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ABSTRACT
S
alable Ve
tor Graphi
s (SVG) is a language developed

by the World Wide Web Consortium for des
ribing two

dimensional ve
tor graphi
s for storage and distribution

on the Web. Unlike raster image formats, SVG-based

images s
ale ni
ely to arbitrary resolutions and sizes.

We introdu
e a 
onstraint extension to SVG 
alled Con-

straint S
alable Ve
tor Graphi
s (CSVG) that permits

a des
ription of an image that is more 
exible. With

CSVG, an image 
an 
ontain obje
ts whose positions

and other properties are linearly related to other at-

tributes via 
onstraints. For example, a re
tangle 
an

be spe
i�ed to remain above a 
ir
le, and a line 
an

be 
onstrained to 
onne
t their 
enters. The various


onstraints ea
h have a spe
i�ed strength, and we use


onstraint hierar
hy theory to determine an appropriate

solution. CSVG enables better layouts of diagrams for a

wider variety of viewing 
onditions and provides support

for de
laratively spe
i�ed animation. We embedded our

Cassowary 
onstraint solving toolkit in an existing SVG

renderer to produ
e a prototype implementation of a

CSVG system.

KEYWORDS: 
onstraints, Cassowary toolkit, CSVG,
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INTRODUCTION
S
alable Ve
tor Graphi
s (SVG) [17℄ is a language de-

veloped by the World Wide Web Consortium (W3C) for

des
ribing two dimensional ve
tor graphi
s. SVG is used

for storage and distribution of images on the web, and

is in
reasingly well-supported by both 
ommer
ial and

free software. In 
ontrast with raster image formats su
h

as GIF, JPEG, and PNG, whi
h store a matrix of indi-

vidual pixels that 
ompose an image, a S
alable Ve
tor

Graphi
 image 
ontains instru
tions for resolution inde-

pendent rendering: the same SVG �le will be shown in

more detail when viewed at a higher resolution (e.g., on

a 1200 dots per in
h typesetting devi
e rather than a 75

dpi s
reen). A sample SVG image appears in Figure 1.

SVG graphi
s provide numerous immediate bene�ts

besides resolution independen
e. SVG �les are often

smaller than an analogous raster image, thus web pages

using them may take less time to download. Be
ause

Figure 1: SVG image of a lion cub.

SVG is based on XML [13℄, SVG �les are easy to

ex
hange, pro
ess, and analyze. SVG integrates well

with Cas
ading Style Sheets (CSS) [12℄ spe
i�
ations,

thus enabling some separation of the 
ontent of the

graphi
 from the visual appearan
e of that image.

For example, the 
olors of a graphi
 
an be spe
i�ed

in a style sheet that is independent of the SVG �le

itself. SVG also preserves image stru
ture at a higher

level|for example, a web browser 
an dire
tly read

the text in
luded in an SVG �gure. This ability, along

with the separation of style from 
ontent, dramati
ally

improves the a

essibility of images for users with 
olor-

blindness or other visual impairments. Additionally,

the Do
ument Obje
t Model (DOM) [2℄ and the SVG

DOM [17, Appendix B℄ 
an be used to manipulate the

shapes in an image dynami
ally to 
reate animations

and other e�e
ts.

SVG is Not Enough

Although the SVG format is a huge step forward for

many kinds of images, we 
an do even better for di-

agrammati
 illustrations. Contrast the illustration in

Figure 2 with the lion 
ub in Figure 1. Figure 2 is a

simpler image in whi
h we provide a visualization of a


lass hierar
hy. With SVG we have to spe
ify the en-

tire diagram fully and exa
tly by giving positions and

sizes for all of the elements: pre
isely one 
lass hierar
hy

diagram is des
ribed.

Full spe
i�
ation is important for a 
omplex realisti


image su
h as Figure 1, but is less important for many

information visualization appli
ations. Instead, in Fig-



Figure 2: SVG image diagramming the object hier-
archy surrounding the Java.Text.Format class. The
SVG source for this image appears in Figure 3.

ure 2, there are 
ertain properties of the layout that are

important in 
onveying the desired information. For

example, we want the parent 
lass \Obje
t" to appear

above its sub
lasses, and want lines to 
onne
t 
lasses to

denote the inheritan
e relationship. If we were able to

des
ribe what is a
tually semanti
ally important about

a �gure, we 
ould have a single des
ription that pre-

serves 
exibility for the renderer and would generate

Figure 2 or other variations of that illustration.

