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ABSTRACT
Salable Vetor Graphis (SVG) is a language developed

by the World Wide Web Consortium for desribing two

dimensional vetor graphis for storage and distribution

on the Web. Unlike raster image formats, SVG-based

images sale niely to arbitrary resolutions and sizes.

We introdue a onstraint extension to SVG alled Con-

straint Salable Vetor Graphis (CSVG) that permits

a desription of an image that is more exible. With

CSVG, an image an ontain objets whose positions

and other properties are linearly related to other at-

tributes via onstraints. For example, a retangle an

be spei�ed to remain above a irle, and a line an

be onstrained to onnet their enters. The various

onstraints eah have a spei�ed strength, and we use

onstraint hierarhy theory to determine an appropriate

solution. CSVG enables better layouts of diagrams for a

wider variety of viewing onditions and provides support

for delaratively spei�ed animation. We embedded our

Cassowary onstraint solving toolkit in an existing SVG

renderer to produe a prototype implementation of a

CSVG system.

KEYWORDS: onstraints, Cassowary toolkit, CSVG,

SVG, Salable Vetor Graphis, illustration.

INTRODUCTION
Salable Vetor Graphis (SVG) [17℄ is a language de-

veloped by the World Wide Web Consortium (W3C) for

desribing two dimensional vetor graphis. SVG is used

for storage and distribution of images on the web, and

is inreasingly well-supported by both ommerial and

free software. In ontrast with raster image formats suh

as GIF, JPEG, and PNG, whih store a matrix of indi-

vidual pixels that ompose an image, a Salable Vetor

Graphi image ontains instrutions for resolution inde-

pendent rendering: the same SVG �le will be shown in

more detail when viewed at a higher resolution (e.g., on

a 1200 dots per inh typesetting devie rather than a 75

dpi sreen). A sample SVG image appears in Figure 1.

SVG graphis provide numerous immediate bene�ts

besides resolution independene. SVG �les are often

smaller than an analogous raster image, thus web pages

using them may take less time to download. Beause

Figure 1: SVG image of a lion cub.

SVG is based on XML [13℄, SVG �les are easy to

exhange, proess, and analyze. SVG integrates well

with Casading Style Sheets (CSS) [12℄ spei�ations,

thus enabling some separation of the ontent of the

graphi from the visual appearane of that image.

For example, the olors of a graphi an be spei�ed

in a style sheet that is independent of the SVG �le

itself. SVG also preserves image struture at a higher

level|for example, a web browser an diretly read

the text inluded in an SVG �gure. This ability, along

with the separation of style from ontent, dramatially

improves the aessibility of images for users with olor-

blindness or other visual impairments. Additionally,

the Doument Objet Model (DOM) [2℄ and the SVG

DOM [17, Appendix B℄ an be used to manipulate the

shapes in an image dynamially to reate animations

and other e�ets.

SVG is Not Enough

Although the SVG format is a huge step forward for

many kinds of images, we an do even better for di-

agrammati illustrations. Contrast the illustration in

Figure 2 with the lion ub in Figure 1. Figure 2 is a

simpler image in whih we provide a visualization of a

lass hierarhy. With SVG we have to speify the en-

tire diagram fully and exatly by giving positions and

sizes for all of the elements: preisely one lass hierarhy

diagram is desribed.

Full spei�ation is important for a omplex realisti

image suh as Figure 1, but is less important for many

information visualization appliations. Instead, in Fig-



Figure 2: SVG image diagramming the object hier-
archy surrounding the Java.Text.Format class. The
SVG source for this image appears in Figure 3.

ure 2, there are ertain properties of the layout that are

important in onveying the desired information. For

example, we want the parent lass \Objet" to appear

above its sublasses, and want lines to onnet lasses to

denote the inheritane relationship. If we were able to

desribe what is atually semantially important about

a �gure, we ould have a single desription that pre-

serves exibility for the renderer and would generate

Figure 2 or other variations of that illustration.

Constraints are a useful approah for allowing users

to state their intentions more diretly. A onstraint

is a delarative spei�ation of a relationship that we

wish to hold true. For example, \Format appears above

DateFormat" is a onstraint. We an write the onstraint

mathematially as:

Format:y

bottom

+ vert spaing � DateFormat:y

top

By stating delaratively how the two objet attributes

are to relate, we avoid having to give expliit values

to either. Instead, we an defer that task to a on-

straint satisfation algorithm that will assign values to

variables. In this example, we an then use those value

assignments to determine where to position the names

of the various lasses in the hierarhy.

