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Abstract

UrbanSim simulates the development of urban areas, including land use, transportation, and environmental impacts,
over periods of twenty or more years. Its purpose is to aid urban planners, residents, and elected officials in evaluating
the long-term results of alternate plans, particularly as they relate to such things as housing, business and economic
development, sprawl, open space, traffic congestion, and resource consumption. From a software perspective, it is
a large, complex, system, with heavy demands for excellent space efficiency and support for software evolution. It
consists of a collection of models that represent differenturban actors and processes, an object store that holds the state
of the simulated urban environment, a model coordinator that schedules models to run and notifies them when data
of interest has changed, and a translation and aggregation layer that performs a range of data conversions to mediate
between the object store and the models. The paper concludeswith a discussion of the lessons learned regarding
implicit invocation, object storage, and automatic code generation that yield acceptable space and time efficiency, as
well as support for software evolution, within this architectural framework.

1 Introduction

UrbanSim is a system for simulating the development of urbanareas, including land use, transportation, and environ-
mental impacts, over periods of twenty or more years [50, 53]. From a software perspective, it is a large, complex
application, with heavy demands for excellent space efficiency and support for software evolution. In this paper we
first describe the application area and provide an overview of UrbanSim. We then discuss the lessons learned for
software architectures for systems of this kind.

Patterns of land use and available transportation systems play a critical role in determining the economic vitality,
livability, and sustainability of urban areas. Transportation interacts strongly with land use. For example, automobile-
oriented development induces demand for more roads and parking (which in turn induces more automobile-oriented
development), while compact urban environments can inducemore walking and demand for transit. Both land use and
transportation have strong environmental effects, in particular on emissions, resource consumption, and conversionof
rural to suburban or urban land.
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Figure 1: UrbanSim architecture

Good technical support can play an important role in fostering informed civic deliberation and debate on these issues.
To aid urban planners, residents, and elected officials in evaluating alternate scenarios—packages of policies and
investments—we want to simulate the effects of these scenarios on patterns of urban growth and redevelopment, of
transportation usage, and resource consumption, over periods of twenty or more years.

Transportation models have been in routine use by metropolitan planning organizations for decades. However, land use
planning is often poorly integrated with transportation planning, despite their strong interactions. Further, the state of
common practice in land use modeling, and in integrated landuse and transportation modeling, is much less advanced
than that for transportation modeling alone. (See Section 4for a discussion of prior and related work.) UrbanSim has
been designed and implemented in response to this lack. The system is fully operational and freely available under
the GNU public license. It consists of around 130,000 lines of Java code for the core UrbanSim system; including the
visualization, data preparation, and calibration tools, the total is approximately 200,000 lines, plus another 100,000
lines of automatically generated code. It has been applied to Eugene-Springfield, Oregon; Salt Lake City, Utah; and
Honolulu, Hawaii, working with the planning organizationsin those metropolitan regions. Application to other regions
is underway. We have also done a historical validation of thesystem, with very good results, starting UrbanSim with
1980 data for Eugene-Springfield, running it through 1994, and comparing the results with what actually transpired
[54].

2 Overview of the UrbanSim Architecture

To simulate an urban region, UrbanSim employs a collection of interactingmodels, representing different actors and
processes in the urban environment, such as residents, businesses, land developers, and transportation networks. Each
model encodes the behavior of agents in the simulation, as well as the objects they operate upon, such as land parcels
and buildings. Objects correlate directly with easily-identifiable objects in the real world, making it easier to reason
about their properties and behaviors. Entities can be shared across models, as can the objects they operate upon. Much
more than other urban modeling systems, the UrbanSim model is very disaggregate and has high data requirements.
These requirements enable modeling of processes to be done at a fine level, which allows leveraging spatial data in a
manner not possible with more aggregate systems. At the sametime, this makes the design and implementation of the
system more difficult from a software perspective.

In addition to the models, the other principal components ofUrbanSim are amodel coordinatorthat schedules models
to run and notifies them when data of interest has changed, anobject storethat holds the shared representations
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of agents and other entities in the simulated world, and atranslation and aggregation layerthat performs a range
of data conversions to mediate between the object store and the models. The models do not communicate directly
with each other; rather, they communicate via shared data held in the object store, mediated by the translation and
aggregation layer. This extensible, modular architecturesupports system evolution, in particular replacing a model
with a revised one, and creating and integrating new models.It allows models to define and share common sets of
objects that they all operate upon, via the object store (regardless of the original source of the data), and also allows
them to monitor changes to data fields, providing a convenient method for models to synchronize their actions. Lastly,
it provides the Translation/Aggregation Layer that automatically performs a range of data conversions that facilitate
model integration.

A primary goal of this architecture is to move as much of the software complexity out of the individual models and
into the supporting infrastructure as possible. This supporting infrastructure need be written just once, and can have
the attention of an expert programmer. The models, on the other hand, are both numerous and frequently changing.
Often, specifying them is a complex process, involving considerable domain-specific knowledge and testing; the more
one can relieve the model writers of programming burdens thebetter, so that they can concentrate on issues arising
from the domain.

2.1 Models

Models represent different actors or processes in the urbanenvironment. In addition to encapsulating the behavior
of the actor or process, each model is also responsible for defining the set of object types it operates on, and the
fields of those objects with which it is concerned. A model canspecify that it wishes to share fields also declared by
other models, thus providing one technique for data-level coupling and integration of models via the object store. A
model can also declare new object types that encapsulate domain-specific data not previously declared (e.g., a water
quality model might declare a nutrient load value). A model may specify a set of object types and fields it wishes to
monitor for updates, creations, or deletions. Each model isalso responsible for indicating how frequently it wishes to
be executed; there are no external constraints on how frequently or regularly a model need run.

