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Abstract
In this paper, we describe three novel analysesliorinating unnecessary synchronization that reznover 70% of

dynamic synchronization operations on the majaftgur 15 benchmarks and improve the bottom-lindgomance of three
by 37-53%. Our analyses attack three frequent famfmsinecessary synchronization: thread-local sgordhation, reentrant
synchronization, and enclosed lock synchronizatidie. motivate the design of our analyses with aystfdthe kinds of
unnecessary synchronization found in a suite dflsinand multithreaded benchmarks of differentsiaed drawn from a
variety of domains. We analyze the performanceurfaptimizations in terms of dynamic operations ogad and run-time
speedup. We also show that our analyses may etiablese of simpler synchronization models thamtbéeel found in Java,
at little or no additional cost in execution timide synchronization optimizations we describe emabbgrammers to design

efficient, reusable and maintainable libraries sygtems in Java without cumbersome manual codeicasting.

1. Introduction

Monitors [LR80] are appealing constructs for symctization, because they promote reusable code @semt a simple
model to the programmer. For these reasons, sepaygtamming languages, such as Java [GJS96] artulstS [H92],
directly support them. However, widespread use ofitors can incur significant run-time overheadisable code modules
such as classes in the Java standard library aftemain monitor-based synchronization for the mgestberal case of
concurrent access, even though particular progteseghem in a context that is already protecteah froncurrency [HN99].
For instance, a synchronized data structure magcbessed by only one thread at run time, or adoessynchronized data
structure may be protected by another monitor éngitogram. In both cases, unnecessary synchramizareases execution
overhead. As described in section 2, even singksatlted Java programs typically spend 10-50% of theicution time on

synchronization operations.

Synchronization overhead can be reduced nignually restructuring programs [SNR+97], but any perforogan
improvement gained typically comes at the costiropficity, maintainability, reusability, and evemggram correctness. For

example, synchronized methods can be modified dwige specialized, fast entry points for threadst thiready hold a
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monitor lock. Such specialized functions make thegmm more complex, and using them safely may ireqeareful
reasoning to ensure that the protecting lock isimed on all paths to the function call. In additithe assumption that a lock
is held at a particular program point may be umititmally violated by a change in some other pathe program, making
program evolution and maintenance error-prone. goisé restructuring technique removes synchronigaéinnotations
where they are not needed for correctness in thermuversion of the program. Both of these hantihupations make code
less reusable, because they make assumptions spmitronization that may not be valid when a coneporis reused in
another setting. These assumptions create an opjigrfor subtle concurrency bugs to arise over ¢harse of program
evolution. Overall, complex manual optimizationskegrograms harder to understand, make programu&mol more

difficult, reduce the reusability of componentsgdaan lead to subtle concurrency bugs.

In this paper, we present and evaluate static aealthat reduce synchronization overheadubymatically detecting and
removing unnecessary synchronization. The analgbesnate synchronization from code that can ondydxecuted by a
single thread, synchronization on locks alreadytqmted by an enclosing lock, and synchronizatiomemmtrant locks. The
analyses provide several advantages over manughipation. First, because our analyses are runnaatically during
compilation, the source code is left in its oridifaam, thus avoiding the code complexity and epowne program evolution
that results from manual restructuring. Secondoraatic analyses avoid the significant effort invexlvin manual
restructuring. Third, our analyses may make ottaicsanalyses (e.g., model checking [C98]) maaetable by reducing the

number of concurrency constructs in the program.

Finally, our analyses allow programmers to use aemgeneral language model in which every public hoet
synchronizes on the receiver’s monitor, rather tdoc synchronization on some methods and net@tRresent in several
concurrent object-oriented languages [P96], thislehconsiderably simplifies programmer reasoningualbace conditions
by moving locking granularity to the level of théass. The programmer can rely on the compiler toone extra
synchronization statements in particular conteitisils ensuring safe multithreaded interaction, wiitethe same time
avoiding a large run-time performance penalty. éneyal, this technique could lead to deadlock addeed concurrency, so
it would be desirable to provide a way to overtille default synchronization. However, if a progrdeadlocks, the problem
is often easily identified by looking at which thads hold which locks; data corruption due to raseddions caused by

manual optimization may be much more difficult &bdg, because it is usually detected long afterabe condition occurs.
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To evaluate our analyses, we performed two setxériments on a set of single- and multithreaded applications in
which programmers had manually optimized synchiation. We analyzed the applications to show therextio which our
analyses could further improve upon programmerreffto eliminate synchronization operations. Thedld-local analysis
was particularly important here: it was responsifide eliminating the majority of synchronization cardramatically
outperformed previously published analyses. Ovemll analyses removed a mean of 88% of dynamichsgnization
operations for singlethreaded benchmarks and 35%ntdtithreaded benchmarks, with a high of over 99%e effect on
execution times for three of the benchmarks wasemease in performance of over 37%; other bencksnae evaluated also
improved, but to a far lesser extent, becauseyhardic frequency of synchronization operationigmt was low. Our results
demonstrate that automatically detecting and rengpgynchronization overhead can eliminate the damk$® of manual

removal, while still improving application performee.

In addition, to demonstrate that our analyses walldw a more programmer-friendly synchronizatiomdal, we
simulated the effect of this model by adding conenicy to all public methods of our benchmarks. féwilts show that our
algorithms are able to remove virtually all of theerhead associated with such a model. In the tastnodel of concurrency

had been regarded as too expensive, since it mdytdemuch more synchronization than in more cotioeal models.

This paper makes four contributions. First, we eiogily evaluate the types of unnecessary syncheiain in a wide
range of single- and multi-threaded benchmarks,atestnating the potential benefit of several typespiimization. Second,
we provide a formal presentation of precise antiefit algorithms for detecting three kinds of uoessary synchronization.
Third, we evaluate the performance of our algorghon the same set of applications, and analyzendigngynchronization
behavior, the contribution of the individual anagsto overall performance, and the benefits of analyses relative to
previous studies. Finally, we demonstrate thatamalyses make a simpler model of synchronizatiasilide, by effectively
removing synchronization overhead from a simpleivatihg example program, as well as our originalltitbreaded

benchmarks with synchronization added to all pulmiathods.

The rest of the paper is structured as follows. magt section briefly describes the Java synchaditirn model, and
motivates our research with measurements of synctation overhead in both single- and multithrealdedchmarks. Section
3 compares our analyses to several recently padiglgorithms that also strive to eliminate synaolration in Java. Section
4 describes our thread-local, reentrant lock, amtdosed lock analyses. Section 5 presents our qpeaftce results. Finally,

section 7 concludes.
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2. The Synchronization Problem
2.1 Cost of Synchronization in Java

Synchronization is expensive in Java programscallyi accounting for a significant fraction of exion time. Although
it is difficult to measure the cost of synchroniaatdirectly, it can be estimated in a number offsvaMlicrobenchmarks show
that individual synchronization operations takewsstn 0.14 and 0.4 microseconds even for efficigmicisronization
implementations running on 400MHz processors [BIoPP8]. Our own whole-program measurements showaHh-40%
overhead is typical for single-threadeapplications in the JDK 1.2.0. Another study fouthdt several programs spend
between 26% and 60% of their time doing synchrdiimain the Marmot research compiler [FKR98]. Besau
synchronization consumes a large fraction of maawyaJprograms’ execution time, there is a poterfial significant

performance improvements by optimizing it away.

