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Abstract

Barrett's esophagus is a premalignant condition that sudse to chronic acid reflux in which
the normal squamous epithelium of the esophagus is replacedmetaplastic columnar epithe-
lium. A fundamental question is the distinction betweenpiastic Barrett's epithelium and sur-
rounding normal tissues of the upper gastrointestinat.tfaor example, although it arises in the
esophagus, the Barrett's epithelium more closely resesrtbieepithelium of the duodenum at the
histologic level. Therefore, we compared the transcrilgrofile of the Barrett's epithelium to
those of normal upper gastrointestinal tissues, includasfric epithelium, squamous epithelium
of the esophagus and duodenal epithelium. We found that éinee®s epithelium has compara-
ble similarities to the three normal gastrointestinaluessat the expression level. In addition, we
proposed a novel approach to filter out non-tissue specifiegeWe searched for tissue specific
patterns, and identified many tissue specific genes. Funtirer; we developed a novel algorithm
to identify genes that drive the similarity (or dissimilgibetween different tissue samples.

*Equal contribution to this work.



1 Introduction and Motivation

Barrett's esophagus is a metaplasia that develops as aicatigi in 10-20% of patients with chronic
gastroesophageal reflux disease and predisposes to tHepieeat of adenocarcinomas of the esoph-
agus and the gastric cardia ([Hamiltenal., 1988], [Phillips and Wong, 1991]). Since the mid 1970s,
the incidence of Barrett's-associated adenocarcinomabesased more rapidly than that of any other
cancer in the United States [Blet al,, 1991]. Unfortunately, most patients who develop an espghla
adenocarcinoma present when the cancer is advanced amdhlegguand more than 90% will die of
their disease [Silverbergt al, 1990]. Patients with Barrett’s esophagus typically haymgoms of
gastroesophageal reflux, such as heartburn or indigestidrihey frequently seek medical attention
before they develop cancer. The Barrett's epithelium cassdiely visualized and biopsied during
upper gastrointestinal endoscopy. At the present timal temoval of Barrett's epithelium requires
esophagectomy, a procedure with substantial morbidityraodality. However, a systematic proto-
col of endoscopic biopsies can detect early curable careiisg in Barrett's esophagus. Therefore,
the standard of care for many patients includes endoscaogpsy surveillance for the early detection
of cancer. A fundamental question is the distinction betweeoplastic Barrett's epithelium and the
surrounding normal tissues of the upper gastrointestiaat.t For example, although it arises in the
esophagus, Barrett's epithelium more closely resemblegpithelium of the duodenum at the cyto-
logical level. Therefore we are interested to compare #estrriptional profile of Barrett’s epithelium
to those of normal upper gastrointestinal tissues inclygastric epithelium, squamous epithelium of
the esophagus and duodenal epithelium. Endoscopic b&fisim each tissue were collected from a
series of patients during routine surveillance. Pdly RNA was prepared from pooled samples (2-4
patients/pool) of Barrett's epithelium (4 pools), esopF@gquamous epithelium (4 pools), gastric (3
pools) and duodenum (3 pools). Each pdly sample was used to prepare double-stranded cDNA with
a T7 promoter. Subsequently fluorescently labeled cRNAegdad by in vitro transcription (IVT) of
the cDNA template, was used to interrogate Affymetrix HUB&Mhd FL6800 chips.

There are three basic questions we would like to addressriaralysis:

e Which normal gastrointestinal tissues (squamous epitimeliduodenum epithelium or gastric
epithelium) is the neoplastic Barrett's epithelium mosti&r to?

e Are there any tissue specific gene clusters?

e What are the genes that make Barrett’s epithelium similadi@imilar) to each of the normal
gastrointestinal tissue?

Since we used both Affymetrix HU6800 and FL6800 chips in ognregiments, there are some nor-
malization issues for combining the data. The data pregasing issues will be discussed in Section 2.
The similarity analysis will be discussed in Section 3. &#ect will discuss the cluster analysis on
this data set. Finally, a novel algorithm that identifiesagethat are responsible for the similarity (or
dissimilarity) between tissue samples will be presentesldation 5.

2 Experiments and Data Sets

2.1 Details of the Experiments

In our experiments, tissue samples were pooled from two to patients. There are a total of four
separate pools of Barrett's epithelium (BE), four poolssdghageal squamous epithelium (Sq), three
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pools of gastric epithelium (GAS) and three pools of duoderypithelium (DUO). In our first set of
experiments, four pools of Barrett’s epithelium, four moof squamous epithelium, 1 pool of gastric
epithelium and 1 pool of duodenum epithelium were used &riagate the Affymetrix Hu6800 chips
(a total of 10 experiments). Let us denote the first set of exmts{BE1, BE2, BE3, BE4, Sql, Sq2,
Sq3, Sg4, GAS1, DUOL In our second set of experiments, one pool of Barrett'siepitm, one pool
of squamous epithelium, two pools of duodenum epitheliuchtar pools of gastric epithelium were
used to interrogate the Affymetrix FL6800 chips (a total ahperiments). Let us denote the second
set of experiment$BES5, Sg5, GAS2, GAS3, DUO2, DUQ3The pools of Barrett's epithelium and
squamous epithelium used in the second set of experimért& (16800 chips) were identical to one of
the four pools used in the first set of experiments (the Hu@&8m@s). In particular, BE4 and BE5 was
derived from the same pool of tissue samples of Barrettthelpim, and Sq2 and Sg5 was derived
from the same pool of tissue samples. Note that each of thedtgmf experiments cover all four types
of tissue samples.

The Affymetrix Hu6800 and FL6800 chips consist of approxiaha 7000 genes. The two types
of chips consist of the same genes. However, the Hu6800 fadiiales the 7000 genes into four
separate physical chips (namely, A,B,C,D), while the FLG&)rmat has all the 7000 genes on one
physical chip. The probe sets of the two formats are alserdifft. Figure 1 is a cartoon of the data
set. The first set of experiments are shown in red, while tieersmk set in black. In the first set of
experiments, approximately one quarter of the 7070 geresraeach of the A,B, C, D chips, and the
A, B, C, D chips contain the same genes across different expats. From our experience, the four
chips in the Hu6800 format can have very different overakmsities. For example, in experiment
BE1, the A chip can be much brighter than the D chip, while ipeziment BE2, the D chip is brighter
than the A chip. Both experiments BE1 and BE2 are pooled sssmgilthe Barrett’s epithelium. Thus,
the challenge is that the data from the four separate chifreirlu6800 format have to be normalized
before data analysis on all the 7070 genes can be performadydal is to combine the data from all
the 16 experiments (both the Hu6800 and the FL6800 formats).

