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Abstract

There is a great need to develop analytical methodologydtyae and to exploit the informa-
tion contained in gene expression data. Because of the fargder of genes and the complexity
of biological networks, clustering is a useful exploratéeghnique for analysis of gene expres-
sion data. Other classical techniques, such as principapooent analysis (PCA), have also been
applied to analyze gene expression data. Using differetat @aalysis techniques and different
clustering algorithms to analyze the same data set candeaaty different conclusions. Our goal
is to study the effectiveness of principal components (Pi@'sapturing cluster structure. In other
words, we empirically compared the quality of clusters of#td from the original data set to the
quality of clusters obtained from clustering the PC’s udioth real gene expression data sets and
synthetic data sets.

Our empirical study showed that clustering with the PC’saad of the original variables does
not necessarily improve cluster quality. In particulag finst few PC’s (which contain most of the
variation in the data) do not necessarily capture most otlingter structure. We also showed that
clustering with PC’s has different impact on different aifams and different similarity metrics.



1 Introduction

DNA microarrays offer the first great hope to study variasiohmany genes simultaneously [Lander, 1999].
Large amounts of gene expression data have been generateddaychers. There is a great need to
develop analytical methodology to analyze and to expl@ititifiormation contained in gene expression
data [Lander, 1999]. Clustering analysis attempts to éiabjects into groups such that objects within
the same group are more similar to each other than objecti@n groups. Because of the large num-
ber of genes and the complexity of biological networks, telting is a useful exploratory technique for
analysis of gene expression data. Since genes with relatexdidns tend to have similar expression
patterns, possible roles for genes with unknown functi@msh®e suggested based on the known func-
tions of some other genes that are placed in the same cl@teef al., 1998]. Clustering is sometimes
used as a preprocessing step in inferring regulatory n&svdfor example, [Cheet al., 1999] used
clustering to identify ORF’s that have similar expressi@tt@rns to reduce the size of the regulatory
network to be inferred.

Many clustering algorithms have been proposed for geneesgmn data. For example, [Eisenal., 1998]
applied the average-link hierarchical clustering aldonitto identify groups of co-regulated yeast
genes. [Ben-Dor and Yakhini, 1999] reported success wiin @AST algorithm. [Tamayet al.,, 1999]
used self-organizing maps to identify clusters in the yealtcycle and human hematopoietic differ-
entiation data sets. Other techniques, such as principapeoent analysis (PCA), have also been
proposed to analyze gene expression data. Principal ca@npamalysis (PCA) ([Dunteman, 1989],
[Everitt and Dunn, 1992], [Jolliffe, 1986]) is a classicathnique to reduce the dimensionality of the
data set by transforming to a new set of variables to summ#refeatures of the data set. In particular,
[Raychaudhurgt al, 2000] applied PCA to the sporulation data set

Using different data analysis techniques and differensteling algorithms to analyze the same
data set can lead to very different conclusions. For exarflau et al,, 1998] identified seven clusters
in the sporulation data set using the Cluster software fE$al., 1998], but [Raychaudhust al., 2000]
claimed that there are no clusters present in the same datdner the data points are viewed in the
space of the first two principal components (PC’s). In thisggawe empirically investigate the effec-
tiveness of PCA as a preprocessing step in cluster analgsig both real gene expression data sets
with external clustering criteria and synthetic data sets.

2 Principal Component Analysis (PCA)

2.1 An Example of PCA

The central idea of principal component analysis (PCA) ieethuce the dimensionality of the data set
while retaining as much as possible the variation in the settaPrincipal components (PC's) are linear
transformations of the original set of variables. PC’s areaurelated and ordered so that the first few
PC'’s contain most of the variations in the original data 3elliffe, 1986].

The first PC has the geometric interpretation that it is a neerdinate axis that maximizes the
variation of the projections of the data points on the newdioate axis. Figure 1 shows a scatterplot
of some fictitious data points in two dimensions @ndzs). The points show an elliptical shape, and
the first PC is in the direction of the principal axis of thispse (markedPC; in Figure 1). The second

Sporulation is the process in which diploid cells undergdosie to produce haploid cells in reproduction of yeast. The
sporulation data set [Clet al,, 1998] shows the temporal expression patterns of 97% of geses over seven successive
time points in the sporulation of yeast.
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PC is orthogonal to the first PC and is markéd', in Figure 1. If the data points are projected onto the
first PC, most of the variation of the two dimensional datantsoivould be captured in one dimension.

P& P’ PCy
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Figure 1: An example illustrating PCA

2.2 Definitions of PCA

experimental conditions (variables)
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Figure 2: Notations for gene expression data

Let X be a gene expression data set withenes ang experimental conditions. In this report, our
goal is to cluster the genes in the data set, hence the exgeahtonditions are the variables. kgtbe
a column vector of expression levels of all thgenes under experimental conditipisee Figure 2).
A PC is a linear transformation of the experimental condiio Letzx = Y7, ay,;X; be thekth
PC. In particular, the first P@&;, can be written aig?:l ai,;X;. Let ¥ be the covariance matrix of
the data, andy, be a column vector of all they, ;'s, i.e., & = (a1, ok 2,...,ax,). To derive the

first PC, we have to findy that maximizessar (3}_; a1,;%;) = af ay, subject to the constraint

aja; = 1. It can be shown that; is the eigenvector corresponding to the largest eigenvalye
of ¥, andvar(zy) = A; [Jolliffe, 1986]. In general, théth PC,z, = 25:1 ay,;X;, can be derived
by maximizingvar(3}_; o4 ;%;), such thatafa, = 1 andafa; = 0, wherei < k. It can be
shown thaiy is an eigenvector of corresponding to itéth largest eigenvalugy, andvar(zx) = A
[Jolliffe, 1986].
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In the case of gene expression data, the population cocarmmatrix is not known. The sample
covariance matrixS can be used instead. Lef; be the gene expression level of geneder experi-
mental conditiory. The sample covariance between conditigr@ndk, S(j, k), can be calculated as
L Y (mij — ) (@i — Bay,)» WheTep,, = L0 @ 5.

From the derivation of PC’s, theth PC can be interpreted as the direction that maximizes the
variation of the projections of the data points such that drthogonal to the first — 1 PC’s, and the
kth PC has théth largest variance among all PC’s. Since most of the variadif high dimensional
data points can be captured in reduced dimensions defindteliyrst few PC’s, PCA is often used in
visualization of high dimensional data points.

2.3 Choosing the number of PC’s

Since the variance of PC’s are ordered, usually theirgin < p, wherep is the number of experi-
ments in the data set) PC'’s are used in data analysis. Thejnegtion is how we should choose

the number of first PC’s to be retained, to adequately repteéke data set. There are some common
rules of thumb to choose the number of components to retaiCiA. Most of the rules are informal
and ad-hoc. The first common rule of thumb is to choast® be the smallest integer such that a cho-
sen percentage of total variation is exceeded. In [Raydhaudt al, 2000], the first two components
which represent over 90% of the total variation in the spiroh data were chosen. Another common
approach usesscree graphin which thekth eigenvalue is plotted against the component nurniber,
The number of componenis is chosen to be the point at which the line in the scree grajstésp”

to the left but “not steep” to the right. The main problem witlese approaches is that they are very
subjective. There are some more formal approaches in #@ratlifre, but in practice, they tend not to
work as well as the ad-hoc approach [Jolliffe, 1986].