Our Contributions

We desribe a onstraint extension to Salable Vetor

Graphis, alled Constraint Salable Vetor Graphis

(CSVG). Our extension allows CSVG images to use ar-

bitrary linear arithmeti onstraints to ontrol the lay-

out of shapes, lines, paths, and font sizes. With on-

straints, diagrams an be under-spei�ed, thus permit-

ting the rendering engine greater exibility when laying

out the illustration.

Our main ontributions are:

� a motivation for using onstraints for ertain kinds of

SVG illustrations;

� a desription of Constraint Salable Vetor Graphis

as an extension of SVG, inluding a Doument Type

De�nition (DTD) for CSVG; and

� a prototype implementation of a CSVG viewer based

on the CSIRO SVG viewer [35℄. The prototype makes

use of the sophistiated onstraint solving algorithm

Cassowary [11℄.

BACKGROUND
The Salable Vetor Graphis (SVG) language [17℄ is

based on the eXtensible Markup Language (XML) [13℄.

SVG also makes use of the Casading Style Sheets

(CSS) [12℄ standard for partially separating visual pre-

sentation information from the basi image desription

itself. In this setion, we provide a brief overview of

eah of these standards, and then disuss the Cassowary

Constraint Solving Toolkit, whih provides the engine

behind our onstraint-based extensions.

XML: eXtensible Markup Language
XML is a standardized eXtensible Markup Lan-

guage [13℄ that is a subset of SGML, the Standard

Generalized Markup Language [27℄. The World

Wide Web Consortium (W3C) designed XML to be

lightweight and simple, while retaining ompatibility

with SGML. Although HTML (HyperText Markup

Language) is urrently the standard web doument

language, the W3C is positioning XHTML, an XML-

based language, to be its replaement. While HTML

permits authors to use only a pre-determined �xed set

of tags in marking up their doument, XML allows

easy spei�ation of user-de�ned markup tags adapted

to the doument and data at hand [18, 19℄. XML an

thus be used as the basis for many languages desribing

arbitrary data, not just the single XHTML language.

An XML doument onsists simply of text marked up

with tags enlosed in angle braes. A simple example

appears in Figure 3.

The <svg> is an open tag for the svg element. The </svg>

at the end of the example is the orresponding lose tag.

Text and other nested tags an appear between the open

and lose onstruts. In the example, the svg ontains

16 immediate hildren elements. Empty elements are

allowed and an be abbreviated with a speialized form

that ombines the open and lose tags: <tag-name />

(e.g., eah of the line elements). Additionally, an XML

open tag an assoiate attribute{value pairs with an ele-

ment. For example, the �rst text element has the value

200 for its x attribute. Attributes of an element are un-

ordered and multiple values for the same attribute name

are disallowed. In ontrast, hild elements are ordered,

and multiple hild elements of the same type may be

permitted (e.g., there are eight text hildren of the svg

element).

For an XML doument to be well-formed, the doument

must onform to the syntati rules required of XML

douments (e.g., tags must be balaned and properly

nested, and attribute values must be of the proper form

and enlosed in quotes).
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<?xml version="1.0"?>

<!DOCTYPE svg SYSTEM "svg.dtd">

<svg width="4.5in" height="4in"

viewBox="0 0 100 100"

style="fill: none; font-size: 15;

stroke-width: 1; stroke: blak;

text-anhor: middle">

<des>The objet hierarhy surrounding

the lass "Java.text.Format"</des>

<text x="200" y="30">Objet</text>

<text x="200" y="90">Format</text>

<text x="60" y="150">DateFormat</text>

<text x="60" y="210">SimpleDateFormat</text>

<text x="200" y="150">MessageFormat</text>

<text x="380" y="150">NumberFormat</text>

<text x="310" y="210">DeimalFormat</text>

<text x="450" y="210">ChoieFormat</text>

<line x1="200" y1="32" x2="201" y2="75"/>

<line x1="200" y1="92" x2="60" y2="135"/>

<line x1="200" y1="92" x2="201" y2="135"/>

<line x1="200" y1="92" x2="380" y2="135"/>

<line x1="60" y1="152" x2="61" y2="195"/>

<line x1="380" y1="152" x2="310" y2="195"/>

<line x1="380" y1="152" x2="450" y2="195"/>

</svg>

Figure 3: SVG source of the class hierarchy illustration
shown in Figure 2. SVG is based on XML.