experimental conditions
]

GAS1 DUO1 BE1 BE2 BE3 BE4 Sql Sq2 Sq3 S@AS2 GAS3 DUO2 DUO3 BES5 Sg5
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Figure 1: The Barrett's esophagus data set

2.2 Data normalization

The goal of this pre-processing step is to normalize theesgion levels of the genes on separate A,
B, C, D chips in the Affymetrix Hu6800 chips so as to perforniedanalysis on all the genes. L&t ;
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denote the raw expression level (before normalization)eoieg under experiment. To motivate the
importance of this data normalization step, let us condiuefollowing scenario. Let experiments
and E, be experiments from the Hu6800 format. Suppose the ovetpikession levels of chip A in
experimentF; are much higher than chip D in the same experintgntLet geneg; be a gene on chip
A, and gengy; be a gene on chip D, and suppose further thatx, > X, x,. However, in experiment
E5, which is the same tissue type as experimépt the overall expression levels of chip A is much
lower than that of chip D under experimeft, and X, iz, < Xy, r,. A discrepancy is observed:
under the same tissue type, gepnds higher expressed than gegeunder one experiment but not
another. Without normalization, we cannot decide if themdipancy is an artifact of chips A and D
having different signal intensities under the two experitaé’; andE,, or a result of heterogeneity of
tissue samples in the two experiments.

One difficulty of normalization is that the sets of genes oa thur separate chips are mostly
disjoint. There are only a few control genes that are in comiamong the four chips. We cannot
obtain robust estimates of the mean and the standard aeviatchip intensity with only a few control
genes.

Our normalization approach: The basic idea of our normalization approach is to use treeaathe
FL6800 format to determine the relative intensities of geme each of the A,B, C, D chips in order to
compare the expression levels of genes on different chigenihe same experiment. The distributions
of the raw expression levelX; ; from each experiment are highly skewed and have a very Idhg ta
An example is shown in Figure 2, which is the histogram of tiséribution of the expression levels in
experiment Sg2. In the first step of normalization, we toak [tigarithm of all the expression levels
from all 16 experiments. After the log transform, the diaition of the expression levels more closely
resembles the normal distribution. The distribution of libg of the expression levels in experiment
Sqg2 is shown in Figure 3. Then, we normalized the log-transtal expression levels of each of the
six experiments from the FL6800 format to mean 50 and stahdeviation 10 (the choice of 50 and
10 is arbitrary). For each of the second set of experimeriom the FL6800 format (wher&=BES5,
Sqg5, DUO2, DUO3, GAS2 or GAS3), the average expressionslaxfé’llp and standard deviations
a%hi” (wherechip = A, B, C, D) of corresponding genes on the A, B, C, D chips are computed. T
expression levels of the first set of experiments were nozedko have the corresponding mq&fﬁp

and standard deviation%hi” of the same tissue type. For example, the expression lei/glsnes in
chip A from experiments Sql, Sg2, Sq3 and Sq4 were scaleclnzorhelamgq5 and standard deviation

aglqs. The final distribution of experiment Sg2 is shown in Figureld the case of the duodenum
epithelium, two experiments (DUO2, DUO3) were done on thé810 chips. The average p h[if’oz
andu$)”,,, and the average of;, ando'%,, (wherechip = A, B, C, D) were used to normalize
experiment DUO1. Similarly, GAS1 was normalized with thermages of GAS2 and GAS3.

After this normalization, we can compare expression levbigenes across different chips from the
first set of experiments. In terms of our motivating scenasie can now compare the expression level
of geney; on chip A to that of geng; on chip D. The disadvantage of this approach is that even the
same type of tissue samples can be heterogeneous, espimidlie neoplastic Barrett's epithelium.

This normalized data set is used in all of the analysis desdrin this technical report.

An alternative normalization approach: Our approach to normalization only applies to situations in
which the second set of experiments using the FL6800 chipsrsall types of tissue samples. We
also experimented with an alternative normalization apginain which the data on the Hu6800 chips
is normalized without using the data on the FL6800 chips. bB&sic idea of this approach is that
the average intensity and standard deviation of each of tBeCAD chips are scaled to be the same
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Figure 2: Histogram of the distribution of the expressiorels in Sq2
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Figure 3: Histogram of the distribution of the expressiorels after log transform in Sg2



100 150

frequency

50

N III|‘||“‘|“|||III'I"I|
" . .

expression levels of normalized Sq2

Figure 4: Histogram of the distribution of the expressiorele after normalization in Sg2

across different experiments in the Hu6800 format so asrapeoe expression levels across different
experiments. Again, we took the logarithm of all the expi@sgevels from all the experiments. Genes
within the same A,B, C or D chips from experiments under thé&800 formats were normalized to
have the same mean (0) and standard deviation (1). GenesltisoRL6800 format were normalized
to have the same mean (0) and standard deviation (1) ace3909 genes. After this normalization,
genes in the same chip (A, B, C, or D) have approximately theesdistribution as genes in the same
respective chip across different experiments. With respeour motivating scenario, we can now
compare the expression levels of genes in chip A under erpeti; and the expression levels of
genes on chip A undeF,. However, we still cannot compare the expression levelseokg across
different chips (A,B, C or D) in the first set of experimenta.térms of our scenario, we still cannot
compare the expression levels of genes in chip A and thodaprix: This is because we did not scale
the relative intensities across different chips.

This alternative approach implicitly assumes that theayetog-transformed expression levels on
each of the A,B,C, D chips are comparable. Using this altsmaormalized data set in the similarity
analysis leads to similar conclusions as the data set nmedalith the FL6800 chips.

3 Similarity between tissue samples

One of our fundamental questions is the distinction betwessplastic Barrett's epithelium and the
surrounding normal tissues of the upper gastrointestiaat.tWe used the Pearson’s correlation coeffi-
cient [Pearson, 1896] to compare the pairwise similartigtsveen tissue samples. Using the notations
in Figure 1. The similarity (Pearson correlation coeffitjdretween experimentand experimenk is

Yo (Xg g — mg) x (Xgk — )
\/Zi;v:l(Xg,j — )2 * N (X — por)?

1)
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Z;V:l Xy,

where; = =%=—-. The normalized data is used to compute the correlatiorficeefts. The
theory of Pearson’s correlation has an implicit assumpgionormality of the data. The distribution of
normalized data from approach 1 resembles the normallaision (an example is shown in Figure 4).