2.4 Covariance versus correlation matrices

In the PCA literature, some authors prefer to define PC’sgutie correlation matrix instead of the
covariance matrix. The correlation between a pair of véemis equivalent to the covariance divided
by the product of the standard deviations of the two varmbiextracting the PC’s as the eigenvectors
of the correlation matrix is equivalent to computing the £ftdm the original variables after each has
been standardized to have unit variance. PCA based on angarmatrices has the potential drawback
that the PC'’s are highly sensitive to the unit of measureniétitere are large differences between the
variances of the variables, then the first few PC’s computid tive covariance matrix are dominated
by the variables with large variances. On the other handpidgfiPC’s with the correlation matrix has
the drawback that the data is arbitrarily re-scaled to hanevariance. The general rule of thumb is to
define PC’s using the correlation matrix if the variablesdrdifferent types [Jolliffe, 1986].

2.5 Application of PCA in cluster analysis

In the clustering literature, PCA is sometimes applied thuoe the dimension of the data set prior to
clustering. The first few (say, m < p) PC’s are usually used (for example, [Jolliggeal., 1980]).
Most clustering algorithms require a measure of pairwigailarity or dissimilarity between obser-
vations as input. There are two popular pairwise similanitgtrics in clustering gene expression
data: Euclidean distance (for example, [Wgral, 1998]) and correlation coefficient (for example,
[Eisenet al, 1998]). The pairwise Euclidean distance between two ¢bjeainchanged after the PCA
step if allp PC’s are used. When Euclidean distance is used as the siynitagtric, using the first
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m PC’s simply provides an approximation to the similarity neefJolliffe, 1986]. When correlation
coefficient is used as the similarity metric, the pairwise@ation coefficient between two objects is
not the same after the PCA step even ifiaPC'’s are used. There is no simple relationship between
the correlation coefficients of the same pair of objects aitd without PCA.

In general, the extra computation to find the PC’s far outiveigny reduction in running time for
using fewer PC’s to compute the Euclidean distance [Je]lif®86]. So, the hope for using PCA prior
to cluster analysis is that PC’s may “extract” the clusteucttire in the data set. Figure 3 is a fictitious
situation in which the PCA preprocessing step before dustalysis may help. The first PC is in the
direction of inter-cluster separation (the blue dotte@)iim Figure 3. Projection of the data points on
the first PC clearly highlights the separation between tleediwsters in the data. However, PCA does
not help in all situations. For example, in Figure 4, the f®€tis in the direction ok,. Projection of
the data points onto the first PC does not preserve the sepeabatween the two clusters in the data.
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Figure 3: An example illustrating PCA helps Figure 4: An example illustrating PCA does
in cluster analysis. not help in cluster analysis.

In addition to the fictitious examples above illustrating gossible pros and cons of PCA on cluster
analysis, [Chang, 1983] showed theoretically that theféstPC’s may not contain cluster information
under certain assumptions. Assuming that the data is a migfuwo multivariate normal distributions
with different means but with an identical within-clustevariance matrix, [Chang, 1983] derived a
relationship between the distance of the two subpopulatiomd any subset of PC’s, showing that the
set of PC’s with the largest eigenvalues does not necegsaritain more cluster structure information
(the distance between the two subpopulations is used assureeaf discriminatory power for cluster
structures). He also generated an artificial example inlfiere are two classes, and if the data points
are visualized in two dimensions, the two classes are onlisseparated in the subspace of the first
and last PC's.

In [Raychaudhuret al,, 2000], PCA was applied to the sporulation data set [€tal, 1998]. The
data points were visualized in the subspace of the first twe,R@d they showed a unimodal distri-
bution. [Raychaudhurt al., 2000] concluded that the sporulation data may not contayncusters
based on visualization. With [Chang, 1983]'s theoretialltssand the possibility of the situation in
Figure 4 in mind, it is clear that clustering with the PC’steed of the original variables does not have
universal success. However, the theoretical results ifigh1983] are true only under an unrealistic
assumption for gene expression ddte.(there are two classes and each of the classes is generated
according to the multivariate normal distribution with annmon covariance matrix). Therefore, there
is a need to investigate the effectiveness of PCA as a prepsong step to cluster analysis on gene



expression data before any conclusions are drawn. Ourtrepan attempt for such an empirical
study.

3 Overview of Our Methodology

Our goal is to empirically investigate the effectivenesloktering gene expression data using PC’s
instead of the original variables. Our methodology is toaurustering algorithm on a given data set,
and then apply the same algorithm to the PC’s of the same datd ken, the clustering results with
and without PCA are compared against an external criteridre details of the experiments will be
discussed in the following sections.

3.1 Data sets

We used two gene expression data sets which have exterta&iasriand four sets of synthetic data
to evaluate the effectiveness of PCA. In this report, we bsenordclassto refer to a group in our
external criteria that is used to assess clustering restitte wordclusteris used to refer to clusters
obtained by a clustering algorithm. We assume both claswtslasters are disjoint.

3.1.1 Gene expression data sets

The ovary data: A subset of the ovary data set ([Schumragal,, 1999], [Schummer, 2000]) is used.
The ovary data set is generated by hybridizing randomlyctsfiecDNA's to membrane arrays. The
subset of the ovary data set we used contains 235 cloneg¢choa portions of genes) and 24 samples,
7 of which are derived from normal tissues, 4 from blood s&sphnd the remaining 13 from ovarian
cancers in various stages of malignancy. The tissue saramdbe experimental conditions. The 235
clones were sequenced, and they correspond to 4 differeaasg@&he numbers of clones corresponding
to each of the four genes are 58, 88, 57, and 32 respectivelgxXydect clustering algorithms to separate
the four different genes. Hence, the four genes form the ¢tagses of external criteria for this data
set. Different clones may have different hybridizatioremgities. Therefore, the data for each clone is
normalized across the 24 experiments to have mean 0 ande@ria.

The yeast cell cycle dataThe second gene expression data set we used is the yeasftcteliiata set
[Choet al., 1998] which shows the fluctuation of expression levels @iragimately 6000 genes over
two cell cycles (17 time points). By visual inspection of tiagv data, [Chaet al,, 1998] identified 420
genes which peak at different time points and categorizethtimto five phases of cell cycle. Out of
the 420 genes they classified, 380 genes were classifiedriht@mne phase (some genes peak at more
than one phase in the cell cycle). Since the 380 genes wenéfide by visual inspection of gene
expression data according to the peak times of genes, wetepstering results to correspond to the
five phases to a certain degree. Hence, we used the 380 gahéglting to only one class (phase) as
our external criteria. The 17 time points are the experialerinditions. The data is normalized to
have mean 0 and variance 1 across each cell cycle as suggefiathayoet al., 1999].

