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Abstract

UrbanSim simulates the development of urban areas, ingyudind use, transportation, and environmental impacts,
over periods of twenty or more years. Its purpose is to aidmifglanners, residents, and elected officials in evaluating
the long-term results of alternate plans, particularlytey trelate to such things as housing, business and economic
development, sprawl, open space, traffic congestion, asmlree consumption. From a software perspective, it is
a large, complex, system, with heavy demands for excellgades efficiency and support for software evolution. It
consists of a collection of models that represent diffenelbéin actors and processes, an object store that holdsithe st
of the simulated urban environment, a model coordinatdrgbhedules models to run and notifies them when data
of interest has changed, and a translation and aggregatienthat performs a range of data conversions to mediate
between the object store and the models. The paper conchittea discussion of the lessons learned regarding
implicit invocation, object storage, and automatic codeegation that yield acceptable space and time efficiency, as
well as support for software evolution, within this arcbitgral framework.

1 Introduction

UrbanSim is a system for simulating the development of udreas, including land use, transportation, and environ-
mental impacts, over periods of twenty or more years [50, $3pm a software perspective, it is a large, complex
application, with heavy demands for excellent space eff@ieand support for software evolution. In this paper we
first describe the application area and provide an overvieWrbanSim. We then discuss the lessons learned for
software architectures for systems of this kind.

Patterns of land use and available transportation systdsysapcritical role in determining the economic vitality,
livability, and sustainability of urban areas. Transptotainteracts strongly with land use. For example, autoileeb
oriented development induces demand for more roads anéhgafkhich in turn induces more automobile-oriented
development), while compact urban environments can inchare walking and demand for transit. Both land use and
transportation have strong environmental effects, inigagr on emissions, resource consumption, and conveo$ion
rural to suburban or urban land.
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Figure 1: UrbanSim architecture

Good technical support can play an important role in fostpmformed civic deliberation and debate on these issues.
To aid urban planners, residents, and elected officials &luating alternate scenarios—packages of policies and
investments—we want to simulate the effects of these siwenan patterns of urban growth and redevelopment, of
transportation usage, and resource consumption, overdseof twenty or more years.

Transportation models have been in routine use by metitapglianning organizations for decades. However, land use
planning is often poorly integrated with transportatioarpiing, despite their strong interactions. Further, thtesif
common practice in land use modeling, and in integrated lesecand transportation modeling, is much less advanced
than that for transportation modeling alone. (See Sectifum 4 discussion of prior and related work.) UrbanSim has
been designed and implemented in response to this lack. yatens is fully operational and freely available under
the GNU public license. It consists of around 130,000 line¥awa code for the core UrbanSim system; including the
visualization, data preparation, and calibration todis, total is approximately 200,000 lines, plus another 100,0
lines of automatically generated code. It has been appi€tligene-Springfield, Oregon; Salt Lake City, Utah; and
Honolulu, Hawaii, working with the planning organizatidnghose metropolitan regions. Application to other region

is underway. We have also done a historical validation osistem, with very good results, starting UrbanSim with
1980 data for Eugene-Springfield, running it through 1994l eomparing the results with what actually transpired
[54].

2 Overview of the UrbanSim Architecture

To simulate an urban region, UrbanSim employs a collectfdnteractingmodels representing different actors and
processes in the urban environment, such as residentagless, land developers, and transportation networkb. Eac
model encodes the behavior of agents in the simulation, swthe objects they operate upon, such as land parcels
and buildings. Objects correlate directly with easilyritiBable objects in the real world, making it easier to reaso
about their properties and behaviors. Entities can be dizam®ss models, as can the objects they operate upon. Much
more than other urban modeling systems, the UrbanSim medelry disaggregate and has high data requirements.
These requirements enable modeling of processes to be tarfima level, which allows leveraging spatial data in a
manner not possible with more aggregate systems. At the samagthis makes the design and implementation of the
system more difficult from a software perspective.

In addition to the models, the other principal componentdrisfanSim are anodel coordinatothat schedules models
to run and notifies them when data of interest has changedppatt storethat holds the shared representations



of agents and other entities in the simulated world, arnhaslation and aggregation layahat performs a range
of data conversions to mediate between the object storetenthodels. The models do not communicate directly
with each other; rather, they communicate via shared ddthilh¢he object store, mediated by the translation and
aggregation layer. This extensible, modular architecsuigports system evolution, in particular replacing a model
with a revised one, and creating and integrating new modebslows models to define and share common sets of
objects that they all operate upon, via the object storeafdigss of the original source of the data), and also allows
them to monitor changes to data fields, providing a convémethod for models to synchronize their actions. Lastly,
it provides the Translation/Aggregation Layer that autboadly performs a range of data conversions that facditat
model integration.

A primary goal of this architecture is to move as much of thi&vere complexity out of the individual models and
into the supporting infrastructure as possible. This sujipinfrastructure need be written just once, and can have
the attention of an expert programmer. The models, on ther dthnd, are both numerous and frequently changing.
Often, specifying them is a complex process, involving adersble domain-specific knowledge and testing; the more
one can relieve the model writers of programming burdenséiter, so that they can concentrate on issues arising
from the domain.

2.1 Models

Models represent different actors or processes in the ugbgimonment. In addition to encapsulating the behavior
of the actor or process, each model is also responsible forig the set of object types it operates on, and the
fields of those objects with which it is concerned. A model spacify that it wishes to share fields also declared by
other models, thus providing one technique for data-legapting and integration of models via the object store. A

model can also declare new object types that encapsulataidespecific data not previously declared (e.g., a water
quality model might declare a nutrient load value). A modealmspecify a set of object types and fields it wishes to
monitor for updates, creations, or deletions. Each modabkis responsible for indicating how frequently it wishes to

be executed; there are no external constraints on how frélgue regularly a model need run.