A more stringent haraterization of an XML doument

is validity. An XML doument is valid if and only if it

both is well-formed and adheres to its spei�ed dou-

ment type de�nition, or DTD. A doument type de�ni-

tion is a formal desription of the grammar of the spe-

i� language to be used by a lass of XML douments.

It de�nes all the permitted element names and desribes

the attributes that eah kind of element may possess.

It also restrits the struture of the nesting within a

valid XML doument. Figure 3 is valid with respet

to the DTD that desribes Salable Vetor Graphis,

svg.dtd [17, Appendix A℄.

SVG: Scalable Vector Graphics

SVG is an XML-based language for desribing vetor

graphis. It was designed by the W3C and is intended

to be the standard format for all images on the Internet.

Vetor graphis provide resolution independene|the

desription of the image is based on higher-level graph-

ial elements, rather than the pixels used to desribe

a raster image. SVG uses XML elements to represent

basi shapes, inluding retangles, ellipses, lines, and

polygons. It also supports the more general notion of

an arbitrary path that an represent an outline to be

�lled, stroked, or lipped to. SVG is very similar in

spirit to the PostSript page-desription language [1℄,

but uses XML syntax instead of post�x notation.

An SVG element desribes a shape to be rendered. For

example:

<ret x="20" y="10" width="10" height="5"/>

desribes a retangle whose top-left is positioned at o-

ordinate (20,10) with a width of 10 units, and a height

of 5 units. Lengths and oordinates an speify units

expliitly, but when they are omitted, the user spae

oordinate system is used [17, Ch.7℄. Unfortunately, all

basi shape objets use their top-left as an anhor point,

making it unduly umbersome to position, for example,

the enter of an objet at a spei� loation.

An espeially powerful SVG element is path. Its d

(for \data") attribute ontains a string that enodes a

ommand-based desription of an arbitrary outline. For

example, the element:

<path d="M 20 10 L 30 10 L 30 15 L 20 15 Z"/>

desribes a retangle path equivalent to the preeding

ret element: �rst Move to (20, 10), then draw Lines

to (30,10), (30,15), and (20,15), and �nally lose the

path (Z). Upperase ommand haraters designate the

use of absolute oordinates, while lowerase denotes rel-

ative oordinates. Other path sub-language ommands

inlude Curve-to, Smooth urve-to, Quadrati Bezier

urve-to, and more.

Other important elements inlude defs and use for de�n-

ing objets and later referening them, image for em-

bedding legay raster image �les (e.g., PNG or JPEG

graphis), text for inluding text, and g for grouping

sub-elements to be rendered as a single entity.

A program that reads an SVG �le has aess to the

internals of the image via the SVG Doument Objet

Model [17, Appendix B℄. The SVG DOM is ompatible

with the basi XML DOM [2℄ and is a proper extension

of the DOM Core [23℄. The DOM permits aess to the

SVG element tree, inluding allowing the manipulation

of element attributes. For example, to inrease the size

of a text element, we an write the following ode in

ECMASript [16℄ (a standardized version of JavaSript).

e = doument.getElementById("TextElement");

e.setAttribute("transform", "sale(2)");

and the seleted element will be saled to twie its nor-

mal size. The SVG DOM an be used in ombina-

tion with sripting and event handlers (e.g., mousedown,

onlik) to permit some useful interative apabilities.

SVG also ontains several animation elements that de-

sribe time-based perturbation of the ontaining objet.

These elements an be used to ahieve motion along

paths, the fading in or out of objets, hanges in olor,

and more. For example, to animate moving a retangle

horizontally aross the viewport to the right, we write:

<ret x="20" y="10" width="10" height="5"/>

<animate attributeName="x"

attributeType="XML"

begin="0s" dur="9s" fill="freeze"

from="20" to="120"/>

</ret>
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Most elements ontain attributes to ontrol espeially

important properties of the desribed objet, suh as its

position and size. Numerous other properties of objets

are set using a single attribute alled style. That at-

tribute is the aess point to a powerful style desription

language alled Casading Style Sheets.

