. For the r distinct probes g, corresponding to the ones in column h of C, Dy(j,j") = 7',

Li(4,5') =b — 7', and Ri(j,5') =V'. Thus,

b
Z mln(Dk(.]a.],)a Lk;(j)jl)a Rk:(.]).],)) = rmin(r', b’ - T") 2 Tmin - min(T;nina b, - T;na,x)a
k=1

I
min

ord —r' =p — ¢! whichever is less.

with equality when r = ry;,, and either ' = r o)

CASE 2: j = (g,h) and j' = (g,h'), with h # h'. Suppose column g of C' has 7’ ones,
where r/ . < 7" < rl . and columns h and b’ of C differ in d positions, where d,,;, < d.
For any probe ¢; corresponding to a row of C' in which columns A and A’ do not differ,
Di(j,7") = 0, so gx contributes 0 to the separation of j and j' in Equation (1). For the
d distinct probes g corresponding to the rows of C' in which columns h and h' do differ,

Dy(j,7") =1, one of Lg(j, ') and Ry(j,7') is b’ — 7', and the other is b'. Thus,

b
Z mln(Dk(]J.],)a Lk(ja.j,)a Rk(]a],)) - dmin(r', b, - T,) Z dmin : min(rinin, b’ - T;na,x)a
k=1

!

fipor b —r' =V —rl . whichever is less.

with equality when d = d,,;,, and either ' = r o)

Case 3: j = (g,h) and j' = (¢', h), with g # ¢'. Suppose column h of C has r ones, where
Tmin < 7, and suppose there are ¢’ rows ¢ in C' for which Cj, =1 and Cj, = 0, and f’ rows
¢ in C" for which €}, = 0 and C], =1, where d;;, < €'+ f and €, f' <] For any probe

min max"*

18

qx corresponding to a row of C' in which column h has a zero, Di(j,j') = 0, so g contributes
0 to the separation of j and j’ in Equation (1). For the r distinct probes gj corresponding
to the ones in column h, Dy(j,5') =€ + f', Lg(j,j") = b — €', and Rg(j,j') = b — f'. Thus,

b
Z mln(Dk(]a.]I)a Lk(.ja.j,)a Rk(]a],)) - Tmin(el+flabl_ela b,_fl) Z Tmin'min(ininabl_rr:na,x)a
k=1

with equality possible when 7 = r;, and ' + f' =d! ;.

CASE 4: j = (g,h) and j' = (¢', 1), with g # ¢' and h # h'. Suppose columns h and A’
of C' differ in d positions, where d;, < d. For a probe ¢, corresponding to a row ¢ of C' in
which columns h and A" differ, assume without loss of generality that C;, = 1 and Cj, = 0.
Suppose that column ¢ of C' has ' ones, where r/ . < r' < ¢/ Then Dy(j,5") = 1/,

Li(4,5") = — ', and R(j,5') =¥'. Thus,

b
Z min(Dy (4, 5"), Le(4, 5'), Re(4,7")) > dmin(r', 0" — 1) > dppin - min(r) ;0" — 1)
k=1

4. Results: Achieved QC Matrices

Table 1 shows some of the (QC matrices achievable by using the product construction of
Section 3.4. Each row of the table describes a QC matrix that is the product of the balanced
code specified in the last column and the QC block specified in the penultimate column. For
example, the QC matrix shown in Figure 5 corresponds to the row of the table with 80 steps
and 64 spots.

Table 1 focuses on ranges of parameters comparable to those of Hubbell and Pevzner
8], namely between 60 and 132 protocol steps, probe lengths between 16 and 20, and fewer
than 400 spots. (These parameters are given in columns 1-3 of the table.) The separations
in column 4 of the table are calculated using Theorem 3.6. For each fixed number of steps
(column 1), the table offers a small spectrum of designs to suit the manufacturer’s spot
budget and spot failure tolerance (columns 3-4). Arbitrary linear combinations of these
designs can be formed according to Theorem 2.7, to provide a broader spectrum of choices.

The manufacturer uses Table 1 to look up the QC matrix Q for the appropriate choice
of parameters in the first four columns of the table, where the “sep” parameter is chosen
to be greater than twice the number of faulty spots the manufacturer is willing to tolerate.
The QC matrix Q is used to manufacture the quality control probes onto reserved spots,
which are hybridized with complementary fluorescent targets. The resulting intensity vector
7 is then used along with Q to identify the failed step, if any, using the algorithm of Section
2.2.4.

The 8 x 8 QC block has already been presented in Figure 4. The 6 x 12, 6 x 8, and
4 x 4 QC blocks are given in Figures 6, 7, and 8, respectively. They each use a subset of the
probes used by the 8 x 8 QC block.