Constraints are a useful approa
h for allowing users

to state their intentions more dire
tly. A 
onstraint

is a de
larative spe
i�
ation of a relationship that we

wish to hold true. For example, \Format appears above

DateFormat" is a 
onstraint. We 
an write the 
onstraint

mathemati
ally as:

Format:y

bottom

+ vert spa
ing � DateFormat:y

top

By stating de
laratively how the two obje
t attributes

are to relate, we avoid having to give expli
it values

to either. Instead, we 
an defer that task to a 
on-

straint satisfa
tion algorithm that will assign values to

variables. In this example, we 
an then use those value

assignments to determine where to position the names

of the various 
lasses in the hierar
hy.

Our Contributions

We des
ribe a 
onstraint extension to S
alable Ve
tor

Graphi
s, 
alled Constraint S
alable Ve
tor Graphi
s

(CSVG). Our extension allows CSVG images to use ar-

bitrary linear arithmeti
 
onstraints to 
ontrol the lay-

out of shapes, lines, paths, and font sizes. With 
on-

straints, diagrams 
an be under-spe
i�ed, thus permit-

ting the rendering engine greater 
exibility when laying

out the illustration.

Our main 
ontributions are:

� a motivation for using 
onstraints for 
ertain kinds of

SVG illustrations;

� a des
ription of Constraint S
alable Ve
tor Graphi
s

as an extension of SVG, in
luding a Do
ument Type

De�nition (DTD) for CSVG; and

� a prototype implementation of a CSVG viewer based

on the CSIRO SVG viewer [35℄. The prototype makes

use of the sophisti
ated 
onstraint solving algorithm

Cassowary [11℄.

BACKGROUND
The S
alable Ve
tor Graphi
s (SVG) language [17℄ is

based on the eXtensible Markup Language (XML) [13℄.

SVG also makes use of the Cas
ading Style Sheets

(CSS) [12℄ standard for partially separating visual pre-

sentation information from the basi
 image des
ription

itself. In this se
tion, we provide a brief overview of

ea
h of these standards, and then dis
uss the Cassowary

Constraint Solving Toolkit, whi
h provides the engine

behind our 
onstraint-based extensions.

XML: eXtensible Markup Language
XML is a standardized eXtensible Markup Lan-

guage [13℄ that is a subset of SGML, the Standard

Generalized Markup Language [27℄. The World

Wide Web Consortium (W3C) designed XML to be

lightweight and simple, while retaining 
ompatibility

with SGML. Although HTML (HyperText Markup

Language) is 
urrently the standard web do
ument

language, the W3C is positioning XHTML, an XML-

based language, to be its repla
ement. While HTML

permits authors to use only a pre-determined �xed set

of tags in marking up their do
ument, XML allows

easy spe
i�
ation of user-de�ned markup tags adapted

to the do
ument and data at hand [18, 19℄. XML 
an

thus be used as the basis for many languages des
ribing

arbitrary data, not just the single XHTML language.

An XML do
ument 
onsists simply of text marked up

with tags en
losed in angle bra
es. A simple example

appears in Figure 3.

The <svg> is an open tag for the svg element. The </svg>

at the end of the example is the 
orresponding 
lose tag.

Text and other nested tags 
an appear between the open

and 
lose 
onstru
ts. In the example, the svg 
ontains

16 immediate 
hildren elements. Empty elements are

allowed and 
an be abbreviated with a spe
ialized form

that 
ombines the open and 
lose tags: <tag-name />

(e.g., ea
h of the line elements). Additionally, an XML

open tag 
an asso
iate attribute{value pairs with an ele-

ment. For example, the �rst text element has the value

200 for its x attribute. Attributes of an element are un-

ordered and multiple values for the same attribute name

are disallowed. In 
ontrast, 
hild elements are ordered,

and multiple 
hild elements of the same type may be

permitted (e.g., there are eight text 
hildren of the svg

element).

For an XML do
ument to be well-formed, the do
ument

must 
onform to the synta
ti
 rules required of XML

do
uments (e.g., tags must be balan
ed and properly

nested, and attribute values must be of the proper form

and en
losed in quotes).
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<?xml version="1.0"?>

<!DOCTYPE svg SYSTEM "svg.dtd">

<svg width="4.5in" height="4in"

viewBox="0 0 100 100"

style="fill: none; font-size: 15;

stroke-width: 1; stroke: bla
k;

text-an
hor: middle">

<des
>The obje
t hierar
hy surrounding

the 
lass "Java.text.Format"</des
>

<text x="200" y="30">Obje
t</text>

<text x="200" y="90">Format</text>

<text x="60" y="150">DateFormat</text>

<text x="60" y="210">SimpleDateFormat</text>

<text x="200" y="150">MessageFormat</text>

<text x="380" y="150">NumberFormat</text>

<text x="310" y="210">De
imalFormat</text>

<text x="450" y="210">Choi
eFormat</text>

<line x1="200" y1="32" x2="201" y2="75"/>

<line x1="200" y1="92" x2="60" y2="135"/>

<line x1="200" y1="92" x2="201" y2="135"/>

<line x1="200" y1="92" x2="380" y2="135"/>

<line x1="60" y1="152" x2="61" y2="195"/>

<line x1="380" y1="152" x2="310" y2="195"/>

<line x1="380" y1="152" x2="450" y2="195"/>

</svg>

Figure 3: SVG source of the class hierarchy illustration
shown in Figure 2. SVG is based on XML.