CSS: Cascading Style Sheets
The Casading Style Sheets (CSS) [12℄ reommenda-

tion was introdued by the W3C in assoiation with the

HTML 4.0 standard. CSS provides a rih set of \style"

properties for various HTML and SVG tags. By setting

the value of these properties, the doument author an

ontrol how the browser will display eah element.

SVG images an diretly annotate elements in the do-

ument with style properties via the style attribute. Al-

ternatively, the author an plae this information in a

separate style sheet and then link or import that �le.

Thus, the same doument may be displayed using dif-

ferent style sheets and the same style sheet may be used

for multiple douments, easing maintenane of a uniform

look for a web site.

1

For example, in Figure 3 the svg

element spei�es a style attribute with the multi-part

string value:

fill: none; font-size: 15;

stroke: blak; stroke-width: 1;

text-anhor: middle

Eah of the above �ve CSS delarations is a property{

value pair. For example \font-size: 15" spei�es that

the property \font-size" should take on the value \15".

Beause all of these style properties are spei�ed on the

svg root element, the styles they set are inherited by

eah hild element, unless they are overridden. The

CSS standard spei�es omplex rules for determining

the �nal value for a property from the multiple delara-

tions that ould inuene it|this is alled \asading."

An earlier paper disusses a onstraint extension to CSS

that delaratively formalizes these rules using onstraint

hierarhy theory and also demonstrates some extensions

that provide greater expressiveness [5℄.

Cassowary Constraint Solving Toolkit
Cassowary is our onstraint solving toolkit that supports

arbitrary linear arithmeti onstraints [4℄. Constraints

an be either equalities or inequalities over real-valued

variables. Eah onstraint an be either required (hard)

or preferred (soft). Arbitrarily many levels of prefer-

ene an be handled, but we typially use only three:

strong, medium, and weak. Appliations speify sets of

onstraints and strengths, and the onstraint solver as-

signs values to the variables to satisfy the onstraints.

All required onstraints must be exatly satis�ed, and

1

Unfortunately, few SVG renderers urrently support separat-

ing the style sheet from the SVG doument|with some imple-

mentations, only style properties set via the style attribute are

honored.

the various non-required onstraints are satis�ed as well

as possible. Cassowary handles yles without diÆulty.

Constraint hierarhy theory [9℄ provides a delarative

semantis of what onstitutes a orret solution. For

Cassowary, we use the weighted-sum-better omparator

for hoosing a single solution from among those that

satisfy all the required onstraints. This omparator

omputes the error for a solution by summing the prod-

ut of the strength and the error for eah onstraint

that is unsatis�ed. Strengths are represented as tuples:

strong is (1; 0; 0), medium is (0; 1; 0), and weak is (0; 0; 1).

We order the errors lexiographially so that a strong

onstraint is in�nitely more important than all of the

medium and weak onstraints.

Client appliations use soft onstraints to ontrol what

solutions are hosen|they are a means of manipulating

the objetive funtion for the optimization. An impor-

tant use of non-required onstraints is to enfore stabil-

ity in graphial layout. We typially add a weak \stay"

onstraint on eah variable's value whih states that a

variable's future value should be its urrent value. These

stay onstraints make objets remain in plae unless

some other stronger desire fores a hange.

The Cassowary onstraint solving algorithm is an inre-

mental version of the simplex algorithm that we have

optimized for interative graphial appliations. The

simplex algorithm is a well-known and heavily studied

tehnique for �nding a solution to a olletion of linear

equality and inequality onstraints while minimizing the

value of a linear objetive funtion [31, Setion 2.5℄.

CSVG: CONSTRAINT SCALABLE VECTOR GRAPHICS
As previously mentioned, a primary advantage of Sal-

able Vetor Graphis is resolution independene. The

onventional means of delivering an image is to render

the �gure, then send the �gure aross the network in

a rasterized image format suh as PNG or JPEG (Fig-

ure 4). The resolution is �xed when that �le is re-

ated, and the artifat the user reeives is inexible. The

adoption of the SVG image format permits a di�erent

delivery mehanism (Figure 5). The high-level image

desription is stored in the SVG image format, preserv-

ing muh of the semanti value provided by the author.