19

Table 1: Some basic QC matrices achievable by the product construction of Section 3.4.
The second column shows the probe length. The last two columns show the QC block and
balanced code whose product yields the QC matrix. In the last column, a list of 5 parame-
ters indicates a 2-design (Definition 3.2), “x” indicates a product code (Theorem 3.4), “+i”
indicates the addition of 7 extra columns that maintain the balanced code properties (see
Appendix C), and GF(q) refers to balanced codes derived from polynomials over finite fields
(see Appendix D). The 2-designs referenced in the last column can be found in the com-
pendium of Mathon and Rosa [13], and the error-correcting codes in the survey of Tonchev
[16]. For the latter, the balanced code employs codewords in complementary pairs, and
the number of codewords used is n/v, where n is the number of steps and v the number of
columns in the QC block.

steps leng spots sep spots/sep steps/leng block balanced code steps leng spots sep spots/sep steps/leng block balanced code

60 16 60 14 429 375 4x4 (15,15,8,8,4) 96 20 90 12 750 480 6x8 (10,15,6,4,2)+2

60 18 140 28 5.00 3.33 4x4 (15,35,21,9,12) 96 20 120 24 5.00 4.80 8x8 (10,15,6,4,2)+2

60 20 168 28 6.00 3.00 4x4 (15,42,28,10,18) 96 18 160 20 8.00 5.33 4x4 (4,4,3,3,2) x (6,10,5,3,2)
64 16 42 6 7.00 4.00 6x8 7-Hadamard code 96 16 276 46 6.00 6.00 4x4 (24,69,23,8,7)

64 16 44 10 440 4.00 4x4 11-Hadamard code 100 18 100 18 556 556 4x4 (25,25,9,9,3)

64 16 48 12 400 4.00 4x4 12-Hadamard code 100 20 160 32 5.00 5.00 4x4 (25,40,16,10,6)

64 16 64 16 400 4.00 8x8 8-Hadamard code 100 16 300 48 6.25 6.25 4x4 (25,75,24,8,7)

64 20 64 12 533 3.20 4x4 (16,16,10,10,6) 104 16 78 8 9.75 650 6x8 (13,13,4,4,1)

64 16 120 30 400 4.00 4x4 (16,30,15,8,7) 104 16 104 16 6.50 6.50 8x8 (13,13,4,4,1)

64 18 320 70 457 3.56 4x4 (16,80,45,9,24) 104 20 234 30 7.80 5.20 6x8 (13,39,15,5,5)

68 16 136 32 425 4.25 4x4 (17,34,16,8,7) 104 20 260 50 520 5.20 4x4 (26,65,25,10,9)

72 18 44 10 440 4.00 4x4 11-Hadamard code 104 20 312 60 520 520 8x8 (13,39,15,5,5)

72 18 48 12 400 4.00 4x4 12-Hadamard code 108 18 36 4 9.00 6.00 4x4 degree 2 over GF(3)

72 16 54 8 6.75 4.50 6x8 (3,3,2,2,1) x (3,3,2,2,1) 108 16 54 8 6.75 6.75 6x12 (3,3,2,2,1) x (3,3,2,2,1)
72 16 72 16 450 4.50 8x8 (3,3,2,2,1) x (3,3,2,2,1) 108 20 84 12 7.00 5.40 6x12 (7,14,8,4,4)+2

72 20 84 12 7.00 3.60 6x8 (7,14,8,4,4)+2 108 20 108 16 6.75 540 6x12 (9,18,10,5,5)

72 20 108 16 6.75 3.60 6x8 (9,18,10,5,5) 108 18 156 26 6.00 6.00 4x4 (27,39,13,9,4)

72 20 112 24 467 3.60 8x8 (7,14,8,4,4)+2 108 20 216 40 540 5.40 4x4 (3,3,2,2,1) x (9,18,10,5,5)
72 18 136 34 4.00 4.00 4x4 (18,34,17,9,8) 112 20 108 12 9.00 5.60 6x8 (3,3,2,2,1) x (4,6,3,2,1) + 2
72 20 144 32 450 3.60 8x8 (9,18,10,5,5) 112 18 112 12 9.33 6.22 4x4 (4,4,3,3,2) x (7,7,3,3,1)
76 18 76 18 422 4.22 4x4 (19,19,9,9,4) 112 20 144 24 6.00 5.60 8x8 (3,3,2,2,1) x (4,6,3,2,1) + 2
76 20 76 18 4.22 3.80 4x4 (19,19,10,10,5) 112 20 168 30 5.60 5.60 4x4 (28,42,15,10,5)

80 20 44 10 440 4.00 4x4 11-Hadamard code 112 18 336 54 6.22 6.22 4x4 (28,84,27,9,8)

80 20 48 12 4.00 4.00 4x4 12-Hadamard code 116 16 232 32 725 7.25 4x4 (29,58,16,8,4)