Since we have multiple experiments on each tissue type, eged the normalized expression
levels across experiments with the same tissue type in the sat of experiments in order to sum-
marize the similarities between different tissue typesernithe Pearson’s correlation coefficient was
applied to each pair of tissue types and in each set of expatsn The results are shown in Table 1.
Due to the different probe sets used by the Hu6800 and the@®L&8mats in the two sets of experi-
ments, we restrict our comparison within the same set ofraxgats. In Table 1, the notation E(r-s)
(wherer < s) means that the expression levels in experiménts . . , £s were averaged. For exam-
ple, BE(1-4) represents the expression levels in expetsrigBl, BE2, BE3 and BE4 were averaged.
The first set of experiments is shown in red. Table 1 shows diret pstimates of the correlation coef-
ficients. We also computed the 95% confidence intervals focthrelation coefficients using Fisher’s
transform [Snedecor and Cochran, 1980] (not shown here).

GAS1 DUO1 BE(1-4) Sq(1-4) GAS(2-3) DUO(2-3) BE5  Sg5
GAS1 1.000 0.807 0.851 0.751 0.864 0.763 0.805 0.741
DUO1 0.807 1.000 0.841  0.732 0.761 0.872 0.792 0.719
BE(1-4) | 0.851 0.841  1.000  0.830 0.810 0.782 0.865 0.795
Sq(1-4) | 0751 0732  0.830  1.000 0.732 0.689 0.729 0.892
GAS(2-3) | 0.864 0761  0.810 0.732 1.000 0.861 0.863 0.777
DUO(2-3)| 0.763 0.872  0.782  0.689 0.861 1.000 0.872 0.748
BE5 0.805 0.792  0.865  0.729 0.863 0.872 1.000 0.796
Sg5 0.741 0719  0.795  0.892 0.777 0.748 0.796 1.000

Table 1: Average correlation coefficients between tisspesyn the same set of experiments.

Let S(z,y) be the pairwise similarity between experimenand experimeny. From Table 1,
S(GAS1,DUO1) = 0.807, S(GAS1,Sq(1-4)) = 0.751 andS(DUO1, Sq(1—4)) = 0.732. There-
fore, the gastric epithelium and the duodenum epitheliuennaore similar to each other than to the
squamous epithelium (becauSeGAS1, DUO1) > S(GAS1,Sq(1 —4)) andS(GAS1,DUO1) >
S(DUO1, Sq(1 — 4))). Even the low end of the confidence interval BIGAS1, DUO1) is greater
than the high end of the confidence interval $§G AS1, Sq(1 —4)) andS(DUO1, Sq(1 — 4)). Sim-
ilarly, the correlation coefficients in the second set ofakpents support the same conclusion. The
comparison of the expression profiles of the three normdigagestinal tissues is consistent with the
more similar morphology and physiological role (secretaf/gastric and duodenal epithelia, when
compared to the different morphology of non-secretory bagpal squamous epithelium.

For the first set of experiments, the point estimates of threetaiion coefficients between the
Barrett’s epithelium and each of the gastric epitheliungdinum epithelium and squamous epithelium
are comparable. The confidence intervals for the correlataefficients also overlap. However, for
the second set of experiments, the Barrett's epitheliung,BEmore similar to the gastric epithelium,
GAS(2-3), and the duodenum epithelium, DUO(2-3), than todjuamous epithelium, Sg5. It turns
out that this discrepancy is due to the heterogeneity oftloplastic Barrett's epithelium. Table 2 in the
Appendix shows the point estimates of the correlation cuefits between all 16 experiments without
averaging the expression levels over the same tissue tygen Ahe first set of experiments are shown
in red, while the second set is shown in black. (We also coetptite 95% confidence interval, but
the results are not shown here). From Table 2, we can seexpeatiment BE1 from the first set of



experiments has lower similarity to the gastric epitheli(AS1) than to the squamous epithelium
(Sq1l, Sg2, Sg3, Sg4). On the other hand, experiment BE4 ffalsothe first set of experiments) has
higher similarity to the gastric epithelium (GAS1) than ke tsquamous epithelium (Sql, Sq2, Sq3,
Sqg4). In the second set of experiments, experiment BE5 stimvsame relative similarities as BE4,
i.e., S(BEb5,Sq¢5) < S(BE5,GAS2) andS(BE5,Sq5) < S(BE5,GAS3). In fact, experiments
BE4 and BE5 used the same pooled tissue sample, but theytem®gated to the Hu6800 and FL6800
format respectively. Therefore, the discrepancy we olesknging the average expression levels across
tissue types in Table 1 merely reflects the heterogeneityeohéoplastic Barrett’s epithelium.

From Table 2, experiment BE5 is most similar to experiment Beross all the experiments,
even though BE4 and BE5 were interrogated to different chiméats. Similarly, experiment Sg5 is
most similar to experiment Sq2 across all the experimenkss §hows that our normalized data and
similarity comparisons are robust because experiments 8€MBES, Sg2 and Sg5 used the same
pooled tissue samples.

4 Cluster Analysis

In order to identify tissue specific clusters of genes, thie@enormalized data set is filtered to focus
on genes that are differentially expressed in differersutistypes. After we determined a set of dif-
ferentially expressed genes, we need to choose a clusegongthm. Finally, we applied the chosen
clustering algorithm to obtain tissue specific clusters.

4.1 Filtering

Our procedure to identify genes that are differentiallyresged in different tissue types is similar to
the standard procedure of the analysis of variance (ANOYAY,[1984]. Suppose we have indepen-
dent samples from each of thedifferent populations, and the sample size from populatign;

(wherei: = 1,2,...,k). LetY; ; be an expression level from populatigrwhere: = 1,2,...,k and
J =1,2,...,n; Inthe standard ANOVA procedurg; ;'s are assumed to be independent, normal,
ElY, ;] = pi, VarlY;;] = %, and the null hypothesi#ly : p1 = p2 = ... = py versusH; : Hy

is falseis tested. Note that the population variances are assumiegl ¢gual. Let, = n. = ", n;,
i, =2 Yi/ni, Y. = 3,V /X n = 3,3, Yij/n. The test statistic in the standard ANOVA
procedure is the ratio of the between-population mean sdoahe residual mean square,,

>ini(Yi, — Y..>2/Zz~ ¥,(Yi - Yi)?
k-1 n—=k
which follows the F-distribution with (k-1, n-k) degreesfodedom.

For each gene, we tested the null hypothéfjs ppr = sy = aas = ppuo vVersusi, : Hyis
false A gene is said to bdifferentially expressed the null hypothesisH is rejected. There are four
tissue types in our experiments: the Barrett's epitheligastric epithelium, duodenum epithelium and
squamous epithelium,e., k is 4. The sizes of the tissue types,are 5, 5, 3, and 3 for the Barrett’s,
squamous, gastric and duodenum epithelium respectively.