2If the correlation matrix is used instead of the covarianarix in PCA, the tissue samples (experiments) are the
variables and are standardized across all the clones.



6 3 OVERVIEW OF OUR METHODOLOGY

3.1.2 Synthetic data sets

Since the array technology is still in its infancy [Lande999], the “real” data may be noisy, and
clustering algorithms may not be able to extract all thesdascontained in the data. There may also
be information in real data that is not known to biologistsirtRermore, synthetic data sets provide
us with inexpensive replicates of the data to increase tiabii@y of our empirical study. Therefore,
we would like to complement our empirical study of the effemess of PCA with synthetic data, for
which the classes are known.

To the best of our knowledge, modeling gene expression @dsaisan ongoing effort by many
researchers, and there is no well-established model tesept gene expression data. The following
four sets of synthetic data represent our preliminary &ffon synthetic gene expression data genera-
tion. We do not claim that any of the four sets of syntheti@adaipture most or all of the characteristics
of gene expression data. Each of the synthetic data hag#iscand weaknesses. By usiall four
sets of synthetic data to evaluate the effectiveness of RCAustering, we hope to achieve a thorough
comparison study capturing many different aspects of gepeeesion data.

The first two synthetic data sets represent attempts to gtenegplicates of the ovary data set by
randomizing different aspects of the original data. Thé ta® synthetic data sets are generated by
modeling expression data with a mathematical formula. khe# the four synthetic data sets, ten
replicates are generated. Ideally, more replicates woelthbre desirable. However, the algorithms
have very long running tinfe In each replicate, 235 observations and 24 variables awgoraly
generated.

Mixture of normal distributions on the ovary data: Visual inspection of the ovary data suggests that
the data is not too far from normal. The expression levelsliiterent clones of the same gene are not
identical due to the fact that the clones represent diftgpertions of the cDNA. Figure 5 shows the
distribution of the expression levels in a normal tissue diferent class (gene) from the ovary data.
We found that the distributions of the normal tissue samategypically closer to normal distributions
than those of tumor samples, for example, Figure 6. Evergtihgaome of the tumor tissues from some
classes (genes) do not closely follow the normal distribbytive generate the data using a mixture of
multivariate normal distributions in this synthetic daéd. s

The sample covariance matrix and the mean vector of eactedbthr classes (genes) in the ovary
data are computed. The size of each class in the synthefcisigdte same as the ovary data. Each
class in the synthetic data is generated according to avadéte normal distribution with the sample
covariance matrix and the mean vector of the correspondass in the ovary data.

This synthetic data set preserves the covariance betwedistiue samples in each gene. It also
preserves the mean vectors of each class. The weakness gftitlietic data set is that the assumption
of the underlying multivariate normal distribution for éeclass may not be true for real genes.
Randomly permuted ovary data: No underlying distribution of the gene expression data ssiased
in this synthetic data set. The size of each class in thishsyict data set is again the same as the
ovary data. The random data for an artificial gene in ctagsherec = 1,...,4) under experimental
conditionj (wherej = 1,...,24) can be generated by randomly sampling (with replacemést) t
expression levels under conditigrin the same classof the ovary data.

This data set does not assume any underlying distributiooweder, any possible correlation
between tissue samples (for example, the normal tissuelsamyay be correlated) is not preserved
due to the independent random sampling of the expressi@tsléom each experimental condition.

%It takes approximately 3 to 4 hours to run the modified greddgrihm (see Section 3.5) with one clustering algorithm
on one replicate on a Pentium 500.
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Figure 5: Histogram of the distribution of the expressiorels in a normal tissue for a gene (class) in

the ovary data
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Figure 6: Histogram of the distribution of the expressiorels in a tumor tissue for a gene (class) in
the ovary data
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Hence, the resulting sample covariance matrix of this remiggermuted data set would be close to
diagonal. However, inspection of the ovary data shows tlesample covariance matrices are not too
far from diagonal. Therefore, this set of randomly permwtath may be reasonable replicates of the
original ovary data set.

Cyclic data with different class sizes: This synthetic data set models ten cyclic classes. The -obser
vations can be interpreted as genes and the experimentitioos can be interpreted as time points.
In this data set, the cyclic behavior of genes (observatienmodeled by thain function. Classes
are modeled as genes that have similar peak times over teestnes data. Different classes have
different phase shifts and have different sizes.

Letz; ; be the simulated expression level of geérand condition; in this simulated data set with
ten classes. Let; ; = 6; + Aj * (g + Bi¢p(4, 7)), wherep(i, j) = sin(Q%J - %) [Zhao, 2000]. «;
represents the average expression level of gewhich is chosen according to the normal distribution
with mean 0 and standard deviation2.is the amplitude control for geriewhich is chosen according
to a normal distribution with mean 3 and standard deviati&n )z, ) models cyclic time series data.
In this synthetic data set, each cycle is assumed to spaneBpinimts. £ is the class number, which
is chosen according to Zipf's Law [Zipf, 1949], which allows to model classes with different sizes.
Since different classes have different value oflifferent classes are represented by different phase
shifts of thesin function. A; is the amplitude control of conditiofy, chosen according to the normal
distribution with mean 3 and standard deviation 0&. represents an additive experimental error,
chosen according to the standard normal distribution. Eddervation (row) is normalized to have
mean 0 and variance 1 before PCA or any clustering algorighapplied.

This synthetic model suffers from the drawback that the fafnthe data may not be realistic
for gene expression data, and the ad-hoc choice of the ptaemfer the distributions ofy;, 3;, A;,
and¢;. However, there is evidence that the form of the model isaralsle for the yeast cycle data
[Zhao, 2000].

Cyclic data with spiky classes: This synthetic data has the same form as the cyclic data viidneht
class sizes. Again, there are ten synthetic classes, anidth@re generated from the equationafgy.
However, the class numbek {n ¢(i, 7)) is generated according to the uniform distribution, antl no
Zipf's law. Hence, the class sizes are approximately theesanthis data. Some genes show “spiky”
behavior,i.e., their expression levels are changed sharply over a shaddoef time. We use the term
spiky classeso refer to classes in which genes show spiky behavior. Sglékgses, are modeled by
raising thesin function in¢(z, j) to higher powers. Thus, different classes are modeled byepblaifts

or different “spikiness” ite., different powers of thein function in¢(i, 5)).

This synthetic data set suffers the same drawback as thie cath with different class sizes: the
model may not be realistic, and the ad-hoc choice of the patensfor the distributions af;, 5;, A;,
ando;. However, this synthetic data set hopes to capture a morplaated form of the real expression
data by modeling classes with different shapes,(different spikiness) in addition to different peak
times.

3.2 PCA on the data sets

We use thecovariancematrix to define PC’s for both real and synthetic data. Theeet@o main
reasons for that. First, the variables in our case are tlay @xperiments and hence are of the same
type. In particular, for the ovary data described in Sec8dh all the experiments are scaled to have
the same median prior to PCA. Second, we computed the PQig With the correlation and the
covariance matrices for the ovary and yeast cell cycle dadetlzere is no major difference between
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the two sets of PC’s.