A more stringent 
hara
terization of an XML do
ument

is validity. An XML do
ument is valid if and only if it

both is well-formed and adheres to its spe
i�ed do
u-

ment type de�nition, or DTD. A do
ument type de�ni-

tion is a formal des
ription of the grammar of the spe-


i�
 language to be used by a 
lass of XML do
uments.

It de�nes all the permitted element names and des
ribes

the attributes that ea
h kind of element may possess.

It also restri
ts the stru
ture of the nesting within a

valid XML do
ument. Figure 3 is valid with respe
t

to the DTD that des
ribes S
alable Ve
tor Graphi
s,

svg.dtd [17, Appendix A℄.

SVG: Scalable Vector Graphics

SVG is an XML-based language for des
ribing ve
tor

graphi
s. It was designed by the W3C and is intended

to be the standard format for all images on the Internet.

Ve
tor graphi
s provide resolution independen
e|the

des
ription of the image is based on higher-level graph-

i
al elements, rather than the pixels used to des
ribe

a raster image. SVG uses XML elements to represent

basi
 shapes, in
luding re
tangles, ellipses, lines, and

polygons. It also supports the more general notion of

an arbitrary path that 
an represent an outline to be

�lled, stroked, or 
lipped to. SVG is very similar in

spirit to the PostS
ript page-des
ription language [1℄,

but uses XML syntax instead of post�x notation.

An SVG element des
ribes a shape to be rendered. For

example:

<re
t x="20" y="10" width="10" height="5"/>

des
ribes a re
tangle whose top-left is positioned at 
o-

ordinate (20,10) with a width of 10 units, and a height

of 5 units. Lengths and 
oordinates 
an spe
ify units

expli
itly, but when they are omitted, the user spa
e


oordinate system is used [17, Ch.7℄. Unfortunately, all

basi
 shape obje
ts use their top-left as an an
hor point,

making it unduly 
umbersome to position, for example,

the 
enter of an obje
t at a spe
i�
 lo
ation.

An espe
ially powerful SVG element is path. Its d

(for \data") attribute 
ontains a string that en
odes a


ommand-based des
ription of an arbitrary outline. For

example, the element:

<path d="M 20 10 L 30 10 L 30 15 L 20 15 Z"/>

des
ribes a re
tangle path equivalent to the pre
eding

re
t element: �rst Move to (20, 10), then draw Lines

to (30,10), (30,15), and (20,15), and �nally 
lose the

path (Z). Upper
ase 
ommand 
hara
ters designate the

use of absolute 
oordinates, while lower
ase denotes rel-

ative 
oordinates. Other path sub-language 
ommands

in
lude Curve-to, Smooth 
urve-to, Quadrati
 Bezier


urve-to, and more.

Other important elements in
lude defs and use for de�n-

ing obje
ts and later referen
ing them, image for em-

bedding lega
y raster image �les (e.g., PNG or JPEG

graphi
s), text for in
luding text, and g for grouping

sub-elements to be rendered as a single entity.

A program that reads an SVG �le has a

ess to the

internals of the image via the SVG Do
ument Obje
t

Model [17, Appendix B℄. The SVG DOM is 
ompatible

with the basi
 XML DOM [2℄ and is a proper extension

of the DOM Core [23℄. The DOM permits a

ess to the

SVG element tree, in
luding allowing the manipulation

of element attributes. For example, to in
rease the size

of a text element, we 
an write the following 
ode in

ECMAS
ript [16℄ (a standardized version of JavaS
ript).

e = do
ument.getElementById("TextElement");

e.setAttribute("transform", "s
ale(2)");

and the sele
ted element will be s
aled to twi
e its nor-

mal size. The SVG DOM 
an be used in 
ombina-

tion with s
ripting and event handlers (e.g., mousedown,

on
li
k) to permit some useful intera
tive 
apabilities.

SVG also 
ontains several animation elements that de-

s
ribe time-based perturbation of the 
ontaining obje
t.