Our idea is to use the test statistic in Equation 2, but imstHfaassuming that the test statistic
follows the F-distribution with (k-1, n-k) degrees of fremd, an empirical distribution for the test
statistic is computed. Due to the small sample sizes (3 dahB)assumption of the F distribution can
potentially have a large impact on the hypothesis testimgthé derivation of the test statistic, the
normality assumption is used to show that the distributibtme test statistic in Equation 2 follows the

)
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F-distribution. Therefore, by generating an empiricatribsition to compute the significance level,
our approach doesotassume the normality of the expression levgls's from each tissue type.

An empirical distribution for each gene is simulated by @mé/ permuting the expression levels
of that gene from all the experiments, and by repeating thdam permutation many many times
(3000 times in our implementation). If the test statistidsofuation 2 from the empirical distribution
of a gengy is greater than the observed test statistic from the dasahes 5% in all the random trials,
then we reject the null hypothestg, at the 0.05 significance level. The geppasses the filter, and is
considered in the cluster analysis.

For a fixedk (=4) and a fixech (=16), the test statistic in Equation 2 is equivalent to #gorof
the between tissue type mean square to the residual meare s@iace our goal is to identify genes
that are differentially expressed in different tissue gjelarge ratio of the between tissue type mean
square to the residual mean square is preferred. Intyitiwael empirical testing procedure determines
whether the observed ratio from the data is large enoughagdt tis not easily obtained by chance.

We applied the above modified ANOVA procedure to the thredgminormalized data set from
approach 2. Data values with very low expression levelsahaimarked with low confidence by the
Affymetrix software were not considered in the normaliaatstep. After normalizing the data with
approach 2, we thresholded all the low confidence data wigthueevthat is slightly lower than the lowest
expression level marked with confidence. For 1095 genesofot®70 genes), the equal population
mean null hypothesis is rejected at the 0.05 significanaa,lend hence passing the filter.

4.2 Choosing a clustering algorithm

With the filtered data set, the next problem is to choose daring algorithm for the data. We used the
figure of meritmethodology in [Yeungt al., 2000] to compare the performance of different clustering
algorithms. The basic idea of the figure of merit (FOM) metilody is to apply a clustering algorithm
to the data from all but one experiment. The remaining erpeni is used to assess the predictive
power of the resulting clusters—meaningful clusters sthaxhibit less variation in the remaining
experiment than clusters formed by chance. The predictveepof the resulting clusters is measured
by the within-cluster variance, and is called flgaire of merit(FOM). A clustering result with a small
FOM implies low within-cluster variance, which in turn is endication of high predictive power. The
definition of FOM does not allow direct comparisons overatifint numbers of clusters. Therefore,
the FOM is plotted against the number of clusters in typic@Mranalyses.

Figure 5 shows the result of applying the FOM methodologyh filtered Barrett's esophagus
data (1095 genes). Correlation coefficient was used to ctergairwise similarities of genes. Three
hierarchical clustering algorithms [Jain and Dubes, 1988grage-link, single-link, complete-link),
two partitional algorithms (k-means [Jain and Dubes, 19881 Cluster Affinity Search Technique
(CAST) [Ben-Dor and Yakhini, 1999]), and the random aldontwere compared. The random algo-
rithm is a benchmark in which all genes are randomly assigmellisters. A good clustering algorithm
should do much better than the random algorithm. In our impl&ation, k-means is initialized with
the results from hierarchical average-link. From Figurdh®, single-link algorithm achieves only
slightly lower FOM than the random algorithm, which mearet the performance of single-link is not
satisfactory. The k-means and CAST algorithms achievealest FOM, and have comparable per-
formance. The FOM declines drastically up to around 8 ctassn the number of clusters is estimated
to be approximately 8.
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Figure 5: FOM analysis on the Barrett’'s esophagus data

4.3 Tissue specific clusters

From the FOM analysis, we applied the CAST algorithm to thergd Barrett's esophagus data set
(1095 genes) to obtain 8 clusters. Tissue specific clusters abtained. For example, Figure 6 shows
the expression profile of a Barrett specific cluster, and feigushows a squamous specific cluster.
In Figures 6 and 7, the x-axis represents all the 16 expetBnend the y-axis shows the normal-
ized expression levels. The solid line represents the geezapression level in each experiment, and
the dotted lines show one standard deviation above and bblewaverage expression level in each
cluster. From the figures, genes in the Barrett specific@ly§tigure 6) show relatively high expres-
sion levels in the five experiments using the Barrett’'s afitim tissue, while genes in the squamous
specific cluster (Figure 7) show relatively high expressémels in the five experiments using the squa-
mous epithelium tissue sample. Many interesting genes fwarel from these tissue specific clusters.
The Barrett specific cluster included genes associatedagititycle progression (P1lcdc47, PCM-1),
cell migration (urokinase-type plasminogen receptodwgh regulation (TGF-beta superfamily, am-
phiregulin, Cyr61) stress responses (calcyclin, ATF3, DR#han receptor) as well as epithelial cell
surface antigens (epsilon-BP, Human surface antigergrintbeta 4). The squamous specific cluster
included oncogenes (pim-1, met, P47 LBC), a number of prats inhibitors (maspin, elafin, mono-
cyte/neutrophil elastase inhibitor, cystatin M, cyst@insquamous cell carcinoma antigen, urokinase
inhibitor), proteases (protease M, calcium dependenepsa) and a series of small proline rich pro-
teins (sprl, sprll, SPRR2B, SPR2-1, SPRR1A) implicated anious cellular stress responses. For
more detailed biological interpretation, please referiuomaper [Barretet al., 2000].

4.4 Discussion

A careful inspection of the clusters in Figures 6 and 7 shbwasthe experiments using the same pool
of tissue samples (BE4 and BE5, Sg2 and Sqg5) do not have édentormalized expression levels.
The differences between the normalized expression levelseosame tissue samples hybridized to
both HU6800 and FL6800 chips reflect the experimental variain using either the same cDNA
(BE4 and BED5) or the same poly A+ (Sg2 and Sqg5) as startingriakte generate the separate pools
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4 CLUSTERANALYSIS

Cluster #4 (size 38)
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Figure 6: Barrett specific cluster

Cluster #7 (size 203)
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tissue samples

Figure 7: squamous specific cluster
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of cRNA for each hybridization.

In our filtering procedure, the expression levels of the @rpents corresponding to each tissue
type were assumed to be independent. This is not the cadeefexperiments with the same pool of
tissue samples (BE4 and BE5, Sqg2 and Sqgb). It would be ititege® modify our current approach to
account for the dependence between tissue samples.