2.2 Typesof Unnecessary Synchronization

A synchronization operation isnecessary if there can be no contention between threadg#ddock. In order to guide
our synchronization optimizations, we have ideetfithree important classes of unnecessary syndation that can be
removed by automatic compiler analyses. First,ldck is only accessible by a single thread thraughhe lifetime of the
program,i.e., it is thread-local, there can be no contention for it, and thus pkrations on it can safely be eliminated.
Similarly, if threads always acquire one lock amttht while acquiring anothetr.e., the second lock ienclosed, there can be
no contention for the second lock, and the syndhation operations on it can safely be removedalsinwhen a lock is
acquired by the same thread multiple times in &edefmashionj.e., it is areentrant lock, the first lock acquisition protects the

others from contention, and therefore all nestextissonization operations can be optimized away.

It is possible to imagine other types of unnecgssganchronization, such as locks that protect inablgt data structures,
locks that do not experience contention due to lsyomization mechanisms other than enclosing loaksl, acquiring and
releasing a lock multiple times in succession [DRY% focus on the three types discussed abovausecthey represent a
large proportion of all unnecessary synchronizattbay can be effectively identified and optimizedd their removal does
not impact the concurrency behavior of the apghicatWe define two analyses to optimize these typesinnecessary
synchronizationthread-local analysis to identify thread-local locks, andck analysis to find enclosed locks and reentrant

locks.

1 Synchronization overhead in single-threaded applications can be ntehguaking the difference between the execution times ofgrgmowith and with-
out synchronization operations. This experiment cannot be performedltithreaded programs because they do not run correctly wisigaghronization.
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Bytecode size (000s bytes) Classes (number) Methods (number)
Benchmark Description

Application | Library |Application| Library |Application| Library
Single-threaded programs
cassowary|| Constraint solver (UW) 79 989 29 130 459 6748
javac éou;ce-to-bytecode compiler for Java 624 1015 173 444 2212 6914

un

javacup Parser-generator for Java 130 989 34 430 509 67148
javadoc Documentation generator for Java 675 1013 177 5| 442360 6936
jal Java Generic Library array benchmarks 874 989 262 0[435216 6748
jlex Lexical analyzer for Java 91 989 20 430 213 6748
pizza Source-to-bytecode compiler for Java 819 1004 239 438 3203 6851
Multithreaded programs
array Parallel matrix multiplication 46 989 P9 430 178 874
instantdb || Database with a TPC-A-like workload 307 244y 67 956 1268 15891
jlogo Multithreaded Logo interpreter 202 989 58 430 760 4&7
jws Web server (Sun) 564 3142 510 903 2743 19363
plasma plasma simulation 8 2016 1 1161 19 18193
proxy Network proxy for the HTTP protocol 7 989 3 430 21 748
raytrace Ray tracer with geometric objects 29 1318 18 6(53 190 8688
slice visualization tool 23 2016 13 1161 71 18256

Table 1. Characteristics of our Benchmark Suite

2.3 Unnecessary Synchronization Frequency by Type

In order to determine the potential benefits ofimfting each type of unnecessary synchronizatioa,studied the
synchronization characteristics of a diverse selasfa programs. Table 1 shows the broad scoperobenchmark suite,
which includes seven single-threaded and eightithtéaded programs of varying size. Our applicaiare real programs
composed of 20 to 510 classes, in domains rangiog fcompiler tools to network servers to databasgines. We
consciously chose multithreaded programs, becduesedannot be trivially optimized by removing athshronization. The
programs in our suite include some of the largaga programs publicly available, allowing us to destrate the scalability

of our techniques.

To assess the relative importance of each typeoécessary synchronization, we used executiongracmeasure the
dynamic frequency of each type for each of our @&dchmark programs. A synchronization operatioryizachically thread-
local if the corresponding lock is only used by dheead during program execution. A synchronizataperation is
dynamically enclosed if all operations on its ledcur while some other lock is locked. Finallyyachronization operation is
dynamically reentrant if its lock is already locketien the operation occurs. A given synchronizatiparation can fall into
more than one category, so the total percentagenokécessary synchronization is typically less th@a sum of the
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Figure 1. Classification of Unnecessary Synchronization Operations

contributions from each category. This also imptiest analyses that focus on different kinds ofag@ssary synchronization

may optimize some of the same synchronization dioera

Figure 1 shows that all three types of unnecessanghronization occur frequently in some benchmarkese figures
represent an optimistic upper bound on how well atatic analysis could eliminate a particular tygfeunnecessary
synchronization. The most common type is threadtlsgnchronization: all synchronization (exceptddiinalizer thread) is
thread-local for the single-threaded benchmarkd, arsignificant fraction of synchronization is thdelocal even for the
multithreaded programs. Enclosed synchronizatioke®an important contribution f@avadoc , proxy , and a number of the

other benchmarks. Finally, reentrant synchroniratimkes a small contribution to many different enarks.

3. Related Work

The rapid deployment and acceptance of Java, wsthmilti-threaded programming model and support 6k
synchronization, has recently fueled research onirgting unnecessary synchronization operationkil&\the proposed
analyses and optimization techniques have beere qinterse, they have all targeted a single soufcennecessary
synchronization, that of thread-local objects. Haréocal locks are accessed by at most one thmedrace identified can be

eliminated via specialization or by explicit checks

Blanchet [B99] identifies thread-local objects tigh escape analysis by encoding reference and@nbtelationships

with integer type heights. A flow-insensitive argifyis used both to allocate thread-local objentthe stack and to eliminate
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synchronization from stack-allocated objects. St@bbcated objects are marked, and each synchrimizaperation checks
whether an object is on the stack before lockingnitaddition, this optimization modifies methodsatations to call an

unsynchronized version of a method when the recebct does not escape.

Bogda and Holzle [BH99] have also defined a floweinsitive escape analysis to eliminate synchraoizéitom thread-
local objects. The analysis is limited to threadaloobjects that are only reachable by paths ofasrte/o references from the
stack. It removes synchronization by specializitagges to create a subclass with unsynchronizedoagt and modifying
allocation sites of thread-local objects to use theynchronized versions. The analysis may alsneckeveral methods
leading to an allocation site, enabling it to digtiish thread-local and multithreaded objects ecbatt the same program

point.

Choi et al. [CGS+99] performs a variant of integedural points-to analysis that is designed to wwetl when
classifying objects as globally escaping, escapiagan argument, and not escaping. The analysispgrobjects by their
allocation site and marks thread-local objectsllatcation time with a bit in the object header. Wh&ynchronizing, the
compiler eliminates the atomic compare-and-swapatjpa for objects with this bit in the header, ggeving Java semantics

by flushing the local processor cache. The anabisis allocates objects on the stack.

Whaley and Rinard [WR99] define an interprocedufldy-sensitive points-to analysis to eliminate aoessary
synchronization and allocate objects on the staébk. analysis computes which objects escape from ee@thod, as well as
relationships between objects. It can analyze glaptiograms conservatively, improving results agenof the program
becomes available. When the analysis finds thatogect is captured by a method, it specializesnalthods that synchronize
on that object in order to remove the synchronimatlt also generates specialized versions of aethods in the call chains

that lead to the optimizable synchronized metheddations.

