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Abstract

There is a great need to develop analytical methodology to analyze and to exploit the informa-
tion contained in gene expression data. Because of the largenumber of genes and the complexity
of biological networks, clustering is a useful exploratorytechnique for analysis of gene expres-
sion data. Other classical techniques, such as principal component analysis (PCA), have also been
applied to analyze gene expression data. Using different data analysis techniques and different
clustering algorithms to analyze the same data set can lead to very different conclusions. Our goal
is to study the effectiveness of principal components (PC’s) in capturing cluster structure. In other
words, we empirically compared the quality of clusters obtained from the original data set to the
quality of clusters obtained from clustering the PC’s usingboth real gene expression data sets and
synthetic data sets.

Our empirical study showed that clustering with the PC’s instead of the original variables does
not necessarily improve cluster quality. In particular, the first few PC’s (which contain most of the
variation in the data) do not necessarily capture most of thecluster structure. We also showed that
clustering with PC’s has different impact on different algorithms and different similarity metrics.
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1 Introduction

DNA microarrays offer the first great hope to study variations of many genes simultaneously [Lander, 1999].
Large amounts of gene expression data have been generated byresearchers. There is a great need to
develop analytical methodology to analyze and to exploit the information contained in gene expression
data [Lander, 1999]. Clustering analysis attempts to divide objects into groups such that objects within
the same group are more similar to each other than objects in other groups. Because of the large num-
ber of genes and the complexity of biological networks, clustering is a useful exploratory technique for
analysis of gene expression data. Since genes with related functions tend to have similar expression
patterns, possible roles for genes with unknown functions can be suggested based on the known func-
tions of some other genes that are placed in the same cluster [Chuet al., 1998]. Clustering is sometimes
used as a preprocessing step in inferring regulatory networks. For example, [Chenet al., 1999] used
clustering to identify ORF’s that have similar expression patterns to reduce the size of the regulatory
network to be inferred.

Many clustering algorithms have been proposed for gene expression data. For example, [Eisenet al., 1998]
applied the average-link hierarchical clustering algorithm to identify groups of co-regulated yeast
genes. [Ben-Dor and Yakhini, 1999] reported success with their CAST algorithm. [Tamayoet al., 1999]
used self-organizing maps to identify clusters in the yeastcell cycle and human hematopoietic differ-
entiation data sets. Other techniques, such as principal component analysis (PCA), have also been
proposed to analyze gene expression data. Principal component analysis (PCA) ([Dunteman, 1989],
[Everitt and Dunn, 1992], [Jolliffe, 1986]) is a classical technique to reduce the dimensionality of the
data set by transforming to a new set of variables to summarize the features of the data set. In particular,
[Raychaudhuriet al., 2000] applied PCA to the sporulation data set1.

Using different data analysis techniques and different clustering algorithms to analyze the same
data set can lead to very different conclusions. For example, [Chuet al., 1998] identified seven clusters
in the sporulation data set using the Cluster software [Eisen et al., 1998], but [Raychaudhuriet al., 2000]
claimed that there are no clusters present in the same data set when the data points are viewed in the
space of the first two principal components (PC’s). In this paper, we empirically investigate the effec-
tiveness of PCA as a preprocessing step in cluster analysis using both real gene expression data sets
with external clustering criteria and synthetic data sets.

2 Principal Component Analysis (PCA)

2.1 An Example of PCA

The central idea of principal component analysis (PCA) is toreduce the dimensionality of the data set
while retaining as much as possible the variation in the dataset. Principal components (PC’s) are linear
transformations of the original set of variables. PC’s are uncorrelated and ordered so that the first few
PC’s contain most of the variations in the original data set [Jolliffe, 1986].

The first PC has the geometric interpretation that it is a new coordinate axis that maximizes the
variation of the projections of the data points on the new coordinate axis. Figure 1 shows a scatterplot
of some fictitious data points in two dimensions (x

1

andx
2

). The points show an elliptical shape, and
the first PC is in the direction of the principal axis of this ellipse (markedPC

1

in Figure 1). The second
1Sporulation is the process in which diploid cells undergo meiosis to produce haploid cells in reproduction of yeast. The

sporulation data set [Chuet al., 1998] shows the temporal expression patterns of 97% of yeast genes over seven successive
time points in the sporulation of yeast.
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PC is orthogonal to the first PC and is markedPC

2

in Figure 1. If the data points are projected onto the
first PC, most of the variation of the two dimensional data points would be captured in one dimension.
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Figure 1: An example illustrating PCA

2.2 Definitions of PCA
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Figure 2: Notations for gene expression data

LetX be a gene expression data set withn genes andp experimental conditions. In this report, our
goal is to cluster the genes in the data set, hence the experimental conditions are the variables. Let�x

j

be
a column vector of expression levels of all then genes under experimental conditionj (see Figure 2).
A PC is a linear transformation of the experimental conditions. Let�z

k

=

P

p

j=1

�

k;j

�x

j

be thekth
PC. In particular, the first PC,�z

1

, can be written as
P

p

j=1

�

1;j

�x

j

. Let � be the covariance matrix of
the data, and��

k

be a column vector of all the�
k;j

’s, i.e., ��T
k

= (�

k;1

; �

k;2

; : : : ; �

k;p

). To derive the
first PC, we have to find��

1

that maximizesvar(
P

p

j=1

�

1;j

�x

j

) = ��

T

1

���

1

, subject to the constraint
��

T

1

��

1

= 1. It can be shown that��
1

is the eigenvector corresponding to the largest eigenvalue, �
1

,
of �, andvar(�z

1

) = �

1

[Jolliffe, 1986]. In general, thekth PC,�z
k

=

P

p

j=1

�

k;j

�x

j

, can be derived
by maximizingvar(

P

p

j=1

�

k;j

�x

j

), such that��T
k

��

k

= 1 and ��T
k

��

i

= 0, wherei < k. It can be
shown that��

k

is an eigenvector of� corresponding to itskth largest eigenvalue�
k

, andvar(�z
k

) = �

k

[Jolliffe, 1986].
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In the case of gene expression data, the population covariance matrix� is not known. The sample
covariance matrixS can be used instead. Letx

i;j

be the gene expression level of genei under experi-
mental conditionj. The sample covariance between conditionsj andk, S(j; k), can be calculated as
1

n�1

P

n

i=1

(x

i;j

� �

x

j

)(x

i;k

� �

x

k

), where�
x

j

=

1

n

P

n

i=1

x

i;j

.
From the derivation of PC’s, thekth PC can be interpreted as the direction that maximizes the

variation of the projections of the data points such that it is orthogonal to the firstk � 1 PC’s, and the
kth PC has thekth largest variance among all PC’s. Since most of the variation of high dimensional
data points can be captured in reduced dimensions defined by the first few PC’s, PCA is often used in
visualization of high dimensional data points.