The design of the models is informed by research in urbana@uas, sociology, civil engineering, and other disci-
plines. A discussion of the theoretical basis for the vagimodels is given in reference [50].

2.1.1 Currently Implemented Models

A list of the models in the current version of UrbanSim is giveelow. Each model runs once per simulation year,
unless otherwise noted. All of these models consist of &ctiin of domain-specific case-based rules or decision
rules that are encoded in Java code. However, given the suledipn provided by the system architecture, models
could be represented in other ways as well.

Demographic Transition Model The Demographic Transition Model is responsible for madgliirths and deaths in
the simulated population of households. Externally imggsapulation control totals—based on predictions by
demographers for the given region—are used to determimalbtarget population values, and can be specified
in more detail by distribution of income groups, age, sire presence or absence of children. This enables the
modeling of a shifting population distribution over timeerative proportional fitting [7] is used to determine
how many households of each type are to be created or deiddy created households are placed in limbo,
to be placed in buildings later by the Household Locationi€a®odel. Households to be deleted to meet the
control totals are selected at random, drawn preferepfiaim households in limbo.

Household Mobility Model The Household Mobility Model simulates the decision preesof households deciding
whether to move. Movement probabilities are based on listiadata. Once a household has decided to vacate,
it is placed in limbo to indicate it has no current locationgdahe space it formerly occupied is made available.
(The displaced household will be subsequently placed byitiesehold Location Choice Model if housing is
available.)



Household Location Choice Model The Household Location Choice Model is responsible formeitging a location
for each household that has no currentlocation (i.e., isribd). For each such household, a sample of locations
with empty housing units is randomly selected from the setligbossible alternatives. Each alternative in the
sample is evaluated for its desirability to the househdithugh a nested logit model encoding decision rules
and metrics. The coefficients for each rule are calibrateabserved and historical data. The household is
placed into its most desired location among those available

Economic Transition Model The Economic Transition Model is responsible for modeliog greation and loss.
Employment control totals are used to determine targeteynpént values, and can be specified by distribution
of business sector. As with the Demographic Transition Matative proportional fitting is used to determine
how many businesses of each type are created or lost. Nevajelqdaced in limbo, to be placed later by the
Employment Location Choice Model. In the case of lossess ple selected at random to be removed, drawn
preferentially from any job without a location (i.e. in limmp

Employment Mobility Model The Employment Mobility Model determines which jobs will seofrom their current
locations during a particular year. (Choices regardingijaation and loss, mobility, and location are of course
made by businesses large and small. However, in the ecortoamisition and employment models, we use
individual jobs as the unit of analysis.) Movement prohi&iba are based on historical data. Once a job has
been determined to vacate a building, the job is placednmbt’ to indicate it has no current location, and the
space it formerly occupied is made available. The displgamediill be subsequently placed by the Employment
Location Choice Model.

Employment Location Choice Model The Employment Location Choice Model is responsible foredaining a
location for each job that has no location (i.e., is in limbedr each such job, a sample of locations with empty
square feet, or space in housing units for home-based jslvandomly selected from the set of all possible
alternatives. Each alternative in the sample is evaluaiedts desirability for the particular job, through a
multinomial logit model encoding decision rules and metrithe job is placed into its most desirable location,
among those available.

Accessibility Model The Accessibility Model encapsulates the interface to agjidy external) travel model. It is
responsible for maintaining accessibility values for abgewithin each traffic analysis zone, including accessi-
bility by residents and employees to shopping and other #imgnto employment, and to the central business
district. (These accessibility values encode how longkiesato get somewhere via driving, transit, walking,
etc.) The link between land use and the travel model is twg-siace different accessibility values from the
travel model will influence the decisions of developers, lygrs, and residents, giving rise to different travel
demands, which then feed back into the travel model. Thematteravel model provides travel times and utili-
ties to the Accessibility Model. This external model is tgdly run only once every 5 simulated years or when
there is a major change to the transportation system, simoerrg it is relatively expensive and since its outputs
generally change more slowly than other values in the sitiama However, the Accessibility Model itself is
run yearly, allowing the activity levels to be updated arlyua

Land Developer Model The Land Developer Model simulates the action of a developgking decisions about
where and what kind of construction to undertake (if anyluding both new development and redevelopment
of existing structures. Each time it is run, the model itesadver all gridcells on which development is allowed.
For each such gridcell, a list of possible transition akiires is created (representing different development
types), including the alternative of not developing. Thelyability for each alternative being choseniis calculated
in a multinomial logit model, and one of the alternativesakested through a Monte Carlo sampling. The logit
model uses numerous indicators to calculate the logit fitibes, including local and regional vacancy rates,
distance to highways, travel time to the central businestsicli, and neighborhood economic and environmental
characteristics. Upon choosing to develop or redeveloptacpiar gridcell, the model constructs a Development
Event and asks the Model Coordinator to add it to the eventgue

Land Price Model The Land Price Model simulates the evolution of land pridesagh grid cell as the characteristics
of locations change over time. It is based on urban econdmeiory, which states that the value of location
is absorbed into the price of land. The model is calibratedn®asuring the effect of site, neighborhood,
accessibility, and policy effects on land prices from hist@l data. It also measures the effects of short-term



fluctuations in local and regional vacancy rates on landegricand prices influence the density and profitability
of development of alternative forms of real estate, and s to potential consumers, so this component plays
an important role in the interaction of the system.