The first 14 PC’s defined using the covariance matrix of theyodata account for over 90% of
the total variation of the data. On the yeast cell cycle dagfirst 8 PC’s defined using the covariance
matrix account for over 90% of the total variation. The saesphs for these two data sets are shown
in Figures 21 and 22 in Appendix A.

3.3 Agreement between two partitions

In order to compare clustering results against externgdréai a measure of agreement is needed. Since
we assume that both the external criteria and clusteringjtseare disjoint, measures of agreement
between two partitions can be used. In the statistics titeea many measures of agreement were
proposed and evaluated (for example, [Rand, 1971], [Mitligt al., 1983],[Hubert and Arabie, 1985],
[Milligan and Cooper, 1986] and many others).

Given a set ofv objectsS = {Oy,...,0,}, supposd/ = {uy,...,ur} andV = {vy,...,vc}
represent two different partitions of the objectsSirsuch thatuZ ju; = S = chzlvj andu; Nu;y =
0 =v;Nupforl <i#id < Randl < j #j' < C. Suppose thal/ is our external criterion antl
is a clustering result. Let be the number of pairs of objects that are placed in the saass oiU and
in the same cluster ii¥, b be the number of pairs of objects in the same cla€$ but not in the same
cluster inV, ¢ be the number of pairs of objects in the same clustér iout not in the same class in
U, andd be the number of pairs of objects in different classes arfdréifit clusters in both partitions.
The quantities: andd can be interpreted as agreements, laaddc as disagreements. The Rand index
[Rand, 1971] is simply{%. The Rand index lies between 0 and 1. When the two partitigreea
perfectly, the Rand index is 1.

The problem with the Rand index is that the expected valukeoRiand index of two random parti-
tions does not take a constant value (say zero). The adjRsted index proposed by [Hubert and Arabie, 1985]
assumes the generalized hypergeometric distributioreastidel of randomnesse.,theU andV par-
titions are picked at random such that the number of objectlse classes and clusters are fixed. Let
n;; be the number of objects that are in both clasand clustew;. Letn; andn ; be the number of
objects in class; and clustew; respectively. The notations are illustrated in Table 1.

Class or Cluster| v; V9 R 7o Sums
U1 ni ni2 s nic ni.

U2 U n22 e nac UA

UR MRl MR2 ... NRC | MR
Sums niy N9 ... Ngo | n.=n

Table 1: Notation for the contingency table for comparing fartitions.

The general form of an index with a constant expected valye-jsidez—capected index____ \yhjch
maximum index—expected index

is bounded above by 1, and takes the value 0 when the indelsatpuexpected value.
Under the generalized hypergeometric model, it can be shidwbert and Arabie, 1985] that:

=(9)] = () z(2)] () »

i,J i J

E
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The expression + d can be simplified to a linear transformation ¥f; ; "227' . With simple

algebra, the adjusted Rand index [Hubert and Arabie, 19&5%pe simplified to:

X <n2ij> B [Ei <nZZ> i (n?jﬂ / (Z)
A OREORRIE

Example 1 in Appendix B illustrates how the adjusted Ran@xnid computed. The Rand index
for comparing the two partitions in Example 1 is 0.711, wiiile adjusted Rand index is 0.313. The
Rand index is much higher than the adjusted Rand index, whitglpical. Since the Rand index lies
between 0 and 1, the expected value of the Rand index (althooiga constant value) must be greater
than or equal to 0. On the other hand, the expected value affjusted Rand index has value zero and
the maximum value of the adjusted Rand index is also 1. Heheeg is a wider range of values that
the adjusted Rand index can take on, thus increasing theiginsf the index.

In [Milligan and Cooper, 1986], many different indices wenealuated for measuring agreement
between two partitions in hierarchical clustering analyestross different hierarchy levelise(, with
different numbers of clusters), and they recommended thestadl Rand index as the index of choice.
In this report, we adopt the adjusted Rand index as our meaguagreement between the external
criteria and clustering results.

)

3.4 Clustering algorithms and similarity metrics

We implemented three clustering algorithms: @aster Affinity Search Technig¢€AST) [Ben-Dor and Yakhini, 199
the hierarchicabverage-linkalgorithm, and th&-meansalgorithm (with average-link initialization)
[Jain and Dubes, 1988].

CAST: We implemented the pseudo-code for CAST given in [Ben-Daréakhini, 1999] with two
additional heuristics that have been added to®.uUsT, the implementation of CAST by its authors.
The CAST algorithm takes as input the pairwise similarité®bjects and a parametewhich is a
real number between 0 and 1. The parametisra similarity threshold to decide whether an object
is added to or removed from a cluster. Thus, varying the patam changes the number of clusters
formed. Please refer to Appendix C for more details of thertigm.

Hierarchical average-link: Agglomerative hierarchical algorithms build clusterstbot up. Initially,
each object is in its own cluster. In each step, the two alsstéth the greatest cluster similarity are
merged. This process is repeated until the desired nurhpef clusters is produced. In average-link,
the cluster similarity criterion is the average pairwisaifarity between objects in the two clusters.
Refer to [Jain and Dubes, 1988] and [Anderberg, 1973] foaitbet discussions on hierarchical algo-
rithms. The average-link clustering algorithm is used hig¢aet al, 1998] to analyze gene expression
data.

K-means: The number of clusterg;, is an input to the k-means clustering algorithm. Clustees a
described byentroids which are cluster centers, in the algorithm. In our implatagon of k-means
[Jain and Dubes, 1988], the initial centroids consist ofc¢hestering results from average-link. Each
object is assigned to the centroid (and hence cluster) hétlslosest Euclidean distance. New centroids
of thek clusters are computed after all objects are assigned. €pe sf assigning objects to centroids
and computing new centroids are repeated until no objeetsmaved between clusters.

Similarity metrics:  There are two popular similarity metrics used in the geneesgion analy-
sis community: Euclidean distance (for example, [Véeal, 1998]) and correlation coefficient (for
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example, [Eisert al, 1998]). In our experiments, we evaluated the effectiverss?CA on cluster-
ing analysis with both Euclidean distance and correlatioefficient, namely, CAST with correlation
coefficient, average-link with both correlation and distance, and kansewith both correlation and
distance. If Euclidean distance is used as the similaritfrimehe minimum number of components
in sets of PC’s /1) considered is 2. If correlation is used, the minimum nunmiifecomponents
(mp) considered is 3 because there are at most 2 clusters if 2awnis are used (when there are 2
components, the correlation coefficient is either 1 or -&,Agpendix D for details).

3.5 Our approach

Given a data set with an external criterion, our evaluati@hwodology consists of the following steps:

1. A clustering algorithm is applied to the given data set] #re adjusted Rand index with the
external criterion is computed.