2.3 Choosing the number of PC’s

Since the variance of PC’s are ordered, usually the firstm (m � p, wherep is the number of experi-
ments in the data set) PC’s are used in data analysis. The nextquestion is how we should choosem,
the number of first PC’s to be retained, to adequately represent the data set. There are some common
rules of thumb to choose the number of components to retain inPCA. Most of the rules are informal
and ad-hoc. The first common rule of thumb is to choosem to be the smallest integer such that a cho-
sen percentage of total variation is exceeded. In [Raychaudhuri et al., 2000], the first two components
which represent over 90% of the total variation in the sporulation data were chosen. Another common
approach uses ascree graph, in which thekth eigenvalue is plotted against the component number,k.
The number of componentsm is chosen to be the point at which the line in the scree graph is“steep”
to the left but “not steep” to the right. The main problem withthese approaches is that they are very
subjective. There are some more formal approaches in the literature, but in practice, they tend not to
work as well as the ad-hoc approach [Jolliffe, 1986].

2.4 Covariance versus correlation matrices

In the PCA literature, some authors prefer to define PC’s using thecorrelation matrix instead of the
covariance matrix. The correlation between a pair of variables is equivalent to the covariance divided
by the product of the standard deviations of the two variables. Extracting the PC’s as the eigenvectors
of the correlation matrix is equivalent to computing the PC’s from the original variables after each has
been standardized to have unit variance. PCA based on covariance matrices has the potential drawback
that the PC’s are highly sensitive to the unit of measurement. If there are large differences between the
variances of the variables, then the first few PC’s computed with the covariance matrix are dominated
by the variables with large variances. On the other hand, defining PC’s with the correlation matrix has
the drawback that the data is arbitrarily re-scaled to have unit variance. The general rule of thumb is to
define PC’s using the correlation matrix if the variables areof different types [Jolliffe, 1986].

2.5 Application of PCA in cluster analysis

In the clustering literature, PCA is sometimes applied to reduce the dimension of the data set prior to
clustering. The first few (saym, m � p) PC’s are usually used (for example, [Jolliffeet al., 1980]).
Most clustering algorithms require a measure of pairwise similarity or dissimilarity between obser-
vations as input. There are two popular pairwise similaritymetrics in clustering gene expression
data: Euclidean distance (for example, [Wenet al., 1998]) and correlation coefficient (for example,
[Eisenet al., 1998]). The pairwise Euclidean distance between two objects is unchanged after the PCA
step if all p PC’s are used. When Euclidean distance is used as the similarity metric, using the first
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m PC’s simply provides an approximation to the similarity metric [Jolliffe, 1986]. When correlation
coefficient is used as the similarity metric, the pairwise correlation coefficient between two objects is
not the same after the PCA step even if allp PC’s are used. There is no simple relationship between
the correlation coefficients of the same pair of objects withand without PCA.

In general, the extra computation to find the PC’s far outweighs any reduction in running time for
using fewer PC’s to compute the Euclidean distance [Jolliffe, 1986]. So, the hope for using PCA prior
to cluster analysis is that PC’s may “extract” the cluster structure in the data set. Figure 3 is a fictitious
situation in which the PCA preprocessing step before cluster analysis may help. The first PC is in the
direction of inter-cluster separation (the blue dotted line) in Figure 3. Projection of the data points on
the first PC clearly highlights the separation between the two clusters in the data. However, PCA does
not help in all situations. For example, in Figure 4, the firstPC is in the direction ofx

2

. Projection of
the data points onto the first PC does not preserve the separation between the two clusters in the data.
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Figure 3: An example illustrating PCA helps
in cluster analysis.
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Figure 4: An example illustrating PCA does
not help in cluster analysis.

In addition to the fictitious examples above illustrating the possible pros and cons of PCA on cluster
analysis, [Chang, 1983] showed theoretically that the firstfew PC’s may not contain cluster information
under certain assumptions. Assuming that the data is a mixture of two multivariate normal distributions
with different means but with an identical within-cluster covariance matrix, [Chang, 1983] derived a
relationship between the distance of the two subpopulations and any subset of PC’s, showing that the
set of PC’s with the largest eigenvalues does not necessarily contain more cluster structure information
(the distance between the two subpopulations is used as a measure of discriminatory power for cluster
structures). He also generated an artificial example in which there are two classes, and if the data points
are visualized in two dimensions, the two classes are only well-separated in the subspace of the first
and last PC’s.

In [Raychaudhuriet al., 2000], PCA was applied to the sporulation data set [Chuet al., 1998]. The
data points were visualized in the subspace of the first two PC’s, and they showed a unimodal distri-
bution. [Raychaudhuriet al., 2000] concluded that the sporulation data may not contain any clusters
based on visualization. With [Chang, 1983]’s theoretic results and the possibility of the situation in
Figure 4 in mind, it is clear that clustering with the PC’s instead of the original variables does not have
universal success. However, the theoretical results in [Chang, 1983] are true only under an unrealistic
assumption for gene expression data (i.e., there are two classes and each of the classes is generated
according to the multivariate normal distribution with a common covariance matrix). Therefore, there
is a need to investigate the effectiveness of PCA as a preprocessing step to cluster analysis on gene
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expression data before any conclusions are drawn. Our report is an attempt for such an empirical
study.

3 Overview of Our Methodology

Our goal is to empirically investigate the effectiveness ofclustering gene expression data using PC’s
instead of the original variables. Our methodology is to runa clustering algorithm on a given data set,
and then apply the same algorithm to the PC’s of the same data set. Then, the clustering results with
and without PCA are compared against an external criterion.The details of the experiments will be
discussed in the following sections.

3.1 Data sets

We used two gene expression data sets which have external criteria, and four sets of synthetic data
to evaluate the effectiveness of PCA. In this report, we use the wordclassto refer to a group in our
external criteria that is used to assess clustering results. The wordcluster is used to refer to clusters
obtained by a clustering algorithm. We assume both classes and clusters are disjoint.

3.1.1 Gene expression data sets

The ovary data: A subset of the ovary data set ([Schummeret al., 1999], [Schummer, 2000]) is used.
The ovary data set is generated by hybridizing randomly selected cDNA’s to membrane arrays. The
subset of the ovary data set we used contains 235 clones (clones are portions of genes) and 24 samples,
7 of which are derived from normal tissues, 4 from blood samples, and the remaining 13 from ovarian
cancers in various stages of malignancy. The tissue samplesare the experimental conditions. The 235
clones were sequenced, and they correspond to 4 different genes. The numbers of clones corresponding
to each of the four genes are 58, 88, 57, and 32 respectively. We expect clustering algorithms to separate
the four different genes. Hence, the four genes form the fourclasses of external criteria for this data
set. Different clones may have different hybridization intensities. Therefore, the data for each clone is
normalized across the 24 experiments to have mean 0 and variance 12.
The yeast cell cycle data:The second gene expression data set we used is the yeast cell cycle data set
[Cho et al., 1998] which shows the fluctuation of expression levels of approximately 6000 genes over
two cell cycles (17 time points). By visual inspection of theraw data, [Choet al., 1998] identified 420
genes which peak at different time points and categorized them into five phases of cell cycle. Out of
the 420 genes they classified, 380 genes were classified into only one phase (some genes peak at more
than one phase in the cell cycle). Since the 380 genes were identified by visual inspection of gene
expression data according to the peak times of genes, we expect clustering results to correspond to the
five phases to a certain degree. Hence, we used the 380 genes that belong to only one class (phase) as
our external criteria. The 17 time points are the experimental conditions. The data is normalized to
have mean 0 and variance 1 across each cell cycle as suggestedin [Tamayoet al., 1999].