Data Export Model The Data Export Model is responsible for gathering, agdiegaand exporting data from the
object store to a set of external files for subsequent asafysil graphical display. It has been defined as a
subclass of Model and included in the runtime to simplify slggtem architecture, in particular so that it can
be scheduled to run at any time to query the Object Store t® #aknapshot of the state of the simulation
environment. However, unlike the other models, it does eptesent an agent in the simulated world, and does
not perform any writes to the object store, only reads.

2.1.2 Temporal Scale Issues and Simplifications

UrbanSim provides a much more disaggregate and detailadation than other urban land use models. Even so, to
keep the computation manageable, the model makes manyifsimplssumptions. For example, the Demographic
Transition Model, like most of the models, runs once per &ited year. Each simulated year, it adjusts the total
population values and distributions, but in reality peagie born and die, and move into and out of the region, every
day. Similarly, the Land Price Model simulates the operatibthe real estate market at a temporally aggregate level,
adjusting prices once per year rather than continuoushe (8ference [50] for additional discussion of the theoadti
basis for these design decisions and their consequences.)

Another kind of simplification is in regard to the modelingaghavior. For example, the current Household Mobility
and Household Location Choice model the possibility of letiedds becoming homeless in only a very simplified
way, in that if the available housing stock runs out befordaliseholds are placed, those remaining households will
be homeless.

Modeling these two processes in a more realistic way wouwe lggiite different implications for the software archi-
tecture. For example, implementing an auction-style, inous-time simulation of the real estate market would put
dramatic stresses on the architecture, requiring much oheteeand processing. On the other hand, modeling home-
lessness in a more realistic way introduces some difficsltds from a modeling perspective, since there are other
causes of homelessness besides being priced out of thengouarket, but accommodating this within the overall
system architecture should present no particular difiesilt

2.1.3 Defining a Model

The description of a model consists of a Model Definition Fied separately, a Java class definition for the model.
The Model Definition File includes the model’'s name, and #te$ objects and object fields it reads and writes, along
with flags indicating if the fields are to be shared with othedeils (i.e., sharing a field with an already-created model).
Shared variables are specified explicitly in the model didimrather than implicitly through duplicated names inard

to ensure that any duplicate use of an object field is delibeflehis avoids a potential problem where commonly-used
names may be used in independent models but with differemaisécs, and sharing the variables in that case would
cause erroneous results. (For example, one model mightteefpopulation” as a count of persons, and another as a
count of households, in which case trying to share the fieldlvproduce inconsistencies.) Information from all the
relevant model definitions is combined to produce the déimitof the objects in the Object Store (Section 2.3.2).

The remainder of the model’s functionality is specified byagalclass, which must be a subclass of the abstract class

Model. The following are the key methods defined by Model, @héth are overridden in concrete subclasses.

init Perform any model-specific initialization, including rfging the Model Coordinator which objects and fields it
wishes to monitor for changes.

run Perform the work of running the model at the current simulait®e.

nextScheduledRunTime Return a float indicating the next simulated time that the ehadshes to be run.



onCreate Perform any needed bookkeeping if an object of interest kas breated. This method is invoked if one
of the objects in which this model has registered interestte®n added to the Object Store.

onChange An object type or field that this model monitors has been chdnrgreact accordingly.

onRemove Perform any needed bookkeeping if an object of interest baa bemoved from the Object Store.

If the degree of interaction between a new model and existindels can be expressed at the data level and there is
a well-defined order between them (e.g. one model’s outpetalaays used as inputs by another model), then no
additional information is required. For example, the otifgithe Demographic Transition Model (i.e. newly-created
households that reside in limbo) is an input to the Househotmhtion Choice Model, and this interaction is wholly
defined at the data level (i.e. the existence of new housslioliimbo). If models need to be more tightly coupled,
or operate on differing temporal scales, the data notificaiiterface can be used. For example, a continuous-time
model can be set to monitor changes to data fields it uses asjrgmd compute an updated set of outputs only when
its inputs have changed. The Translation/Aggregation Lage help with models that operate on different spatial
scales, for example by aggregating from the parcel or giideeel to the zonal level. The key methods used in
providing this functionality are thenCreate, onChange, andonRemove methods of Model (as defined above),
and thepostQuery andpostUpdate methods of the Model Coordinator (Section 2.4, which pagsiination through

the Translation/Aggregation Layer and on to the Objectestor

In addition to providing a mechanism for coupling severaldels using implicit invocation, another application of
the model notification mechanism is to support the cachingegfuently-accessed data within a model, rather than
repeatedly accessing it from the Object Store. This can hgfulef a model needs to perform costly processing
on a large amount of data, as it can compute the results oriteeaompute only what is needed as parts of the
underlying data are changed. Data modification messages asrnotification that the model’s cache is no longer
valid, and supply the specific data element(s) which havagdé For example, the Land Price Model maintains
regional and zonal-level vacancy rates. These more agigregeancy rates change slowly over time, so the Land
Price Model computes them once, and modifies them as needwdissholds and employees move about the region,
rather than recomputing the aggregate vacancy rates éwerytte model runs. As the vast majority of employees and
households remain where they are at each simulation sie@phroach substantially reduces the overall number and
size of queries to the Object Store.

2.2 Model Coordinator

The model coordinator is responsible for managing the ctidla of models present in a simulation. It is responsible
for determining the execution order of models, resolving data dependencies one model may have on another, and
notifying a model when another model has changed data it istoring.