The design of the models is informed by research in urban economics, sociology, civil engineering, and other disci-
plines. A discussion of the theoretical basis for the various models is given in reference [50].

2.1.1 Currently Implemented Models

A list of the models in the current version of UrbanSim is given below. Each model runs once per simulation year,
unless otherwise noted. All of these models consist of a collection of domain-specific case-based rules or decision
rules that are encoded in Java code. However, given the encapsulation provided by the system architecture, models
could be represented in other ways as well.

Demographic Transition Model The Demographic Transition Model is responsible for modeling births and deaths in
the simulated population of households. Externally imposed population control totals—based on predictions by
demographers for the given region—are used to determine overall target population values, and can be specified
in more detail by distribution of income groups, age, size, and presence or absence of children. This enables the
modeling of a shifting population distribution over time. Iterative proportional fitting [7] is used to determine
how many households of each type are to be created or deleted.Newly created households are placed in limbo,
to be placed in buildings later by the Household Location Choice Model. Households to be deleted to meet the
control totals are selected at random, drawn preferentially from households in limbo.

Household Mobility Model The Household Mobility Model simulates the decision processes of households deciding
whether to move. Movement probabilities are based on historical data. Once a household has decided to vacate,
it is placed in limbo to indicate it has no current location, and the space it formerly occupied is made available.
(The displaced household will be subsequently placed by theHousehold Location Choice Model if housing is
available.)
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Household Location Choice ModelThe Household Location Choice Model is responsible for determining a location
for each household that has no current location (i.e., is in limbo). For each such household, a sample of locations
with empty housing units is randomly selected from the set ofall possible alternatives. Each alternative in the
sample is evaluated for its desirability to the household, through a nested logit model encoding decision rules
and metrics. The coefficients for each rule are calibrated toobserved and historical data. The household is
placed into its most desired location among those available.

Economic Transition Model The Economic Transition Model is responsible for modeling job creation and loss.
Employment control totals are used to determine target employment values, and can be specified by distribution
of business sector. As with the Demographic Transition Model, iterative proportional fitting is used to determine
how many businesses of each type are created or lost. New jobsare placed in limbo, to be placed later by the
Employment Location Choice Model. In the case of losses, jobs are selected at random to be removed, drawn
preferentially from any job without a location (i.e. in limbo).

Employment Mobility Model The Employment Mobility Model determines which jobs will move from their current
locations during a particular year. (Choices regarding jobcreation and loss, mobility, and location are of course
made by businesses large and small. However, in the economictransition and employment models, we use
individual jobs as the unit of analysis.) Movement probabilities are based on historical data. Once a job has
been determined to vacate a building, the job is placed in ‘limbo’ to indicate it has no current location, and the
space it formerly occupied is made available. The displacedjob will be subsequently placed by the Employment
Location Choice Model.

Employment Location Choice Model The Employment Location Choice Model is responsible for determining a
location for each job that has no location (i.e., is in limbo). For each such job, a sample of locations with empty
square feet, or space in housing units for home-based jobs, is randomly selected from the set of all possible
alternatives. Each alternative in the sample is evaluated for its desirability for the particular job, through a
multinomial logit model encoding decision rules and metrics. The job is placed into its most desirable location,
among those available.

Accessibility Model The Accessibility Model encapsulates the interface to a (possibly external) travel model. It is
responsible for maintaining accessibility values for objects within each traffic analysis zone, including accessi-
bility by residents and employees to shopping and other amenities, to employment, and to the central business
district. (These accessibility values encode how long it takes to get somewhere via driving, transit, walking,
etc.) The link between land use and the travel model is two-way, since different accessibility values from the
travel model will influence the decisions of developers, employers, and residents, giving rise to different travel
demands, which then feed back into the travel model. The external travel model provides travel times and utili-
ties to the Accessibility Model. This external model is typically run only once every 5 simulated years or when
there is a major change to the transportation system, since running it is relatively expensive and since its outputs
generally change more slowly than other values in the simulation. However, the Accessibility Model itself is
run yearly, allowing the activity levels to be updated annually.

Land Developer Model The Land Developer Model simulates the action of a developermaking decisions about
where and what kind of construction to undertake (if any), including both new development and redevelopment
of existing structures. Each time it is run, the model iterates over all gridcells on which development is allowed.
For each such gridcell, a list of possible transition alternatives is created (representing different development
types), including the alternative of not developing. The probability for each alternative being chosen is calculated
in a multinomial logit model, and one of the alternatives is selected through a Monte Carlo sampling. The logit
model uses numerous indicators to calculate the logit probabilities, including local and regional vacancy rates,
distance to highways, travel time to the central business district, and neighborhood economic and environmental
characteristics. Upon choosing to develop or redevelop a particular gridcell, the model constructs a Development
Event and asks the Model Coordinator to add it to the event queue.

Land Price Model The Land Price Model simulates the evolution of land prices of each grid cell as the characteristics
of locations change over time. It is based on urban economic theory, which states that the value of location
is absorbed into the price of land. The model is calibrated bymeasuring the effect of site, neighborhood,
accessibility, and policy effects on land prices from historical data. It also measures the effects of short-term
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fluctuations in local and regional vacancy rates on land prices. Land prices influence the density and profitability
of development of alternative forms of real estate, and the cost to potential consumers, so this component plays
an important role in the interaction of the system.