These elements 
an be used to a
hieve motion along

paths, the fading in or out of obje
ts, 
hanges in 
olor,

and more. For example, to animate moving a re
tangle

horizontally a
ross the viewport to the right, we write:

<re
t x="20" y="10" width="10" height="5"/>

<animate attributeName="x"

attributeType="XML"

begin="0s" dur="9s" fill="freeze"

from="20" to="120"/>

</re
t>
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Most elements 
ontain attributes to 
ontrol espe
ially

important properties of the des
ribed obje
t, su
h as its

position and size. Numerous other properties of obje
ts

are set using a single attribute 
alled style. That at-

tribute is the a

ess point to a powerful style des
ription

language 
alled Cas
ading Style Sheets.

CSS: Cascading Style Sheets
The Cas
ading Style Sheets (CSS) [12℄ re
ommenda-

tion was introdu
ed by the W3C in asso
iation with the

HTML 4.0 standard. CSS provides a ri
h set of \style"

properties for various HTML and SVG tags. By setting

the value of these properties, the do
ument author 
an


ontrol how the browser will display ea
h element.

SVG images 
an dire
tly annotate elements in the do
-

ument with style properties via the style attribute. Al-

ternatively, the author 
an pla
e this information in a

separate style sheet and then link or import that �le.

Thus, the same do
ument may be displayed using dif-

ferent style sheets and the same style sheet may be used

for multiple do
uments, easing maintenan
e of a uniform

look for a web site.

1

For example, in Figure 3 the svg

element spe
i�es a style attribute with the multi-part

string value:

fill: none; font-size: 15;

stroke: bla
k; stroke-width: 1;

text-an
hor: middle

Ea
h of the above �ve CSS de
larations is a property{

value pair. For example \font-size: 15" spe
i�es that

the property \font-size" should take on the value \15".

Be
ause all of these style properties are spe
i�ed on the

svg root element, the styles they set are inherited by

ea
h 
hild element, unless they are overridden. The

CSS standard spe
i�es 
omplex rules for determining

the �nal value for a property from the multiple de
lara-

tions that 
ould in
uen
e it|this is 
alled \
as
ading."

An earlier paper dis
usses a 
onstraint extension to CSS

that de
laratively formalizes these rules using 
onstraint

hierar
hy theory and also demonstrates some extensions

that provide greater expressiveness [5℄.

Cassowary Constraint Solving Toolkit
Cassowary is our 
onstraint solving toolkit that supports

arbitrary linear arithmeti
 
onstraints [4℄. Constraints


an be either equalities or inequalities over real-valued

variables. Ea
h 
onstraint 
an be either required (hard)

or preferred (soft). Arbitrarily many levels of prefer-

en
e 
an be handled, but we typi
ally use only three:

strong, medium, and weak. Appli
ations spe
ify sets of


onstraints and strengths, and the 
onstraint solver as-

signs values to the variables to satisfy the 
onstraints.

All required 
onstraints must be exa
tly satis�ed, and

1

Unfortunately, few SVG renderers 
urrently support separat-

ing the style sheet from the SVG do
ument|with some imple-

mentations, only style properties set via the style attribute are

honored.

the various non-required 
onstraints are satis�ed as well

as possible. Cassowary handles 
y
les without diÆ
ulty.

Constraint hierar
hy theory [9℄ provides a de
larative

semanti
s of what 
onstitutes a 
orre
t solution. For

Cassowary, we use the weighted-sum-better 
omparator

for 
hoosing a single solution from among those that

satisfy all the required 
onstraints. This 
omparator


omputes the error for a solution by summing the prod-

u
t of the strength and the error for ea
h 
onstraint

that is unsatis�ed. Strengths are represented as tuples:

strong is (1; 0; 0), medium is (0; 1; 0), and weak is (0; 0; 1).

We order the errors lexi
ographi
ally so that a strong


onstraint is in�nitely more important than all of the

medium and weak 
onstraints.

Client appli
ations use soft 
onstraints to 
ontrol what

solutions are 
hosen|they are a means of manipulating

the obje
tive fun
tion for the optimization. An impor-

tant use of non-required 
onstraints is to enfor
e stabil-

ity in graphi
al layout. We typi
ally add a weak \stay"


onstraint on ea
h variable's value whi
h states that a

variable's future value should be its 
urrent value. These

stay 
onstraints make obje
ts remain in pla
e unless

some other stronger desire for
es a 
hange.

The Cassowary 
onstraint solving algorithm is an in
re-

mental version of the simplex algorithm that we have

optimized for intera
tive graphi
al appli
ations. The

simplex algorithm is a well-known and heavily studied

te
hnique for �nding a solution to a 
olle
tion of linear

equality and inequality 
onstraints while minimizing the

value of a linear obje
tive fun
tion [31, Se
tion 2.5℄.