5 Genes driving the similarity between tissue samples

In the calculation of the pairwise similarities betweestis samples in Section 3, the expression levels
of all the 7070 genes were taken into consideration. Onegstidég question would be to determine
the genes that drive the similarity between tissue typesekample, what are the genes that make the
Barrett’s epithelium (BE) similar to the squamous epitlveli(Sq)? What are the genes that make the
Barrett’s epithelium (BE) different from the squamous lkegiium (Sq)?

In order to answer this question, we developed a novel dlgorithe GENEEXTRACT algorithm.
This algorithm is motivated by the ideas behind the Kenslatbefficient of concordance[Kendall, 1970],
which is a measure of rank association.

5.1 Kendall's coefficient of concordance

In this subsection, the Kendall's coefficient of concordaand the necessary notations are introduced.
Using the notations in Figure 1, Ief; ; be the expression level of geneinder experimenf, where
1=1,2,...,N,andj = 1,2,...,m. In the case of the Barrett's esophagus data; 7070 andn =

16.

Definition 1 A pair of genesy; and g; are concordant with respect to experimerfs and E, if
(ng,El - X.lh',E1) * (ij,E:z - Xgi,E:z) > 0.

Definition 2 A pair of genesg; and g; are discordant with respect to experiments and E, if
(ng,El - X.lh',E1) * (ij,E:z - Xgi,E:z) < 0.

In other words, if geneg; andg; areconcordant either gengy; has higher expression levels than
geneg; in both experiments or geng has lower expression levels in both experiments. For a [pair o
discordantgenes, their expression levels go up or down in oppositetitirein both experiments. Note
that the magnitudes of expression levels are not necessdptdérmine if a pair of genes is concordant
or discordant, only the relativenksare necessary. The rank of an object is the relative pogiti@n
set of objects if all the objects are arranged in increasidgroof a given measure. L&(g, £') be the
rank of a geng in experimentF. It is clear that the following three conditions are true:

e R(gi, E) > R(yg;, ) ifand only if Xy, p > Xy, E-
e R(gi, F) < R(g;,F) ifand only if X, p < Xy, E-
° R(gz; E) = R(gJ,E) if and onIy ifXgi,E = ng,E-

Therefore, the magnitudes of expression levels of genesfinifion 1 and Definition 2 can be
replaced by the relative ranks of genes.
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Example 1 Table 3 shows the relative ranks of expression levels ofsg@rieo G8 with respect to two
experiments; and E,. For example, G2 has the lowest expression level in expatifigbecause it
has rank 1, while G1 has the lowest expression level in exm@iiz,.

In this example, genes (G7, G8) are concordant becguse?) « (3 — 4) > 0. Similarly, genes
(G3, G4) are discordant becauge— 6) x (6 — 2) < 0.

ExperimentE; ExperimentE,

Gl
G2
G3
G4
G5
G6
G7
G8 7

Table 3: An example showing Kendall's coefficient of coneorce.

A O WONEO

A OWNOIDNO OB

Let C be the number of pairs of genes that are concordant,/ate the number of discordant
pairs of genes. Suppose there are a totdV afbjects (genes in our case). The Kendall's coefficient of
concordancer() is defined to be the difference of the number of concordaads pnd the number of
discordant pairs divided by the total number of possiblespae.,

C-D

O

From the definition in Equation 3, it is clear thaties between -1 and (= 1 whenD = 0, and
7 = —1 whenC = 0). When the number of concordant pairs is equal to the numbeisoordant
pairs {.e.,C = D), 7 = 0 which has the interpretation that the two experiments acewalated. In
Example 1,C' =10, D = 18, andN = 28, so the Kendall's coefficient of concordance for experita
E, andEsy, T, is -0.286.

In Example 1, the ranks of the genes in each experiment atiadljd.e., there are ndies In
general, for any pair of genes, they must be concordant oodiant or tied. In the numerator in the
formula for the Kendall’s coefficient of concordance (Edomat3), ties are not considered. Therefore,
in the case of ties, the denominator in Equation 3 has to hestdj. Specifically, the number of pairs
of tied pairs from each experiment has to be subtracted frendénominator.

®3)

5.2 Reduction to a graph problem (max-clique)

From the definitions in Section 5.1, it is clear that concatdgenes contribute to the similarity of
two experiments, while discordant genes contribute to ikeidilarity of two experiments. If we
compute the Kendall's coefficient of concordance within bsat of genes that are all concordant
with each other, the Kendall's coefficient of concordancé e 1. One of the questions that we
would like to address in this expression study is to ideng@nes that make the Barrett’s epithelium
distinct from other normal gastrointestinal tissues. Matd by the concepts of concordance and
discordance in Kendall's coefficient of concordance, a sub$ genes that are concordant to each
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other in two experiments is said to make the two experimesitailar’. Similarly, a subset of genes
that are discordant to each other in two experiments is saitkke the two experiments “dissimilar”.

Special case: two experimentket us first consider the problem of determining a subset n€cmant
genes in two experiment8; and E,. With the notion of concordant genes, we can identify pairs o
genes whose expression levels go up or down in the sameidire@he problem with the concordant
notion is that it is gpairwiseconcept. In order to find a subset of genes that are all coanbtd each
other, we can reduce this problem to a graph problem@.et (V, E), whereV is the set of vertices
and E is the set of edges. The graghhasN vertices (each vertex corresponds to a gene). Edge
(9i,g5) is in the graph if geneg; andg; are concordant with respect to experimehtsand E,. We

can reduce Example 1 to the graph in Figure 8 with a vertexdohef the eight genes, and an edge
for each pair of concordant genes.

Figure 8: Example 1 is reduced to a graph problem.

After reducing our problem to a graph, the next step is to firslilaset of genes (or vertices in
the graph) that are all concordaig., to find the largest subset of genes that are all connected. In
the computer science literature, this is known asrfax-cliqueproblem. A subgraph is a subset of
vertices and edges in a graphchiqueis a complete subgraphe.,each vertex in a clique is connected
to every other vertex in the clique. A max-clique is a cliquéwthe maximum number of vertices. In
Example 1 above, G1, G4, G6, G8 forms a max-clique. For ouleno, the max-clique is a subset of
maximum number of genes (vertices) such that they are aflardant (or discordant) to each other in
the subset.

The max-clique problem is shown to be NP-complete and is kntowbe a very difficult problem
even to approximate [Hastad, 1996]. However, there are mppyoximation heuristics that can be
used to solve the max-clique problem. We used#aetive local searcliRLS) implementation devel-
oped by [Battiti and Protasi, 2000]. The basic idea of the Rlgerithm is that it is a local search algo-
rithm with techniques to prohibit moves that would createley in the search trajectory and to exploit
new parts of the total search space. The RLS implementatioie\aed significantly better results than
all other max-clique algorithms at the DIMACS implemertdatchallenge [Johnson and Trick, 1996].
Moreover, their implementation is easy to use and is aVailab the world wide web.