Other researchers have attacked the cost of symehton in different ways. A large body of work
[BKMS98][KP98][ADG+99][OK99] has focused on makingecessary synchronization more efficient, which glements
our techniques to remove unnecessary synchronizdties also possible to optimize unnecessary Issortization that arises
from acquiring and releasing a lock multiple tinesuccession [DR98][PZC95]. These optimizatioriecifthe concurrency
of the benchmarks: coalescing multiple lock operatiinto one may reduce parallelism, and implentiems: must take care
not to introduce deadlock. Finally, some systenm$op@ synchronization analyses to help programnmeoslel concurrent

systems [C98] or to help find synchronization esf@LNS98].
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Our research differs from this previous work inesa important respects:

« First, all previous studies of unnecessary synuaetion have concentrated solely on eliminatingak-local locks. As
shown in section 2.3, thread-local locks are omig of several sources of unneeded synchronizdtiothis paper, we
address three types, presenting new algorithmselioninating two of them (thread-local and enclodedks) and

empirically evaluating all three.

* Second, previous analyses for identifying threaahl objects have relied on escape analyses thatdédhe way programs
use concurrency. Our thread-local algorithm exghjicnodels the interactions between different tdegand we quantify
the resulting improvement over earlier thread-ablig algorithms; our algorithms do better than jmes work on all

benchmarks we have in common.

« Finally, previous evaluations of optimization sofes have relied predominantly on single-threadetttmaarks. While
improving the performance of single-threaded prograis important, a trivial optimization to simplyisdble all
synchronization is most effective. Thus an imparthenefit of a synchronization elimination algonthcomes from
distinguishing unnecessary synchronization opeanatioom necessary ones in multithreaded programthi$ paper, we

evaluate our analyses bnth single-threaded and multithreaded applicationd, quantify the difference in our analyses

performance on the two application types.

Concurrent work by Eric Ruf [RO0] combines a thréathavior analysis similar to ours with a specadialias analysis
based on method summaries. His specialized aliaysis is more scalable than the general-purpoakyses in our system,
resulting in much smaller analysis times. His ressfdr thread-local synchronization are similaptws for the small programs
we have in common, as well as the larger benchmaldssna andjavac . Ruf’s alias analysis enabled him to remove
significant amounts of synchronization frafite , while our precise alias analysis did not scalthi® benchmark, resulting
in poor performance. Ruf's work does not considher ather forms of unnecessary synchronization,osed and reentrant

locks.

4. Analyses

We define a simplified analysis language and descthree analyses necessary to optimize the symichtin
opportunities discussed above: thread-local arglysentrant and enclosed lock analysis, and uedliiid analysis. Thread-
local analysis identifies which objects are onlydyonized by one thread. Lock analysis computéesgription of the

monitors held at each synchronization point so teahtrant locks and enclosed locks can be eliméhdtinally, unshared
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id, f, field 0lID S:

label, base, o 0 LABEL ig 1= _ndewa"f*-"
ia, =1 2.

s US id . f :=id ,

p, program gopP S-S

ifid ;thenS; elseS,

P :: =' forkid Flabel 0
PP , , synchr oni zed®® (id) { S}
letrecid ¢ := A(d ...id ){S} ido :=id g(id 1.id ) label

Figure 2. Simplified analysislanguage incor porating the key synchronization features of Java

field analysis identifies unshared fields so tleaklanalysis can safely identify enclosed locks: &nalyses can rely on Java’s
final annotation to detect immutable fields; an impdrtarea of future work is to detect immutable fiettlat are not

explicitly annotated aki nal .

4.1 AnalysisLanguage

We describe our analyses in terms of a simplers&té based core language, incorporating the eassgtichronization-
related aspects of Java. This allows us to focutherdetails relevant to specifying the analyse#endoiding some of the
complexity of a real language. The missing featafe3ava can be mapped to our core language. Ron@e, loops can be
converted into recursion, method dispatch can h@emented with if statements, variable assignment loe done with
variable renaming, exceptions can be emulated usstgtements, etc. These features do not presgntifficult problems

for our analysis, but would make the presentationentomplex.

Figure 2 presents our analysis language. It isplsi, first-order language, incorporating objeeation, field access and
assignment, synchronization expressions, thream&tibns, and simple control flow. Each object timmapoint is labeled
with a label for alass key [GDD+97], which identifies the group of object®ated at that point. In our implementation, there
is a unique key for eachew statement in the program; in other implementatiarieey could represent a class, or could
represent another form of context sensitivity. Weuane that all identifiers are given unique narBeatic field references are

modeled as references to a field of the speciaabbiobal , which is implicitly passed to every procedure.

Functions are modeled withlgtrec  construct and uniquely labelled function callstURe values are implemented by
assigning to the special variablgurnval . Threads are modeled with a labelled fork staténtteat starts the indicated
function in a new thread. Java’s synchronizatiomstact is modeled bysynchr oni zed statement, which locks the object
referred to byd and then evaluate&sbefore releasing the lock. Easlinchr oni zed statement in the program text is also
associated with a unique label.
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4.2 Analysis Axioms

Our analyses are parameterized by other aliasahdraph construction analyses, a feature of ppr@ach that allows a
trade-off between analysis time and the precisiooun analysis results. We assume the followingars are defined from
earlier analysis passes:

o aliases(id 4, id ,) — identifiersid ; andid , may point to the same object

o aliasey(f 4, f ) — fieldsf ; andf , may point to the same object

« ref(base, f, 0) — objects created with the new statement labeledy be stored in the field f of objects with labade
« creator(o) — the procedure that created the objects idedtifiy label o

e ref(id , o) — identifierid may refer to objects labeled o

e gynch_aliases(label ) — the set of labels of synchronization pointsttheaay synchronize the same object as the

synchronization point identified bgbel
* synch_keys(label ) — the set of objects that may be synchronizexyathronization pointbel

e immutable(f ) — field f is immutable (i.e., write-once). This may be dmstlifromf i nal annotations and constructor

code.

+ called(p, label ) — functionp may be called from call sitabel in functiong. This relation includes forked functions as
well as ordinary function calls.

4.3 Thread-local Analysis

Thread-local analysis examines the behavior ofitigén a program to identify objects that are woeased by more than
one thread. In Java, there are just two ways tresiiaobject between threads. First, an objecbeasritten to a static field by
one thread and then read from that field by ano®erond, a thread can write an object to a (natickfield of an object that
is or will be shared by another thread, and thersgthread can then read the object from that.féydlooking at how these
two mechanisms are used in a particular prograenattalysis discovers the setmadltithreaded objects, i.e. objects that are

shared between threads. Objewsin this set are thread-local.

We present our analysis in figure 3, using infeeendes. Our analysis starts with an axiom représgithe execution of

themain function in the initial fnain ” thread:

¢ eval(main() , main)

Technical Report UW-CSE-00-10-01 10



eval(S,; S,,t)
eval (S,,t) eval(S,,t)

eval(id , :=id (id ..id )™ 1) . N :
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eval(fork id () ™™ t) A
vl Gid,) (letrec id:-:=A{ S}
eval(id .f :=id ,,t)
written(f,t)
eval(id , :=id ,f ,t)
read(f,t)
called(p,label ) .called(p,labelr) (1abdl, # label,)
multi( p)
multi (p) called(q, label )

multi(q)

read(f,t,) Writtm(f,tz) t #1)

multi(f)

read(f,t) written(f,t) multi(t)

multi(f)
ref (global , f,0) multi(f)
multi(0)
multi(b) ref (b, f,0) multi(f)

multi (o)

Figure 3. Inferencerulesdescribing Thread-local Analysis

eval
transitivity

procedure
call

threads

field write

field read

multiple
procedure
calls

multiple call
transitivity

multithreaded
fields

duplicated
threads

objects: base
case

objects:
recursive
case

The result of inference will be the least set afgments closed under application of these infereales to the axioms

above. Note that a thread is represented by tlkedgprocedure, and so the set of threads is atsobdee set of procedures.