2. PCAis applied to the same data set. The same clusteringthln is applied to the data after the
PCA preprocessing step using the firsPC’s (wherem = my, ..., p, andmy is the number of
components we start with, which is either 2 or 3 as explainegiection 3.4, ang is the number
of experimental conditions in the data). The adjusted Radéx is computed for each of the
clustering results using the first PC'’s.

3. The same clustering algorithm is applied to the data alfterPCA preprocessing step using
different sets of PC’s. The objective in this step is to findea & PC’s that gives a “high”
adjusted Rand index.

One way to determine the set of PC’s that gives the maximuosggl] Rand index is by exhaustive
search. However, exhaustive search is very computatioi@insive: form components, there are

< 777’1 > possible sets of PC’s that we have to cluster. The ovary data?¥ experimental conditions

and whenmn = 12, the exhaustive search gives é%g) (approximately 2.7 million) possible sets of

PC'’s to cluster. Since our objective is to show that the rsghejusted Rand index is not necessarily
achieved by the firstn. PC's, it suffices to show that there exists a set of PC’s thhieses higher
adjusted Rand index than the first PC’s.

A simple strategy we implemented is tgeeedyapproach. Leiny be the minimum number of
components that we start with. In the greedy approach, westth the exhaustive search for the
minimum number of components;,. Denote the optimum set of componentsSas,. For eachn
(wherem = (mg + 1),...,p), one additional component that is not alreadySip_; is added to
the set of components, the data with all theggenes under this set of components is clustered, and
the adjusted Rand index is computed. The additional comgdhat achieves the maximum adjusted
Rand index is added t§,, ; to form S,,. In the greedy approach, we implicitly assume that a set of
PC'’s that achieves a high adjusted Rand indexiiacomponents is a good candidate for achieving a
high adjusted Rand index fer + 1 components (fofn. = my, ..., (p — 1)).

Since the assumption for the greedy approach may not bdiedtisre implemented enodified
greedyapproach. The modified greedy approach requires anothampéer,k, which is an integer
indicating the number of “best” solutions to keep in eachrdeatep. Denote the optimum sets
of components as,, = {S},..., Sk}, wherem = my,...,p. The modified greedy approach

“When Euclidean distance is used in CAST, the algorithm lysdaks not converge in practice.
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also starts with an exhaustive search for the minimum nurabeomponentsiny. However,k sets

of components which achieve the tb@adjusted Rand indices were stored. For eacfwherem =
(mg+1),...,p)and each of th&? (wherei = 1,..., k), one additional component that is not already
in S¢,_, is added to the set of components, the subset of data withxthaded set of components is
clustered, and the adjusted Rand index is computed. Thie $efs ofm components that achieves the
highest adjusted Rand indices are stored,jn The modified greedy approach allows the search to
have more choices in searching for a set of components thes gi high adjusted Rand index. Note
that whenk = 1, the modified greedy approach is identical to the simpledyrepproach, and when

k = < 7?"1 > the modified greedy approach is reduced to exhaustivelse&wa the choice fok is a
tradeoff between running time and quality of solution. Im experimentsk is set to be 3.

4 Results and Discussion

We ran our experiments on two gene expression data sets angyfathetic data sets. In this section,
the results of the experiments will be presented. Beforalétailed results are presented for each set
of experiments, here are our overall conclusions from oyigoal study:

e We found that the PCA preprocessing step does not necgssapitove cluster qualityi.e., the
adjusted Rand indices of the clustering results on the deaRCA are not necessarily higher
than the adjusted Rand indices of the clustering resultherotiginal data on both real and
synthetic data.

e We also showed that in most cases, the firstomponents (wherew = my,...,p) do not
necessarily give the highest adjusted Rand indexthere exists another set of components
that achieves a higher adjusted Rand index than thedigimponents.

e There are no clear trends regarding the choice of the optinalber of PC’s over all the data
sets and over all the clustering algorithms and over themifft similarity metrics. There is no
obvious relationship between cluster qualitg ( adjusted Rand index) and the number or set of
PC'’s used.

¢ In most cases, the modified greedy approach achieves higlwsted Rand indices than the
simple greedy approach.

In the following sections, the detailed experimental ressah each data set is presented. For some
of the results, graphs plotting the adjusted Rand indexnagéie number of components are shown.
Usually the adjusted Rand index without PCA, the adjusteddRadex of the firstnm components,
and the adjusted Rand indices using the greedy and modifestlgrapproaches are shown in each
graph. Note that there is only one value for the adjusted Radelx computed with the original
variables (without PCA), while the adjusted Rand indicespoted using PC'’s vary with the number
of components.

4.1 Gene expression data

4.1.1 The ovary data

Figure 7 shows the result of our experiments on the ovaryudatg CAST [Ben-Dor and Yakhini, 1999]
as the clustering algorithm and correlation coefficienth@ssimilarity metric. The adjusted Rand in-
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Figure 7: Adjusted Rand index against the number of compgsnesing CAST and correlation on the
ovary data.

dices using the firstn. components (wherer = 3, ..., 24) are mostly lower than that without PCA.
However, the adjusted Rand indices using the greedy andfieddreedy approaches for 4 to 22 com-
ponents are higher than that without PCA. This shows thateting with the firstn PC'’s instead of
the original variables may not help to extract the clustethé data set, and that there exist sets of PC’s
(other than the first few which contain most of the variatiorthie data) that achieve higher adjusted
Rand indices than without PCA. Moreover, the adjusted Radités computed using the greedy and
modified greedy approaches are not very different for this det using the CAST algorithm and
correlation.
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Figure 8. Adjusted Rand index against the number of compsngsing k-means and correlation on
the ovary data.

Figures 8 and 9 show the adjusted Rand indices using the ksragorithm on the ovary data
with the correlation and Euclidean distance as similarigtrios respectively. Figure 8 shows that the
adjusted Rand indices using the firstcomponents tends to increase from below the index without
PCA to above that without PCA as the number of componenteases. However, the results using
the same algorithm but Euclidean distance as the similarétric show a very different picture (Fig-
ure 9): the adjusted Rand indices are high for first 2 and 3 Bfidsthen drop drastically to below
that without PCA. Manual inspection of the clustering résdithe first 4 PC’s using k-means and Eu-
clidean distance shows that two classes are combined irathe sluster while the clustering result of
the first 3 PC’s separates the 4 classes, showing that thicdiesp in the adjusted Rand index reflects
degradation of cluster quality with additional PC’s. Whae tlata points are visualized in the space
of the first and second PC'’s, the four classes are reasonailys@parated in the Euclidean space.
However, when the data points are visualized in the spadeeaseécond and fourth PC’s, two classes
overlap. The degradation of cluster quality with additioR&’s is probably because classes are not
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Figure 9: Adjusted Rand index against the number of compsngsing k-means and Euclidean dis-
tance on the ovary data.

very well-separated in the Euclidean space of the highes,R&id hence, it is more difficult for the
clustering algorithms to extract the classes (see Appdadikigures 8 and 9 also show that different
similarity metrics may have very different effect on the 0§ CA as a preprocessing step to cluster
analysis.