CSVG: CONSTRAINT SCALABLE VECTOR GRAPHICS
As previously mentioned, a primary advantage of S
al-

able Ve
tor Graphi
s is resolution independen
e. The


onventional means of delivering an image is to render

the �gure, then send the �gure a
ross the network in

a rasterized image format su
h as PNG or JPEG (Fig-

ure 4). The resolution is �xed when that �le is 
re-

ated, and the artifa
t the user re
eives is in
exible. The

adoption of the SVG image format permits a di�erent

delivery me
hanism (Figure 5). The high-level image

des
ription is stored in the SVG image format, preserv-

ing mu
h of the semanti
 value provided by the author.

That SVG �le is then sent a
ross the network, where an

SVG renderer on the 
lient side 
hooses the resolution

and 
reates a rasterized display of that image spe
ially-

tuned for the display devi
e and the desired size.

The key observation 
on
erning the evolution from

raster images to SVG is that we are sending a higher-

level des
ription a
ross the network and moving some

of the pro
essing of the image from the server side

to the 
lient side. Thus, the artifa
t sent a
ross the

Internet is more 
exible|it 
an be used as the sour
e

for generating a high-quality printout of the image,

to 
reate a low-resolution thumbnail of the image,
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Figure 4: The conventional process of delivering a raster
image across the network.
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Figure 5: The process of delivering a resolution-
independent SVG image across the network.

or even to \render" the image aurally using spee
h

synthesis to des
ribe the diagram. The de
ision of how

to present the image is made with input from the user,

her browser, and other 
lient-side software. Style sheets

provide yet another way to in
rease the 
exibility of the

image sent over the network: not only is the resolution

left undetermined, but the �nal de
ision as to, for

example, the 
oloring s
heme, 
an be delayed until after

applying style sheet de
larations.

Extending SVG
Our 
onstraint extension to SVG permits des
ribing the

author's layout intentions, and defers the a
tual posi-

tioning and sizing of the image's elements until just be-

fore �nal display for the user (Figure 6). To support

this greater 
exibility, we have made three extensions

to the SVG language. First, we add a new element type


alled 
onstraint and permit those elements to be 
hil-

dren of the svg root element. Ea
h 
onstraint element

has a required attribute, rule, and an optional attribute,

strength. Se
ond, we support identi�er names in pla
e

of literal numbers in all attribute and style sheet values.

Thus, we 
an write:

<
onstraint rule="re
t_w >= re
t_h"

strength="strong"/>

<re
t x="10" y="20"

width="re
t_w" height="re
t_h"/>

to express the desire that the re
tangle be at least as

wide as it is tall. The rule impli
itly introdu
es new


onstraint variables.

2

Third, we add several built-in

read-only 
onstraint variables. (A read-only variable

is one that 
annot be 
hanged by the solver to satisfy

2

Our syntax was 
hosen for simpli
ity. It may be useful to

require expli
it introdu
tion of variables and to use a separate

XML namespa
e for our extensions so that SVG renderers without

a 
onstraint engine 
ould still handle CSVG images.
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Figure 6: The process of delivering a CSVG image
across the network.

the 
onstraint in whi
h it o

urs [9℄.) Two variables,

viewport width and viewport height, are used to allow

the image to be in
uen
ed by the size of the display

area. We expose 
urrent time and 
urrent time squared

whi
h are both ever-in
reasing read-only variables that

allow CSVG to support the de
larative spe
i�
ation of

time-based animations more dire
tly than the animate

elements.

CSVG permits image des
riptions to be at a higher level

of abstra
tion than an ordinary SVG �le. Instead of

for
ing the author to spe
ify exa
t values for positions

and sizes, the CSVG author 
an use meaningful names

for values and enumerate desired relationships among

those values. Similar to how SVG defers 
hoosing the

display resolution to later in the delivery pipeline, CSVG

5



Figure 7: CSVG rendering of the Format class hierarchy inside a wide and short viewport.

delays �nalizing the layout of the illustration until the


lient side (Table 1).

Table 1: Where properties of a graphic becomes fixed.

Image format Resolution Style Layout

PNG/JPEG server server server

SVG 
lient server server

SVG + CSS 
lient 
lient server

CSVG + CSS 
lient 
lient 
lient

A Layout Example
We 
an rewrite Figure 3 to spe
ify 
onstraints on the lay-

out of the 
lass hierar
hy, rather than giving exa
t lo
a-

tions for all the parts of the illustration. Our CSVG de-

s
ription of the image looks like the ordinary SVG image

(Figure 2) under \ideal" viewing 
onditions. However,

the CSVG �le is far more 
exible, and it will appear as

shown in Figures 7 and 8 when the viewport dimensions

are altered. An ordinary SVG �le would always appear

as just a uniformly s
aled version of Figure 2.