The facts that can be inferred from our inferendes include:

eval(s, t) — statement s may be executed inside thread
e read(f, t) — field f may be read by thread t

e written(f, t) — field f may be written by thread t

e multi(p) — procedure p may be called more than once
* multi(t) — thread t may be started more than once

« multi(f) — field f may be read by one thread and writbyranother thread
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« multi(o) — object o may be accessed by more than oeadhiThis is the main result of our thread-locallysis.

At a high level, the thread-local algorithm tak@wantage of the two simple sharing mechanisms layyaimg which
threads read and write to which fields. We calletdfis that read by one thread and written by la@oamultithreaded field.
Our algorithm computes the set of multithreadelti§idy determining the set of threads that may @eceach field read and
write in the program. For each static thread insainepresented by a forked procedure), we alst teegetermine whether it
is started more than once, because if a threadmittiple dynamic instances both reads and wrdesfield, that field will be

multithreaded. Thus we must scan the program tbdint which thread forking statements may execuigerthan once.

Thread-local analysis runs in worst case @f(& n?t) time and O(n*t) space, where o is the numbeoljéct sets, f is
the number of fields per object, t is the numbefooked procedures, and n is the size of the pragéhis property can be
deduced from our analysis rules using McAllestaé&hnique [M99]. In general, this is Gftime and O(f) space, where n is
the program size. However, in practice the analgsaes linearly with the number of applicatiorsskes analyzed, probably
because the number of static thread instancesutmber of fields per object, and the virtual metlkigpatch fan-out tend to
be small in typical Java programs. Our thread-lecellysis runs quickly, typically completing in flass time than the alias

analyses we run beforehand.

Our new thread-local analysis differs from our poe¢ work [ACSE99] in that it considers thread ratgions to
intelligently decide which fields allow objects tee shared between different threads. Our previmadysis, like other
previous work in the field, was overly conservativehat it assumed that all fields are multithregd
4.4 Lock Analysis

An enclosed lock (say,J) is a lock that is only acquired after another (esicig) lock Iy has already been locked. If all
threads follow this protocol, synchronization opienas on L, are redundant and can be eliminated. Enclosed lockur often
in practice, particularly in layered systems, genébraries or reusable object components, wheehesoftware module
usually performs synchronization independently tho modules. Established concurrent programmiagtyme requires that
programs acquire locks in the same global ordegnout the computation in order to avoid deadl@dnsequently, most
well-behaved programs exhibit a self-imposed logkdrchy. The task of this analysis, then, is sxdver this hierarchy by

simulating all potential executions of the threadsntify the redundant lock operations and optartteem out of the program.

We rely on a flow-sensitive, interprocedural anilys order to eliminate locks that are protectedhf concurrent access

by other locks. Our analysis works by calculatihg set of enclosing locks for each lock in the paog reentrant locks

Technical Report UW-CSE-00-10-01 12



represent a special case where the enclosing $atiecisame as the enclosed lock. This set of engltscks is computed by
traversing the call graph, starting from each ttiieatarting point. Whenever a lock acquire or aste operation is
encountered, the locked object is added to or egleom the set of locks currently held at thatgpaon point. In order to
permit specialization based on the creation pa@hfrogram objects, our algorithm is context séwsiand thus will analyze

a method once for every calling context (i.e.,afgiossible receiver and argument objects).

When removing synchronization due to enclosing $odkis crucial that there be a unique enclosouk] otherwise, the
enclosing lock does not protect the enclosed looknfconcurrent access by multiple threads. Becansestatic lock may
represent multiple dynamic locks at runtime, we nansure that a unique dynamic lock encloses emthdliminated by the
analysis. We can prove this in multiple ways. Finstthe reentrant case the locks are identicalyleen the same variable is
locked in a nested way twice, without an assignnethat variable in between. Second, a lock magradosed by an object
who’s creation point is only executed once (asulated by the thread-local analysis); thus a sistg¢ic lock represents a
single dynamic lock. Third, the enclosed lock majdithe enclosing lock in one of its fields; thisll must be immutable, to
ensure that the following the field link uniquelyesifies the enclosing lock. Fourth, the enclosauk may hold the enclosed
lock in one of its fields. In this case, immutatyilis not important, because a single enclosing lmay protect multiple
enclosed locks; however, a corresponding propsntgquired. The enclosing lock’s field must be @mel, indicating that the
object held in the field is never held by any othbject in the same field; thus the enclosing dhgcnique with respect to
the enclosed object. Section 4.5 presents an andhg finds unshared fields. Finally, the lasb tvases can be generalized to
a path along field links from one object to anotlasrlong as each field in the path is immutablenshared, depending on the

direction on which the path traverses that link.

Our lock analysis represents a reentrant lock asyinchronization expression itself (SYNCH), andlesing locks are
represented as unique objects (denoted by thedtierepoint label) or as paths from the synchraimwraexpression SYNCH
through one or more field links to the destinatidaject. We use a Link Graph (LG) to capture refshtps between different
identifiers and locks in a program. The LG is adied graph with nodes labeled with unique idesrsfior placeholders, and

edges labeled with a field identifier. We notatediional operations on the graph as follows:

« Adding an edge: newgraphadd(graph,id ; —¢ id 5)
* Replacing nodes: newgraph = graphf - id 5]
¢ Treeshake: newgraphtreeshake(graph, rootset)
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e Union: newgraph = grapt] graph
e Intersection: newgraph = graph graph

Thetreeshake operation removes all nodes and edges that ararg any directed path connecting a pair of nauése
root node set. The union operation merges two graghmerging corresponding nodes, and copying meresponding edges
and placeholder nodes from both graphs. The intBose operation is the same as union, except thét edges and
placeholder nodes that are common to the two graphmaintained. In these operations, two nadesespond if they have

the same label or are pointed two by identicaldiftbm corresponding nodes.

Intuitively, an edge in the link graph means that@me program point there was an immutable fielthecting the edge
source to the edge destination, or there was anaved field connecting the edge destination toetthge source. Note that
edges representing immutable fields go in the dppdgection as edges representing unshared fithdscaptures the notion
that the two are really inverses for the purpodesuo enclosing lock analysis. The link graph daoes strictly represent an
alias graph, as we do not kill any edges on upddteis is acceptable because the link graph onhtains edges where

updates don’t matter (unshared fields) or can’uo¢itnmutable fields).

Figure 4 presents our lock analysis as a semantitysis over the program text. The analysis fumctioaccepts as
curried parameters a bit of program text, the $dbaks held at the current program point, andn& [jraph. The analysis
function manipulates the inputs according to threnfof the program text and returns an updateddiaiph. The function also
updates a global data structure that tracks thefsenclosing locks at each synchronization pofmatalysis is triggered
through theget locks function, which runs the analysis on main assund@ngempty lock set and link graph (as well as
optimistic assumptions about enclosing locks aheamchronization point)cet locks then looks up the set of locks at the
relevant synchronization point in the data struetoroduced as an analysis side effect. During tiadyais, a set of locks is
represented by a LOCKSET structure, which is ao$etodes in a link graph. In the data structurekhoap, which maps
synchronization points to the set of locks heldath point, locks are represented as a PATH imkegliaph, where the source
node has been either replaced with the node SYN&ptdsenting the current synchronization expresiowith the label of

a unigue object.