2If the correlation matrix is used instead of the covariance matrix in PCA, the tissue samples (experiments) are the
variables and are standardized across all the clones.
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3.1.2 Synthetic data sets

Since the array technology is still in its infancy [Lander, 1999], the “real” data may be noisy, and
clustering algorithms may not be able to extract all the classes contained in the data. There may also
be information in real data that is not known to biologists. Furthermore, synthetic data sets provide
us with inexpensive replicates of the data to increase the reliability of our empirical study. Therefore,
we would like to complement our empirical study of the effectiveness of PCA with synthetic data, for
which the classes are known.

To the best of our knowledge, modeling gene expression data sets is an ongoing effort by many
researchers, and there is no well-established model to represent gene expression data. The following
four sets of synthetic data represent our preliminary efforts on synthetic gene expression data genera-
tion. We do not claim that any of the four sets of synthetic data capture most or all of the characteristics
of gene expression data. Each of the synthetic data has strengths and weaknesses. By usingall four
sets of synthetic data to evaluate the effectiveness of PCA on clustering, we hope to achieve a thorough
comparison study capturing many different aspects of gene expression data.

The first two synthetic data sets represent attempts to generate replicates of the ovary data set by
randomizing different aspects of the original data. The last two synthetic data sets are generated by
modeling expression data with a mathematical formula. In each of the four synthetic data sets, ten
replicates are generated. Ideally, more replicates would be more desirable. However, the algorithms
have very long running time3. In each replicate, 235 observations and 24 variables are randomly
generated.
Mixture of normal distributions on the ovary data: Visual inspection of the ovary data suggests that
the data is not too far from normal. The expression levels fordifferent clones of the same gene are not
identical due to the fact that the clones represent different portions of the cDNA. Figure 5 shows the
distribution of the expression levels in a normal tissue in adifferent class (gene) from the ovary data.
We found that the distributions of the normal tissue samplesare typically closer to normal distributions
than those of tumor samples, for example, Figure 6. Even though some of the tumor tissues from some
classes (genes) do not closely follow the normal distribution, we generate the data using a mixture of
multivariate normal distributions in this synthetic data set.

The sample covariance matrix and the mean vector of each of the four classes (genes) in the ovary
data are computed. The size of each class in the synthetic data is the same as the ovary data. Each
class in the synthetic data is generated according to a multivariate normal distribution with the sample
covariance matrix and the mean vector of the corresponding class in the ovary data.

This synthetic data set preserves the covariance between the tissue samples in each gene. It also
preserves the mean vectors of each class. The weakness of this synthetic data set is that the assumption
of the underlying multivariate normal distribution for each class may not be true for real genes.
Randomly permuted ovary data: No underlying distribution of the gene expression data is assumed
in this synthetic data set. The size of each class in this synthetic data set is again the same as the
ovary data. The random data for an artificial gene in class (where = 1; : : : ; 4) under experimental
condition j (wherej = 1; : : : ; 24) can be generated by randomly sampling (with replacement) the
expression levels under conditionj in the same class of the ovary data.

This data set does not assume any underlying distribution. However, any possible correlation
between tissue samples (for example, the normal tissue samples may be correlated) is not preserved
due to the independent random sampling of the expression levels from each experimental condition.

3It takes approximately 3 to 4 hours to run the modified greedy algorithm (see Section 3.5) with one clustering algorithm
on one replicate on a Pentium 500.
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Figure 5: Histogram of the distribution of the expression levels in a normal tissue for a gene (class) in
the ovary data
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Figure 6: Histogram of the distribution of the expression levels in a tumor tissue for a gene (class) in
the ovary data
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Hence, the resulting sample covariance matrix of this randomly permuted data set would be close to
diagonal. However, inspection of the ovary data shows that the sample covariance matrices are not too
far from diagonal. Therefore, this set of randomly permuteddata may be reasonable replicates of the
original ovary data set.
Cyclic data with different class sizes: This synthetic data set models ten cyclic classes. The obser-
vations can be interpreted as genes and the experimental conditions can be interpreted as time points.
In this data set, the cyclic behavior of genes (observations) is modeled by thesin function. Classes
are modeled as genes that have similar peak times over the time series data. Different classes have
different phase shifts and have different sizes.

Let x
i;j

be the simulated expression level of genei and conditionj in this simulated data set with
ten classes. Letx

i;j

= Æ

j

+ �

j

� (�

i

+ �

i

�(i; j)), where�(i; j) = sin(

2�j

8

�

2�k

10

) [Zhao, 2000].�
i

represents the average expression level of genei, which is chosen according to the normal distribution
with mean 0 and standard deviation 2.�

i

is the amplitude control for genei, which is chosen according
to a normal distribution with mean 3 and standard deviation 0.5. �(i; j) models cyclic time series data.
In this synthetic data set, each cycle is assumed to span 8 time points. k is the class number, which
is chosen according to Zipf’s Law [Zipf, 1949], which allowsus to model classes with different sizes.
Since different classes have different values ofk, different classes are represented by different phase
shifts of thesin function. �

j

is the amplitude control of conditionj, chosen according to the normal
distribution with mean 3 and standard deviation 0.5.Æ

j

represents an additive experimental error,
chosen according to the standard normal distribution. Eachobservation (row) is normalized to have
mean 0 and variance 1 before PCA or any clustering algorithm is applied.

This synthetic model suffers from the drawback that the formof the data may not be realistic
for gene expression data, and the ad-hoc choice of the parameters for the distributions of�

i

, �
i

, �
j

,
andÆ

j

. However, there is evidence that the form of the model is reasonable for the yeast cycle data
[Zhao, 2000].
Cyclic data with spiky classes: This synthetic data has the same form as the cyclic data with different
class sizes. Again, there are ten synthetic classes, and thedata are generated from the equation forx

i;j

.
However, the class number (k in �(i; j)) is generated according to the uniform distribution, and not
Zipf’s law. Hence, the class sizes are approximately the same in this data. Some genes show “spiky”
behavior,i.e., their expression levels are changed sharply over a short period of time. We use the term
spiky classesto refer to classes in which genes show spiky behavior. Spikyclasses, are modeled by
raising thesin function in�(i; j) to higher powers. Thus, different classes are modeled by phase shifts
or different “spikiness” (i.e.,different powers of thesin function in�(i; j)).

This synthetic data set suffers the same drawback as the cyclic data with different class sizes: the
model may not be realistic, and the ad-hoc choice of the parameters for the distributions of�

i

, �
i

, �
j

,
andÆ

j

. However, this synthetic data set hopes to capture a more complicated form of the real expression
data by modeling classes with different shapes (i.e., different spikiness) in addition to different peak
times.