For our CSVG version of the 
lass hierar
hy, we use a to-

tal of 77 
onstraints that re
e
t typi
al layout desires for

viewing trees: nodes at the same level are aligned hori-

zontally (4), di�erent levels are spa
ed at equal verti
al

intervals (8), there is a minimum gap between adja
ent

nodes on the same level (4), and parent nodes are above

and midway between their edge 
hildren (5) [31, p. 204℄.

Of the remaining 56 
onstraints, 32 are used to keep the

text inside the viewport, 16 are used to de
lare 
onne
-

tion points for the lines, and the last 8 are for setting

the margin parameters and 
ontrolling the font size. An

abridged version of the CSVG sour
e is in Figure 10.

Of 
ourse, many of these 
onstraints are redundant and


ould be eliminated through analysis. Be
ause the Cas-

sowary algorithm handles 
y
les without diÆ
ulty, the

redundan
ies are not a problem, though they do impa
t

performan
e. A CSVG image for frequent use would

likely be optimized before distribution.

Figure 8: CSVG rendering of the Format class hierar-
chy inside a narrow and tall viewport.

An Animation Example

Constraints relating obje
t positions to the 
urrent time


an be used to support simple animations. Constraints

for layout are even more 
ompelling when parts of the

image are moving: the positions of the remaining obje
ts


an be des
ribed at a high level, knowing that the solver

will animate whatever other obje
ts need to move to

maintain the spe
i�ed 
onstraints.

Figure 9 shows four s
reenshots of our CSVG prototype

rendering an animation of a ball falling on a seesaw.

The seesaw.
svg image 
ontains 18 
onstraints to sup-

port the animation: 12 for the positions of the various

elements, 1 relating the ball to the 
urrent time squared

built-in variable, 1 stating that the ball must remain

above the left edge of the seesaw, and 4 des
ribing that

the seesaw 
annot go through the 
oor nor through the

ful
rum.

IMPLEMENTATION

On the 
lient side of the pipeline, we have implemented

a CSVG viewer to experiment with the additional ex-

pressiveness it provides. Our prototype is based on ver-

sion 0.71 of the CSIRO SVG Viewer [35℄. That SVG

viewer is implemented in Java, and it uses IBM's XML4J

parser version 2.0.15 [26℄. For parsing the 
onstraint

rule expressions, we use JLex [8℄, a lexi
al analyzer gen-

6



Figure 9: CSVG animation of a ball falling towards seesaw. The position of the ball is directly related to time, and the
seesaw moves because of constraints describing its behavior.

erator (similar to Lex), and CUP (Constru
tor of Use-

ful Parsers) [25℄, an LALR parser generator (similar to

YACC). For solving the 
onstraint systems and laying

out the �gure, we embedded our Java implementation

of the Cassowary Constraint Solving Toolkit [4℄.

As with any XML language, CSVG is de�ned by its

Do
ument Type De�nition. Our CSVG DTD is a

straightforward extension of the SVG DTD: we added

the 
onstraint element and spe
i�ed its two attributes,

rule (required) and strength (impli
it, defaulting to

strong):

<!ELEMENT 
onstraint EMPTY >

<!ATTLIST 
onstraint

rule CDATA #REQUIRED

strength CDATA #IMPLIED>

Additionally, we added the 
onstraint element to the

list of permissible 
hildren of svg elements:

<!ELEMENT svg (defs?,des
?,title?,

(path|text|...|
onstraint)*)>

No other 
hanges to the SVG DTD were ne
essary to

support using identi�ers inside of attribute expressions.

(However, further 
hanges would be ne
essary with the

more sophisti
ated data des
ription that XML S
hema

allows.)

After the XML parser reads in the SVG do
ument, we

handle 
onstraint elements by 
reating a new 
onstrain-

able variable for ea
h unique identi�er 
ontained in a


onstraint rule. For ea
h variable, we add a stay 
on-

straint on it to ensure stability of the resulting �gure.

Then, for ea
h 
onstraint element, we 
reate a 
onstraint

obje
t by parsing the rule attribute's string. Finally, we

add ea
h 
onstraint to the global solver.

As we build the internal representation of the image,

we store the names of variable identi�ers that are used

as an attribute's value. Then, whenever we render the

�gure, we retrieve the values of attributes as usual, with

one extra step: if the attribute is an identi�er, we then

look up that 
onstraint variable's value and use it. For

path elements, we pre�x names of 
onstraint variables

with the $ symbol to avoid ambiguity. For example, we

write:

<path d="M $x $y l $dx $dy"/>

to move to the absolute 
oordinates held in x and y, and

then draw a line to the relative 
oordinates 
ontained in

variables dx and dy.