The rule fornew does not affect any data structures. Field readsaaites are equivalent for our analysis: if tied is
unshared or immutable, then a link is established/éen the identifiers in the appropriate directidnalyzing a sequence of

statements simply analyzes the first and usesthdting link graph to analyze the second. Afteif atatement, it is only safe
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L : [syntax ] - LOCKSET- LG - LG

// all global tables are initializes to optimistialues (- )
global context_table CONTOUR: 5, LOCKSET, x LG, x LGy
global lockmap :LABEL x CONTOUR. 5, 2°A™
global enclosingmap LABEL — g, 2°A™

get_locks(label ) : LOCKSET=
let ignore =L[main() ]9 9 in lockmaplabel )

Llid := new®® Jlocksetlg = Ig
Lfid , : =id ;. f]locksetlg =
let Ig' =if is_immutable(f ) then add(lg, id ; —; id ,) elselgin
if is_unshared(f ) then add(lg', id , —; id ;) elselg'
Lid ;. f :=id ,]Jlocksetig=
let Ig' =if is_immutable(f ) then add(lg, id ; —; id ,) elselgin
if is_unshared(f ) then add(lg', id , —; id ;) elselg'
L[S;: ; SoJlocksetlg=
let Ig' = L[[S;]lockset Igin
L[S;]|lockset Ig'
Lfif id ; thenS; el se S,]lockset lockmap Ig =
let Ig' = L[[S:]lockset Igin let Ig" = L[[S,] lockset Iginlg n Ig"
Lforkid g() Jlocksetlg=
letletrecid ¢ := A){S} J=1ookup(id ) in
let ignore=L[S| DD in
I
L[[syr?chroni zed®® (id) {S} Tlockset Ig=
let unique sources={ id } O{ s|sOlockset Onot multi(creator(s)) } in
let locks = { path[id - SYNCH] | path O Ig O source(path) Ounique_sources O destination(path) O lockset } in
lockmap := lockmap[(label , current_contour()) — locks n lockmap[(label , current_contour())]];
enclosingmap := enclosingmap[ o - locks n enclosingmap[o] | ref(id , 0) ]
let object_refs={ o|ref(id ,0)} in
let unique_locks = if object_refs={o} Omulti(creator(o)) then {0} elsedin
L[S] (lockset O { id } O unique_locks) Ig
Llid o :=id g(d 1.id )" JlocksetIg=
letletrecid ¢ : = A(formal ,.formal ,){S} J=Ilookup(id ¢)in
let Ig' = treeshake(lg, { id ;..id , } Olockset) in
let mapping = { oldnode - new_placeholder() | oldnode O nodes(Ig) } in
let mapping' = mapping[id ; - formal ; [i J1.n]in
let Ig" = context_strategy(id ¢, lockset[node — mapping[node]], Ig[node — mapping[node]]) in
Ig O Ig" [node — original | (originad — node) O mapping' ] [returnval - id ¢]
context_strategy(id g, lockset, 1g) =
letletrecid ¢ : = A(formal ,.formal ,){S} J=lookup(id ¢)in
let contour = get_contour(meta information) in
let (prev_lockset, prev_lg, prev_result) = context_table[contour] in
if (prev_lockset O lockset Oprev_lg O 1g) Ois recursive_call() then prev_Ig
elselet lockset' = lockset n prev_lockset in
letlg'=Ign prev_Igin
let Ig" = L[[S] lockset' Ig' in
let g™ = treeshake(lg”, { formal ;..formal | } O{ returnval } O lockset) in
context_table := context_table[contour - (lockset', Ig', Ig™) ];
g

Figure 4. Semantic analysisfunctionsfor Lock Analysis
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to assume relationships established along bottspaththe resulting link graph is the intersectibthe link graphs from the

then and else clauses. A fork statement begingsinah the new thread with an empty lock set amkli graph.

At synchronization statements, the analysis recalidmnclosing locks at that statement, and adel$atked object to the
set of locks. For an enclosing lock to be uniquegdgcified with respect to the locked expressiomust begin with a unique
expression, which may be a singleton object (ctkatdy once during program execution) or may beldoked object itself.
From this unique object, we can find a path throtlghlink graph, where each link uniquely speciitssdestination with
respect for the source due to the properties ofjthph. If the final object in the path is in tlek set, the path describes a
unique enclosing lock, and therefore it is addethélockmap for that synchronization expressidme Tocks determined by
this analysis are intersected with all other aredysf the same contour, and the result is savethi®isynchronization point
and contour. We also save the enclosing lock setdoh object the identifier may refer to, intetgegit with the previous set
of enclosing locks for that object. Then the idigatiitself is added to the lock set for evaluatafrthe synchronization block,

and if this identifier points to a single, uniqugext, the representation for that object is addeatie lock set as well.

At function calls, the analysis finds the formafghe called function and maps identifiers to folsn®nly the part of the
link graph that links formal identifiers and lockeHjects is relevant to the callee, so all othetspaf the graph are removed.
Nodes representing identifiers that are no longescope in the new function are replaced with flatker nodes at the same
location in the graph; such nodes may represeketbobjects, or may be along a unique path to bdigects. The callee is

analyzed using one of several possible contextegfies, and a reverse mapping applies the reslitikgraph to the caller.

In our implementation, the context strategy anadyzach function multiple times according to thdimglcontext, which
may be represented by the classes of the arguntie@itsalling function, or other meta-information.dur implementation, we
used the sets of argument classes from the SC$regh construction algorithm as our contours. Atoar table caches
(input, output) analysis pairs for each contougvoid excessive contour re-analysis and handlgsem appropriately. If the
input information from the contour table is a cans#éive approximation of the current input inforimoat the old output
information is returned. For recursive calls to $aene contour, an optimistic initial result is reed, and the framework will
automatically re-analyze the callee when that ogtimresult is later modified, preserving analys@mindness. Finally, the
text of the new procedure is analyzed, the resudbmbined with previous results, cached in theecdriable, and returned to

the analysis of the callee.
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fsetd FSET= 2P
idstatel] IDSTATE =ID -4, FSET

U: [syntax ] — IDSTATE - IDSTATE

/1 all global tables are initializes to optimistialues (- )
global shared FSET,
global context_table CONTOUR, 4, IDSTATE;, XIDSTATE ;

is_unshared(field )=let ignore =U [main() ]Qin (field [ shared)

Ufid := new®® Jidstate = idstatéfl — @]
Ufid ; :=id ,.f Jidstate = idstatefl ; — { f' |aliases(f,f )}]
Ufid ..f :=id ,]idstate =let fset = {f } O idstate[d ,] in
if f O idstate[d ,] then shared := shared { f };
idstate[d - {f} O idstate[d ] | aliases(id, id )]
U[S: ;S ,]idstate =let idstate’=U[S;] idstatein U[S,] idstate’
Uifid ;thenS; el se S,]idstate =
let idstate’=U[S,] idstatein let idstate’=U[S,] idstatein idstatel] idstate’
Uff ork id g() Jidstate =
letfletrecid  := A){S} 1= lookup(id ¢) in
let ignore =L[S] &;
idstate
U[synchroni zed®® (id) { S} Jidstate =U[S] idstate
Ufid o : =id g(id ,..id )" Jidstate =
letletrecid ¢ : = A(formal i.formal ,){S} ]=lookup(id g)in
let idstaté= {formal ; - idstatefid ;]]i O 1..n} in
let idstate” = context_strategy(id r, idstate) in
let newidstate = idstate[id o — idstate”[returnval  ]]in
newidstatefid - idstate’[formal ;] O idstatefid ] |i O 1..n Daliases(id, id ;)]
context_strategy(id ¢, idstate) =
letletrecid ¢ := Afformal ;.formal ) {S} ] =Ilookup(id ) in
let contour = get_contour(meta information) in
let (prev_idstate, prev_result) = context_table[contour] in
if prev_idstate O idstate (Jis_recursive_call() then prev_result
elselet idstate’' = idstate O prev_idstate in
let idstate” = U[S] idstate' in
context_table := context_table[contour - (idstate', idstate")];
idstate"