Some key methods defined by the Model Coordinator class are:

runSimulation run the simulation once the event queue has been populated
executeEvent execute a single event (provided as an argument to this mhetho

getOrdering determine a total ordering among a collection of eventsvigesl as an argument to this method)

2.2.1 The Event Queue

The Model Coordinator maintains an event queue contaifingstamped events. These events include requests by a
model to execute at a future time, development events stdthuoccur at a future time, database updates that were
created by exogenous events that did not occur instantalye@md policy events that indicate planned changes in
regional or local policy. Running the simulation consistgathering the set of events that are to occur at the current
timestep, determining a total order for those events thedgywes any data or ordering dependencies they may have,
and then executing them in that order.



The event queue is thus the traditional data structure useliscrete event simulations, except for the additional
consideration of breaking ties among events scheduledtr @t the same time. Any number of models or simulation
events may be scheduled to execute at the same instantdimestep. However, the model coordinator nmaythen
execute these events in an arbitrary order—there may bendepeies among them. For example, if the Household
Mobility Model and the Household Location Choice Model am#tbscheduled to execute at timethe Household
Mobility Model must be run first, determining a set of houdelahat decide to move, and then the Household
Location Choice Model must be run to find available housinigsuior them. In other words, the choice to move from
a current dwelling and the choice to look for a new dwelling aot independent; this dependency is reflected by the
constraints on the order in which the models are run.

Since models are not restricted to running at regular iaterin general it is not possible to determine executioesd
until run-time. This introduces an enormous amount of caxip} not found in most other urban modeling systems,
which typically have a fixed ordering of execution. When mthr& one event is to occur at a given timestep, it is
necessary to determine a total order of the events thatiessany order dependencies that may exist between them.
Dependencies are of two types, data-level dependencidsmandel-level dependencies between model execution
events.

A data dependency exists between two models when one modeswo a field that another model reads from. In
such cases, it is essential that the reading model readstiextversion of the data, and the writing model overwrites
data only when it is safe to do so from another model’s petsmecin the absence of other ordering dependencies,
we assume that all reads to a field occur before any writes émd that writes can occur in any order. This reflects
the typical access pattern of models, which generally re@d fnany objects and write to a small number of fields of
a small number of objects. (The fields written to generallyehavery small overlap with reads from other models.)

A model-level dependency is an ordering dependency eXplinoiroduced by a model’s author, in the form of a set of
partial orderings between two or more models. This provadeschanism to order models based on their semantics
rather than their syntax (data reads/writes). For exantipdel, and Developer Model and the Land Price Model could
be executed in either order, based on their inputs and @jtput we schedule the latter to execute after the former so
that adjustments in land price due to this year's demogcaguinil economic changes do not affect development. This
is based on the simplification of market dynamics that we aidbpt development decisions are made once per year,
looking at the state of the region in the prior year to decith@tshould be build in the current year.

To determine a valid total order for a collection of eventsjracted acyclic graph is constructed. Events are repre-
sented as nodes in the graph, and directed edges are creaieh events that access the same data fields of objects
or that have model-level dependencies, with the directioth® edge indicating that the source node (event) must
occur before the destination. When determining the passibpendencies between two model execution events, we
must compute the transitive closure of all models and allii¢ghat may potentially be read from or written to on
the basis of the notification mechanisms. For example, madehy write to a field which is monitored by model

B, which may in turn write to another field that triggers mo@& notification mechanisms, and so forth. To ensure
correctness, this full chain of potential reads and writestbe considered. Model-level dependencies override data
level dependencies in the case of conflicts. A topologicdlisaised to generate a valid total ordering of the events to
be executed.

2.2.2 Development, Employment, and Policy Events

UrbanSim supports development events that create, madifielete buildings, create, move, or delete businesses or
households, or change the urban growth boundary or re-zotk IMany of these events are generated by models.
(For example, the developer model generates building dpwetnt events.) However, events can also be read from an
external file, allowing the modeler to introduce developtm@ojects and policy changes into the event pipeline that
are exogenous to the models. For example, a scenario authowish to simulate the effects of a major business
leaving the region, a shopping center being constructed, raodification to the urban growth boundary that occur
at a particular point in time. This can be used for calibraturposes as well, by introducing major events from
historical data. This capability was useful, for instaniceperforming our historical validation of the system for
Eugene-Springfield, Oregon (starting the model with 198@ d&ad comparing the simulated results for 1994 with
what actually transpired). We used Development Events tdakthe phased closure of a large Weyerhauser lumber



mill in the 1980’s, and the opening of the Gateway regionapgling mall in 1990.

As a somewhat philosophical aside, the reader may wonderthdse sorts of large events are exogenous and not
produced by models themselves. The reason is that UrbarsSimended to model the dynamics of a single urban
region—but events in that region are influenced by the lasgeld. For example, the closing of a lumber mill might be
due to declining timber stocks, changing world markets tbeoexternal factors. Other examples of exogenous inputs
are population control totals, based on predictions by dgagphers for the region, and overall economic predictions.
This gives rise to another question. If we need to introduBesiness Event (such as a plant closure) for the system
to give an accurate simulation of the historical developio¢i region, how can we have confidence in the system’s
predictions about a region in the year 2020? Might there eotdme major event in 2015—for example, a global
economic downturn—that will drastically influence the g? The answer is, of course, that UrbanSim provides no
crystal ball regarding the global economy. Planners mustexpert judgment in using the model, generally testing
it under alternate scenarios and showing the results faxfahem. For example, when evaluating the effects of a
major transportation infrastructure project, it would iagent to perform this evaluation based on several altinat
scenarios for general economic conditions.