For the problem of finding a subset of genes that are all disetirto each other in two experiments,
an edgdg;, g;) is added to the grapi = (V, £) if genesg; andg; are discordant with respect to the
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two experiments. The max-clique on the graptwith discordant edges represents the largest subset
of genes that are all discordant to each other in the subset.

The reduction to max-clique allows us to find a subset of géimatsare either all concordant or
all discordant to each other. If we allow weights on the edgfethe graph, we can represent both
concordant and discordant gene pairs in the same graphGtet= (V, E¥!) be a weighted graph,
andw;; be the weight on edg@y;, g;), wherei,j = 1,2,...,N. If genesy; andg; are concordant
with respect to experiments; and E,, weightw;; is 1. On the other hand, if gengs andg; are
discordant, weightv;; is -1.

Theorem 1 Ignoring ties, finding the largest subgraghf = (V', E') in G*! such thatFp, m, =
M is maximized (or minimized) is equivalent to finding the déstgsubset of genes for which
the Kendall’s coefficient of concordance is maximized (arimized) with respect to experimenis

and E,.

Proof Outline: The theorem follows directly from the following two obsetiems. With weights on
concordant pairs of genes being 1 and weights on discordarg @f genes being -1, it is easy to see
that_; jyepr wij = C — D, whereC and D are the number of pairs of concordant and discordant

genes in the subgrapgh'. If there are no ties7*! is a complete graph witﬁN

2) edges.™

The formulation in Theorem 1 establishes the reduction opooblem of finding a subset of genes
with the maximum (or minimum) Kendall's coefficient of comdance to a weighted gragk“!. The
following two corollaries shows that the formulation in Them 1 is equivalent to the max-clique
formulation.

Corollary 1 LetG = (V, E) be a graph such that the set of vertices are the set of geneg;, e c V.
Edge(g:,9;) € E if genesg; and g; are concordant with respect to experimeis and F,. Let
Gv! = (V, E*') be another graph with the same set of vertice&abut the edges are weighted. Edge
(9i,9;) € E“! has weightw;; 1 if genesy; andg; are concordant with respect to experimesits and
E,, and has weight -1 if gengg and ¢; are discordant. Finding the largest subgragh = (V', E’)

in G¥! such thatFg, g, = # is maximized is equivalent to finding the max-cliqué&in
Proof Outline: The maximum value of'z, g, is 1, which can only be obtained by haviag; = 1
for all edge(i,j) € E', which in turn implies that only concordant gene pairs atevadd in the
subgraphG’. It follows that the largest subgragh’ in G*! such thatF is maximized is the same as
the max-clique inG. O

Corollary 2 LetG = (V, E) be a graph such that the set of vertices are the set of geneg;, e c V.
Edge(gi,9;) € E if genesg; and g; are discordant with respect to experimeriis and F,. Let
Gv' = (V, E*') be another graph with the same set of vertice&abut the edges are weighted. Edge
(9i,95) € E™! has weightw;; 1 if genesy; andg; are concordant with respect to experimests and
E,, and has weight -1 if genes and g; are discordant. Finding the largest subgragh = (V', E’)

in G¥! such thatFg, g, = “|+ff'w] is minimized is equivalent to finding the max-cliquésin

The proof of Corollary 2 is very similar to that of Corollary &nd so is not shown here. From
Theorem 1, Corollaries 1 and 2, the problem of finding a sutigia which the Kendall's coefficient



5.3 The GeneExtract Algorithm 15

of concordance is maximized (or minimized) is equivalerftriding the max-clique for concordant (or
discordant) pairs of genes.

More general case: more than one experiment for each tissugge In Theorem 1, edges either have
weight 1 or -1 depending on whether a pair of genes are coaonbai discordant with respect tawo
experiments. In the case of the Barrett's esophagus datalgegoal is to identify genes driving the
similarity between different tissue types, and there areentitan one experiment for each tissue type,
i.e., there are three experiments for each of the duodenum dpitih@nd gastric epithelium, and five
experiments for each of the Barrett’s epithelium and squaepithelium. One natural measure of the
similarity of two tissue types over various experimentshis verage similarity between all pairs of
experiments from each tissue type. In this formulation waithitiple experiments in each tissue type,
the edges in the graph have weights other than 1 and -1.

LetTy andT; be different tissue types. L&}, E;, ..., E1} be experiments done on tissue type
Ty, and{E?, E3,. .., E2} be experiments done on tissue tyfe LetG* = (V, E) be a graph with
genes as the set of vertices. Edgg g;) has Weightw;?j-t = pﬁ, wherek is the number of pairs of
experiments in which geneg andg; are concordant minus the number of pairs of experiments over
the two tissue types in which gengsandy; are discordant. Let'y: g2 andDp: g2 be the number of
concordant and discordant pairs of genes with respect ter'mwpntsE,f andE?, wherer =1,2,...,p

vy q
. 1 22521(Cp1 g2=Dp1 2)
ands = 1,2,...,q. wi¢' = p—’“q can be rewritten agZ =L el If{’E Pl LetG' = (V! E') be
_ S e W
a subgraph ofs¥. Define F°t = %

Theorem 2 Ignoring ties, the problem of finding a subset of genes suahttie average Kendall's
coefficient of concordance over multiple experiments fraohéissue type is maximized (or minimized)
is equivalent to finding a subgragh in G in which F'*°! is maximized (or minimized).