80 20 64 16 4.00 4.00 8x8 8-Hadamard code 120 20 42 6 7.00 6.00 6x12 7-Hadamard code

80 16 90 12 750 5.00 6x8 (10,15,6,4,2) 120 20 48 8 6.00 6.00 6x12 8-Hadamard code

80 16 120 24 5.00 5.00 8x8 (10,15,6,4,2) 120 20 66 10 6.60 6.00 6x12 11-quadratic residue code
80 20 152 38 4.00 4.00 4x4 (20,38,19,10,9) 120 16 90 12 750 750 6x12 (10,15,6,4,2)

80 18 160 24 6.67 4.44 4x4 (4,43,3,2) x (5,10,6,3,3) 120 20 108 18 6.00 6.00 6x12 (10,18,9,5,4)

80 16 380 76 5.00 5.00 4x4 (20,95,38,8,14) 120 20 168 28 6.00 6.00 6x12 (8,28,14,4,6)+2

84 16 42 6 7.00 525 6x12 (7,7,4,4,2) 120 16 240 32 750 7.50 8x8 (3,3,2,2,1) x (5,10,4,2,1)
84 20 126 12 1050 4.20 6x12 (7,21,15,5,10) 120 20 348 58 6.00 6.00 4x4 (30,87,29,10,9)

84 18 140 30 467 4.67 4x4 (21,35,15,9,6) 124 20 124 20 6.20 6.20 4x4 (31,31,10,10,3)

84 20 168 40 420 4.20 4x4 (21,42,20,10,9) 128 16 96 8 12.00 8.00 6x8 degree 1 over GF(4)

88 20 66 10 6.60 4.40 6x8 (11,11,5,52) 128 16 120 10 12.00 8.00 6x8 (16,20,5,4,1)

88 20 84 12 7.00 4.40 6x8 (7,14,6,3,2)+4 128 16 128 16 8.00 8.00 8x8 degree 1 over GF(4)

88 20 88 20 440 440 8x8 (11,11,5,52) 128 16 160 20 8.00 8.00 8x8 (16,20,5,4,1)

88 20 112 24 467 4.40 8x8 (7,14,6,3,2)+4 128 16 192 24 8.00 8.00 8x8 (4,6,3,2,1) x 4-Hadamard
88 20 144 32 450 4.40 8x8 (9,18,8,4,3)+2 128 20 288 30 9.60 6.40 6x8 (16,48,15,5,4)

88 16 264 48 550 5.50 4x4 (22,66,24,8,8) 128 20 384 60 6.40 6.40 8x8 (16,48,15,5,4)

88 20 308 70 4.40 4.40 4x4 (22,77,35,10,15) 132 20 66 10 6.60 6.60 6x12 (11,11,5,5,2)

96 16 42 6 7.00 6.00 6x12 7-Hadamard code 132 20 84 12 7.00 6.60 6x12 (7,14,6,3,2)+4

96 16 48 8 6.00 6.00 6x12 8-Hadamard code 132 20 108 16 6.75 6.60 6x12 (9,18,8,4,3)+2

96 18 48 4 12.00 5.33 4x4 (4,4,3,3,2) x 3-Hadamard [[132 18 176 24 7.33 7.33 4x4 (33,44,12,9,3)

96 18 64 8 8.00 533 4x4 (4,4,3,3,2) x 4-Hadamard || 132 16 330 40 8.25 8.25 6x12 (11,55,20,4,6)

96 16 84 14 6.00 6.00 6x12 (8,14,7,4,3)

20

A G|T T

A TIA|C

Figure 6: A 6 x 12 QC block with parameters (12,6,2,2,4,2).

AIC|G C
TIA| |G|T
AlC A T

A TIAIC
ClG G|T

Figure 7: A 6 x 8 QC block with parameters (8,6,3,3,4,2).

QC matrices involving 4 x 4 QC blocks are constructed in a slightly different manner
from the others. These are actually a pair of mated blocks, as shown in Figure 8. When
forming the product with a balanced code C’, these two mates are alternately substituted
for the ones in any given row of C’. An example of this product construction is shown in
Figure 9, in which C" is a 2-design with parameters (19,19,9,9,4) [13, Table 1.26]. Because
the proof of Theorem 3.6 relies on the substitution of a single QC block for all the ones in
(', that theorem is not general enough to provide the separation values for QC matrices
constructed from the mated 4 x 4 QC blocks. The same result does in fact hold for such QC
matrices, and the proof is given in Appendix B.