A related issue concerns policy events, such as moving amugtowth boundary or re-zoning land. These are also
input as external events, and are not the output of a modetomitrast to development events representing global
influences, these might be purely local policy changes. @asan for representing policy events as exogenous inputs
is philosophical rather than pragmatic: UrbanSim is intexhds a tool to aid civic deliberation and debate, not as a
tool to model the behavior of voters or governments. We wiaothe used to say “if you adopt the following policy,
here are the consequences”, but not to say “UrbanSim psdatiiatin 5 years the city will adopt the following policy.”

2.3 Object Store

The representations of agents in the world (such as houtehold businesses), and the objects they operate upon
(such as buildings and land parcels), are held in the objent.sThe object store serves as an in-memory database
that can be queried or updated, and that supports filterirentty attributes.

The basic interface to the object store is througlpitstQuery and postUpdate methods. A model constructs a
Query object by filling in the object type and set of fields to query fe.g., the age and size category fields for
households), and adds aRilter objects to theQuery as desired (e.g., aBqualityFilter to return only households
with a certain number of workers). Tip@stQuery invocation returns ueryResult object, which contains a copy
of all relevant data from the object store, including intdrobject IDs for all values returned. Results are returned i
parallel arrays (one array per field) to avoid Java objeattimemory overhead. Updates work in a symmetric fashion,
with a model constructing@dpdate object whose form is similar tQueryResult with the addition of the update type
(create, modify, remove).

From a software engineering point of view, the object stdgse aerves to encapsulate representation decisions about
the entities in the simulation. From outside the objectesttiiese act as traditional instances in an object-oriented
language. However, they are represented more efficientlyimihe object store. Further, rather than defining these
objects by writing a class definition, we use informationtie Model Definition Files to give a description of just
the portion of each object relevant to the correspondingehothese partial descriptions are then integrated by the
system during the code generation phase to produce theuav@hject definition.

2.3.1 Object Overhead Issues

Modeling a relatively small metopolitan region, such as &weSpringfield, requires some 350,000 objects to be
represented in the object store. If these were represestediaary Java objects in our current Java implementation
(Sun Java 2.0), there would be an additional overhead ofoappately 20 bytes per object, for a total of seven
megabytes. A larger region such as Salt Lake City requinegesh5 million objects. Given the typical access patterns
for the fields of objects (Section 2.3.3), performance ismawproved if all the objects can be held in main memory,
and so reducing space overhead is important.



cl ass Zone

shared read int Zonel D

read fl oat[] LandPricePerAcre
read fl oat[] Total AcresByALU
read float[] UsedAcresByALU
read float[] Total Val ueByALU
read int[] Total SgftByALU
read int[] UsedSqftByALU

Figure 2: Definition of a Zone Object from the Developer Model

cl ass Zone
read i nt Zonel D

Figure 3: Definition of a Zone Object from the default objeetiditions.

Therefore, we represent objects efficiently within the obgore, using parallel arrays holding the fields of each
object type. For example, each Household object includetegér field to hold its location, and a byte field to hold its
income category. Rather than storing 300,000 explicit l¢bofd objects in the object store (with the attendant object
overhead), we hold the information in a series of arraydutling an integer array Location with 300,000 elements, a
300,000 element byte array for income categories, and $o. for

Since these fields almost always hold primitive Java typeb ag floats or ints (rather than reference types), storing
the fields directly in large arrays eliminates most of thecgpaverhead. It also eliminates wasted space in each object
due to word alignment padding, as would arise for byte fieldge encapsulation provided by the object store means
that this non-standard representation is not visible datii

Other data structures have been implemented in a lightwéghion, such as dynamic arrays, hash sets, and hash
tables, to allow for storage of primitive types (ints, flgag$c.) in a fashion that eliminates the Java object-level
overhead present from using Java’s built-in data strustsueh as the ArrayList and HashMap.

2.3.2 Construction of Object Class Definitions

Objects in the object store consist of the union of all field§ired by models for each object type and by the set
of default object definitions (which are shared by most mgdeQueries can return copies of any of the fields of
objects, and updates can modify fields or create or removarioss of objects. The object store’s functionality has
been tailored to the needs of UrbanSim-style models, ifetuthe ability to perform queries on spatially-correlated

data (a task poorly performed by traditional databases).

The complete definition of each object type, and the Java usdeé to access and query it, is generated automatically
from these partial object descriptions. For example, theeZabject type represents a traffic analysis zone. Partial
definitions of Zone are given by both the default object d&ins (Figure 3) and the Developer Model (Figure 2).
These definitions are combined and used to generate the éirsabi of the Zone object as defined in the DBArray.java
file that contains the parallel-array storage of all objgpes (Figure 4), and query/update access methods are auto-
matically generated as well (Figure 5). Other routines ateraatically generated that enable objects to be saved or
loaded from disk.

2.3.3 Swapping

The contents of the Object Store may be too large for theaailmain memory. To handle this, we provide a simple
swapping mechanism that allows an array holding the costena field for an object type, e.g. the Location field
from the Household type (Section 2.3.1), to be written oudik if need be. This mechanism reflects the typical



public class DBArray {

))'Fi el ds for ZONE

public static SinpleDynam cArrayl ZONE Zonel D = nul | ;
public static SinpleDynanm cArrayF ZONE_LandPri cePer Acre = nul | ;
public static SinpleDynam cArrayF ZONE UsedAcresByALU = nul | ;
public static SinpleDynam cArrayF ZONE Tot al AcresByALU = nul | ;
public static SinpleDynam cArrayF ZONE Tot al Val ueBYALU = nul | ;
public static SinpleDynam cArrayl ZONE Total Sqft ByALU = nul | ;

c static SinpleDynam cArrayl ZONE_UsedSqftByALU = nul | ;

publ i

Figure 4: Combined definition of Zone object (excerpt). Nibie use of lightweight dynamic data structures, such as
the SimpleDynamicArrayl array used to store integers wénigiding the Java object-level memory overhead from the
ArrayList or Vector built-in data structures.