Data Export Model The Data Export Model is responsible for gathering, aggregating, and exporting data from the
object store to a set of external files for subsequent analysis and graphical display. It has been defined as a
subclass of Model and included in the runtime to simplify thesystem architecture, in particular so that it can
be scheduled to run at any time to query the Object Store to take a snapshot of the state of the simulation
environment. However, unlike the other models, it does not represent an agent in the simulated world, and does
not perform any writes to the object store, only reads.

2.1.2 Temporal Scale Issues and Simplifications

UrbanSim provides a much more disaggregate and detailed simulation than other urban land use models. Even so, to
keep the computation manageable, the model makes many simplifying assumptions. For example, the Demographic
Transition Model, like most of the models, runs once per simulated year. Each simulated year, it adjusts the total
population values and distributions, but in reality peopleare born and die, and move into and out of the region, every
day. Similarly, the Land Price Model simulates the operation of the real estate market at a temporally aggregate level,
adjusting prices once per year rather than continuously. (See reference [50] for additional discussion of the theoretical
basis for these design decisions and their consequences.)

Another kind of simplification is in regard to the modeling ofbehavior. For example, the current Household Mobility
and Household Location Choice model the possibility of households becoming homeless in only a very simplified
way, in that if the available housing stock runs out before all households are placed, those remaining households will
be homeless.

Modeling these two processes in a more realistic way would have quite different implications for the software archi-
tecture. For example, implementing an auction-style, continuous-time simulation of the real estate market would put
dramatic stresses on the architecture, requiring much moredata and processing. On the other hand, modeling home-
lessness in a more realistic way introduces some difficult issues from a modeling perspective, since there are other
causes of homelessness besides being priced out of the housing market, but accommodating this within the overall
system architecture should present no particular difficulties.

2.1.3 Defining a Model

The description of a model consists of a Model Definition File, and separately, a Java class definition for the model.
The Model Definition File includes the model’s name, and the set of objects and object fields it reads and writes, along
with flags indicating if the fields are to be shared with other models (i.e., sharing a field with an already-created model).
Shared variables are specified explicitly in the model definition rather than implicitly through duplicated names in order
to ensure that any duplicate use of an object field is deliberate. This avoids a potential problem where commonly-used
names may be used in independent models but with different semantics, and sharing the variables in that case would
cause erroneous results. (For example, one model might refer to “population” as a count of persons, and another as a
count of households, in which case trying to share the field would produce inconsistencies.) Information from all the
relevant model definitions is combined to produce the definitions of the objects in the Object Store (Section 2.3.2).

The remainder of the model’s functionality is specified by a Java class, which must be a subclass of the abstract class
Model. The following are the key methods defined by Model, andwhich are overridden in concrete subclasses.

init Perform any model-specific initialization, including notifying the Model Coordinator which objects and fields it
wishes to monitor for changes.

run Perform the work of running the model at the current simulated time.

nextScheduledRunTime Return a float indicating the next simulated time that the model wishes to be run.
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onCreate Perform any needed bookkeeping if an object of interest has been created. This method is invoked if one
of the objects in which this model has registered interest has been added to the Object Store.

onChange An object type or field that this model monitors has been changed—react accordingly.

onRemove Perform any needed bookkeeping if an object of interest has been removed from the Object Store.

If the degree of interaction between a new model and existingmodels can be expressed at the data level and there is
a well-defined order between them (e.g. one model’s outputs are always used as inputs by another model), then no
additional information is required. For example, the output of the Demographic Transition Model (i.e. newly-created
households that reside in limbo) is an input to the HouseholdLocation Choice Model, and this interaction is wholly
defined at the data level (i.e. the existence of new households in limbo). If models need to be more tightly coupled,
or operate on differing temporal scales, the data notification interface can be used. For example, a continuous-time
model can be set to monitor changes to data fields it uses as inputs, and compute an updated set of outputs only when
its inputs have changed. The Translation/Aggregation Layer can help with models that operate on different spatial
scales, for example by aggregating from the parcel or gridcell level to the zonal level. The key methods used in
providing this functionality are theonCreate, onChange, andonRemove methods of Model (as defined above),
and thepostQuery andpostUpdate methods of the Model Coordinator (Section 2.4, which pass information through
the Translation/Aggregation Layer and on to the Object Store.

In addition to providing a mechanism for coupling several models using implicit invocation, another application of
the model notification mechanism is to support the caching offrequently-accessed data within a model, rather than
repeatedly accessing it from the Object Store. This can be helpful if a model needs to perform costly processing
on a large amount of data, as it can compute the results once and recompute only what is needed as parts of the
underlying data are changed. Data modification messages serve as notification that the model’s cache is no longer
valid, and supply the specific data element(s) which have changed. For example, the Land Price Model maintains
regional and zonal-level vacancy rates. These more aggregate vacancy rates change slowly over time, so the Land
Price Model computes them once, and modifies them as needed ashouseholds and employees move about the region,
rather than recomputing the aggregate vacancy rates every time the model runs. As the vast majority of employees and
households remain where they are at each simulation step, this approach substantially reduces the overall number and
size of queries to the Object Store.

2.2 Model Coordinator

The model coordinator is responsible for managing the collection of models present in a simulation. It is responsible
for determining the execution order of models, resolving any data dependencies one model may have on another, and
notifying a model when another model has changed data it is monitoring.