QC matrices using the 4 x 4 QC blocks require only two targets, ATGT ... ATGT AT
and CGAC ...CGAC CG. There are two entries in Table 1 that appear as though they
could be derived by combining earlier entries via Theorem 2.7: (1) the 276 x 96 QC matrix
has the same probe length, number of spots, and separation as four copies of the 48 x 96 plus
one copy of the 84 x 96, and (2) the 348 x 120 the same as five copies of the 48 x 120 plus one
copy of the 108 x 120. However, in both cases the single larger QC matrix, constructed via
the 4 x 4 QC block, requires only two targets, whereas the combined equivalent QC matrix
requires four targets.

By Theorem 2.8, column 5 of Table 1 is no less than column 6. When they are equal,
the QC matrix is optimal, in the sense that it uses the fewest possible number of spots for
its separation.

An open problem in combinatorial design theory [13] that has bearing on our practical
range of parameters is the existence of a 2-design with parameters (22,33,12,8,4) which,
together with the 4 x 4 QC block, would yield a QC matrix with 88 steps, probe length 16,

21

ClG G|T

Figure 8: A pair of 4 x 4 QC blocks each with parameters (4,4,2,2,2,2).

132 spots, and separation 24.

5. Covering Protocols Other Than ACGT ACGT ...

In this section we show that all the achievable parameter settings for the protocol P =
(ACGT)™* obtained in Section 4 can also be achieved for any protocol P’ = [7(ACGT)]"/4,
where 7 is any permutation. To obtain a QC matrix for any protocol P’ we can start
with a QC matrix @ with its columns labelled according to the steps in protocol P, and
relabel the columns according to the steps in P’. The resulting QC matrix Q' certainly
has the same parameter values as Q. The only possible impediment to this being a valid
QC matrix for P’ is that the probe set associated with Q" may no longer hybridize poorly
according to Definition 2.3. We overcome this impediment and exhibit transformations on
valid QC matrices that preserve the validity of the resulting probe set for all 24 protocols
[m(ACGT)]"/*. Of these, 16 permutations are obtained via general transformations that
operate on the total QC design, and would apply to any valid QC matrix with periodic
probes. The remaining 8 are specific to the QC blocks used in the product designs described
in Section 4.

5.1. Rotations

All our probes are periodic, with period 4. Given such a periodic probe set S, the probe set
obtained by rotating some of the probes some number of positions has the same hybridization
behavior as § with respect to Definition 2.3. Thus, a poorly hybridizing probe set remains
so under such rotations.

Given a QC matrix Q for (ACGT)"™/*, we can rotate the columns of Q right one position
(the n'™ column becomes the 1%, and the i column becomes the (i +1)%, 1 < i <n —1)
to obtain a QC matrix of identical parameters as Q, for the protocol (TACG)™*. Similarly,
QC matrices of identical parameters for the protocols (GTAC)™* and (CGTA)™* can be
obtained from @ by rotating the columns right two and three positions, respectively.

Note that the resulting (QC matrices are not necessarily product designs as constructed
in Section 3.4. Note also that similar rotations could be performed on valid QC matrices for
any protocol, not just (ACGT)™*. In the following sections, we will do exactly that.

22

o
0]
o]
-
o
[o]
[o]
a
o
[o]
[o]
4
o
0]
[o]
-
o
[o]

0]
4
o
[o]
[o]
4
o
0]
0]
-
o
o]
0]
4
o
0]
o]
-

GT cG GT| CG GT| CG GT cG GT
A T A C A TIA C A T|A C A T A C A T

o
[o]
[o]
-
o
[o]
[o]
-
o
[o]
[o]
-
o
[o]
[o]
4
o
[o]

[o]
-
o
[o]
[o]
4
o
[o]
[o]
a
o
@
[o]
4
o
[o]
[o]
a

[o]
-
o
[o]
[o]
-
o
[o]
[o]
-
o
o]
[o]
-
o
[o]
[o]
-

Figure 9: The product of a (19,19,9,9,4) 2-design and the pair of 4 x 4 QC blocks of Figure
8, resulting in a 76 x 76 QC matrix Q@ with minimum separation sep(Q) = 18.

23

5.2. Substitutions Within Complementary Bases

Given a probe set, substituting each A with T (and vice versa), or each C with G (and
vice versa) in every probe, does not change its hybridization behavior. This is because the
substitutions are between complementary bases, so the hybridization efficiency of any two
given probes remains unchanged. Hence a poorly hybridizing probe set remains so under
this transformation.

Given a QC matrix Q for (ACGT)™*, to enforce the type of transformation on the probe
set mentioned above we replace the label of every A column with T and every T column
with A, and/or every G column with C and every C column with G. This leads to valid
QC matrices of identical parameters as that of Q, for the protocols (TCGA)™/*, (TGCA)™*,
and (AGCT)™*. The resulting designs can then be rotated, as in Section 5.1, to get valid
QC matrices for (ATCG)™*, (GATC)™*, (CGAT)™*, (ATGC)™*, etc.