The adjusted Rand indices using the modified approach in€&igshow an irregular pattern. In
some instances, the adjusted Rand index computed usingadtiéied greedy approach is even lower
than that using the first few components and that using thedgreapproach. This shows that our
heuristic assumption for the greedy approach is not alwald,v.e.,a set of PC’s that achieve a high
adjusted Rand index far components may not be a good candidate for achieving a higistad
Rand index form + 1 components (forn = my, ..., (p — 1)). Nevertheless, the greedy and modified
greedy approaches show that there exists other sets of lRaE’'achieve higher adjusted Rand indices
than the first few PC’s most of the time.

The results using the hierarchical average-link algorithith correlation coefficient and Euclidean
distance as similarity metrics show a similar pattern tordslts using k-means (graphs not shown
here).

Note that the adjusted Rand index without PCA using CAST amncetation (0.664) is much higher
than that using k-means (0.563) and average-link (0.57i2gube same similarity metric. Manual
inspection of the clustering results without PCA shows tmdy CAST clusters mostly contain clones
from each class, while k-means and average-link clusteesglts combine two classes into one cluster.
This confirms that higher adjusted Rand indices reflect mighister quality with respect to the external
criteria. With the firstm components, CAST with correlation has a similar range ofistdd Rand
indices to the other algorithms (approximately betweeid ©50.68). The rule of thumb of choosing
the first 14 PC's to cover 90% of the total variation in the datauld have a detrimental effect on
cluster quality if CAST with correlation, k-means with diste, or average-link with distance is the
algorithm being used.

When correlation is used (Figures 7 and 8), the adjusted Ratek using all 24 PC’s is not
the same as that using the original variables. On the othed, hahen Euclidean distance is used
(Figure 9), the adjusted Rand index using all 24 PC'’s is tineesas that with the original variables.
This is because the Euclidean distance between a pair of geieg all the PC's is the same as that
using the original variables. But correlation coefficieshot preserved after PCA (Section 2.5).
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Figure 10: Adjusted Rand index against the number of commsneing CAST and correlation on the
yeast cell cycle data.

4.1.2 The yeast cell cycle data

Figure 10 shows the result on the yeast cell cycle data uskgTdBen-Dor and Yakhini, 1999] as

the clustering algorithm and correlation coefficient asdinglarity metric. The adjusted Rand indices
using the first 3 to 7 components are lower than that withouA Rahile the adjusted Rand indices
with the first 8 to 17 components are comparable to that witRaA.
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Figure 11. Adjusted Rand index against the number of commsnesing k-means and Euclidean
distance on the yeast cell cycle data.

Figure 11 shows the result on the yeast cell cycle data usmgdns and Euclidean distance. The
adjusted Rand indices without PCA are relatively high coragdo those using PC’s. Figure 11 on the
yeast cell cycle data shows a very different picture thamifei@® on the ovary data. This shows that the
effectiveness of clustering with PC’s depends on the ddtheseg used.

The results on the yeast cell cycle data sets using k-medhsuaiirelation and average-link (with
both correlation and Euclidean distance) are not shown here

4.2 Synthetic data
4.2.1 Mixture of normal distributions on the ovary data

Figure 12 shows the results of our experiments on the syathekture of normal distributions on
the ovary data using CAST [Ben-Dor and Yakhini, 1999] as tlustering algorithm and correlation
coefficient as the similarity metric. The lines in Figure Epresent the average adjusted Rand indices
over the 10 replicates of the synthetic data, and the ern tegresent one standard deviation from
the mean for the modified greedy approach and for using thenfil®C’s. The error bars show that
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Figure 12: Adjusted Rand index against the number of commsneing CAST and correlation on the
mixture of normal distributions on the ovary data.

the standard deviations using the modified greedy appraachto be lower than that using the first
m components. A careful study also shows that the modifieddgrepproach has lower standard
deviations than the greedy approach (data not shown herkjs shows that the modified greedy
approach is more robust than the greedy approach in idenifg set of components with a high
adjusted Rand index. The error bars for the case without R€Aet shown for clarity of the figure.
The standard deviation for the case without PCA is 0.064Hisr $et of synthetic data, which would
overlap with those using the first components and the modifieddy approach. A manual study of
the experimental results from each of the 10 replicatesildatot shown here) shows that 8 out of the
10 replicates show very similar patterns to the averagepath Figure 12j.e., most of the cluster
results with the firstn components have lower adjusted Rand indices than that wtithGA, and the
results using the greedy and modified greedy approach gilglhigher than that without PCA. In
the following results, only the average patterns will bevano

Figure 12 shows a similar trend to real data in Figure 7, batdynthetic data has higher ad-
justed Rand indices for the clustering results without P@QA with the greedy and modified greedy
approaches. Asin the case with real data (Figure 7), thetdjiRand indices with the first PC’s lie be-
low that without PCA, and those with the greedy and modifiesedy approach for 4 to 22 components
are above that without PCA.
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Figure 13: Average adjusted Rand index against the numbaoroponents using k-means and corre-
lation on the mixture of normal distributions of the ovaryala

The average adjusted Rand indices using the k-means algonitth the correlation and Euclidean
distance as similarity metrics are shown in Figure 13 andiféid 4 respectively. In Figure 13, the
adjusted Rand indices using the firgstcomponents gradually increase as the number of components
increases, while in Figure 14, the adjusted Rand indicegjubkie firstm indices are mostly below that
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Figure 14: Average adjusted Rand index against the numbeoraponents using k-means and Eu-
clidean distance on the mixture of normal distributionshef bvary data.

2 4 6

without PCA.
The results using average-link and correlation (not shogne)hare similar to that of k-means and

correlation. The average adjusted Rand indices using gedirsk and Euclidean distance (not shown
here) tend to decrease as the number of components is iadreas

4.2.2 Randomly permuted ovary data

0.9

0.85 =
0.8 -

0,75—/ " s . s e et A

o
S o ©
o o N

AdjustedRand

0.55 ——noPCA

i

0.45
b+ T T T T T T T T T T T

Figure 15: Average adjusted Rand index against the numbssmponents using CAST and correla-
tion on the randomly permuted ovary data.

Figures 15, 16, and 17 show the average adjusted Rand ingsoeg CAST and correlation,
k-means with correlation, and k-means with Euclidean disteon the randomly permuted ovary data
respectively. The general trend is very similar to the tssoih the mixture of normal distributions in
Section 4.2.1. The average adjusted Rand indices computed@AST clusters in Figure 15 using
the firstrm PC’s lie below that using the original variables (similarRigure 12). When the k-means
algorithm is used with correlation as the similarity metricFigure 16, the average adjusted Rand
indices using the firsin, PC’s tend to increase as the number of components incresiseaf to
Figure 13). When the modified greedy or the greedy approacisad, the average adjusted Rand
indices for all clustering results (except CAST with 3 coments) with all of the algorithms are above
that without PCA.
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Figure 16: Average adjusted Rand index against the numbssroponents using k-means and corre-
lation on the randomly permuted ovary data.
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Figure 17: Average adjusted Rand index against the numbeoraponents using k-means and Eu-

clidean distance on the randomly permuted ovary data.