That SVG �le is then sent aross the network, where an

SVG renderer on the lient side hooses the resolution

and reates a rasterized display of that image speially-

tuned for the display devie and the desired size.

The key observation onerning the evolution from

raster images to SVG is that we are sending a higher-

level desription aross the network and moving some

of the proessing of the image from the server side

to the lient side. Thus, the artifat sent aross the

Internet is more exible|it an be used as the soure

for generating a high-quality printout of the image,

to reate a low-resolution thumbnail of the image,
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Figure 4: The conventional process of delivering a raster
image across the network.
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Figure 5: The process of delivering a resolution-
independent SVG image across the network.

or even to \render" the image aurally using speeh

synthesis to desribe the diagram. The deision of how

to present the image is made with input from the user,

her browser, and other lient-side software. Style sheets

provide yet another way to inrease the exibility of the

image sent over the network: not only is the resolution

left undetermined, but the �nal deision as to, for

example, the oloring sheme, an be delayed until after

applying style sheet delarations.

Extending SVG
Our onstraint extension to SVG permits desribing the

author's layout intentions, and defers the atual posi-

tioning and sizing of the image's elements until just be-

fore �nal display for the user (Figure 6). To support

this greater exibility, we have made three extensions

to the SVG language. First, we add a new element type

alled onstraint and permit those elements to be hil-

dren of the svg root element. Eah onstraint element

has a required attribute, rule, and an optional attribute,

strength. Seond, we support identi�er names in plae

of literal numbers in all attribute and style sheet values.

Thus, we an write:

<onstraint rule="ret_w >= ret_h"

strength="strong"/>

<ret x="10" y="20"

width="ret_w" height="ret_h"/>

to express the desire that the retangle be at least as

wide as it is tall. The rule impliitly introdues new

onstraint variables.

2

Third, we add several built-in

read-only onstraint variables. (A read-only variable

is one that annot be hanged by the solver to satisfy

2

Our syntax was hosen for simpliity. It may be useful to

require expliit introdution of variables and to use a separate

XML namespae for our extensions so that SVG renderers without

a onstraint engine ould still handle CSVG images.
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Figure 6: The process of delivering a CSVG image
across the network.

the onstraint in whih it ours [9℄.) Two variables,

viewport width and viewport height, are used to allow

the image to be inuened by the size of the display

area. We expose urrent time and urrent time squared

whih are both ever-inreasing read-only variables that

allow CSVG to support the delarative spei�ation of

time-based animations more diretly than the animate

elements.

CSVG permits image desriptions to be at a higher level

of abstration than an ordinary SVG �le. Instead of

foring the author to speify exat values for positions

and sizes, the CSVG author an use meaningful names

for values and enumerate desired relationships among

those values. Similar to how SVG defers hoosing the

display resolution to later in the delivery pipeline, CSVG
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Figure 7: CSVG rendering of the Format class hierarchy inside a wide and short viewport.

delays �nalizing the layout of the illustration until the

lient side (Table 1).

Table 1: Where properties of a graphic becomes fixed.

Image format Resolution Style Layout

PNG/JPEG server server server

SVG lient server server

SVG + CSS lient lient server

CSVG + CSS lient lient lient

A Layout Example
We an rewrite Figure 3 to speify onstraints on the lay-

out of the lass hierarhy, rather than giving exat loa-

tions for all the parts of the illustration. Our CSVG de-

sription of the image looks like the ordinary SVG image

(Figure 2) under \ideal" viewing onditions. However,

the CSVG �le is far more exible, and it will appear as

shown in Figures 7 and 8 when the viewport dimensions

are altered. An ordinary SVG �le would always appear

as just a uniformly saled version of Figure 2.

For our CSVG version of the lass hierarhy, we use a to-

tal of 77 onstraints that reet typial layout desires for

viewing trees: nodes at the same level are aligned hori-

zontally (4), di�erent levels are spaed at equal vertial

intervals (8), there is a minimum gap between adjaent

nodes on the same level (4), and parent nodes are above

and midway between their edge hildren (5) [31, p. 204℄.