5.3. The Remaining Permutations

The two transformations above cover 16 of the 24 permutations. To get the remaining 8, we
cover the two permutations m; : ACGT — CAGT and 7y : ACGT — ACTG, and get the
rest via rotations as in Section 5.1. The permutations m; and 7wy are covered by checking
that the probe set of the 8 x 8 QC block of Figure 4 remains poorly hybridizing under the
transformation that substitutes A with C and vice versa (for) or G with T and vice versa
(for my), in each probe. Since the probe sets of the 4 x 4, 6 x 8, and 6 x 12 QC blocks are
all subsets of that of the 8 x 8 QC block, these probe sets remain valid as well.

To obtain valid QC matrices for (CAGT)"* or (ACTG)"* from a valid QC matrix Q
for (ACGT)™/*, we relabel the columns in @ by replacing each A with C and vice versa (for
m1) or each G with T and vice versa (for m3). The resulting design can then be rotated, as in
Section 5.1, to get valid QC matrices for (TCAG)™*, (GACT)™*, (GTCA)™*, (TGAC)™*,
(AGTC)™*, and (CTGA)V*.

6. Open Problems

The work reported here can be extended in various directions and raises several interesting
open questions. We list a few here in no particular order.

1. Handle more than one step failure. Binary superimposed codes [9] appear to be a
promising way to extend our hierarchical design approach to handle multiple step
failures.

2. Relax the step fault model. When a step fails, not every spot using that step will have
the same low intensity. The change in intensity more realistically will be a function of
how far from the center of the probe the failed step is (Lipschutz et al. [11]).

24

3. Relax the assumption that the intensity window e is supplied for each probe.
4. Handle a wider variety of protocols, i.e., with period greater than four.

5. Develop a general technique for designing balanced codes. These designs appear not
to have been studied prior to this, even in the combinatorial design literature [3]. Alon
et al. [1] have developed such techniques, resulting in many new balanced codes and
QC matrices.

6. Improve the results of Table 1 by filling in more entries, or optimizing those entries
for which m/sep(Q) > n/l (see Theorem 2.8). For instance, we have no optimal QC
matrices with 60 steps. On this particular question, it is interesting to note that the
product construction with our current QC blocks cannot produce QC matrices Q with
m/sep(Q) < 4: From Theorem 3.6,

sep(C' X C) < dyiy - min(b =1l a) < dmin - V' /2 = dpin - m/(2D),

/
T min> max

so that m/sep(C' x C') > 2b/dyin. For the 8 x 8 and 4 x 4 QC blocks, 2b/d;, = 4; for
the 6 x 12 and 6 x 8 QC blocks, 2b/d i, = 6.

Acknowledgments

We thank Noga Alon, Charlie Colbourn, Earl Hubbell, Yuan Ma, and David Smith for
sharing their expertise with us.

Appendices

A. Basics of DNA Hybridization

Single-stranded DNA is a molecule composed by concatenating building blocks called nu-
cleotides. Nucleotides come in four types called A, C, G, and T, named after the nucleotide’s
base component, so that a DNA molecule can be abstracted as a string over the alphabet
{A,C,G,T}. The nucleotides occur in the complementary base pairs {A, T} and {C,G}:
these pairs bind or hybridize well to each other via hydrogen bonds.

Two entire DNA molecules can only hybridize if they are arranged in an antiparallel
alignment, meaning that they are aligned with one of them reversed. Thus, for example,
the two DNA molecules ACGC ACGC ACGC and GCGT GCGT GCGT would hybridize
extremely well to each other, because when they are aligned in antiparallel fashion

A CGCACGT CAZC CGC

S T R A
T GCGTGOCGTGC G

25

all the aligned base pairs are complementary. Two such molecules are called reverse com-
plements. This is a desirable situation if one of these molecules is a DNA array probe and
the other is a target. However, it is undesirable if both of these molecules are targets, be-
cause then the target molecules bind to each other and are unavailable for binding to their
complementary probes on the array.

A DNA molecule need not be exactly the reverse complement of another DNA molecule in
order for the two to hybridize. Near complementarity suffices for reasonably good hybridiza-
tion. However, if they are far from reverse complementarity, then they will not hybridize
well at all.

All pairs of reverse complementary DNA molecules do not hybridize with equal affinity or
binding energy. There are many complicated reasons for this, but the simplest is that C and
G hybridize with three hydrogen bonds whereas A and T form only two. This means that
reverse complementary molecules with high G-C content tend to hybridize better than reverse
complementary molecules with low G-C content. This observation underlies Assumption 4
in Section 2.1.

For more information on hybridization and binding energy, see any textbook on molecular
biology, for instance Lewin [10].

B. Theorem 3.6 for Mated QC Blocks

In order to extend Theorem 3.6 to handle mated QC blocks such as the 4 x 4 blocks of
Figure 8, we need to impose some conditions on the mates. Note, though, that the following
theorem is general enough to apply to all of the QC blocks in this paper, since a single QC
block such as the 8 x 8 can be considered as being mated with itself.