Some key methods defined by the Model Coordinator class are:

runSimulation run the simulation once the event queue has been populated

executeEvent execute a single event (provided as an argument to this method)

getOrdering determine a total ordering among a collection of events (provided as an argument to this method)

2.2.1 The Event Queue

The Model Coordinator maintains an event queue containing timestamped events. These events include requests by a
model to execute at a future time, development events scheduled to occur at a future time, database updates that were
created by exogenous events that did not occur instantaneously, and policy events that indicate planned changes in
regional or local policy. Running the simulation consists of gathering the set of events that are to occur at the current
timestep, determining a total order for those events that preserves any data or ordering dependencies they may have,
and then executing them in that order.
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The event queue is thus the traditional data structure used in discrete event simulations, except for the additional
consideration of breaking ties among events scheduled to occur at the same time. Any number of models or simulation
events may be scheduled to execute at the same instantaneoustimestep. However, the model coordinator maynot then
execute these events in an arbitrary order—there may be dependencies among them. For example, if the Household
Mobility Model and the Household Location Choice Model are both scheduled to execute at timet, the Household
Mobility Model must be run first, determining a set of households that decide to move, and then the Household
Location Choice Model must be run to find available housing units for them. In other words, the choice to move from
a current dwelling and the choice to look for a new dwelling are not independent; this dependency is reflected by the
constraints on the order in which the models are run.

Since models are not restricted to running at regular intervals, in general it is not possible to determine execution orders
until run-time. This introduces an enormous amount of complexity not found in most other urban modeling systems,
which typically have a fixed ordering of execution. When morethan one event is to occur at a given timestep, it is
necessary to determine a total order of the events that preserves any order dependencies that may exist between them.
Dependencies are of two types, data-level dependencies, and model-level dependencies between model execution
events.

A data dependency exists between two models when one model writes to a field that another model reads from. In
such cases, it is essential that the reading model reads the correct version of the data, and the writing model overwrites
data only when it is safe to do so from another model’s perspective. In the absence of other ordering dependencies,
we assume that all reads to a field occur before any writes to it, and that writes can occur in any order. This reflects
the typical access pattern of models, which generally read from many objects and write to a small number of fields of
a small number of objects. (The fields written to generally have a very small overlap with reads from other models.)

A model-level dependency is an ordering dependency explicitly introduced by a model’s author, in the form of a set of
partial orderings between two or more models. This providesa mechanism to order models based on their semantics
rather than their syntax (data reads/writes). For example,the Land Developer Model and the Land Price Model could
be executed in either order, based on their inputs and outputs, but we schedule the latter to execute after the former so
that adjustments in land price due to this year’s demographic and economic changes do not affect development. This
is based on the simplification of market dynamics that we adopt: that development decisions are made once per year,
looking at the state of the region in the prior year to decide what should be build in the current year.

To determine a valid total order for a collection of events, adirected acyclic graph is constructed. Events are repre-
sented as nodes in the graph, and directed edges are created between events that access the same data fields of objects
or that have model-level dependencies, with the direction of the edge indicating that the source node (event) must
occur before the destination. When determining the possible dependencies between two model execution events, we
must compute the transitive closure of all models and all fields that may potentially be read from or written to on
the basis of the notification mechanisms. For example, modelA may write to a field which is monitored by model
B, which may in turn write to another field that triggers modelC’s notification mechanisms, and so forth. To ensure
correctness, this full chain of potential reads and writes must be considered. Model-level dependencies override data-
level dependencies in the case of conflicts. A topological sort is used to generate a valid total ordering of the events to
be executed.

2.2.2 Development, Employment, and Policy Events

UrbanSim supports development events that create, modify,or delete buildings, create, move, or delete businesses or
households, or change the urban growth boundary or re-zone land. Many of these events are generated by models.
(For example, the developer model generates building development events.) However, events can also be read from an
external file, allowing the modeler to introduce development projects and policy changes into the event pipeline that
are exogenous to the models. For example, a scenario author may wish to simulate the effects of a major business
leaving the region, a shopping center being constructed, ora modification to the urban growth boundary that occur
at a particular point in time. This can be used for calibration purposes as well, by introducing major events from
historical data. This capability was useful, for instance,in performing our historical validation of the system for
Eugene-Springfield, Oregon (starting the model with 1980 data and comparing the simulated results for 1994 with
what actually transpired). We used Development Events to model the phased closure of a large Weyerhauser lumber
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mill in the 1980’s, and the opening of the Gateway regional shopping mall in 1990.

As a somewhat philosophical aside, the reader may wonder whythese sorts of large events are exogenous and not
produced by models themselves. The reason is that UrbanSim is intended to model the dynamics of a single urban
region—but events in that region are influenced by the largerworld. For example, the closing of a lumber mill might be
due to declining timber stocks, changing world markets, or other external factors. Other examples of exogenous inputs
are population control totals, based on predictions by demographers for the region, and overall economic predictions.
This gives rise to another question. If we need to introduce aBusiness Event (such as a plant closure) for the system
to give an accurate simulation of the historical development of a region, how can we have confidence in the system’s
predictions about a region in the year 2020? Might there not be some major event in 2015—for example, a global
economic downturn—that will drastically influence the region? The answer is, of course, that UrbanSim provides no
crystal ball regarding the global economy. Planners must use expert judgment in using the model, generally testing
it under alternate scenarios and showing the results for allof them. For example, when evaluating the effects of a
major transportation infrastructure project, it would be prudent to perform this evaluation based on several alternative
scenarios for general economic conditions.