3.2 PCA on the data sets

We use thecovariancematrix to define PC’s for both real and synthetic data. There are two main
reasons for that. First, the variables in our case are the array experiments and hence are of the same
type. In particular, for the ovary data described in Section3.1, all the experiments are scaled to have
the same median prior to PCA. Second, we computed the PC’s using both the correlation and the
covariance matrices for the ovary and yeast cell cycle data and there is no major difference between
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the two sets of PC’s.
The first 14 PC’s defined using the covariance matrix of the ovary data account for over 90% of

the total variation of the data. On the yeast cell cycle data,the first 8 PC’s defined using the covariance
matrix account for over 90% of the total variation. The screegraphs for these two data sets are shown
in Figures 21 and 22 in Appendix A.

3.3 Agreement between two partitions

In order to compare clustering results against external criteria, a measure of agreement is needed. Since
we assume that both the external criteria and clustering results are disjoint, measures of agreement
between two partitions can be used. In the statistics literature, many measures of agreement were
proposed and evaluated (for example, [Rand, 1971], [Milliganet al., 1983],[Hubert and Arabie, 1985],
[Milligan and Cooper, 1986] and many others).

Given a set ofn objectsS = fO

1

; : : : ; O

n

g, supposeU = fu

1

; : : : ; u

R

g andV = fv

1

; : : : ; v

C

g

represent two different partitions of the objects inS such that[R

i=1

u

i

= S = [

C

j=1

v

j

andu
i

\ u

i

0

=

; = v

j

\ v

j

0 for 1 � i 6= i

0

� R and1 � j 6= j

0

� C. Suppose thatU is our external criterion andV
is a clustering result. Leta be the number of pairs of objects that are placed in the same class inU and
in the same cluster inV , b be the number of pairs of objects in the same class inU but not in the same
cluster inV ,  be the number of pairs of objects in the same cluster inV but not in the same class in
U , andd be the number of pairs of objects in different classes and different clusters in both partitions.
The quantitiesa andd can be interpreted as agreements, andb and as disagreements. The Rand index
[Rand, 1971] is simply a+d

a+b++d

. The Rand index lies between 0 and 1. When the two partitions agree
perfectly, the Rand index is 1.

The problem with the Rand index is that the expected value of the Rand index of two random parti-
tions does not take a constant value (say zero). The adjustedRand index proposed by [Hubert and Arabie, 1985]
assumes the generalized hypergeometric distribution as the model of randomness,i.e.,theU andV par-
titions are picked at random such that the number of objects in the classes and clusters are fixed. Let
n

ij

be the number of objects that are in both classu

i

and clusterv
j

. Let n
i:

andn
:j

be the number of
objects in classu

i

and clusterv
j

respectively. The notations are illustrated in Table 1.
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...
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n

R2

: : : n

RC

n

R:

Sums n

:1

n

:2

: : : n

:C

n

::

= n

Table 1: Notation for the contingency table for comparing two partitions.

The general form of an index with a constant expected value isindex�expeted index

maximum index�expeted index

, which
is bounded above by 1, and takes the value 0 when the index equals its expected value.

Under the generalized hypergeometric model, it can be shown[Hubert and Arabie, 1985] that:
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The expressiona + d can be simplified to a linear transformation of
P
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. With simple

algebra, the adjusted Rand index [Hubert and Arabie, 1985] can be simplified to:
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Example 1 in Appendix B illustrates how the adjusted Rand index is computed. The Rand index
for comparing the two partitions in Example 1 is 0.711, whilethe adjusted Rand index is 0.313. The
Rand index is much higher than the adjusted Rand index, whichis typical. Since the Rand index lies
between 0 and 1, the expected value of the Rand index (although not a constant value) must be greater
than or equal to 0. On the other hand, the expected value of theadjusted Rand index has value zero and
the maximum value of the adjusted Rand index is also 1. Hence,there is a wider range of values that
the adjusted Rand index can take on, thus increasing the sensitivity of the index.

In [Milligan and Cooper, 1986], many different indices wereevaluated for measuring agreement
between two partitions in hierarchical clustering analysis across different hierarchy levels (i.e., with
different numbers of clusters), and they recommended the adjusted Rand index as the index of choice.
In this report, we adopt the adjusted Rand index as our measure of agreement between the external
criteria and clustering results.

3.4 Clustering algorithms and similarity metrics

We implemented three clustering algorithms: theCluster Affinity Search Technique(CAST) [Ben-Dor and Yakhini, 1999],
the hierarchicalaverage-linkalgorithm, and thek-meansalgorithm (with average-link initialization)
[Jain and Dubes, 1988].
CAST: We implemented the pseudo-code for CAST given in [Ben-Dor and Yakhini, 1999] with two
additional heuristics that have been added to BIOCLUST, the implementation of CAST by its authors.
The CAST algorithm takes as input the pairwise similaritiesof objects and a parametert which is a
real number between 0 and 1. The parametert is a similarity threshold to decide whether an object
is added to or removed from a cluster. Thus, varying the parametert changes the number of clusters
formed. Please refer to Appendix C for more details of the algorithm.
Hierarchical average-link: Agglomerative hierarchical algorithms build clusters bottom up. Initially,
each object is in its own cluster. In each step, the two clusters with the greatest cluster similarity are
merged. This process is repeated until the desired number,k, of clusters is produced. In average-link,
the cluster similarity criterion is the average pairwise similarity between objects in the two clusters.
Refer to [Jain and Dubes, 1988] and [Anderberg, 1973] for detailed discussions on hierarchical algo-
rithms. The average-link clustering algorithm is used by [Eisenet al., 1998] to analyze gene expression
data.
K-means: The number of clusters,k, is an input to the k-means clustering algorithm. Clusters are
described bycentroids, which are cluster centers, in the algorithm. In our implementation of k-means
[Jain and Dubes, 1988], the initial centroids consist of theclustering results from average-link. Each
object is assigned to the centroid (and hence cluster) with the closest Euclidean distance. New centroids
of thek clusters are computed after all objects are assigned. The steps of assigning objects to centroids
and computing new centroids are repeated until no objects are moved between clusters.
Similarity metrics: There are two popular similarity metrics used in the gene expression analy-
sis community: Euclidean distance (for example, [Wenet al., 1998]) and correlation coefficient (for
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example, [Eisenet al., 1998]). In our experiments, we evaluated the effectiveness of PCA on cluster-
ing analysis with both Euclidean distance and correlation coefficient, namely, CAST with correlation
coefficient4, average-link with both correlation and distance, and k-means with both correlation and
distance. If Euclidean distance is used as the similarity metric, the minimum number of components
in sets of PC’s (m

0

) considered is 2. If correlation is used, the minimum numberof components
(m

0

) considered is 3 because there are at most 2 clusters if 2 components are used (when there are 2
components, the correlation coefficient is either 1 or -1, see Appendix D for details).