Theorem B.1: Let C' be a balanced code with parameters (o', 0,7/, ,rl . k' d .). Let

» "'miny " maxy "V » “min

C and D be a pair of mated QC block each with parameters (v, b, rmin, "max, k5 @min), and
satisfying the following additional conditions:

1. dmin S Tmin-

2. For any j, the columns C,; and D,; are either identical or complementary. That is,
either Cy; = D;; for all rows 7, or Cj; = 1 — D;; for all rows .

3. Any column of C' and any column of D are either identical, or have Hamming distance
at least din.

Let Q be the QC matrix that results from alternately substituting C' and D for the ones in
each row of C', and substituting a b X v matrix of zeros for each zero of C'. Then

S@p(Q) > min(dininrmina r:rnindmim (bl - 7allrnax)dmin)‘

26

As an example, if C' and D are the 4 x 4 QC blocks of Figure 8, then
sep(Q) = 2min(d, ;.m0 — 1l).

min> ! min> max

Proof: As in the proof of Theorem 3.6, we will identify any column j of the product O,
1 < j < v'v, by the pair (g,h), where 1 < g <v', 1 <h<w,and j = (g—1)v+ h. What
complicates this proof is that each such column j generally contains a mixture of column h
from C' and column h from D. The proof proceeds by examining four possible cases for the
pair 7, 7" of columns of Q in Definition 2.4, and computing the separation of these columns.
(The reader may find it helpful to identify an example of each case in Figure 9 while reading
the proof for that case.)

Recall for all four cases that the b'b spots of Q are partitioned into b distinct probes,
corresponding to the b rows of C' and D. Without loss of generality, assume that probe g
corresponds to row k of C'and D, for 1 < k < b. For any k, 1 < k < b, let e be the number
of rows of @ with probe ¢ that contain a one in column j and a zero in column j', and
fr be the number of rows of @ with probe ¢, that contain a zero in column j and a one in
column j'. Thus, 0 <ex <7/ .., 0< fr <7rl.., Dc(4,7') = ex + fr, Lx(j,7') = b — e, and

Ri(j,7") = — fx. Let the separation between columns j and j' be

b b
§ = Zmln(Dk;(.]).],): Lk;(j)jl)a Rk:(.]).],)) = Zmin(ek + fk; v — €k, v — fk;)
k=1

k=1
CAsg 1: j = (g,h) and j' = 0. (Recall the convention from Definition 2.4 that column 0
is the vector 0°.) Then 30, e, > Tmin - 77, and fr = 0.
Case 1.1: For every k, e, <b' —e;. Then

b

!/
§ = Z €k = Tmin * Tmin-
k=1

Case 1.2: There exists k such that b’ — e, < e;x. Suppose that Cj, = 1, the case where
Dy, = 1 being dual. By property 2 of the theorem, each of the values of k' with Cyp, = 1,
of which there are at least 7., satisfies ey = e, since the column D, is either identical or
complementary to C,p,. Thus,

§ > Tmin(b' — €x) > rmin (b — 7100)-

max

CASE 2: j = (g,h) and j' = (g, '), with h # h'. Then 0_, (ex + 1) > dumin * Thin-
Case 2.1: For every k, ey + fr < b0 — max(e, fr). Then

b

s = Z(ek + fk) > dmin ' Tllmin-
k=1

Case 2.2: There exists k such that b’ — max(eg, fi) < ex + fr. Without loss of generality,
suppose e > fr, and that Cy, = 1 and Cyj, = 0, the case where this occurs in D being dual.

27

By property 2 of the theorem, each of the values of k' with Cy;, # Cjrpr, of which there are at
least dyi,, satisfies {ex, fir} = {ex, fr}, since the columns D,, and D, are either identical
or complementary to C,, and Cyy, respectively. Thus,
S 2 dmin(b, - ek;) Z dmin(b, - T:na,x)'
CAsE 3: j = (g,h) and j' = (¢, h'), with ¢ # ¢', and columns h of C' and h' of D are either
identical or complementary. (The possibility A = &' is included in this case.) By property 2

of the theorem, this means that column h of C' is either identical or complementary to each of
column A/ of C, column h of D, and column h' of D. Since g # ¢/, X0 (ex + fr) > Tmin-d'y;

Case 3.1: For every k, e + fr < U — max(ey, fr). Then

b

s = Z(ek + fk) 2 Tmin * dinm
k=1

Case 3.2: There exists k such that b’ — max(eg, fi) < ex + fr. Without loss of generality,
suppose e, > fi, and that Cy, = 1, the case where Dy, = 1 being dual. Each of the values
of k" with Cp, = 1, of which there are at least r;,, satisfies e = e, and fr = fi, since
Ckh = Ck’h 1mphes th = Dk’h; Ckh’ = Ck’h’; and thr = Dk’h’; all these columns being
either identical or complementary. Thus,

S 2 Tmin(b, - ek;) Z T‘min(bl - T;na,x)‘

CASE 4: j = (g,h) and j' = (¢',1'), with ¢ # ¢, and columns h of C and b’ of D
are neither identical nor complementary. By property 2 of the theorem this means that,
if choosing column h either from C or from D, and choosing column A’ either from C or

from D, the two chosen columns cannot be identical. Hence, by property 3, the two chosen
columns must have Hamming distance at least d;,.