A related issue concerns policy events, such as moving an urban growth boundary or re-zoning land. These are also
input as external events, and are not the output of a model. Incontrast to development events representing global
influences, these might be purely local policy changes. Our reason for representing policy events as exogenous inputs
is philosophical rather than pragmatic: UrbanSim is intended as a tool to aid civic deliberation and debate, not as a
tool to model the behavior of voters or governments. We want it to be used to say “if you adopt the following policy,
here are the consequences”, but not to say “UrbanSim predicts that in 5 years the city will adopt the following policy.”

2.3 Object Store

The representations of agents in the world (such as households and businesses), and the objects they operate upon
(such as buildings and land parcels), are held in the object store. The object store serves as an in-memory database
that can be queried or updated, and that supports filtering onentity attributes.

The basic interface to the object store is through itspostQuery andpostUpdate methods. A model constructs a
Query object by filling in the object type and set of fields to query for (e.g., the age and size category fields for
households), and adds anyFilter objects to theQuery as desired (e.g., anEqualityFilter to return only households
with a certain number of workers). ThepostQuery invocation returns aQueryResult object, which contains a copy
of all relevant data from the object store, including internal object IDs for all values returned. Results are returned in
parallel arrays (one array per field) to avoid Java object-level memory overhead. Updates work in a symmetric fashion,
with a model constructing aUpdate object whose form is similar toQueryResult with the addition of the update type
(create, modify, remove).

From a software engineering point of view, the object store also serves to encapsulate representation decisions about
the entities in the simulation. From outside the object store, these act as traditional instances in an object-oriented
language. However, they are represented more efficiently within the object store. Further, rather than defining these
objects by writing a class definition, we use information in the Model Definition Files to give a description of just
the portion of each object relevant to the corresponding model. These partial descriptions are then integrated by the
system during the code generation phase to produce the eventual object definition.

2.3.1 Object Overhead Issues

Modeling a relatively small metopolitan region, such as Eugene-Springfield, requires some 350,000 objects to be
represented in the object store. If these were represented as ordinary Java objects in our current Java implementation
(Sun Java 2.0), there would be an additional overhead of approximately 20 bytes per object, for a total of seven
megabytes. A larger region such as Salt Lake City requires some 1.5 million objects. Given the typical access patterns
for the fields of objects (Section 2.3.3), performance is much improved if all the objects can be held in main memory,
and so reducing space overhead is important.
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class Zone
shared read int ZoneID
read float[] LandPricePerAcre
read float[] TotalAcresByALU
read float[] UsedAcresByALU
read float[] TotalValueByALU
read int[] TotalSqftByALU
read int[] UsedSqftByALU

Figure 2: Definition of a Zone Object from the Developer Model.

class Zone
read int ZoneID

Figure 3: Definition of a Zone Object from the default object definitions.

Therefore, we represent objects efficiently within the object store, using parallel arrays holding the fields of each
object type. For example, each Household object includes a integer field to hold its location, and a byte field to hold its
income category. Rather than storing 300,000 explicit Household objects in the object store (with the attendant object
overhead), we hold the information in a series of arrays, including an integer array Location with 300,000 elements, a
300,000 element byte array for income categories, and so forth.

Since these fields almost always hold primitive Java types such as floats or ints (rather than reference types), storing
the fields directly in large arrays eliminates most of the space overhead. It also eliminates wasted space in each object
due to word alignment padding, as would arise for byte fields.The encapsulation provided by the object store means
that this non-standard representation is not visible outside it.

Other data structures have been implemented in a lightweight fashion, such as dynamic arrays, hash sets, and hash
tables, to allow for storage of primitive types (ints, floats, etc.) in a fashion that eliminates the Java object-level
overhead present from using Java’s built-in data structures such as the ArrayList and HashMap.

2.3.2 Construction of Object Class Definitions

Objects in the object store consist of the union of all fields defined by models for each object type and by the set
of default object definitions (which are shared by most models). Queries can return copies of any of the fields of
objects, and updates can modify fields or create or remove instances of objects. The object store’s functionality has
been tailored to the needs of UrbanSim-style models, including the ability to perform queries on spatially-correlated
data (a task poorly performed by traditional databases).

The complete definition of each object type, and the Java codeused to access and query it, is generated automatically
from these partial object descriptions. For example, the Zone object type represents a traffic analysis zone. Partial
definitions of Zone are given by both the default object definitions (Figure 3) and the Developer Model (Figure 2).
These definitions are combined and used to generate the final version of the Zone object as defined in the DBArray.java
file that contains the parallel-array storage of all object types (Figure 4), and query/update access methods are auto-
matically generated as well (Figure 5). Other routines are automatically generated that enable objects to be saved or
loaded from disk.

2.3.3 Swapping

The contents of the Object Store may be too large for the available main memory. To handle this, we provide a simple
swapping mechanism that allows an array holding the contents of a field for an object type, e.g. the Location field
from the Household type (Section 2.3.1), to be written out todisk if need be. This mechanism reflects the typical
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public class DBArray {
...
// Fields for ZONE
public static SimpleDynamicArrayI ZONE_ZoneID = null;
public static SimpleDynamicArrayF ZONE_LandPricePerAcre = null;
public static SimpleDynamicArrayF ZONE_UsedAcresByALU = null;
public static SimpleDynamicArrayF ZONE_TotalAcresByALU = null;
public static SimpleDynamicArrayF ZONE_TotalValueBYALU = null;
public static SimpleDynamicArrayI ZONE_TotalSqftByALU = null;
public static SimpleDynamicArrayI ZONE_UsedSqftByALU = null;
...