4.2.3 Cyclic data with different cluster sizes

The results using this synthetic data set are very diffetiea those using the mixture of normal
distributions and the randomly permuted ovary data. Theageeadjusted Rand index without PCA
(0.941) is very high. The high adjusted Rand index indic#ite$ the data set is very clean and the
clustering algorithms recover most of the classes.

Figure 18 shows the average adjusted Rand indices using @A&gorrelation. Manual inspection
shows that in 7 out of the 10 replicates, the adjusted Rarekimdthout PCA is perfectif.,1). The
average adjusted Rand indices using the firstomponents are much lower than that without PCA in
Figure 18. Note that there is sharp decline in the averagestedj Rand index when all 24 components
are used in the greedy approach in Figure 18. This is no atcideclose inspection shows that 9 out
of the 10 replicates show a drastic decline in adjusted Raaexi when all the components are used
with the greedy approach. In all of the 9 replicates, thetamtil component which contributes to the
sharp decline in the adjusted Rand index is the third PC. &belts of the modified greedy approach
are not shown since the greedy approach achieves almostpadjusted Rand indices.

Figure 19 shows the average adjusted Rand indices with thedas algorithm and Euclidean
distance as the similarity metric. Again, the adjusted Raddx without PCA is very high. But in this
case, using the first. components achieve higher or comparable adjusted Rargemth that without
PCA.
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Figure 18: Average adjusted Rand index against the numbssrmponents using CAST and correla-
tion on the cyclic data with different cluster sizes.
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Figure 19: Average adjusted Rand index against the numbeoraponents using k-means and Eu-
clidean distance on the cyclic data with different clustees.
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4.2.4 Cyclic data with spiky clusters

The general trend using this set of synthetic data sets ysdifferent than the other synthetic data sets
(even the data set in Section 4.2.3): using PCA (with the ¢ostponents or the greedy or modified
greedy approach) helps to achieve higher adjusted Rancemdi
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Figure 20: Average adjusted Rand index against the numbssrmponents using CAST and correla-
tion on the cyclic data with spiky clusters.

Figure 20 shows an example of results applying CAST and latioa to this set of synthetic data.
Unlike the results with other real or synthetic data sets,atijusted Rand indices of CAST clusters
with the firstrn PC’s lie above that without PCA in Figure 20. The results gsither algorithms also
show a similar trend.
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5 Conclusions and Future Work

Our experiments on two real gene expression data sets anddtsuof synthetic data show that clus-
tering with the PC’s instead of the original variables doesrecessarily improve cluster quality. Our
empirical study shows that the traditional wisdom that tr&t few PC's that contain most of the vari-
ation in the data may help to extract cluster structure igaly not true. We also show that there
usually exists some sets of PC’s that achieve higher quality of clustering results tham firstm
PC’s.

Our empirical results show that clustering with PC’s hagedint impact on different algorithms
and different similarity metrics. When CAST is used with redation as the similarity metric, clus-
tering with the firstn components usually gives a lower adjusted Rand index thestecing with the
original variables (this is true in both of the real gene esgion data sets and in 3 out of the 4 syn-
thetic data sets). On the other hand, when k-means is ushcdcaiitelation as the similarity metric,
usingall of the PC’s in cluster analysis instead of the original Malga gives higher or similar adjusted
Rand indices on all of our real and synthetic data sets. Whmtidean distance is used as the sim-
ilarity metric, clustering (either with k-means or averdigé) using the first couple of PC’s usually
achieves higher or comparable adjusted Rand indices t@owitRCA, but the adjusted Rand indices
drop sharply with more PC'’s. Since the Euclidean distaneceprted with the firsin PC’s is just an
approximation to the Euclidean distance computed withhaléxperiments, the first couple of PC’s
probably contain most of the cluster information while tastIPC’s are mostly noise. There is no clear
indication from our results what should be the number of R&isse in the case of Euclidean distance.
Using the number of first PC’s chosen by the rule of thumb tec®0% of the total variation in the
data is too many in the case of Euclidean distance on the alaeyand yeast cell cycle data. Based
on our empirical results, we recommend against using thieféve PC’s if CAST and correlation is
used to cluster a gene expression data set. On the other wangcommend using all of the PC’s
if k-means and correlation is used instead. However, theeased adjusted Rand indices using the
“appropriate” PC’s with k-means and average-link are cample to that of CAST using the original
variables in many of our results. Therefore, choosing a gostering algorithm is as important as
choosing the “appropriate” PC’s.

There does not seem to be any general relationship betwasterchjuality i e., adjusted Rand
index with an external standard) and the number of compsnesgd based on the results on both
real and synthetic data sets. The choice of the first few coewts is usually not optimal (except
when Euclidean distance is used), and usually may evenwachoever adjusted Rand indices than
without PCA. There usually exists another set of PC’s thhiea®s higher adjusted Rand indices than
clustering with the original variables or with the firgt PC's. However, there does not seem to be
any general trend for the the set of components chosen byrédesly or modified greedy approach
that has a high adjusted Rand index. Usually, there are resr&ltcriteria available for real gene
expression data, so it would be very useful if a rule to chd®¥S& for cluster analysis is available. A
careful manual inspection of our empirical results shoves the first two PC’s are usually chosen in
the exhaustive search step for the setrpf components that give the highest adjusted Rand indices.
In fact, when CAST is used with correlation as the similarigtric, the 3 components found in the
exhaustive search stgbwaysinclude the first two PC’s oall of our real and synthetic data sets. The
first two PC’s areusually returned by the exhaustive search step when k-means witblaton, or
k-means with Euclidean distance, or average-link withelatron is used on all of our data sets except
the synthetic data set with spiky clusters. On our real gepeession data sets, the first 2 PC’s are
always returned by the exhaustive search step except whesaks with Euclidean distance is applied
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to the ovary data.

The patterns of results using the synthetic mixture of nbwiisributions and the randomly per-
muted ovary data are very similar to those on the actual adatig. This implies that these two synthetic
data sets probably have similar complexities as the re@ gepression data set. On the other hand, the
patterns of results on both cyclic data sets are very difteten those on the yeast cell cycle and those
on the ovary data, implying that the cyclic data sets may eassatisfactory models for synthesizing
gene expression data as the mixture of normal and the ragdoeniuted models. In particular, the
cyclic data set with different cluster sizes achieves vegh liclose to 1) adjusted Rand indices even
without PCA, which is very different than what we observe eal data.