Figure5. Semantic analysisfunctionsfor Unshared Field Analysis
4.5 Unshared Field Analysis

Unshared field analysis detects fields that unigeeiclose the object they point to. They providetural counterpart to
immutable fields (includindinal fields) which uniquely point to a particular obj€a/hich can then be used as an enclosing
lock). Figure 5 shows our flow- and context-semsit@nalysis to detect unshared fields. The basicipte of the analysis is
to conservatively track the set of fields that eatdntifier could possibly alias with. Thus the Bs& passes around and

updates a mapping from the identifiers in scopt¢oset of possibly aliased fields. New objectsidbalias any fields, but an
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assignment of a field dereference to an identifieans that identifier may be aliased to the dezefazd field, or any field the
dereferenced field may alias. When a field is as=igan identifier's value, we check whether theniifier could already
include that field; if so, we have identified a eaghere an object may be shared between two iretarfche same field. That
field becomeshared and is added to the shared field set. Meanwhitejdbntifier (and any other identifier that maymido

the same object) may be aliased to the assignied fie

Note that if an object is assigned to two differieits, neither field becomes shared; fields ddgome shared when the
same object is possibly assigned to two instantéiseosame field. This does not lead to incorresutts in lock analysis,

because field links are annotated with the fielch@aallowing the two different enclosing objectdbtdistinguished.

A sequence of statements is evaluated in turncanttol flow merges use union to conservatively bova the identifier
state along each path. Synchronization statememstaffect identifier state. At function callsfaarly straightforward actual
to formal mapping is applied in a similar styleldok analysis. The resulting callee’s identifieatstmust be combined with
the caller’s identifier state taking identifieradies into consideration, because the argumentseaotls may be assigned to
fields within the callee. Finally, our context $&gy for this analysis is similar to that for loakalysis, except that the calling

context is simply the input identifier state.

4.6 Optimizations

We apply three optimizations for the three casasnofecessary synchronization. We test each synidaitgon statement
for thread-local synchronization. If there is naclusionmulti(o) from thread-local analysis for any o possibpchronized
by a synchronization statement s, then s can bevetdhfrom the program. Otherwise, if there is argynchronized at s for
which there is no conclusianulti(o), and the synchronized object is the receivahefmethod (the common case, including
all synchronized methods), then a new version efriethod is cloned for instances of o without syoctzation. This
specialization technique may require cloning o&ss| and changing the new statements that credéanaes of o to refer to
the new class. Our implementation choice of setgeoéiver classes as contours allows us to najuusé our analysis

information when specializing methods.

We also test each synchronization statement foitra@ synchronization. For an synchronization espion s, if the lock
set includesSYNCH, then s can be removed from the progran8YINCH is in the lock set for some receivers but not for

others, specialization can be applied using thienigcie above.
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Finally, we can remove a synchronization statenseifitfor each object o synchronized at s, theo$einclosing locks
given by enclosingmap(o] is not empty. If only soofehe objects synchronized at s are enclosedsanchronization is on
the receiver object, the method can be specializadstraightforward way to eliminate synchroniaati
4.7 Implementation

Our analyses are implemented in the Vortex resezmatpiler [DDG+96], which performs whole programagsis. Our
analyses assume that a call-graph constructiorabaglanalysis pass has been run. In our implertientave use the Simple
Class Sets (SCS) context-sensitive call graph oactgtin algorithm [GDDC97] for the smaller benchiksgrand the context-
insensitive 0-CFA algorithm [S88] for the benchnsailrger than javac. We augmented the algorithmeottect alias
information based on the creation points of objeébile these algorithms build a precise call gragpley compute very
general alias information and as a result the SI@8rithm did not scale to our largest benchmarks. dias analysis
specialized for synchronization elimination [ROQjwid allow large improvements in scalability anclgsis performance, at
the potential cost of not being reusable for otmmpiler analysis tasks. The analyses above akeifuoplemented in our
system, except that we use an approximation olirtkegraph and do not consider immutable fieldgsth pieces do not make

a significant contribution to unnecessary synclration in our benchmarks.

In order to show the effectiveness of our analysea typical runtime platform, we sent our analyswults to a binary
rewriter [SGGB99] that performs optimizations onaalass files. These optimized application class@sthen be run on any

Java virtual machine.

A production compiler that targets multiprocesseauld still have to flush the local processor caetiesliminated
synchronization points in order to conform to Javaemory model [P99]. Due to our binary rewritinigagegy, we could not

implement this technique in our system.

5. Results

In this section, we evaluate the performance ofamalyses. Section 5.2 shows that they can imptev@erformance of
a workload in which programmers had eliminated Byowcization manually; section 5.1 demonstratesr thetential for
enabling a simpler and more general synchronizatiodel; and section 5.3 describes their compile tomst.
5.1 Dynamic Evaluation of the Synchronization Analyses

In this section we evaluate the impact of our asedyon the dynamic behavior of the benchmarks.eTatghows the

dynamic percentage of synchronization operatiomsimhted at runtime by our analyses. The first noiurepresents the
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All Thread-L ocal Reentrant Enclosed

Benchmark Total Ops Ops/sec

Actual Actual Potential Actual Potential Actual Potential
cassowary 99.98% 99.98M% 99.99% 0.00% 0.01% 0.00% 0/06% 92840 25715
javac 94.55% 94.55% 99.79% 0.02% 8.14% 0.00% 20/54% 1378442 49373
javacup 78.12%? 78.12% 99.08%% 2.60% 17.5/% 0.00% 9|02% 19174 4117
javadoc 82.76% 82.76% 99.66% 0.0%% 5.60% 0.00% 52142% @0949 22689
jal 99.99% 99.999 100.001’,16 0.00p% 0.00% 0.0p% 0.00% 5529820 2766
jlex 99.95% 99.95% 99.99% 4.37% 11.14% 0.00% 0.07% 1839166 76442
pizza 64.26% 64.26% 88.36% 0.61% 18.20% 0.00% 22129% 20125 492|6
array 44.44% 44.44% 50.12% 0.02% 0.12% 0.00% 0.13% 90693
instantdb 0.01% 0.00% 54.31% 0.01% 3.48% 0.00% 16]78% 30264 27143
jlogo 12.039 0.21% 14.85%0 0.08%% 0.371% 11.81% 25.86% 164501 8711
jws 0.01% 0.009 0.83% 0.01% 21.42% 0.00% 12.48% 1062766 p
plasma 89.309 89.25% 98.87pPo 0.05% 1.36% 0.00% 15(P1% 34723 2
proxy 43.299 39.45% 41.4300 3.84% 18.34% 0.90% 46 [[7% 364624 N/A
raytrace 72.789 72.69% 96.00P6 0.19% 2.04% 0.00% 1{22% 34351 N/A
slice 0.089 0.00% 91.22% 0.08% 4.23% 0.00% 17.86% 39533 0865.