Figure 4: Combined definition of Zone object (excerpt). Notethe use of lightweight dynamic data structures, such as
the SimpleDynamicArrayI array used to store integers whileavoiding the Java object-level memory overhead from the
ArrayList or Vector built-in data structures.

// Get the value of the corresponding field of an object, as an int
public static final int getFieldI(int objType, int objIdx, int fieldID) {
...
switch ( objType ) {

case DBObjTypes.ZONE:
...
switch ( fieldID ) {
case DBObjTypes.ZONE_ZONEID:

return DBArray.ZONE_ZoneID.getI(objIdx);
default:

throw new RuntimeException("Get fieldID " + fieldID
+ " not found for object type " + "ZONE, field type int");

}
...

}
}

Figure 5: Automatically generated Zone Object accessor methods (excerpt)
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access patterns of models, which generally access every object of a given type, but only a small number of fields of
each such object. (The more typical unit of swapping is the object—but given this access pattern, swapping on a
per-object basis would be less desirable, since we would swap in entire objects, even most of the fields would not be
immediately needed.) However, it is still preferable if possible to keep all data in main meory, since all of it is touched
during each simulated year. Thus far, we have not used a commercial database as a back end, due to a desire to not
tie the GPL-licensed UrbanSim code to a proprietary system.However, we plan to offer this as an option (but not a
requirement) in a future version.

2.4 Translation and Aggregation Layer

The Translation and Aggregation Layer (T/AL) is responsible for converting between different levels of spatial and/or
temporal aggregation from queries or updates and the objects in the object store. At present, the T/AL is implemented
using a set of methods in the Model Coordinator, rather than as a separate component, and serves only to cache query
results for data aggregated at the zonal level. The two key methods that implement the T/AL, both in ModelCoordina-
tor, arepostQuery andpostUpdate, to post a query or an update to the object store respectively.

However, as the system evolves and we integrate models from increasingly diverse domains, we expect the T/AL to
become increasingly important as we need to share data at widely different levels of spatial or temporal aggregation.
(For example, a contaminant runoff model may operate on a scale of square meters, while a land cover model may
operate on the land parcel level, and a traffic model may operate on a travel zone level.) At that time it will be
implemented as a separate component in its own right.

3 Experience and Lessons Learned

The previous version of the UrbanSim [52] was a collection oftightly-integrated component models, including a
developer, economic and demographic transition components, a land use component, and an external transportation
model. The functionality of each model was intermingled with the functionality of the others, creating a large, complex
system that did not lend itself to specialization, refinement, or enhancement. In creating a new framework for the
UrbanSim model we sought to meet the following requirements:

� agent-level microsimulation of choice behavior

� a grid-based structure to represent spatial information, to facilitate detailed spatial queries and simulation

� easy replacement of one model by a new version, to support system evolution

� easy integration of new models

� support for different temporal and spatial scales

� support for visualization of the model output and its processes, for explanations and debugging

The new architecture has met these requirements. It has alsoproven relatively robust and stable, and has supported
extensive model evolution (over 10 versions of the Developer Model, for example), the introduction of several ad-
ditional model components (splitting the location choice process from a unified market clearing process to separate
residential and employment location choice models), the conversion from a business-centric to an employee-centric
view of employment, and integration with an external, concurrently-running visualization environment [40].

Perhaps the most important software lesson learned from this work has been the value of moving as much of the
complex functionality out of the individual models and intothe supporting infrastructure as possible; most of the
specific lessons discussed below are ways of achieving this goal.
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3.1 Implicit Invocation

In the current UrbanSim architecture, models do not communicate directly with each other, but rather by registering
interest in objects and fields held in the Object Store, and being notified when such an object or field has been changed
by another model. The architecture thus uses a form of implicit invocation [23, 47, 48], in which components in-
teract by generating and responding to events, rather than by explicitly invoking each other’s methods. As in other
systems, implicit invocation has proven to be a powerful technique for addressing component interaction complexity
in UrbanSim. Two advantages of using implicit invocation have been:

� the ability to decouple models, since each model registers interest in objects and fields, makes changes to the
object store, and responds to changes independently of the other models. This has made it significantly easier to
experiment with new models and to evolve existing ones.

� ensuring a consistent interface for model interactions, since all interactions occur via the Object Store.

While our implicit invocation mechanism has worked well forthe current style of models, we expect that it would
break down if we moved to a much finer-grained simulation, forexample, one in which households potentially moved,
developers began construction of new buildings, and so forth, at any time, rather than on a yearly basis. The anticipated
problems arise from the current mechanism being relativelycoarse-grained: in the current architecture, a model cannot
specify that it wishes to monitor a field in a particular object, only that it wishes to monitor a field in all objects of a
given type. Any additional filtering or selection must occurwithin the callback code that is executed within the model
as a result of the notification. This has been quite acceptable in the current system, but could introduce excessive
numbers of unnecessary notifications in a more fine-grained approach, leading to unacceptably slow execution speeds.

A related difficulty is that the complexity of the callback code increases as more models use it to monitor and update
related fields. For example, adding a new model that affects the existing functionality embedded in notification meth-
ods requires that the callback code in the new model take intoaccount all of the existing functionality and not override
or invalidate any of its actions.