Of the remaining 56 onstraints, 32 are used to keep the

text inside the viewport, 16 are used to delare onne-

tion points for the lines, and the last 8 are for setting

the margin parameters and ontrolling the font size. An

abridged version of the CSVG soure is in Figure 10.

Of ourse, many of these onstraints are redundant and

ould be eliminated through analysis. Beause the Cas-

sowary algorithm handles yles without diÆulty, the

redundanies are not a problem, though they do impat

performane. A CSVG image for frequent use would

likely be optimized before distribution.

Figure 8: CSVG rendering of the Format class hierar-
chy inside a narrow and tall viewport.

An Animation Example

Constraints relating objet positions to the urrent time

an be used to support simple animations. Constraints

for layout are even more ompelling when parts of the

image are moving: the positions of the remaining objets

an be desribed at a high level, knowing that the solver

will animate whatever other objets need to move to

maintain the spei�ed onstraints.

Figure 9 shows four sreenshots of our CSVG prototype

rendering an animation of a ball falling on a seesaw.

The seesaw.svg image ontains 18 onstraints to sup-

port the animation: 12 for the positions of the various

elements, 1 relating the ball to the urrent time squared

built-in variable, 1 stating that the ball must remain

above the left edge of the seesaw, and 4 desribing that

the seesaw annot go through the oor nor through the

fulrum.

IMPLEMENTATION

On the lient side of the pipeline, we have implemented

a CSVG viewer to experiment with the additional ex-

pressiveness it provides. Our prototype is based on ver-

sion 0.71 of the CSIRO SVG Viewer [35℄. That SVG

viewer is implemented in Java, and it uses IBM's XML4J

parser version 2.0.15 [26℄. For parsing the onstraint

rule expressions, we use JLex [8℄, a lexial analyzer gen-
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Figure 9: CSVG animation of a ball falling towards seesaw. The position of the ball is directly related to time, and the
seesaw moves because of constraints describing its behavior.

erator (similar to Lex), and CUP (Construtor of Use-

ful Parsers) [25℄, an LALR parser generator (similar to

YACC). For solving the onstraint systems and laying

out the �gure, we embedded our Java implementation

of the Cassowary Constraint Solving Toolkit [4℄.

As with any XML language, CSVG is de�ned by its

Doument Type De�nition. Our CSVG DTD is a

straightforward extension of the SVG DTD: we added

the onstraint element and spei�ed its two attributes,

rule (required) and strength (impliit, defaulting to

strong):

<!ELEMENT onstraint EMPTY >

<!ATTLIST onstraint

rule CDATA #REQUIRED

strength CDATA #IMPLIED>

Additionally, we added the onstraint element to the

list of permissible hildren of svg elements:

<!ELEMENT svg (defs?,des?,title?,

(path|text|...|onstraint)*)>

No other hanges to the SVG DTD were neessary to

support using identi�ers inside of attribute expressions.

(However, further hanges would be neessary with the

more sophistiated data desription that XML Shema

allows.)

After the XML parser reads in the SVG doument, we

handle onstraint elements by reating a new onstrain-

able variable for eah unique identi�er ontained in a

onstraint rule. For eah variable, we add a stay on-

straint on it to ensure stability of the resulting �gure.

Then, for eah onstraint element, we reate a onstraint

objet by parsing the rule attribute's string. Finally, we

add eah onstraint to the global solver.

As we build the internal representation of the image,

we store the names of variable identi�ers that are used

as an attribute's value. Then, whenever we render the

�gure, we retrieve the values of attributes as usual, with

one extra step: if the attribute is an identi�er, we then

look up that onstraint variable's value and use it. For

path elements, we pre�x names of onstraint variables

with the $ symbol to avoid ambiguity. For example, we

write:

<path d="M $x $y l $dx $dy"/>

to move to the absolute oordinates held in x and y, and

then draw a line to the relative oordinates ontained in

variables dx and dy.

On our Xeon Pentium III 550 MHz test mahine running

Java 1.3beta-0 with the HotSpot virtual mahine under

Windows NT 4.0, the performane of our prototype is

very good. For our lass hierarhy example that ontains

77 onstraints, the adding of the onstraints and the ini-

tial solve requires only 360 ms. Subsequent re-solves of

the onstraint system after resizing the window require

less than 200 ms eah. Thus, re-rendering the �gure af-

ter hanging the viewport size takes only slightly longer

than for the ordinary SVG viewer. Performane would

be even better if we removed redundant onstraints or

if we further optimized our implementation.