/1 Get the value of the corresponding field of an object, as an int
public static final int getFieldl(int objType, int objldx, int fieldl D {

switch ( obj Type ) {
case DBObj Types. ZONE:

switch ( fieldlID) {
case DBObj Types. ZONE_ZONEI D
return DBArray. ZONE Zonel D. get| (obj 1 dx);
defaul t:
t hrow new Runti neException("Get fieldiID" + fieldlD
+ " not found for object type " + "ZONE, field type int");

Figure 5: Automatically generated Zone Object accessohaakst (excerpt)
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access patterns of models, which generally access evesgtaifja given type, but only a small number of fields of
each such object. (The more typical unit of swapping is thieatb-but given this access pattern, swapping on a
per-object basis would be less desirable, since we woulg swantire objects, even most of the fields would not be
immediately needed.) However, it is still preferable if pibte to keep all data in main meory, since all of it is touched
during each simulated year. Thus far, we have not used a corrahdatabase as a back end, due to a desire to not
tie the GPL-licensed UrbanSim code to a proprietary systdowever, we plan to offer this as an option (but not a
requirement) in a future version.

2.4 Translation and Aggregation Layer

The Translation and Aggregation Layer (T/AL) is resporesiiolr converting between different levels of spatial and/or
temporal aggregation from queries or updates and the shjetiie object store. At present, the T/AL is implemented
using a set of methods in the Model Coordinator, rather tiseanseparate component, and serves only to cache query
results for data aggregated at the zonal level. The two kekiods that implement the T/AL, both in ModelCoordina-
tor, arepostQuery andpostUpdate, to post a query or an update to the object store respectively

However, as the system evolves and we integrate models fioredasingly diverse domains, we expect the T/AL to
become increasingly important as we need to share data atywddferent levels of spatial or temporal aggregation.
(For example, a contaminant runoff model may operate on le eéaquare meters, while a land cover model may
operate on the land parcel level, and a traffic model may ¢gpena a travel zone level.) At that time it will be
implemented as a separate component in its own right.

3 Experience and Lessons Learned

The previous version of the UrbanSim [52] was a collectiortigifitly-integrated component models, including a
developer, economic and demographic transition compsnariand use component, and an external transportation
model. The functionality of each model was intermingledwtiite functionality of the others, creating a large, complex
system that did not lend itself to specialization, refinethen enhancement. In creating a new framework for the
UrbanSim model we sought to meet the following requirements

e agent-level microsimulation of choice behavior

e a grid-based structure to represent spatial informatmfadilitate detailed spatial queries and simulation
e easy replacement of one model by a new version, to suppdetrsyesv/olution

e easy integration of new models

¢ support for different temporal and spatial scales

e support for visualization of the model output and its preess for explanations and debugging

The new architecture has met these requirements. It haprigen relatively robust and stable, and has supported
extensive model evolution (over 10 versions of the Devaldpedel, for example), the introduction of several ad-
ditional model components (splitting the location choicegess from a unified market clearing process to separate
residential and employment location choice models), thevexsion from a business-centric to an employee-centric
view of employment, and integration with an external, conently-running visualization environment [40].

Perhaps the most important software lesson learned frosnatbik has been the value of moving as much of the
complex functionality out of the individual models and intee supporting infrastructure as possible; most of the
specific lessons discussed below are ways of achieving dlais g
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3.1 Implicit Invocation

In the current UrbanSim architecture, models do not comoataidirectly with each other, but rather by registering
interest in objects and fields held in the Object Store, ambaeotified when such an object or field has been changed
by another model. The architecture thus uses a form of iibticocation [23, 47, 48], in which components in-
teract by generating and responding to events, rather thaxfiicitly invoking each other’s methods. As in other
systems, implicit invocation has proven to be a powerfuhtegue for addressing component interaction complexity
in UrbanSim. Two advantages of using implicit invocationdnaeen:

¢ the ability to decouple models, since each model registeesdst in objects and fields, makes changes to the
object store, and responds to changes independently ofiiberaodels. This has made it significantly easier to
experiment with new models and to evolve existing ones.

e ensuring a consistent interface for model interactiomgesall interactions occur via the Object Store.

While our implicit invocation mechanism has worked well fbe current style of models, we expect that it would
break down if we moved to a much finer-grained simulationgf@ample, one in which households potentially moved,
developers began construction of new buildings, and sh fattany time, rather than on a yearly basis. The anticipated
problems arise from the current mechanism being relata@dyse-grained: in the current architecture, a model danno
specify that it wishes to monitor a field in a particular objemly that it wishes to monitor a field in all objects of a
given type. Any additional filtering or selection must ocutithin the callback code that is executed within the model
as a result of the notification. This has been quite acceptabthe current system, but could introduce excessive
numbers of unnecessary notifications in a more fine-graipptbach, leading to unacceptably slow execution speeds.

A related difficulty is that the complexity of the callbackdmincreases as more models use it to monitor and update
related fields. For example, adding a new model that afféetgxisting functionality embedded in notification meth-
ods requires that the callback code in the new model takearitount all of the existing functionality and not override
or invalidate any of its actions.