3.2 Explicit versus Implicit Execution Ordering

We originally intended to handle most of the specification ofmodel execution ordering using implicit data-level depen-
dencies (Section 2.2.1). However, experience showed that the simple data-level ordering dependency rules (all reads
to a field before any writes to it) failed to capture many important semantic constraints on model execution ordering.
Thus in practice, the bulk of ordering dependencies are specified explicitly by model creators.

We also allow user-supplied model-level ordering dependencies to override data-level ones. An example where this is
used is with the Export Model, which only reads from the Object Store and never writes to it. The implicit data-level
dependencies would require that the exporter run before other models. However, we use an explicit ordering constraint
to require that it be runafter all the other models, so that it exports the information after the simulation has completed
for the current simulated instant of time. However, if thereare ordering dependency conflicts at the same level (i.e.,
at the model-level, or at the data-level in the absence of anyoverriding model-level dependencies), an error will be
signaled.

The current design has worked well in practice, but is not entirely satisfying, and may begin to cause problems if the
number of models increases dramatically. At that point we expect we will need to re-examine the issue, and perhaps
find more sophisticated ways to determine implicit orderingconstraints that reduce the need for explicit orderings.

3.3 Object Storage and Representation

Java’s overhead for object representation (specifically, the class tag and the overhead of word alignment padding) has
made the overhead of using real objects in the Object Store prohibitive. Instead, we have ended up using a nonstandard
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object representation, namely parallel arrays holding thefields of each object type. However, this is not visible outside
of the object store’s encapsulation boundary.

This problem and solution is not new to UrbanSim: it is akin tothe use of marshalling in Smalltalk, CORBA, Java, etc.
It is also more loosely related to the concept of flyweight objects [10, 21], although unlike flyweight objects, objects
in the UrbanSim Object Store do not have extrinsic state thatdepends on their context.

This approach has had enormous benefits in the context of UrbanSim. Memory requirements have decreased by a
factor of seven or more (as compared to the original object-based implementation), making the simulation of large
areas (e.g., Salt Lake City, Utah) feasible on modest desktop systems. It has also facilitated the addition of disk-based
swapping to the object store to further decrease memory overhead.

3.4 Automatic Generation of Code from Declarative Specifications

We have made considerable use in UrbanSim of the technique ofgenerating Java code automatically from declarative
specifications. One example is the generation of object class definitions for objects in the Object Store, along with
query and update methods (Section 2.3.2).

The automatic generation of Java code that defines objects and their interface with the object store removes much
programming burden from experimenters who introduce a new model or replace an existing one, as they do not
have to write code that defines or manipulates object types. (This is particularly true since we use a non-standard
representation of objects within the Object Store.) It alsoensures that a consistent interface exists between the object
store and every object that is contained within it.

We have also used automatic generation of Java code to define specialized, lightweight data structures optimized to
store primitive Java types (ints, floats, etc.) with a minimum of memory overhead. These include lightweight dynamic
arrays (SimpleDynamicArray), lightweight hash tables andsets (HashTableIntInt, HashSetInt, HashSetFloat, etc.),
and some additional wrapper objects.

The issue addressed by these lightweight data structures isthat in the standard Java library there is just one class
definition for e.g. HashSet, whose element type is Object. Therefore, to store ints in a standard hash set, each int must
be wrapped using the Integer class, leading to a considerable overhead in both space and time. Our automatically-
generated HashSetInt class eliminates this overhead. If sufficiently powerful generic types were incorporated in future
versions of Java, the need for these specialized lightweight data structures would be eliminated (or more precisely, they
would be generated by the Java system rather than by us). Notethat to be useful for our purposes, such a design must
provide heterogeneous, not homogeneous, translation of generic types—homogeneous translation does not handle the
space overhead problem. (Both varieties of translation areavailable in the Pizza extension to Java [35]; GJ [9] and
NextGen [11] provide only homogeneous translation.)

3.5 Other Software Engineering Issues

Java has provided a solid environment for implementing a system of this kind, particular strengths being automatic
storage management, static typing, a rich class library, and portability. While its execution speed is not comparable
to C++, current compiler technology (e.g., Just-In-Time compilation) has provided reasonable performance. Perhaps
the biggest problem for us has been the overhead of object representation, which has required unorthodox object
representations within the Object Store (Section 2.3). We have also usedCVS, the Concurrent Versions System [13],
to coordinate and integrate the work of multiple programmers.

4 Related Work

As described in Section 3.1, the UrbanSim architecture usesa form of implicit invocation, in which models communi-
cate with each other indirectly, by registering interest inobjects and fields held in the Object Store, and being notified
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when such an object or field has been changed by another model.Additional advantages and other applications of
implicit invocation are described in references [23, 47, 48]. Implicit invocation is essentially an event mechanism;
related concepts include active variables in LOOPS [46], active databases such as AP5 [15], and the Smalltalk-80
Model-View-Controller [27] and Field integration mechanisms [43]. A discipline of defining and using event-based
programming mechanisms is evolving [3, 12, 22].