Proof: Let us consider a pair of experiments over the two tissuestypé and E?, wherer =

1,2,...,pands = 1,2,...,¢. The Kendall's coefficient of concordance between this péiex-
Cp1 2= D

N
2
and discordant genes with respect to experimdfjtsand E? respectively. The average Kendall's

P

q
PRy El,B2
pq

1 2
ElE

perimentsyp: p2, is +, whereCp1 2 andD g 2 are the number of pairs of concordant

coefficient of concordance over all pairs of experimentsfesch tissue type,, is ==

tot
prtol 2 (i yent Wi
- E
p q
Z(i,]‘)eE' ZT=1 s=1(CE},E§7DE},E§)
|&]

5.3 The GeneExtract Algorithm

In order to find the largest subset of genes that are concofolagiscordant) to each other in the subset
over multiple experiments from two different tissue typas, can find the max-clique by considering
only edgeqg;, gj) such that geneg andg; are concordant (or discordant)aii pairs of experiments
from two different tissue types. This is a very restrictiandition. In terms of the weighted grag’
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formulation, edg€g;, ;) has Weightwg?t = lifand only if genesgy; andg; are concordant iall pairs

of experiments from two different tissue types. It follovisit the restrictive formulation described is
equivalent to finding a subgragh in G% such thatF**! (and hencer from Theorem 2) is 1. Noise
from experiments may make a pair of genes not concordant emeéepair of experiments. Consider an
example of a weighted gragh” in Figure 9. There are six vertices (genes), and edges azkethivith
their WeightSwfj-t. For clarity of the figure, edges with weight 1 are shown in exttes with weight

% are shown in blue, edges with Weigbtare shown in black, and edges with Weighﬁ are shown

in dotted lines. If we want to find the largest subgraphsuch that all pairs of genes in the subgraph
are concordant to each other over all pairs of experimenta the two tissue types, only edges with
weight 1 will be considered,e., the resulting subgraph consists of genes G1, G2 and G3. \owe
we relax our formulation and want to find the largest subgifaplvhich 7 is at least 0.8, the resulting
subgraph consists of genes G1, G2, G3, G4 and G5. In the cése Barrett's esophagus data, there
are 25 pairs of experiments over the Barrett’s epitheliuohthe squamous epithelium. Restricting our
attention to the largest subset of genes for which the garatiscordant with respect to all the 25 pairs
of experiments results in only 5 genes (out of a total of 70&80eg). Therefore, our implementation
aims to find a subgraph of very “high” or “low” average Kendadoefficient of concordanc&;ye,
(T4iven 1S Specified by the user).

Figure 9: An example illustrating .

In the GeneExtract algorithm, we start by finding a subseteofeg for which the genes are con-
cordant (or discordant) to each other with respect to atbpafiexperiments from the two tissue types.
Then, vertices that are highly connected to the initial stifase greedily added. The details of the
algorithm for finding a subset of genes that are highly cotaot or discordant are shown below.
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GeneExtract algorithm for concordant genes

e Use the unweighted formulation to form a gra@h= (V, £): edge(y;,g;) € E if genes
g; andg; are concordant in all pairs of experiments from the two défe tissue types.

e Use the RLS algorithm to find a max-cliqu&/C, in G.

e Use the weighted formulation in Theorem 2 to form a gr&ph, i.e., edge(g;, g;) has
weightw}? = pﬁq, wheref is the number of pairs of experiments that gepeandy; are
concordant minus the number of pairs of experiments oveivibdissue types that genes
g; andg; are discordant.

e For each vertexv not in the max-cliqueMC, compute total weightl'W (v) =
Y ueMc Way INGY.

e The cligue M C should have the average Kendall's coefficient of concordamer all
pairs of experiments from different tissue typésequal to 1.

e Let MC.pieng = (V', E') be the extended subgraph returned by this algorithm, where

tot
V' C V. Initialize M Cegtenq to be M C. DefineF! . = E“fgiﬁ'% From Theo-

rem 2,F' . is equal to the average Kendall’s coefficient of concordaofote set of

exten

. e tot o
genes inM Cegeng- Initially, £t =7 =1.

e Repeat untilF’%! = < Tyiven,

exten

— Add vertexwv that is not currently iV C...,.q that has the highest total weight fo
the original cliquel'W (v).

— Recomputer’’?t . with the additional vertex.

exten

o ReturnM Ceyyenq With the smallest’®t - that exceeds;yen.
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GeneExtract algorithm for discordant genes

e Use the unweighted formulation to form a gra@h= (V, £): edge(y;,g;) € E if genes
g; andg; are discordant in all pairs of experiments from the two défe tissue types.

e Use the RLS algorithm to find a max-cliqu&/C, in G.

e Use the weighted formulation in Theorem 2 to form a gr&ph, i.e., edge(g;, g;) has
weightw}? = pﬁq, wheref is the number of pairs of experiments that gepeandy; are
concordant minus the number of pairs of experiments oveivibdissue types that genes
g; andg; are discordant.

e For each vertexv not in the max-cliqueMC, compute total weightl'W (v) =
Y ueMc Way INGY.

e The cligue M C should have the average Kendall's coefficient of concordamer all
pairs of experiments from different tissue typésequal to -1.

e Let MC.pieng = (V', E') be the extended subgraph returned by this algorithm, where

D e g WSt
V' C V. Initialize M Ceyienq to be MC. DefineF,g;,,, = =“45—". From Theo-
rem 2,F' . is equal to the average Kendall’s coefficient of concordaofote set of
genes inM Ceypeng. Initially, £t =7 = —1.

e Repeat untilF’%! = > Tyiven,

— Add vertexv that is not currently i/ C..;...q that has the lowest total weight to the
original cliqueTW (v).

— Recomputer’’?t . with the additional vertex.

exten

ReturnM Cegieng With the highest!%! - that is belowr;yep,.

5.4 Preliminary Results

With the above implementation, we identified a few intereptgenes that drive the similarity and
dissimilarity between the Barrett’s epithelium and theagous epithelium. The genes that drive
the dissimilarity between the squamous epithelium and treel®’s epithelium included Human gas-
trointestinal tumor-associated antigen GA733-1, a maaksociated with colon cancer, and Af-17, a
putative member of a family of genes involved in cytokinesisl cell cycle control. Genes that drive
the similarity between the two tissues included a seriedotomal subunits (Human acidic ribosomal
phosphoprotein PO, Human ribosomal protein L21, Human fmneeterogeneous nuclear ribonucle-
oprotein core protein A1, Human ribosomal proteins S5, &hd, S29), early stress response genes
(Human 90 kD heat shock protein), metabolic enzymes (Hunvan tnRNA for glyceraldehyde-3-
phosphate dehydrogenase), and growth factor responsies d#etallopanstimulin 1). The genes
that drive the similarity are consistent with the need fdrtcenover in these tissues as a result of their
constant exposure to acid reflux.
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5.5 Directions for Extensions

Our current GNEEXTRACT algorithm is still in its infancy stage. There are many diiats for future
improvement.

In our current implementation, the total weidhtV (v) from each vertex not in the max-clique
MC to vertices in the max-clique are not updated after vertaresadded to the extended subgraph
M Copieng- One possible improvementis to update the total weighté@itended subgraghl Cepiend
every time after a vertex is added.

We assume no ties are present in both Theorem 1 and Theorehe Zrdof of Theorem 1 should
go through even if ties are present. However, the proof obfdra 2 would not go through with the
presence of ties. One direction of future work is to modifyedtem 2 to take ties into consideration.
However, if we assume that expression levels are real nuentherno tie assumption is not a significant
concern.