3.5 Our approach

Given a data set with an external criterion, our evaluation methodology consists of the following steps:

1. A clustering algorithm is applied to the given data set, and the adjusted Rand index with the
external criterion is computed.

2. PCA is applied to the same data set. The same clustering algorithm is applied to the data after the
PCA preprocessing step using the firstm PC’s (wherem = m

0

; : : : ; p, andm
0

is the number of
components we start with, which is either 2 or 3 as explained in Section 3.4, andp is the number
of experimental conditions in the data). The adjusted Rand index is computed for each of the
clustering results using the firstm PC’s.

3. The same clustering algorithm is applied to the data afterthe PCA preprocessing step using
different sets of PC’s. The objective in this step is to find a set of PC’s that gives a “high”
adjusted Rand index.

One way to determine the set of PC’s that gives the maximum adjusted Rand index is by exhaustive
search. However, exhaustive search is very computationally intensive: form components, there are
�

p

m

�

possible sets of PC’s that we have to cluster. The ovary data has 24 experimental conditions

and whenm = 12, the exhaustive search gives us
�

24

12

�

(approximately 2.7 million) possible sets of

PC’s to cluster. Since our objective is to show that the highest adjusted Rand index is not necessarily
achieved by the firstm PC’s, it suffices to show that there exists a set of PC’s that achieves higher
adjusted Rand index than the first PC’s.

A simple strategy we implemented is thegreedyapproach. Letm
0

be the minimum number of
components that we start with. In the greedy approach, we start with the exhaustive search for the
minimum number of components,m

0

. Denote the optimum set of components asS

m

0

. For eachm
(wherem = (m

0

+ 1); : : : ; p), one additional component that is not already inS

m�1

is added to
the set of components, the data with all then genes under this set of components is clustered, and
the adjusted Rand index is computed. The additional component that achieves the maximum adjusted
Rand index is added toS

m�1

to formS

m

. In the greedy approach, we implicitly assume that a set of
PC’s that achieves a high adjusted Rand index form components is a good candidate for achieving a
high adjusted Rand index form+ 1 components (form = m

0

; : : : ; (p� 1)).
Since the assumption for the greedy approach may not be satisfied, we implemented amodified

greedyapproach. The modified greedy approach requires another parameter,k, which is an integer
indicating the number of “best” solutions to keep in each search step. Denote the optimumk sets
of components asS

m

= fS

1

m

; : : : ; S

k

m

g, wherem = m

0

; : : : ; p. The modified greedy approach
4When Euclidean distance is used in CAST, the algorithm usually does not converge in practice.
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also starts with an exhaustive search for the minimum numberof components,m
0

. However,k sets
of components which achieve the topk adjusted Rand indices were stored. For eachm (wherem =

(m

0

+1); : : : ; p) and each of theSi

m

(wherei = 1; : : : ; k), one additional component that is not already
in S

i

m�1

is added to the set of components, the subset of data with the extended set of components is
clustered, and the adjusted Rand index is computed. The topk sets ofm components that achieves the
highest adjusted Rand indices are stored inS

m

. The modified greedy approach allows the search to
have more choices in searching for a set of components that gives a high adjusted Rand index. Note
that whenk = 1, the modified greedy approach is identical to the simple greedy approach, and when

k =

�

p

m

�

, the modified greedy approach is reduced to exhaustive search. So the choice fork is a

tradeoff between running time and quality of solution. In our experiments,k is set to be 3.

4 Results and Discussion

We ran our experiments on two gene expression data sets and four synthetic data sets. In this section,
the results of the experiments will be presented. Before thedetailed results are presented for each set
of experiments, here are our overall conclusions from our empirical study:

� We found that the PCA preprocessing step does not necessarily improve cluster quality,i.e., the
adjusted Rand indices of the clustering results on the data after PCA are not necessarily higher
than the adjusted Rand indices of the clustering results on the original data on both real and
synthetic data.

� We also showed that in most cases, the firstm components (wherem = m

0

; : : : ; p) do not
necessarily give the highest adjusted Rand index,i.e., there exists another set ofm components
that achieves a higher adjusted Rand index than the firstm components.

� There are no clear trends regarding the choice of the optimalnumber of PC’s over all the data
sets and over all the clustering algorithms and over the different similarity metrics. There is no
obvious relationship between cluster quality (i.e.,adjusted Rand index) and the number or set of
PC’s used.

� In most cases, the modified greedy approach achieves higher adjusted Rand indices than the
simple greedy approach.

In the following sections, the detailed experimental results on each data set is presented. For some
of the results, graphs plotting the adjusted Rand index against the number of components are shown.
Usually the adjusted Rand index without PCA, the adjusted Rand index of the firstm components,
and the adjusted Rand indices using the greedy and modified greedy approaches are shown in each
graph. Note that there is only one value for the adjusted Randindex computed with the original
variables (without PCA), while the adjusted Rand indices computed using PC’s vary with the number
of components.

4.1 Gene expression data

4.1.1 The ovary data

Figure 7 shows the result of our experiments on the ovary datausing CAST [Ben-Dor and Yakhini, 1999]
as the clustering algorithm and correlation coefficient as the similarity metric. The adjusted Rand in-
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Figure 7: Adjusted Rand index against the number of components using CAST and correlation on the
ovary data.

dices using the firstm components (wherem = 3; : : : ; 24) are mostly lower than that without PCA.
However, the adjusted Rand indices using the greedy and modified greedy approaches for 4 to 22 com-
ponents are higher than that without PCA. This shows that clustering with the firstm PC’s instead of
the original variables may not help to extract the clusters in the data set, and that there exist sets of PC’s
(other than the first few which contain most of the variation in the data) that achieve higher adjusted
Rand indices than without PCA. Moreover, the adjusted Rand indices computed using the greedy and
modified greedy approaches are not very different for this data set using the CAST algorithm and
correlation.
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Figure 8: Adjusted Rand index against the number of components using k-means and correlation on
the ovary data.

Figures 8 and 9 show the adjusted Rand indices using the k-means algorithm on the ovary data
with the correlation and Euclidean distance as similarity metrics respectively. Figure 8 shows that the
adjusted Rand indices using the firstm components tends to increase from below the index without
PCA to above that without PCA as the number of components increases. However, the results using
the same algorithm but Euclidean distance as the similaritymetric show a very different picture (Fig-
ure 9): the adjusted Rand indices are high for first 2 and 3 PC’sand then drop drastically to below
that without PCA. Manual inspection of the clustering result of the first 4 PC’s using k-means and Eu-
clidean distance shows that two classes are combined in the same cluster while the clustering result of
the first 3 PC’s separates the 4 classes, showing that the drastic drop in the adjusted Rand index reflects
degradation of cluster quality with additional PC’s. When the data points are visualized in the space
of the first and second PC’s, the four classes are reasonably well-separated in the Euclidean space.
However, when the data points are visualized in the space of the second and fourth PC’s, two classes
overlap. The degradation of cluster quality with additional PC’s is probably because classes are not
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Figure 9: Adjusted Rand index against the number of components using k-means and Euclidean dis-
tance on the ovary data.

very well-separated in the Euclidean space of the higher PC’s, and hence, it is more difficult for the
clustering algorithms to extract the classes (see AppendixE). Figures 8 and 9 also show that different
similarity metrics may have very different effect on the useof PCA as a preprocessing step to cluster
analysis.