On the server side, our lass hierarhy diagram example

was largely mehanially-derived from an XML-based

representation of Java soure ode, JavaML [3℄. Using

XSLT [14℄, it is reasonably straightforward to generate

CSVG from the JavaML representation.

RELATED WORK
As mentioned earlier, style-sheet tehnologies, suh as

CSS (Casading Style Sheets) [12℄, PSL (Proteus Style

Language) [30℄, DSSSL (Doument Style Semantis and

Spei�ation Language) [28℄, and XSL (eXtensible Style

Language) [14℄, eah delay �nalizing various presenta-

tional attributes of a �gure until later in the delivery

proess, loser to the viewing user. None of these style

languages, however, attempt to preserve layout desires

to perform layout dynamially on the lient side.

Our onstraint extensions to Casading Style Sheets,

CCSS, demonstrate how CSS an be understood in

terms of onstraints, and they add expressiveness given

that more general framework [5℄. Our CSVG motiva-

tion and philosophy is analogous to that of CCSS, and

CCSS is diretly appliable to ontrolling style proper-

ties of CSVG douments as well. The primary addition
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<?xml version="1.0"?>

<!DOCTYPE svg SYSTEM "svg.dtd">

<svg width="4.5in" height="4in"

viewBox="0 0 100 100"

style="fill: none; stroke: blak;

stroke-width: 1">

<des>The objet hierarhy surrounding lass

"Java.text.Format"</des>

<onstraint rule="fh >= 9"/>

<onstraint

rule="vert_spaing = vp_height / 3.5"/>

<onstraint rule="text_w * 4 = vp_width"/>

...

<!-- stay inside viewport -->

<onstraint

rule="o_x >= side_margin + h_text_w"/>

<onstraint

rule="o_x &lt;=

vp_width - side_margin - h_text_w"/>

<onstraint

rule="o_y >= top_margin + fh"/>

<onstraint

rule="o_y &lt;= vp_height - top_margin"/>

...

<!-- layout between hildren and parents -->

<onstraint

rule="(dtf_x + nf_x) / 2 = f_x"

strength="strong"/>

<onstraint

rule="f_y >= o_y + vert_spaing"

strength="strong"/>

...

<!-- same level at same y oordinate -->

<onstraint rule="dtf_y = mf_y"/>

...

<!-- same level spread out horizontally -->

<onstraint rule="dtf_x + text_w &lt;= mf_x"/>

...

<!-- the text elements for eah lass -->

<g style="font-size: fh; text-anhor: middle">

<text x="o_x" y="o_y">Objet</text>

<text x="f_x" y="f_y">Format</text>

<text x="dtf_x" y="dtf_y">DateFormat</text>

<text x="mf_x" y="mf_y">MessageFormat</text>

<text x="nf_x" y="nf_y">NumberFormat</text>

...

</g>

<!-- lines onneting parents to hildren -->

<line x1="o_x" y1="o_y_b"

x2="f_x" y2="f_y_t"/>

<line x1="f_x" y1="f_y_b"

x2="dtf_x" y2="dtf_y_t"/>

...

</svg>

Figure 10: CSVG source of the object hierarchy sur-
rounding the Java.text.Format class. The &lt; in-
side of rule attribute values is an XML entity that rep-
resents the “<” symbol.

of CSVG beyond CCSS is the ability to ontrol non-style

properties of SVG elements. This feature is neessary

to ontrol layout beause the positions of those objets

are determined not by style properties but by element

attributes. An earlier paper [10℄ had goals similar to

CCSS, but did not integrate well with the emerging web

standards.

Kim Marriott (a o-author on our Cassowary and CCSS

work) and his olleagues have independently done some

preliminary work on onstraint extensions to SVG.

They use MathML to desribe onstraints (instead of

a string), use the QOCA algorithm whih uses a least-

squares-better omparator but is otherwise similar to

Cassowary, and support a limited form of disjuntions

modeled after our preonditions for CCSS [39℄. Diehl

and Keller desribe onstraint extensions to the Virtual

Reality Markup Language (VRML) basd on a loal

propagation based solver that is unable to handle yles

or inequality onstraints [15℄.