On our Xeon Pentium III 550 MHz test ma
hine running

Java 1.3beta-0 with the HotSpot virtual ma
hine under

Windows NT 4.0, the performan
e of our prototype is

very good. For our 
lass hierar
hy example that 
ontains

77 
onstraints, the adding of the 
onstraints and the ini-

tial solve requires only 360 ms. Subsequent re-solves of

the 
onstraint system after resizing the window require

less than 200 ms ea
h. Thus, re-rendering the �gure af-

ter 
hanging the viewport size takes only slightly longer

than for the ordinary SVG viewer. Performan
e would

be even better if we removed redundant 
onstraints or

if we further optimized our implementation.

On the server side, our 
lass hierar
hy diagram example

was largely me
hani
ally-derived from an XML-based

representation of Java sour
e 
ode, JavaML [3℄. Using

XSLT [14℄, it is reasonably straightforward to generate

CSVG from the JavaML representation.

RELATED WORK
As mentioned earlier, style-sheet te
hnologies, su
h as

CSS (Cas
ading Style Sheets) [12℄, PSL (Proteus Style

Language) [30℄, DSSSL (Do
ument Style Semanti
s and

Spe
i�
ation Language) [28℄, and XSL (eXtensible Style

Language) [14℄, ea
h delay �nalizing various presenta-

tional attributes of a �gure until later in the delivery

pro
ess, 
loser to the viewing user. None of these style

languages, however, attempt to preserve layout desires

to perform layout dynami
ally on the 
lient side.

Our 
onstraint extensions to Cas
ading Style Sheets,

CCSS, demonstrate how CSS 
an be understood in

terms of 
onstraints, and they add expressiveness given

that more general framework [5℄. Our CSVG motiva-

tion and philosophy is analogous to that of CCSS, and

CCSS is dire
tly appli
able to 
ontrolling style proper-

ties of CSVG do
uments as well. The primary addition
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<?xml version="1.0"?>

<!DOCTYPE svg SYSTEM "
svg.dtd">

<svg width="4.5in" height="4in"

viewBox="0 0 100 100"

style="fill: none; stroke: bla
k;

stroke-width: 1">

<des
>The obje
t hierar
hy surrounding 
lass

"Java.text.Format"</des
>

<
onstraint rule="fh >= 9"/>

<
onstraint

rule="vert_spa
ing = vp_height / 3.5"/>

<
onstraint rule="text_w * 4 = vp_width"/>

...

<!-- stay inside viewport -->

<
onstraint

rule="o_x >= side_margin + h_text_w"/>

<
onstraint

rule="o_x &lt;=

vp_width - side_margin - h_text_w"/>

<
onstraint

rule="o_y >= top_margin + fh"/>

<
onstraint

rule="o_y &lt;= vp_height - top_margin"/>

...

<!-- layout between 
hildren and parents -->

<
onstraint

rule="(dtf_x + nf_x) / 2 = f_x"

strength="strong"/>

<
onstraint

rule="f_y >= o_y + vert_spa
ing"

strength="strong"/>

...

<!-- same level at same y 
oordinate -->

<
onstraint rule="dtf_y = mf_y"/>

...

<!-- same level spread out horizontally -->

<
onstraint rule="dtf_x + text_w &lt;= mf_x"/>

...

<!-- the text elements for ea
h 
lass -->

<g style="font-size: fh; text-an
hor: middle">

<text x="o_x" y="o_y">Obje
t</text>

<text x="f_x" y="f_y">Format</text>

<text x="dtf_x" y="dtf_y">DateFormat</text>

<text x="mf_x" y="mf_y">MessageFormat</text>

<text x="nf_x" y="nf_y">NumberFormat</text>

...

</g>

<!-- lines 
onne
ting parents to 
hildren -->

<line x1="o_x" y1="o_y_b"

x2="f_x" y2="f_y_t"/>

<line x1="f_x" y1="f_y_b"

x2="dtf_x" y2="dtf_y_t"/>

...

</svg>

Figure 10: CSVG source of the object hierarchy sur-
rounding the Java.text.Format class. The &lt; in-
side of rule attribute values is an XML entity that rep-
resents the “<” symbol.

of CSVG beyond CCSS is the ability to 
ontrol non-style

properties of SVG elements. This feature is ne
essary

to 
ontrol layout be
ause the positions of those obje
ts

are determined not by style properties but by element

attributes. An earlier paper [10℄ had goals similar to

CCSS, but did not integrate well with the emerging web

standards.

Kim Marriott (a 
o-author on our Cassowary and CCSS

work) and his 
olleagues have independently done some

preliminary work on 
onstraint extensions to SVG.

They use MathML to des
ribe 
onstraints (instead of

a string), use the QOCA algorithm whi
h uses a least-

squares-better 
omparator but is otherwise similar to

Cassowary, and support a limited form of disjun
tions

modeled after our pre
onditions for CCSS [39℄. Diehl

and Keller des
ribe 
onstraint extensions to the Virtual

Reality Markup Language (VRML) basd on a lo
al

propagation based solver that is unable to handle 
y
les

or inequality 
onstraints [15℄.