3.2 Explicit versus Implicit Execution Ordering

We originally intended to handle most of the specificatiomoflel execution ordering using implicit data-level depen-
dencies (Section 2.2.1). However, experience showedhbatiinple data-level ordering dependency rules (all reads
to a field before any writes to it) failed to capture many intpot semantic constraints on model execution ordering.
Thus in practice, the bulk of ordering dependencies areifsgpadexplicitly by model creators.

We also allow user-supplied model-level ordering depenidsrto override data-level ones. An example where this is
used is with the Export Model, which only reads from the Obf&tore and never writes to it. The implicit data-level
dependencies would require that the exporter run befoer atlbdels. However, we use an explicit ordering constraint
to require that it be ruafter all the other models, so that it exports the informationretfie simulation has completed
for the current simulated instant of time. However, if thare ordering dependency conflicts at the same level (i.e.,
at the model-level, or at the data-level in the absence ofoamyriding model-level dependencies), an error will be
signaled.

The current design has worked well in practice, but is nategtsatisfying, and may begin to cause problems if the
number of models increases dramatically. At that point weeekwe will need to re-examine the issue, and perhaps
find more sophisticated ways to determine implicit ordedogstraints that reduce the need for explicit orderings.

3.3 Object Storage and Representation

Java’s overhead for object representation (specifichlfyctass tag and the overhead of word alignment padding) has
made the overhead of using real objects in the Object Stofslgtive. Instead, we have ended up using a nonstandard
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object representation, namely parallel arrays holdindiéies of each object type. However, this is not visible aigsi
of the object store’s encapsulation boundary.

This problem and solution is not new to UrbanSim: it is akitht® use of marshalling in Smalltalk, CORBA, Java, etc.
It is also more loosely related to the concept of flyweighiests [10, 21], although unlike flyweight objects, objects
in the UrbanSim Object Store do not have extrinsic statedbpends on their context.

This approach has had enormous benefits in the context olSima Memory requirements have decreased by a
factor of seven or more (as compared to the original objasetl implementation), making the simulation of large
areas (e.g., Salt Lake City, Utah) feasible on modest dpsktstems. It has also facilitated the addition of disk-dase

swapping to the object store to further decrease memonheeek.

3.4 Automatic Generation of Code from Declarative Specifictons

We have made considerable use in UrbanSim of the technigqgenafrating Java code automatically from declarative
specifications. One example is the generation of object aa$initions for objects in the Object Store, along with
guery and update methods (Section 2.3.2).

The automatic generation of Java code that defines objedtshair interface with the object store removes much
programming burden from experimenters who introduce a nesdahor replace an existing one, as they do not
have to write code that defines or manipulates object typ€bis (s particularly true since we use a non-standard
representation of objects within the Object Store.) It @ssures that a consistent interface exists between thetobje
store and every object that is contained within it.

We have also used automatic generation of Java code to dpfieebzed, lightweight data structures optimized to
store primitive Java types (ints, floats, etc.) with a minimof memory overhead. These include lightweight dynamic
arrays (SimpleDynamicArray), lightweight hash tables aets (HashTablelntint, HashSetint, HashSetFloat, etc.),
and some additional wrapper objects.

The issue addressed by these lightweight data structutestisn the standard Java library there is just one class
definition for e.g. HashSet, whose element type is Objectrédfiore, to store ints in a standard hash set, each int must
be wrapped using the Integer class, leading to a consideoafgrhead in both space and time. Our automatically-
generated HashSetInt class eliminates this overheadfilfisatly powerful generic types were incorporated in figtu
versions of Java, the need for these specialized lightwegga structures would be eliminated (or more precisedy th
would be generated by the Java system rather than by us).tiNdti be useful for our purposes, such a design must
provide heterogeneous, not homogeneous, translatiomefigdypes—homogeneous translation does not handle the
space overhead problem. (Both varieties of translatioragadable in the Pizza extension to Java [35]; GJ [9] and
NextGen [11] provide only homogeneous translation.)

3.5 Other Software Engineering Issues

Java has provided a solid environment for implementing ¢egy®f this kind, particular strengths being automatic
storage management, static typing, a rich class librany,pamtability. While its execution speed is not comparable
to C++, current compiler technology (e.g., Just-In-Timenpdation) has provided reasonable performance. Perhaps
the biggest problem for us has been the overhead of objestgeptation, which has required unorthodox object
representations within the Object Store (Section 2.3). Alelalso usedvs, the Concurrent Versions System [13],

to coordinate and integrate the work of multiple progranmsner

4 Related Work

As described in Section 3.1, the UrbanSim architecture agesn of implicit invocation, in which models communi-
cate with each other indirectly, by registering interestlifects and fields held in the Object Store, and being notified
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when such an object or field has been changed by another mAdditional advantages and other applications of

implicit invocation are described in references [23, 47, 4&plicit invocation is essentially an event mechanism;

related concepts include active variables in LOOPS [46jyaalatabases such as AP5 [15], and the Smalltalk-80
Model-View-Controller [27] and Field integration mechamis [43]. A discipline of defining and using event-based

programming mechanisms is evolving [3, 12, 22].