There is a huge body of work on urban transportation modeling, land use modeling, and integrated land
use/transportation modeling. Reviews and assessments of existing systems are given in references [34, 39, 45], among
others. Reference [8] is a short, useful introduction to thearea for the nonspecialist. While early attempts at compre-
hensive urban simulations in the 1960s and early 1970s were largely unsuccessful [29, 30], much has changed since
then, both on the supply side (including dramatically improved hardware, theoretical advances in urban economics
and other disciplines, and the emergence of a commercial GISmarket serving urban and regional planners), and on
the demand side (including public concern over sprawl, regulatory requirements, and legal challenges to transportation
plans made without considering their land use implications[24]). As a result, considerable progress has recently been
made in land use modeling in both experimental and deployed systems. However, except for UrbanSim, all the oper-
ational models in use by planning agencies rely on a cross-sectional, aggregate, equilibrium approach. Such models
include DRAM/EMPAL [42], TRANUS [16], MEPLAN [18], METROSIM [2], and 5-LUT [32]. The cross-sectional,
equilibrium framework implies that there are no relevant temporal dynamics to the processes of urban change; rather,
one can model urban development as a static process that represents an economic or a transportation optimization
problem. In other words, these models could be run for the year 2050 without needing to model the dynamics of
evolution between the current time and the year 2050. Clearly, this is a severe simplification, and makes problematic
the potential integration of these models with models of dynamic environmental processes, or even of the dynamic
evolution of human behavior with respect to the built environment.

Another substantial body of related work concerns Integrated Assessment Models (IAMs), which model the interac-
tions between human and ecological systems in an integratedway. A major motivation for models of this kind is the
assessment of global environmental change [1, 17, 38, 44, 55]. While the first generation of operational IAMs has
emerged in the mid-eighties, their roots can be traced back to earlier modeling work in the late sixties and early seven-
ties [26, 36, 20, 33]. Not surprisingly, all of these global-scale models are quite aggregate, predicting environmental
disturbances from broad measures of economic growth and urbanization.

In addition to global models, spatially-explicit regionalintegrated models are now emerging, such as the Patuxent
Landscape Model [51]. The Patuxent Landscape Model contains an economic land use conversion model that uses a
statistical process to determine probabilities that grid cells will be allocated to forest, agricultural, or urban usage. The
resulting conversion probabilities are used to predict land use patterns which determine the land cover values used as
an input to the PLM’s hydrology component. Communication between the land conversion and hydrology models is
implicit through changed data values in grid cells. Severalof the factors used in its land use conversion component are
similar to ones used in UrbanSim (e.g., access to infrastructure, historical tax assessor data), but UrbanSim explicitly
models agents and their actions rather than using statistical or finite-element processes.

Finally, another area of related work concerns agent-basedmodeling, artificial life, and cellular automata. In agent-
based modeling in its pure form, individual agents and theiractions are simulated, with each agent having local
knowledge; global behavior then emerges from these agent-level interactions. Agent-based modeling has been used
for a wide range of applications, including economic, sociological, biological, and physical simulations. Two that
are most closely related to UrbanSim are Sugarscape [19, 25], a simulation of a small, artificial society, and Aspen, a
microanalytic simulation of the entire U.S. economy [41, 28]. A number of packages to support agent-based simulation
have been developed, such as Swarm [31, 49] and StarLogoT.

A number of the UrbanSim models, such as the mobility, location choice, and development models, are agent-
based. However, we have not adopted this approach throughout the system, and have used more global models when
appropriate—our principal interest is in the realistic simulation of urban development to inform public policy, by
whatever techniques give the best results, rather than in the investigation of whether a particular modeling technique
can encompass all aspects of the simulation. For example, the demographic transition model uses a single module to
compute the births and deaths in the simulated population ofhouseholds using externally imposed population control
totals, along with demographic data regarding distribution by income groups, age, and so forth. In a pure agent-based
approach, individual agents would decide whether to form households, have children, move out of the region, and so
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forth. While such an approach can yield patterns of global behavior that exhibit many of the characteristics of the real
world, in our application we have the much more stringent requirement of matching the population characteristics of
a region, including reproducing historical data, and the pure agent-based approach has not appeared practical in such
cases.

Cellular automata have been used for simulating urban development [4, 5, 14], as well as for other applications such
as simulating change in land cover, freeway traffic, or the spread of wildfires. In its classic form, a cellular automaton
consists of a regular array of cells, each of which has a finitenumber of states. Each state change must be local,
depending only on the states of neighboring cells. Urban processes, such as sprawl or urban decay, can emerge from
simple local rules. However, these restrictions do not always mesh well with our goal of supporting deliberation about
public policy. For example, rather than viewing the conversion of rural areas to urban ones as an analog of a biological
process in which the suburb grows and occupies increasinglywider areas, in UrbanSim we view this process as the
result of interactions among the Land Developer Model (which simulates developers actively seeking out development
opportunities throughout the region in response to market conditions, zoning regulations, taxes and incentives, and
the like), the location choice models (which simulate residents or businesses seeking housing and commercial space),
the Land Price Model, and so forth. More recently, researchers have experimented with extensions of the cellular
automata formalism that incorporate extensions such as more agent-like behavior or non-local search [6, 37].

5 Conclusion

UrbanSim is both a vehicle for research on modeling urban systems and a practical system that has been used in
planning work in several U.S. cities. The software uses a modular architecture that allows models to be written
as independently as possible, and that provides for a clean separation between the models and the data on which
they operate. This has supported extensive experimentation with alternate modeling techniques, and also supported
implementing a system that is much more disaggregate and responsive to policy considerations than others of its
kind. The primary software lesson learned from this work hasbeen the value of moving as much of the complex
functionality out of the individual models and into the supporting infrastructure as possible; specific techniques for
achieving this include implicit invocation, efficient object representation in an encapsulated object store, and extensive
use of automatic generation of code from declarative specifications.
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