Let 7 and 7} be the number of ones in columns ¢ and ¢’ of C’, respectively, and d' be
the Hamming distance between these two columns of C’. Then the number of rows of C’ in
which both of these columns contain a one is £(r} + r} — d’), so that

b
Z ex + fr) > Tmin - d' + dmm(r1 + 7y —d).
Suppose that there are ¢ values of k for which ey + fi > b — max(ey, fx)-

Case 4.1: t > dpin. Then

s>t — > dpin (b — 7100

max) max

Case 4.2: 0 <t < dyin. Each of the t values of k can reduce s by at most %(7"1 +rh+d)
from 3°_ (ex + fx), namely the d’' rows of C' where columns g and ¢’ differ, plus the

28

: S(r +rh— d’) where both columns contain a one. Each of these ¢ values also increases s by
at least &' — 7! ... Thus,

b
1
s 2 2 (et fu) =GN AT)Y =)

1
> rminc d + 5dmin(r’1 +ry —d') — 5 t(ry +ry +d) 10— i) (2)
Since expression (2) is a linear function of ¢, it achieves its minimum value at one of its
endpoints t = 0 or £ = dpyin.
Case 4.2.1: t = 0. Since d' < 7} + 7, Inequality (2) yields

§ > Tmin ' > Tiin - diy;

min*

Case 4.2.2: t = dpin. Then

S Z Tmin * d, - dmln d, + dmm(b,) > dmin(b, — 7‘,)

max max/?

the last inequality following from property 1 of the theorem.

Combining the results of all of the cases,
sep(Q) 2 min(Tmin;nina min(Tmina dmin)ﬂnin: min(Tmim dmin)(b, - T;nax))

= min(Tmind;nin: dminT;nin7 dmin(b, — 7))

max

C. Balanced Codes with Added Columns

This appendix provides constructions for those balanced codes in Table 1 labeled “+i”,
meaning that ¢ extra columns have been added to some other balanced code. A few of these
augmented balanced codes come from the following simple construction.

Proposition C.1: If there is a 2-design D with parameters (v,b,r, k, \), then there is a
balanced code with parameters

(v + 2,2b, min(b, 2r), max(b, 2r), k + 1, min(b, 4(r — X))).

Proof: Duplicate the rows of D to obtain a 2-design D’ with parameters (v, 2b, 27, k, 2\).
By Proposition 3.3, D’ is a balanced code with parameters (v, 2b,2r,2r, k,4(r — X)). Add
two additional columns to D" with entries (1,0) in those rows corresponding to one copy of
D, and (0,1) in those rows corresponding to the second copy of D. (See the leftmost nine
columns of Figure 10(a) for an illustration.) These two new columns each have exactly b
ones, Hamming distance exactly b from each of the columns of D', and Hamming distance
exactly 2b from each other. a

Proposition C.1 yields two of the balanced codes of Table 1:

29

1100 1100 0000 10

100110001 10 1010 1010 0000 10

010011001 10 1001 1001 0000 10

1111000000 10 283231328 18 0110 0119 0999 10

0101 0101 0000 10

1;32228 18 18 1000111000 10 110001100 01 0011 0011 0000 01
1000000111 10 011010010 10

1000011 10 10 1100100100 01 001100101 01 1100 0000 1100 10

0101010 10 10 1010010010 01 000101110 10 1010 0000 1010 01

0100101 10 01 1001001001 01 000010111 01 1001 0000 1001 01

0011001 10 01 6100100011 10 100010110 01 0110 0000 0110 01

0010110 10 01 0010010101 10 610001011 01 0101 0000 0101 01

1110000 01 01 0001001110 10 101001001 01 0011 0000 0011 10

1001100 01 01 0100011100 01 010100101 10 0000 1100 1100 10

1000011 01 01 0010101010 01 101000011 10 0000 1010 1010 01

0101010 01 01 0001110001 01 110110000 01 0000 1001 1001 01

0100101 01 10 0110001001 01 111000100 10 0000 0110 0110 01

0011001 01 10 0101010010 01 011100010 01 0000 0101 0101 01

0010110 01 10 0011100100 01 001111000 01 0000 0011 0011 10

(a) (b) (c) (d)

Figure 10: These balanced codes have the following parameters, and the following labels in
Table 1: (a) Balanced code (11,14,6,7,5,6), labeled (7,14,6,3,2) + 4. (b) Balanced code
(12,15,6,9,5,6), labeled (10,15,6,4,2) + 2. (c) Balanced code (11,18,8,9,5,9), labeled
(9,18,8,4,3)+2. (d) Balanced code (14, 18,6,9, 5, 6), labeled (3,3,2,2,1) x (4,6,3,2,1)+2.