The adjusted Rand indices using the modified approach in Figure 8 show an irregular pattern. In
some instances, the adjusted Rand index computed using the modified greedy approach is even lower
than that using the first few components and that using the greedy approach. This shows that our
heuristic assumption for the greedy approach is not always valid, i.e.,a set of PC’s that achieve a high
adjusted Rand index form components may not be a good candidate for achieving a high adjusted
Rand index form+ 1 components (form =m

0

; : : : ; (p� 1)). Nevertheless, the greedy and modified
greedy approaches show that there exists other sets of PC’s that achieve higher adjusted Rand indices
than the first few PC’s most of the time.

The results using the hierarchical average-link algorithmwith correlation coefficient and Euclidean
distance as similarity metrics show a similar pattern to theresults using k-means (graphs not shown
here).

Note that the adjusted Rand index without PCA using CAST and correlation (0.664) is much higher
than that using k-means (0.563) and average-link (0.572) using the same similarity metric. Manual
inspection of the clustering results without PCA shows thatonly CAST clusters mostly contain clones
from each class, while k-means and average-link clusteringresults combine two classes into one cluster.
This confirms that higher adjusted Rand indices reflect higher cluster quality with respect to the external
criteria. With the firstm components, CAST with correlation has a similar range of adjusted Rand
indices to the other algorithms (approximately between 0.55 to 0.68). The rule of thumb of choosing
the first 14 PC’s to cover 90% of the total variation in the datawould have a detrimental effect on
cluster quality if CAST with correlation, k-means with distance, or average-link with distance is the
algorithm being used.

When correlation is used (Figures 7 and 8), the adjusted Randindex using all 24 PC’s is not
the same as that using the original variables. On the other hand, when Euclidean distance is used
(Figure 9), the adjusted Rand index using all 24 PC’s is the same as that with the original variables.
This is because the Euclidean distance between a pair of genes using all the PC’s is the same as that
using the original variables. But correlation coefficient is not preserved after PCA (Section 2.5).
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Figure 10: Adjusted Rand index against the number of components using CAST and correlation on the
yeast cell cycle data.

4.1.2 The yeast cell cycle data

Figure 10 shows the result on the yeast cell cycle data using CAST [Ben-Dor and Yakhini, 1999] as
the clustering algorithm and correlation coefficient as thesimilarity metric. The adjusted Rand indices
using the first 3 to 7 components are lower than that without PCA, while the adjusted Rand indices
with the first 8 to 17 components are comparable to that without PCA.
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Figure 11: Adjusted Rand index against the number of components using k-means and Euclidean
distance on the yeast cell cycle data.

Figure 11 shows the result on the yeast cell cycle data using k-means and Euclidean distance. The
adjusted Rand indices without PCA are relatively high compared to those using PC’s. Figure 11 on the
yeast cell cycle data shows a very different picture than Figure 9 on the ovary data. This shows that the
effectiveness of clustering with PC’s depends on the data set being used.

The results on the yeast cell cycle data sets using k-means with correlation and average-link (with
both correlation and Euclidean distance) are not shown here.

4.2 Synthetic data

4.2.1 Mixture of normal distributions on the ovary data

Figure 12 shows the results of our experiments on the synthetic mixture of normal distributions on
the ovary data using CAST [Ben-Dor and Yakhini, 1999] as the clustering algorithm and correlation
coefficient as the similarity metric. The lines in Figure 12 represent the average adjusted Rand indices
over the 10 replicates of the synthetic data, and the error bars represent one standard deviation from
the mean for the modified greedy approach and for using the first m PC’s. The error bars show that
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Figure 12: Adjusted Rand index against the number of components using CAST and correlation on the
mixture of normal distributions on the ovary data.

the standard deviations using the modified greedy approach tend to be lower than that using the first
m components. A careful study also shows that the modified greedy approach has lower standard
deviations than the greedy approach (data not shown here). This shows that the modified greedy
approach is more robust than the greedy approach in identifying a set of components with a high
adjusted Rand index. The error bars for the case without PCA are not shown for clarity of the figure.
The standard deviation for the case without PCA is 0.064 for this set of synthetic data, which would
overlap with those using the first components and the modifiedgreedy approach. A manual study of
the experimental results from each of the 10 replicates (details not shown here) shows that 8 out of the
10 replicates show very similar patterns to the average pattern in Figure 12,i.e., most of the cluster
results with the firstm components have lower adjusted Rand indices than that without PCA, and the
results using the greedy and modified greedy approach are slightly higher than that without PCA. In
the following results, only the average patterns will be shown.

Figure 12 shows a similar trend to real data in Figure 7, but the synthetic data has higher ad-
justed Rand indices for the clustering results without PCA and with the greedy and modified greedy
approaches. As in the case with real data (Figure 7), the adjusted Rand indices with the first PC’s lie be-
low that without PCA, and those with the greedy and modified greedy approach for 4 to 22 components
are above that without PCA.
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Figure 13: Average adjusted Rand index against the number ofcomponents using k-means and corre-
lation on the mixture of normal distributions of the ovary data.

The average adjusted Rand indices using the k-means algorithm with the correlation and Euclidean
distance as similarity metrics are shown in Figure 13 and Figure 14 respectively. In Figure 13, the
adjusted Rand indices using the firstm components gradually increase as the number of components
increases, while in Figure 14, the adjusted Rand indices using the firstm indices are mostly below that
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Figure 14: Average adjusted Rand index against the number ofcomponents using k-means and Eu-
clidean distance on the mixture of normal distributions of the ovary data.

without PCA.
The results using average-link and correlation (not shown here) are similar to that of k-means and

correlation. The average adjusted Rand indices using average-link and Euclidean distance (not shown
here) tend to decrease as the number of components is increased.

4.2.2 Randomly permuted ovary data
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Figure 15: Average adjusted Rand index against the number ofcomponents using CAST and correla-
tion on the randomly permuted ovary data.

Figures 15, 16, and 17 show the average adjusted Rand indicesusing CAST and correlation,
k-means with correlation, and k-means with Euclidean distance on the randomly permuted ovary data
respectively. The general trend is very similar to the results on the mixture of normal distributions in
Section 4.2.1. The average adjusted Rand indices computed from CAST clusters in Figure 15 using
the firstm PC’s lie below that using the original variables (similar toFigure 12). When the k-means
algorithm is used with correlation as the similarity metricin Figure 16, the average adjusted Rand
indices using the firstm PC’s tend to increase as the number of components increases (similar to
Figure 13). When the modified greedy or the greedy approach isused, the average adjusted Rand
indices for all clustering results (except CAST with 3 components) with all of the algorithms are above
that without PCA.
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Figure 16: Average adjusted Rand index against the number ofcomponents using k-means and corre-
lation on the randomly permuted ovary data.
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Figure 17: Average adjusted Rand index against the number ofcomponents using k-means and Eu-
clidean distance on the randomly permuted ovary data.