There are a few possible directions of both empirical andretecal future work. Empirically,
it would be interesting to generate more replicaies,(more than 10) for each set of synthetic data
to see if the standard deviations from the average patteuidngo down. Furthermore, it would be
interesting to check if increasing the paramété@he number of best sets of components to keep in each
search step) would significantly improve the adjusted Raddx computed. Comparing the adjusted
Rand indices using a set of random PC'’s to those computedtiétiyreedy approach would also be
interesting. Our observation above suggests that thevicsPC's are usually chosen in the exhaustive
search step. Generating a set of random PC'’s that alwayslexkhe first two PC’s, and then applying
clustering algorithms and computing the adjusted Rand@slmay also lead to interesting insights.
In terms of future theoretical work, it is interesting to ép time-efficient approximation algorithms
(other than the greedy and modified greedy approaches) tpuena set of PC’s that achieves a
high adjusted Rand index. Developing other models for gdimgr synthetic gene expression data is
definitely of interest. In addition, formally testing thernality of the ovary data would be useful to
support the synthetic data model of the mixture of multatginormal distributions.

Our empirical study shows that the effectiveness of PCA ostel analysis depends on the par-
ticular data set, the clustering algorithm and the sintifametric used. For most real gene expression
data sets, an external criterion to assess clusteringtsdsutot available. It would be very valuable
to develop a methodology that does not require an exteritation to evaluate the effectiveness of
PCA as a preprocessing step. In our previous work [Yeatrsg., 2000], we proposed a methodol-
ogy that estimates the predictive power of clustering atlgars. We believe that our methodology
in [Yeunget al,, 2000] can be modified to investigate the effectivenessusteting with the PC’s in-
stead of the original variables. It would be interesting donpare the evaluation results using our
methodology with the results in this paper using externigica.

To conclude, we believe that our empirical study is one stepdrd to investigate the effectiveness
of clustering with the PC'’s instead of the original variable
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Appendix

A Scree graphs for the ovary and yeast cell cycle data
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Figure 21: Scree graph for the ovary data
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Figure 22: Scree graph for the yeast cell cycle data

Figure 21 shows the scree graph for the ovary data. Theraip shange of steepness in Figure 21
at 3 components, and another gentle change at 6 compondanigarly, Figure 22 shows the scree
graph for the yeast cell cycle data. Again, there is a shagngd of steepness at 3 components, and
another gentle change at 5 components. These two exaniptsaie that the scree graph approach to
decide the number of first PC’s to be used is very ad-hoc anddiue.

B Example illustrating the adjusted Rand index

The following example illustrates how the adjusted Ran@in@liscussed in Section 3.3) is computed.
Example 1 is a contingency table in the same form as in Table 1.

a is defined as the number of pairs of objects in the same cldgsaimd same cluster i, hence
a can be written a$_; ; "2”' . In Example 10 = g + 3 = 7. b is defined as the number of
pairs of objects in the same classlinbut not in the same cluster . In terms of the notation in
Table 1,b can be written a§”, ("5) — Y, ("2”> In Example 1p = (3) + (3) + (3) —7=6.
Similarly, ¢ is defined as the number of pairs of objects in the same clirstérbut not in the same
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Class or Cluster| v;1 vy w3 | Sums
U1 1 1 0|2
U9 1 2 1 |4
U3 O 0 4 |4
Sums 2 3 5 |n=10

Example 1

class inU, soc can be written a§_; (”2-1> i, ("2zy> = (%) + (;’) + (g) —T7=7.dis defined
as the number of pairs of objects that are not in the same idd$sand not in the same cluster in.

Sincea+b+c+d= (3) d = (120> —7—6—7 = 25. The Rand index for comparing the two

partitions in Example 1 i+ = 0.711, while the adjusted Rand index(i§4+715)1/42*}ﬁi‘?3/45 =0.313
(see Section 3.3 for the definitions of the Rand and adjustediihdices). The Rand index is much

higher than the adjusted Rand index.

C Details of the CAST algorithm

The Cluster Affinity Search Technique (CAST) is an algorigwmposed by [Ben-Dor and Yakhini, 1999]
to cluster gene expression data. The input to the algoritittudes the pairwise similarities of the
genes, and a cutoff parametghich is a real number between 0 and 1). The clusters ardrooted
one at a time. The current cluster under construction igdall,,.,,. Theaffinity of a geney, a(yg), is
defined to be the sum of similarity values betwgeand all the genes i,,.,. A geneg is said to
have high affinity ifa(g) > t|Cypen|. Otherwisey is said to have low affinity. Note that the affinity of
a gene depends on the genes that are already,ip,. The algorithm alternates between adding high
affinity genes taC,,.,,, and removing low affinity genes froii,,e,,. Copen is closedwhen no more
genes can be added to or removed from it. Once a cluster isd;ldSs not considered any more by
the algorithm. The algorithm iterates until all the genegehlaeen assigned to clusters and the current
Copen IS Closed.

When a new cluste€,,.,, is started, the initial affinity of all genes are 0 sinCg,.,, is empty.
One additional heuristic that the authors [Ben-Dor and ¥akt999] implemented in their software
BioCLUST is to choose a gene with the maximum number of neighbors ttossteew cluster. Another
heuristic is that after the CAST algorithm converges, the@n additional iterative step, in which all
clusters are considered at the same time, and genes are toa¥edcluster with the highest average
similarity.

D Correlation coefficient when there are 2 components

When there are 2 components, the correlation coefficierithisrel or -1. Suppose there are two genes
g1 andg, with two components. Let; ; (wherei,j = 1,2) be the expression level of geneinder
componeny. The correlation coefficient betwegn andg, can be simplified to:

(561,1 - 561,2) * (2102,1 - 562,2) ©)

\/(961,1 —x1,2)% * (22,1 — T2,2)?
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Since the denominator in Equation 3 represents the produbeaorms of geneg, andgs,, the
denominator must be positive. From Equation 3, the coicglatoefficient between gengs andg, is
Lif (z11 —z12) * (2,1 —22,2) > 0, the correlation coefficientis -1 {fc; 1 — 1 2) * (z2,1 —222) < 0.

If 211 = 12 0rza 1 = x99, the correlation coefficient is undefined. Since there ahgt@ro possible
values that the correlation coefficient can take when therdveo components, there are at most two
clusters.

E Visualization of the clustering result with k-means and Ewclidean dis-
tance on the ovary data

The results on the ovary data set using k-means and Euclidistance in Figure 9 show that the
adjusted Rand indices are high for first 2 and 3 PC’s and thep drrastically to below that without
PCA. When the four classes of the ovary data are viewed inghessof the first two PC’s (Figure 23),
the four classes are reasonably well-separated in thedeaglispace. In fact, when the clustering result
using the first 3 PC’s is viewed in the space of the first two P@iis four clusters correspond mostly to
the four classes in Figure 24. However, two classes (classl tlass 4) overlap in Figure 25, in which
the classes are viewed in the space of the second and fouldh RGact, manual inspection shows
that the two overlapping classes were combined into oneeclby k-means with Euclidean distance
when four PC’s are used. The fourth PC probably is mostlyeqoighich makes it more difficult for
k-means to extract the four classes.
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Figure 24: Visualization of the four clusters using the f#B®C’s and k-means with Euclidean distance
from the ovary data in the space of the first two PC's.
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PC4

Figure 25: Visualization of the four classes from the ovaayadn the space of the second and fourth
PC’s.
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