1. the entry labeled “(7,14,8,4,4)+2”, which is derived from the 2-design with parameters
(7,7,4,4,2), and is a balanced code with parameters (9,14,7,8,5,7), and

2. the entry labeled “(8,28,14,4,6) + 2", which is derived from the 2-design with param-
eters (8,14,7,4,3), and is a balanced code with parameters (10, 28,14, 14,5, 14).

The 2-designs from which these are derived can be found in the compendium of Mathon and
Rosa [13].

The remaining “4i” balanced codes were augmented from known 2-designs [13] by a
simple exhaustive program, and are given in Figure 10.

30

D. Balanced Codes from Polynomials Over Finite
Fields

This section describes the construction of those balanced codes labeled “degree d over GF(q)”
in Table 1. These codes have appeared numerous times in the literature. For example, they
were described by Nisan and Wigderson [14, Lemma 2.5], who called them simply “(d, ¢)-
designs”, as part of a construction for pseudorandom number generators.

Theorem D.1: Let ¢ be any integral power of a prime number, and d be any nonnegative
integer. Then there is a balanced code C with parameters (¢**!, ¢2, q, ¢, ¢% 2(q — d)).

Proof: Let F be the finite field with ¢ elements, and F'[z] the integral domain of polyno-
mials in the indeterminate x with coefficients in F'. (See Lipson [12] for an introduction to the
algebra of finite fields and polynomials.) C has a row for each of the ¢* pairs (g, yo) € F X F,
and a column for each of the ¢*™ polynomials p(z) € F[z] of degree at most d. The entry
in C for row (x¢,yo) and column p(z) is 1 if p(xy) = yo, and 0 otherwise. Thus there are
exactly ¢ ones per column (since any x and p(x) uniquely determine yy = p(zo)) and ¢% ones
per row (since any xg, yp, and the d high degree coefficients of p(x) uniquely determine the
lowest degree coefficient). Finally, the Interpolation Theorem [12, Section IV.3.3, Theorem
5] states that any d + 1 points (zy, yp) uniquely determine a polynomial p(z) of degree at
most d that passes through these points, so that any two columns of D can have at most d
rows in which both columns contain a one. Thus, the Hamming distance between any two
columns is at least 2(¢ — d). O

References

[1] Noga Alon, Charles Colbourn, Alan Ling, and Martin Tompa. Optimal balanced codes.
In preparation, 2000.

[2] S.Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O. Brown, and I. Herskowitz.
The transcriptional program of sporulation in budding yeast. Science, 282:699-705, 23
October 1998.

[3] Charles J. Colbourn, 2000. Personal communication.

[4] Charles J. Colbourn and Jeffrey H. Dinitz, editors. The CRC Handbook of Combinatorial
Designs. CRC Press, 1996.

[5] R. Craigen. Hadamard matrices and designs. In Colbourn and Dinitz [4], pages 370-377.

[6] Ding-Zhu Du and Frank H. Hwang. Combinatorial Group Testing and Its Applications.
World Scientific, 1993.

[7] Earl Hubbell, 1999. Personal communication.

31

8]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

Earl Hubbell and Pavel A. Pevzner. Fidelity probes for DNA arrays. In Proceedings
of the Seventh International Conference on Intelligent Systems for Molecular Biology,
pages 113-117, Heidelberg, Germany, August 1999. AAAI Press.

W. H. Kautz and R. C. Singleton. Non-random binary superimposed codes. IEEE
Transactions on Information Theory, 10:363-377, 1964.

Benjamin Lewin. Genes VI. Oxford University Press, 1997.

Robert J. Lipshutz, Stephen P. A. Fodor, Thomas R. Gingeras, and David J. Lockhart.
High density synthetic oligonucleotide arrays. Nature Genetics Supplement, 21:20-24,
1999.

John D. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley, Read-
ing, MA, 1981.

Rudolf Mathon and Alexander Rosa. 2 — (v, k, A) designs of small order. In Colbourn
and Dinitz [4], pages 3—40.

Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49:149-167, 1994.

David Smith. Affymetrix, 1999. Personal communication.

Vladimir D. Tonchev. Codes. In Colbourn and Dinitz [4], pages 517-542.

32