Table 2: Dynamic Number of Synchronization Operations Eliminated

percentage of runtime synchronization operationsoreed by all of our analyses combined. The nexetpairs of columns
break this down into thread-local, reentrant, amclased locks. The first column in each pair shivespercentage of locks in
each category that is optimized by its appropraatalysis, while the second column in the pair ésttital amount of dynamic
synchronization in the category, as measured bylyhamic traces (it thus serves as an upper boaoritdeanalysis results).
(Recall that, since many synchronization operatfafisnto several categories, the totals of eaain go not sum to 100%; in
particular, many enclosed and reentrant locks k@ taread-local.) Finally, the last two column®wshthe total number of

lock operations and the frequency in operationsspeond.

In general, thread-local analysis did well for masft the benchmarks, eliminating a majority (64-99+%f
synchronization operations in our singlethreadedichmarks and a more widely varying percentage @®)8%f
synchronization in our multithreaded applicatiodmong the single-threaded programs, it optimited , cassowary , and
jol  particularly well, eliminating over 99.9% of symohization in these programs. We also eliminatedtntioread-local
synchronization in the other singlethreaded progrédmt did not realize the full potential of ousdyses. In the multithreaded
programs, where the challenge is greater, the dHiczal analysis usually did well, getting mostitsf potential forarray |,
proxy , plasma and raytrace. Our dynamic traces show very little thréscal synchronization ijws , so it is unsurprising

that we didn't eliminate any unnecessary synchatdion hereinstantdb ~ andslice are large benchmark programs that
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used much of the AWT graphics library, and our eatisensitive alias analysis did not scale to th@egrams; using a

context-insensitive alias analysis failed to catolead-local synchronization operations.

Both reentrant lock analysis and enclosed lockyaighad a small impact on most benchmarks, butensaghificant
contributions to a select few. For example, reenttack analysis in general tended to eliminaterapens that were also
removed by thread-local analysis; however, glexy benchmark benefited from optimizing reentrant bdkat were not
thread-local, and thus were not optimizable witht technique. Similarly, enclosed lock analysis enad impact oilogo by
eliminating 12% of the dynamic synchronization @ens through specializing a particular call sttesse synchronization
operations were not thread-local and could not Haeen optimized by other algorithms. There are taasons why the
enclosed and reentrant lock analyses did not mak®pact on benchmarks across the board. Firshehehmarks exhibit by
far more thread-local operations than enclosedraadtrant locks combined, and most cases of sinepletrant and enclosed
locks had been already optimized out manually lmgmammers. For example, rather than use the synidiedVector class
to store hash table elements in their buckets, ithplementors ofjava.util.Hashtable designed a custom,
unsynchronized linked list class. While our anasyg®uld have removed this source of overhead, progrers who did not
have these analyses available to them did the @atiions themselves, at the cost of more complebe call of the benefit of
enclosed lock analysis in our benchmarks came fumigue enclosing locks, suggesting that followingshared and
immutable fields is not a useful technique for opting common Java programs. The second reasorthéhgnclosed and
reentrant lock analyses were not effective on eldhmarks involves inaccuracies in alias analysis.example, all of our
programs have synchronization QutputStreamWriters that are enclosed byrintStreams . Although our analyses
identified these operations as being enclosedjrmplementation was unable to optimize them; we rteedptimize some
OutputStreamWriters and not others, but we cannot use dispatch tothelldifference, because the synchronization
statement is in thBufferedWriter class, not th@utputStreamWriter class. A more precise alias analysis could address

this problem at the expense of compilation time.

The extent to which the reductions in dynamic syoolzation operations translated into executionetispeedups
depended on the frequency of synchronization ojpermin the programs. For example, Table 2 shoagléx andjgl do
far more synchronization operations per second tharother benchmarks, and that translated intcaeatic speedup for
these benchmarks. Figure 6 shows the executiordspieeur optimized benchmark programs relativehi® tinoptimized

versions. In the graph, the bars represent theudiracspeed improvement due to all analyses comdbinglative to the
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Figure 6. Speedupsdueto the Elimination of Unnece&wry Synchronization

unoptimized versions. Because our analyses areicgarty relevant for multithreaded benchmarks iingn on
multiprocessors, these numbers were collected ®olaris machine with four 90 MHz hyperSPARC prooessind 250 MB
of RAM. Since this machine is a few years old, andtiprocessor synchronization costs in cyclesdglty increase as clock
speed rises, our speedup numbers are probablyrgatige. Our runtime platform was the JDK 1.2.183jigh-performance
commercial JIT compiler with an efficient implemation of synchronization [OK99][ADG+99]. All meagments represent
an average of five executions, preceded by threg tmwarm up the caches. We were unable to catieaningful execution

times for the benchmarlgss , proxy , andraytrace

The synchronization analyses were very effectivecégsowary , jgl , andjlex , speeding up their execution by 37-
53%. The speedups are due to the high frequensynahronization operations, the high cost of syocination operations in
these benchmarks (particuladgssowary ) relative to other benchmarks, combined with tfiectiveness of our analyses on
these programs. In other benchmarks in which owlyars eliminated a substantial proportion of thiecBronization
operations, such gsvacup andpizza , the impact on total execution time was small gose synchronization accounted for

a small portion of running time.

5.2 A Simpler Synchronization Model

In order to determine whether our analyses cana@tigpsimpler synchronization model, where by difall public

methods of each class are synchronized, we pertbtweexperiments. In the first, we wrote a simmlegram that illustrates
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benchmark Reentrant Non-Thread-L ocal Thread-Local Total Statements
Reentrant

cassowary 178 L 807 827
javac 136 1 169% 1721
javacup 199 1 835 85¢
javadoc 208 1 130b 1331
jol 167 1 683 702
pizza 118 1 1154 1174
array 16Q 51 484 698
jlogo 154 1 660 681
plasma 314 318 0] 1842
proxy 161 47 51( 736
raytrace 301 165 685 1331
slice 324 324 @ 18683

Table 3: Synchronization Statements Optimized in the Simple Synchronization M odel

some characteristics of a web server or databasersé\ppendix A lists the web server code, inchgda simple driver
application. The application has several threads tbad a table data structure, and one threadumtitass to it. The table is
implemented as a closed hash table, where alkesntrith the same hash code are stored in the liiggdr the corresponding
hash bucket. Although most current implementatiohbash tables (e.gjava.util.Hashtable ) implement their own

linked-list data structure for efficiency, we bekeit is a better design to reuse an existingcless if efficiency considerations
permit. As a reusable class, our list implementatiluded synchronization on all public methodswdéver, our analyses
were able to eliminate all synchronization on trst, Ibecause it was enclosed by the (globally usliduash table data
structure. The resulting application sped up by 38%he original unoptimized version, matching peeformance of a hand-

optimized version of the same benchmark. This eXxarmdpmonstrates that our analyses (and in particafeclosed lock

analysis) have the potential to make a cleanerrproing style more practical.