4.2.3 Cyclic data with different cluster sizes

The results using this synthetic data set are very differentthan those using the mixture of normal
distributions and the randomly permuted ovary data. The average adjusted Rand index without PCA
(0.941) is very high. The high adjusted Rand index indicatesthat the data set is very clean and the
clustering algorithms recover most of the classes.

Figure 18 shows the average adjusted Rand indices using CASTand correlation. Manual inspection
shows that in 7 out of the 10 replicates, the adjusted Rand index without PCA is perfect (i.e., 1). The
average adjusted Rand indices using the firstm components are much lower than that without PCA in
Figure 18. Note that there is sharp decline in the average adjusted Rand index when all 24 components
are used in the greedy approach in Figure 18. This is no accident. A close inspection shows that 9 out
of the 10 replicates show a drastic decline in adjusted Rand index when all the components are used
with the greedy approach. In all of the 9 replicates, the additional component which contributes to the
sharp decline in the adjusted Rand index is the third PC. The results of the modified greedy approach
are not shown since the greedy approach achieves almost perfect adjusted Rand indices.

Figure 19 shows the average adjusted Rand indices with the k-means algorithm and Euclidean
distance as the similarity metric. Again, the adjusted Randindex without PCA is very high. But in this
case, using the firstm components achieve higher or comparable adjusted Rand indices to that without
PCA.
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Figure 18: Average adjusted Rand index against the number ofcomponents using CAST and correla-
tion on the cyclic data with different cluster sizes.
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Figure 19: Average adjusted Rand index against the number ofcomponents using k-means and Eu-
clidean distance on the cyclic data with different cluster sizes.

4.2.4 Cyclic data with spiky clusters

The general trend using this set of synthetic data sets is very different than the other synthetic data sets
(even the data set in Section 4.2.3): using PCA (with the firstcomponents or the greedy or modified
greedy approach) helps to achieve higher adjusted Rand indices.
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Figure 20: Average adjusted Rand index against the number ofcomponents using CAST and correla-
tion on the cyclic data with spiky clusters.

Figure 20 shows an example of results applying CAST and correlation to this set of synthetic data.
Unlike the results with other real or synthetic data sets, the adjusted Rand indices of CAST clusters
with the firstm PC’s lie above that without PCA in Figure 20. The results using other algorithms also
show a similar trend.
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5 Conclusions and Future Work

Our experiments on two real gene expression data sets and four sets of synthetic data show that clus-
tering with the PC’s instead of the original variables does not necessarily improve cluster quality. Our
empirical study shows that the traditional wisdom that the first few PC’s that contain most of the vari-
ation in the data may help to extract cluster structure is generally not true. We also show that there
usually exists some sets ofm PC’s that achieve higher quality of clustering results thanthe firstm
PC’s.

Our empirical results show that clustering with PC’s has different impact on different algorithms
and different similarity metrics. When CAST is used with correlation as the similarity metric, clus-
tering with the firstm components usually gives a lower adjusted Rand index than clustering with the
original variables (this is true in both of the real gene expression data sets and in 3 out of the 4 syn-
thetic data sets). On the other hand, when k-means is used with correlation as the similarity metric,
usingall of the PC’s in cluster analysis instead of the original variables gives higher or similar adjusted
Rand indices on all of our real and synthetic data sets. When Euclidean distance is used as the sim-
ilarity metric, clustering (either with k-means or average-link) using the first couple of PC’s usually
achieves higher or comparable adjusted Rand indices to without PCA, but the adjusted Rand indices
drop sharply with more PC’s. Since the Euclidean distance computed with the firstm PC’s is just an
approximation to the Euclidean distance computed with all the experiments, the first couple of PC’s
probably contain most of the cluster information while the last PC’s are mostly noise. There is no clear
indication from our results what should be the number of PC’sto use in the case of Euclidean distance.
Using the number of first PC’s chosen by the rule of thumb to cover 90% of the total variation in the
data is too many in the case of Euclidean distance on the ovarydata and yeast cell cycle data. Based
on our empirical results, we recommend against using the first few PC’s if CAST and correlation is
used to cluster a gene expression data set. On the other hand,we recommend using all of the PC’s
if k-means and correlation is used instead. However, the increased adjusted Rand indices using the
“appropriate” PC’s with k-means and average-link are comparable to that of CAST using the original
variables in many of our results. Therefore, choosing a goodclustering algorithm is as important as
choosing the “appropriate” PC’s.

There does not seem to be any general relationship between cluster quality (i.e., adjusted Rand
index with an external standard) and the number of components used based on the results on both
real and synthetic data sets. The choice of the first few components is usually not optimal (except
when Euclidean distance is used), and usually may even achieve lower adjusted Rand indices than
without PCA. There usually exists another set of PC’s that achieves higher adjusted Rand indices than
clustering with the original variables or with the firstm PC’s. However, there does not seem to be
any general trend for the the set of components chosen by the greedy or modified greedy approach
that has a high adjusted Rand index. Usually, there are no external criteria available for real gene
expression data, so it would be very useful if a rule to choosePC’s for cluster analysis is available. A
careful manual inspection of our empirical results shows that the first two PC’s are usually chosen in
the exhaustive search step for the set ofm

0

components that give the highest adjusted Rand indices.
In fact, when CAST is used with correlation as the similaritymetric, the 3 components found in the
exhaustive search stepalwaysinclude the first two PC’s onall of our real and synthetic data sets. The
first two PC’s areusually returned by the exhaustive search step when k-means with correlation, or
k-means with Euclidean distance, or average-link with correlation is used on all of our data sets except
the synthetic data set with spiky clusters. On our real gene expression data sets, the first 2 PC’s are
always returned by the exhaustive search step except when k-means with Euclidean distance is applied
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to the ovary data.
The patterns of results using the synthetic mixture of normal distributions and the randomly per-

muted ovary data are very similar to those on the actual ovarydata. This implies that these two synthetic
data sets probably have similar complexities as the real gene expression data set. On the other hand, the
patterns of results on both cyclic data sets are very different than those on the yeast cell cycle and those
on the ovary data, implying that the cyclic data sets may not be as satisfactory models for synthesizing
gene expression data as the mixture of normal and the randomly permuted models. In particular, the
cyclic data set with different cluster sizes achieves very high (close to 1) adjusted Rand indices even
without PCA, which is very different than what we observe on real data.