The animation aspets of SVG and CSVG are related

to the Synhronized Multimedia Integration Langauge

(SMIL) [24℄. Another projet alled Madeus has used

the Cassowary solver to handle a wider range of on-

straints in multimedia douments [38℄. Madeus provides

support for both temporal and spatial relationships, and

it inludes a rudimentary authoring environment.

There is a long history of using onstraints in interfaes

and interative systems, beginning with Ivan Suther-

land's pioneering Skethpad system [37℄. Juno-2 is a

more reent onstraint-based drawing appliation [22℄.

Constraints have also been used in several other lay-

out appliations. IDEAL [40℄ is an early system speif-

ially designed for page layout appliations. Harada,

Witkin, and Bara� [20℄ desribe the use of physially-

based modeling for a variety of interative modeling

tasks, inluding page layout. glide [36℄ uses visual or-

ganization features (VOFs) to ontrol layout of arbi-

trary graphs using a spring metaphor and an iterative

numeri solver. Numerous systems use onstraints for

widget layout [32, 33℄, and Badros [7℄ uses onstraints

for window layout.

CONCLUSIONS AND FUTURE WORK
Our onstraint extension to SVG provides useful new

expressiveness for desribing illustration graphis at a

higher semanti level. CSVG permits deferring the a-

tual layout of the objets in the �gure until the �nal

rendering, thus resulting in greater exibility in dealing

with varied viewing environments and user desires. The

implementation of our prototype system was straight-

forward beause we were able to leverage our Cassowary

onstraint solving toolkit.

There are substantial opportunities for future improve-

ments of CSVG. Currently, there are no authoring en-

vironments that preserve the author's intentions suÆ-
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iently well to generate CSVG at the appropriate level

of abstration. It is essential that a drawing program

permit users to speify onstraints interatively, dy-

namially maintain them throughout editing, and ul-

timately reet those onstraints in the saved CSVG

�le. Noth's CDA [34℄ or an SVG-apable editor suh as

Adobe Illustrator

tm

or Sketh [21℄ may provide a useful

starting point.

Even in the presene of graphial editing tools for

CSVG, it may be bene�ial to provide some syn-

tati sugar for CSVG. Future versions of CSVG

ould support referening other elements' attributes

diretly. Additionally, CSVG ould easily support

using arbitrary expressions, instead of just identi�ers,

for attribute values. Suh expressions would provide

non-linear and non-numeri onstraints over read-only

variables. Extending the power of the onstraint

solving algorithms would permit some of these kinds of

onstraints over read-write variables. For example, a

text element in a CSVG doument ould be onstrained

to display the oordinates of a irle: moving the irle

would update the string, and editing the string would

move the irle.

It may also be useful to permit even higher-level on-

straint abstrations in the CSVG soure. For example:

<align dir="horizontal" anhor="middle">

<!-- arbitrary basi shape objets here -->

</align>

would permit easier spei�ation of the intention that a

set of basi shapes are aligned in a row by their vertial

enters. Constraints at this level also avoid problems

that arise when objet struture hanges. Suppose a

basi shape is removed from a diagram (e.g., using the

SVG DOM): should indiret relationships through that

objet remain or be removed? If only the primitive on-

straints are present, the situation is ambiguous. With

multiple objets being aligned with a single delaration,

the answer is more learly that those objets should re-

main aligned.

Another area for future work is to better desribe the

semantis of the SVG in terms of onstraints and on-

straint hierarhy theory. This diretion is similar to

what we did for Constraint Casading Style Sheets [5℄

and it may provide a unifying implementation meha-

nism for parts of SVG as well. In partiular, some of the

sripting events, suh as onMouseMove, may be handled

within this framework: a disrete ation (suh as a but-

ton press) establishes a onnetion that then is managed

via a onstraint relationship until a subsequent ation

removes the onstraint [29℄.

Overall, CSVG provides a surprising amount of expres-

siveness at a minimal implementation omplexity, and

at a low performane ost.
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Availability
Our prototype CSVG renderer, omplete versions of

both examples desribed here, and the Cassowary on-

straint solving toolkit are all freely available on the In-

ternet [4, 6℄ and are distributed under the terms of the

GNU General Publi Liense.
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