In a second experiment, we modified the Java tilasgies and a subset of our applications to admtisronization to all
public methods. Table 3 shows the static numbaypthronization points optimized by our analysethia experiment. For
most programs, thread-local analysis (shown irfdheh column) was able to eliminate virtually aflthe synchronization in
these programs, effectively eliminating the extmrseeoverhead that would be imposed by the morealatynchronization
model. Because this synchronization model leadggtuificant reentrant synchronization, our reerittaok analysis was able

to eliminate 10-30% of the static synchronizatiarings in these programs (second column). The réleeentrant lock
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analysis was particularly important for multithreddprograms, as shown in the third column of Tahlevhich lists the

reentrant synchronization points that are not détgead-local. In the multithreaded benchmarks, traen lock analysis

typically eliminates 10% of the static synchroniaatpoints in the program, in addition to what #dtdocal analysis is able to
find. Enclosed lock analysis was unable to optinttzese programs. It is likely that remaining impsems in the alias

analysis, together with the increased use of syméhation and the inherent difficulty of identifgirand optimizing enclosed
locks were the causes.

Since we have not yet provided a facility to owerthe default of adding synchronization to evesthd, and our Java
programs were not designed with this synchronimat@mradigm in mind, most programs deadlock when wuith
synchronization added to all public methods. Howewe were able to evaluate the effect of our ssedyorjavadoc . The
version ofiavadoc  with all public methods synchronized executesdr?Seconds; in optimizing this version we weredbl
reduce the runtime to 37.6 seconds, which is fdlsgar the original, manually optimized program. Sdeesults imply that our
analyses are able to successfully mitigate theopmdnce impact of a cleaner synchronization model.

5.3 AnalysisTime

The time to perform our analyses was substantialengthat they are whole-program analyses and that
implementation is not optimized. Nevertheless, thuead-local analysis times ranged from 2 minutesdssowary to 17
minutes in the case pfasma , running on an Sun ULTRASPARC with about 500 MBR#M. Reentrant and enclosed lock
analysis took between 2 and 27 hours, similar ¢cattmount of time taken by alias analysis. Profiferimation suggests that
the analysis time for reentrant and enclosed |&xkst due to computation of lock information, ldue to the overhead of the
analysis infrastructure and an intraprocedural fikemsitive alias analysis that must be run in aoetjon with lock analysis.
In a production system, an SSA representation coeabivith a specialized interprocedural analysisastfucture would
likely improve the performance of the lock analysgsan order of magnitude or more. Furthermore, r@entrant lock
analysis can be run without the enclosed lock amalyortion, leading to significantly increasedfpamance. Ruf’'s work has
shown that thread-local analysis can be run witlkery efficient and scalable specialized alias asial{fR00]. It is likely that
reentrant and enclosed lock analyses could be mksitp work with a similar specialized alias analythis is an important

area of future work.
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6. Future Work

Several interesting areas of future work remainc&iong analysis times is a significant drawbafckur work, it would
be interesting to combine our field-traversing #urdocal analysis with Ruf’s alias analysis [ROBjich a combination should
be as efficient as Ruf’s analysis, while distinging between field reads and writes in order topgetision better than either
work could alone. Summary and unification-basedsatechniques could also be applied to our unsHaledanalysis and
enclosing lock analysis, potentially allowing betéed more efficient results. An analysis similarunshared field analysis
could be applied to unboxing objects to represkeint inline, inside a container object. There map dle other forms of
unnecessary synchronization that could be optimized

Perhaps the most important area of future workeisighing and evaluating more effective languagehaisms for
synchronization. As described earlier, Java’s defzfunot synchronizing without an explicit annatet makes easy to omit a
single declaration, possibly leading to dangeroats daces. While alternative mechanisms, such rshsynizing at every
method call, have been proposed, it is not cleagtiddr such mechanisms are useful in practice. Quk wuggests that
compiler technology can eliminate the runtime casftssuch models, but more evaluation of their affeacn software
engineering is necessary.

7. Conclusion

The synchronization analyses described in this paaenely thread-local, lock, and unshared fieldlysis, resulted in a
large decrease in dynamic synchronization operstionmost programs, enabling programmers to usancynchronization
models without incurring significant extra cost.eTthread-local algorithm was the most effectivéhefthree: its dramatically
increased performance over previously publishedattiocal analyses demonstrates the importancendidering thread
interactions when eliminating unnecessary synchaiitin from Java programs. Three of our benchmarkserienced
speedups of 37-53%; other benchmarks we evaludsedimproved, but to a far lesser extent, becabsefrequency of
synchronization operations in them was low. Thailltesshow that our analyses for automatically elating unnecessary
synchronization enable programmers to more easilg neusable, maintainable, and correct multitheshprograms without

worrying about excessive synchronization cost.
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Appendix A: Webserver Code
import java.util.Random;

class Pair {
private Object first;
private Object second;

public Pair(Object f, Object s) {
first =f; second = s; }

public synchronized Object getFirst() {
return first; }
public synchronized Object getSecond() {
return second; }
public synchronized void setFirst(Objectf)
{first=f1;}
public synchronized void setSecond(
Object s) { second = s; }
}

class Table {
private List entries[];
private int capacity;

public Table() {
capacity = 13587;
entries = new List[capacity];
for (inti = 0; i < capacity; ++i)
entries[i] = new List();

public synchronized Objectget(Objectkey){
return getEntry(key).getSecond();

public synchronized void put(Object key,
Object value) {
Pair entry = getEntry(key);
entry.setSecond(value);

}

private synchronized Pair getEntry(Object
key) {
int index = key.hashCode() % capacity;
List | = entries[index];
l.reset();
while (I.LhasMore()) {
Pair p = (Pair) l.getNext();
if (p.getFirst().equals(key))
return p;

Pair p = new Pair(key, null);
l.add(p);
return p;

}
}
class List {

private Pair first;
private Pair current;

public synchronized void reset() {
current = first; }
public synchronized boolean hasMore() {
return current != null; }
public synchronized Object getNext() {
if (current = null) {
Object value = current.getFirst();
current = (Pair) current.getSecond();
return value;
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else
return null;

}

public synchronized void add(Object o) {
first = new Pair(o, first); }

}

class WriterThread extends Thread {
public void run() {
int myMaxNumber = 100;
while (myMaxNumber < 10000) {
for (int1=0; i < 100; ++i) {
Webserver.dataTable.put(
new Integer(myMaxNumber),
String.valueOf(myMaxNumber));
myMaxNumber++;

synchronized(Webserver.maxNumberLock) {
Webserver.maxNumber = myMaxNumber;

}

System.out.printin("Writer complete");

}

class ReaderThread extends Thread {
public void run() {
int myMaxNumber;
Random rand = new Random();
for (inti=0; i< 1000; ++i) {
synchronized(Webserver.maxNumberLock) {
myMaxNumber = Webserver.maxNumber;

}
for (intj = 0; j < 100; ++j) {
int index = Math.abs(

rand.nextint()) % myMaxNumber;

Webserver.dataTable.get(
new Integer(index));
}

System.out.printin("Reader complete");

}

public class Webserver {
public static void main(String argsl]) {
/* set up data table */
maxNumber = 100;
dataTable = new Table();
maxNumberLock = new Object();
for (maxNumber = 0; maxNumber < 100;
++maxNumber) {
dataTable.put(new Integer(maxNumber),
String.valueOf(maxNumber));

}
for (int threadNum = 0; threadNum < 8;
++threadNum) {
new ReaderThread().start();

}
new WriterThread().start();
}
public static Table dataTable;

public static int maxNumber;
public static Object maxNumberLock;
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