There are a few possible directions of both empirical and theoretical future work. Empirically,
it would be interesting to generate more replicates (i.e., more than 10) for each set of synthetic data
to see if the standard deviations from the average pattern would go down. Furthermore, it would be
interesting to check if increasing the parameterk (the number of best sets of components to keep in each
search step) would significantly improve the adjusted Rand index computed. Comparing the adjusted
Rand indices using a set of random PC’s to those computed withthe greedy approach would also be
interesting. Our observation above suggests that the first two PC’s are usually chosen in the exhaustive
search step. Generating a set of random PC’s that always includes the first two PC’s, and then applying
clustering algorithms and computing the adjusted Rand indices may also lead to interesting insights.
In terms of future theoretical work, it is interesting to develop time-efficient approximation algorithms
(other than the greedy and modified greedy approaches) to compute a set of PC’s that achieves a
high adjusted Rand index. Developing other models for generating synthetic gene expression data is
definitely of interest. In addition, formally testing the normality of the ovary data would be useful to
support the synthetic data model of the mixture of multivariate normal distributions.

Our empirical study shows that the effectiveness of PCA on cluster analysis depends on the par-
ticular data set, the clustering algorithm and the similarity metric used. For most real gene expression
data sets, an external criterion to assess clustering results is not available. It would be very valuable
to develop a methodology that does not require an external criterion to evaluate the effectiveness of
PCA as a preprocessing step. In our previous work [Yeunget al., 2000], we proposed a methodol-
ogy that estimates the predictive power of clustering algorithms. We believe that our methodology
in [Yeunget al., 2000] can be modified to investigate the effectiveness of clustering with the PC’s in-
stead of the original variables. It would be interesting to compare the evaluation results using our
methodology with the results in this paper using external criteria.

To conclude, we believe that our empirical study is one step forward to investigate the effectiveness
of clustering with the PC’s instead of the original variables.
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Appendix

A Scree graphs for the ovary and yeast cell cycle data
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Figure 21: Scree graph for the ovary data
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Figure 22: Scree graph for the yeast cell cycle data

Figure 21 shows the scree graph for the ovary data. There is sharp change of steepness in Figure 21
at 3 components, and another gentle change at 6 components. Similarly, Figure 22 shows the scree
graph for the yeast cell cycle data. Again, there is a sharp change of steepness at 3 components, and
another gentle change at 5 components. These two examples illustrate that the scree graph approach to
decide the number of first PC’s to be used is very ad-hoc and subjective.

B Example illustrating the adjusted Rand index

The following example illustrates how the adjusted Rand index (discussed in Section 3.3) is computed.
Example 1 is a contingency table in the same form as in Table 1.

a is defined as the number of pairs of objects in the same class inU and same cluster inV , hence

a can be written as
P

i;j
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n

ij

2

�

. In Example 1,a =
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= 7. b is defined as the number of

pairs of objects in the same class inU but not in the same cluster inV . In terms of the notation in

Table 1,b can be written as
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Similarly,  is defined as the number of pairs of objects in the same clusterin V but not in the same
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Example 1

class inU , so can be written as
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� 7 = 7. d is defined

as the number of pairs of objects that are not in the same classin U and not in the same cluster inV .

Sincea + b +  + d =

�

n

2

�

, d =

�

10

2

�

� 7 � 6 � 7 = 25. The Rand index for comparing the two

partitions in Example 1 is7+25
45

= 0:711, while the adjusted Rand index is 7�14�13=45

(14+13)=2�14�13=45

= 0:313

(see Section 3.3 for the definitions of the Rand and adjusted Rand indices). The Rand index is much
higher than the adjusted Rand index.

C Details of the CAST algorithm

The Cluster Affinity Search Technique (CAST) is an algorithmproposed by [Ben-Dor and Yakhini, 1999]
to cluster gene expression data. The input to the algorithm includes the pairwise similarities of the
genes, and a cutoff parametert (which is a real number between 0 and 1). The clusters are constructed
one at a time. The current cluster under construction is calledC

open

. Theaffinity of a geneg, a(g), is
defined to be the sum of similarity values betweeng and all the genes inC

open

. A geneg is said to
have high affinity ifa(g) � tjC

open

j. Otherwise,g is said to have low affinity. Note that the affinity of
a gene depends on the genes that are already inC

open

. The algorithm alternates between adding high
affinity genes toC

open

, and removing low affinity genes fromC
open

. C
open

is closedwhen no more
genes can be added to or removed from it. Once a cluster is closed, it is not considered any more by
the algorithm. The algorithm iterates until all the genes have been assigned to clusters and the current
C

open

is closed.
When a new clusterC

open

is started, the initial affinity of all genes are 0 sinceC
open

is empty.
One additional heuristic that the authors [Ben-Dor and Yakhini, 1999] implemented in their software
BIOCLUST is to choose a gene with the maximum number of neighbors to start a new cluster. Another
heuristic is that after the CAST algorithm converges, thereis an additional iterative step, in which all
clusters are considered at the same time, and genes are movedto the cluster with the highest average
similarity.

D Correlation coefficient when there are 2 components

When there are 2 components, the correlation coefficient is either 1 or -1. Suppose there are two genes
g

1

andg
2

with two components. Letx
i;j

(wherei; j = 1; 2) be the expression level of genei under
componentj. The correlation coefficient betweeng

1

andg
2

can be simplified to:
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Since the denominator in Equation 3 represents the product of the norms of genesg
1

andg
2

, the
denominator must be positive. From Equation 3, the correlation coefficient between genesg

1

andg
2

is
1 if (x

1;1

�x

1;2

)� (x

2;1

�x

2;2

) > 0, the correlation coefficient is -1 if(x
1;1
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)� (x

2;1
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2;2

) < 0.
If x

1;1

= x

1;2

or x
2;1

= x

2;2

, the correlation coefficient is undefined. Since there are only two possible
values that the correlation coefficient can take when there are two components, there are at most two
clusters.

E Visualization of the clustering result with k-means and Euclidean dis-
tance on the ovary data

The results on the ovary data set using k-means and Euclideandistance in Figure 9 show that the
adjusted Rand indices are high for first 2 and 3 PC’s and then drop drastically to below that without
PCA. When the four classes of the ovary data are viewed in the space of the first two PC’s (Figure 23),
the four classes are reasonably well-separated in the Euclidean space. In fact, when the clustering result
using the first 3 PC’s is viewed in the space of the first two PC’s, the four clusters correspond mostly to
the four classes in Figure 24. However, two classes (class 1 and class 4) overlap in Figure 25, in which
the classes are viewed in the space of the second and fourth PC’s. In fact, manual inspection shows
that the two overlapping classes were combined into one cluster by k-means with Euclidean distance
when four PC’s are used. The fourth PC probably is mostly noise, which makes it more difficult for
k-means to extract the four classes.
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Figure 23: Visualization of the four classes from the ovary data in the space of the first two PC’s.
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Figure 24: Visualization of the four clusters using the first3 PC’s and k-means with Euclidean distance
from the ovary data in the space of the first two PC’s.



REFERENCES 25

-3

-2

-1

0

1

2

3

4

5

-4 -2 0 2 4

PC 2

P
C

 4

class 1

class 2

class 3

class 4

Figure 25: Visualization of the four classes from the ovary data in the space of the second and fourth
PC’s.
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