The animation aspe
ts of SVG and CSVG are related

to the Syn
hronized Multimedia Integration Langauge

(SMIL) [24℄. Another proje
t 
alled Madeus has used

the Cassowary solver to handle a wider range of 
on-

straints in multimedia do
uments [38℄. Madeus provides

support for both temporal and spatial relationships, and

it in
ludes a rudimentary authoring environment.

There is a long history of using 
onstraints in interfa
es

and intera
tive systems, beginning with Ivan Suther-

land's pioneering Sket
hpad system [37℄. Juno-2 is a

more re
ent 
onstraint-based drawing appli
ation [22℄.

Constraints have also been used in several other lay-

out appli
ations. IDEAL [40℄ is an early system spe
if-

i
ally designed for page layout appli
ations. Harada,

Witkin, and Bara� [20℄ des
ribe the use of physi
ally-

based modeling for a variety of intera
tive modeling

tasks, in
luding page layout. glide [36℄ uses visual or-

ganization features (VOFs) to 
ontrol layout of arbi-

trary graphs using a spring metaphor and an iterative

numeri
 solver. Numerous systems use 
onstraints for

widget layout [32, 33℄, and Badros [7℄ uses 
onstraints

for window layout.

CONCLUSIONS AND FUTURE WORK
Our 
onstraint extension to SVG provides useful new

expressiveness for des
ribing illustration graphi
s at a

higher semanti
 level. CSVG permits deferring the a
-

tual layout of the obje
ts in the �gure until the �nal

rendering, thus resulting in greater 
exibility in dealing

with varied viewing environments and user desires. The

implementation of our prototype system was straight-

forward be
ause we were able to leverage our Cassowary


onstraint solving toolkit.

There are substantial opportunities for future improve-

ments of CSVG. Currently, there are no authoring en-

vironments that preserve the author's intentions suÆ-
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iently well to generate CSVG at the appropriate level

of abstra
tion. It is essential that a drawing program

permit users to spe
ify 
onstraints intera
tively, dy-

nami
ally maintain them throughout editing, and ul-

timately re
e
t those 
onstraints in the saved CSVG

�le. Noth's CDA [34℄ or an SVG-
apable editor su
h as

Adobe Illustrator

tm

or Sket
h [21℄ may provide a useful

starting point.

Even in the presen
e of graphi
al editing tools for

CSVG, it may be bene�
ial to provide some syn-

ta
ti
 sugar for CSVG. Future versions of CSVG


ould support referen
ing other elements' attributes

dire
tly. Additionally, CSVG 
ould easily support

using arbitrary expressions, instead of just identi�ers,

for attribute values. Su
h expressions would provide

non-linear and non-numeri
 
onstraints over read-only

variables. Extending the power of the 
onstraint

solving algorithms would permit some of these kinds of


onstraints over read-write variables. For example, a

text element in a CSVG do
ument 
ould be 
onstrained

to display the 
oordinates of a 
ir
le: moving the 
ir
le

would update the string, and editing the string would

move the 
ir
le.

It may also be useful to permit even higher-level 
on-

straint abstra
tions in the CSVG sour
e. For example:

<align dir="horizontal" an
hor="middle">

<!-- arbitrary basi
 shape obje
ts here -->

</align>

would permit easier spe
i�
ation of the intention that a

set of basi
 shapes are aligned in a row by their verti
al


enters. Constraints at this level also avoid problems

that arise when obje
t stru
ture 
hanges. Suppose a

basi
 shape is removed from a diagram (e.g., using the

SVG DOM): should indire
t relationships through that

obje
t remain or be removed? If only the primitive 
on-

straints are present, the situation is ambiguous. With

multiple obje
ts being aligned with a single de
laration,

the answer is more 
learly that those obje
ts should re-

main aligned.

Another area for future work is to better des
ribe the

semanti
s of the SVG in terms of 
onstraints and 
on-

straint hierar
hy theory. This dire
tion is similar to

what we did for Constraint Cas
ading Style Sheets [5℄

and it may provide a unifying implementation me
ha-

nism for parts of SVG as well. In parti
ular, some of the

s
ripting events, su
h as onMouseMove, may be handled

within this framework: a dis
rete a
tion (su
h as a but-

ton press) establishes a 
onne
tion that then is managed

via a 
onstraint relationship until a subsequent a
tion

removes the 
onstraint [29℄.

Overall, CSVG provides a surprising amount of expres-

siveness at a minimal implementation 
omplexity, and

at a low performan
e 
ost.
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