In our current implementation, the algorithm starts withppraximate max-clique using the un-
weighted formulation, and then extends the clique consigethe weights on edges. One alternative
approach is to directly look for an approximateightedmax-clique, which is a complete subgraph
with the maximum total weight on its edges (instead of theimar number of nodes). The current
RLS implementation to find max-clique assumes no weightsges

There may be many disjoint subsets of genes with high siityilar dissimilarity to each other.
Currently, our implementation only returns one such sub@é&t would like to extend our implemen-
tation to rank the disjoint subsets and to return more than &lle can also change the formulation

2 (i) et Vi

to look for dense subgraphisstead of cliquesi.e., F' = ;;,‘ so that large subsets of genes
are automatically preferred in the objective function. #abther possibility is to search for highly
connected subgraphs.

In the formulation of the weighted graph in Theorem 2, theghtd of edges do not take into
account the degree of concordance or discordance of a pgerafs. Since the Kendall's coefficient
of concordance is eank association measure, only the relative ranks matter. Fopayose, we can
imagine assigning higher (or lower) weights to pairs of gehat are highly concordant (or discordant).

5.6 Comparison with other approaches

There are many approaches to identify genes that are diffallg expressed in two or more types of
tissue. Claverie gave many examples of statistical appesam his review article [Claverie, 1999].
Identifying genes that distinguish two or more tissue tyjzealso known as théeature extraction
problem in classification. The idea is that the subset of g¢nat distinguish the two classes (tissue
types) should be used as class predictor. For example, [p&olal., 1999] used the difference of the
means in two classes divided by the sum of the standard dmsain the two classes as an estimate
for the distinguishing power of a gene.

Our approach is very different: instead of using the diatidn of expression levels in each tissue
type and in each gene, we compared the expression levelg®hbgenes under the same experiment.
Our approach does not assume the expression levels irediffexperiments to be normalized. In other
words, our approach would work even if the overall signat¢msities of different chips (experiments)
are very different.

In the case of the Barrett’'s esophagus data, we do not expedissue samples to have very
different variations. Usually, cancer tissue samples ape&ed to be more heterogenous. In the
Barrett's esophagus data, we have three normal tissue sanapld Barrett's esophagus is premaligant
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(not cancer). Moreoever, there are not enough tissue sarfmiy 3 or 5) from each tissue type to
compute robust estimates of the standard deviations. Hnerenly 623 genes (out of 7070 genes) that
have high confidence expression levels in all five Barraig&ue samples and all five squamous tissue
samples. The distributions of standard deviations in tl&@3genes from the Barrett’'s and squamous
tissue samples are comparable. Therefore, we believeduh@ENEEXTRACT algorithm is applicable

to the Barrett’'s esophagus data.

6 Conclusions

In this report, we addressed the three basic questions thitated this study (see Section 1). We
proposed normalization strategies to pre-process thefidatatwo formats of Affymetrix chips, and
used the normalized data in our analysis. Pearson’s ctiomlaoefficient was used to investigate
the similarities of different tissue samples. A novel agpiois proposed to filter out genes that are
not differentially expressed between different tissueetypCluster analysis was used to identify tissue
specific gene clusters. In addition, a novel algorithm isettgyed to identify genes that “make Barrett's
Barrett’s”, i.e., genes that make the Barrett’s epithelium distinct from (nilar to) each of the other
normal gastrointestinal tissues. In terms of future work, would like to incorporate the extension
ideas in Section 5.5. We also believe that our approach tatifgegenes driving the similarity (or
dissimilarity) between different experiments (or tissypets) has many applications. We would also
like to explore other applications of our algorithm.
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GAS1 DUOl1 BE1l BE2 BE3 BE4 Sql Sqg2 Sqg3 SqQGAS2 GAS3 DUO2 DUO3 BE5 Sg5

‘(£ UONDAS MPEILISAXD 9T || USBMIS( SIUSIDIYS09 UOIR|1I0D) Z d|0eL

GAS1 | 1.000 0.807 0.799 0.848 0.788 0.820 0.753 0.741 0.725 0.768620 0.855 0.762 0.768 0.805 0.741
DUO1| 0.807 1.000 0.805 0.814 0.842 0.811 0.736 0.726 0.717 0.737770 0.746 0.864 0.878 0.792 0.719
BE1 0.799 0.805 1.000 0.887 0.826 0.836 0.808 0.810 0.802 0.820660 0.750 0.730 0.748 0.792 0.759
BE2 0.848 0.814 0.887 1.000 0.823 0.883 0.828 0.810 0.821 0.8438070 0.789 0.750 0.764 0.825 0.795
BE3 0.788 0.842 0.826 0.823 1.000 0.811 0.744 0.731 0.712 0.757880 0.757 0.763 0.789 0.843 0.722
BE4 0.820 0.811 0.836 0.883 0.811 1.000 0.754 0.753 0.750 0.78890 0.766 0.775 0.787 0.889 0.759
Sql 0.753 0.736 0.808 0.828 0.744 0.754 1.000 0.902 0.893 0.93¥320 0.725 0.685 0.704 0.725 0.882
Sq2 0.741 0.726 0.810 0.810 0.731 0.753 0.902 1.000 0.958 0.93%970 0.692 0.645 0.664 0.691 0.882
Sq3 0.725 0.717 0.802 0.821 0.712 0.750 0.893 0.958 1.000 0.93®960 0.694 0.636 0.660 0.684 0.868
Sq4 0.764 0.737 0.820 0.842 0.757 0.788 0.931 0.935 0.930 1.000320 0.729 0.680 0.699 0.733 0.885
GAS2 | 0.862 0.777 0.766 0.807 0.788 0.789 0.732 0.697 0.696 0.73D001 0.955 0.852 0.861 0.861 0.762
GAS3 | 0.855 0.746 0.750 0.789 0.757 0.766 0.725 0.692 0.694 0.729550 1.000 0.848 0.854 0.855 0.784
DUO2 | 0.762 0.864 0.730 0.750 0.763 0.775 0.685 0.645 0.636 0.688520 0.848 1.000 0.967 0.861 0.742
DUO3| 0.768 0.878 0.748 0.764 0.789 0.787 0.704 0.664 0.660 0.698610 0.854 0.967 1.000 0.874 0.753
BES 0.805 0.792 0.792 0.825 0.843 0.889 0.725 0.691 0.684 0.738610 0.855 0.861 0.874 1.000 0.796
Sg5 0.741 0.719 0.759 0.795 0.722 0.759 0.882 0.882 0.868 0.885620 0.784 0.742 0.753 0.796 1.000
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