There is a huge body of work on urban transportation modeliagd use modeling, and integrated land
use/transportation modeling. Reviews and assessmentisting systems are given in references [34, 39, 45], among
others. Reference [8] is a short, useful introduction toaiea for the nonspecialist. While early attempts at compre-
hensive urban simulations in the 1960s and early 1970s wegelly unsuccessful [29, 30], much has changed since
then, both on the supply side (including dramatically inyae hardware, theoretical advances in urban economics
and other disciplines, and the emergence of a commerciah@l&et serving urban and regional planners), and on
the demand side (including public concern over sprawl, letgoy requirements, and legal challenges to transportati
plans made without considering their land use implicati@4$). As a result, considerable progress has recently been
made in land use modeling in both experimental and deploystms. However, except for UrbanSim, all the oper-
ational models in use by planning agencies rely on a crossesal, aggregate, equilibrium approach. Such models
include DRAM/EMPAL [42], TRANUS [16], MEPLAN [18], METROSW [2], and 5-LUT [32]. The cross-sectional,
equilibrium framework implies that there are no relevantperal dynamics to the processes of urban change; rather,
one can model urban development as a static process thasess an economic or a transportation optimization
problem. In other words, these models could be run for the 2880 without needing to model the dynamics of
evolution between the current time and the year 2050. Gigik is a severe simplification, and makes problematic
the potential integration of these models with models ofaigit environmental processes, or even of the dynamic
evolution of human behavior with respect to the built erwirent.

Another substantial body of related work concerns Integt#tssessment Models (IAMs), which model the interac-
tions between human and ecological systems in an integvaigdA major motivation for models of this kind is the
assessment of global environmental change [1, 17, 38, 44,\8hile the first generation of operational IAMs has
emerged in the mid-eighties, their roots can be traced lmekier modeling work in the late sixties and early seven-
ties [26, 36, 20, 33]. Not surprisingly, all of these glolsakle models are quite aggregate, predicting environrenta
disturbances from broad measures of economic growth arathizdtion.

In addition to global models, spatially-explicit regioriategrated models are now emerging, such as the Patuxent
Landscape Model [51]. The Patuxent Landscape Model cantaireconomic land use conversion model that uses a
statistical process to determine probabilities that geitsavill be allocated to forest, agricultural, or urbangsaThe
resulting conversion probabilities are used to predial lase patterns which determine the land cover values used as
an input to the PLM’s hydrology component. Communicatiotwaen the land conversion and hydrology models is
implicit through changed data values in grid cells. Sevef#he factors used in its land use conversion component are
similar to ones used in UrbanSim (e.g., access to infrasireichistorical tax assessor data), but UrbanSim exilicit
models agents and their actions rather than using stafistidinite-element processes.

Finally, another area of related work concerns agent-basmteling, artificial life, and cellular automata. In agent-
based modeling in its pure form, individual agents and thetions are simulated, with each agent having local
knowledge; global behavior then emerges from these ageet-interactions. Agent-based modeling has been used
for a wide range of applications, including economic, stogaal, biological, and physical simulations. Two that
are most closely related to UrbanSim are Sugarscape [19aZhulation of a small, artificial society, and Aspen, a
microanalytic simulation of the entire U.S. economy [41]. Z8Bhumber of packages to support agent-based simulation
have been developed, such as Swarm [31, 49] and StarLogoT.

A number of the UrbanSim models, such as the mobility, learathoice, and development models, are agent-
based. However, we have not adopted this approach throtigteosystem, and have used more global models when
appropriate—our principal interest is in the realistic siation of urban development to inform public policy, by
whatever techniques give the best results, rather thareiitkestigation of whether a particular modeling technique
can encompass all aspects of the simulation. For examgelgimographic transition model uses a single module to
compute the births and deaths in the simulated populatitlo$eholds using externally imposed population control
totals, along with demographic data regarding distribubig income groups, age, and so forth. In a pure agent-based
approach, individual agents would decide whether to foremskbolds, have children, move out of the region, and so
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forth. While such an approach can yield patterns of globablimr that exhibit many of the characteristics of the real
world, in our application we have the much more stringentinegnent of matching the population characteristics of

a region, including reproducing historical data, and thee@gent-based approach has not appeared practical in such
cases.

Cellular automata have been used for simulating urban dpwednt [4, 5, 14], as well as for other applications such
as simulating change in land cover, freeway traffic, or ttreap of wildfires. In its classic form, a cellular automaton
consists of a regular array of cells, each of which has a fimiteber of states. Each state change must be local,
depending only on the states of neighboring cells. Urbangsses, such as sprawl or urban decay, can emerge from
simple local rules. However, these restrictions do not gévaesh well with our goal of supporting deliberation about
public policy. For example, rather than viewing the coni@rsf rural areas to urban ones as an analog of a biological
process in which the suburb grows and occupies increaswiglgr areas, in UrbanSim we view this process as the
result of interactions among the Land Developer Model (Wiicnulates developers actively seeking out development
opportunities throughout the region in response to mar&atitions, zoning regulations, taxes and incentives, and
the like), the location choice models (which simulate resid or businesses seeking housing and commercial space),
the Land Price Model, and so forth. More recently, reseaschave experimented with extensions of the cellular
automata formalism that incorporate extensions such ae agent-like behavior or non-local search [6, 37].

5 Conclusion

UrbanSim is both a vehicle for research on modeling urbatesys and a practical system that has been used in
planning work in several U.S. cities. The software uses autawcarchitecture that allows models to be written
as independently as possible, and that provides for a cleparation between the models and the data on which
they operate. This has supported extensive experimentaitb alternate modeling techniques, and also supported
implementing a system that is much more disaggregate apdmsive to policy considerations than others of its
kind. The primary software lesson learned from this work basn the value of moving as much of the complex
functionality out of the individual models and into the sopjing infrastructure as possible; specific techniques for
achieving this include implicit invocation, efficient objeepresentation in an encapsulated object store, andsixee
use of automatic generation of code from declarative spatidins.
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