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Abstrat

This paper desribes four reent papers on lustering, eah of whih approahes the

lustering problem from a di�erent perspetive and with di�erent goals. It analyzes the

strengths and weaknesses of eah approah and desribes how a user ould ould deide

whih algorithm to use for a given lustering appliation. Finally, it onludes with

ideas that ould make the seletion and use of lustering algorithms for data analysis

less diÆult.

1 Introdution

1.1 Informal Problem De�nition

Clustering an be loosely de�ned as the proess of organizing objets into groups whose

members are similar in some way. There are two major styles of lustering: partitioning

(often alled k-lustering), in whih every objet is assigned to exatly one group, and

hierarhial lustering, in whih eah group of size greater than one is in turn omposed of

smaller groups.

Both hierarhial lustering and k-lustering had been studied extensively by the mid-

1970's, and omparatively little lustering researh was arried out in the 1980's. In reent
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years, however, the advent of World Wide Web searh engines (and, spei�ally, the problem

of organizing the large amount of data they produe) and the onept of \data mining"

massive databases has lead to a renewal of interest in lustering algorithms.

The goal of this paper is to examine reent work in lustering. In partiular, the fous is

on lustering algorithms whose goal is to identify groups of related items in an input

set. This is in ontrast to ertain \lustering-like" problems suh as graph partitioning [33℄

or segmentation problems [23℄, whih organize objets into groups but often have other ob-

jetives. As muh as possible, this paper also emphasizes the fundamental ideas behind the

onstrution of lusters and attempts to avoid the details of spei� lustering appliations,

suh as determining good measures for text doument similarity.

The remainder of this setion summarizes prior work in lustering and ertain related

problems, and briey desribes the issues involved in representing the input to lustering

algorithms. Setion 2 fouses on summarizing and independently ritiquing a set of four

reent papers on lustering. Finally, Setion 3 ompares the strengths and weaknesses of

the various algorithms and suggests ways in whih the positive aspets of eah ould be

synthesized in future work.

For a more detailed introdution to lustering, see the works by Everitt [12℄, Ras-

mussen [29℄, Kaufman and Rousseeuw [21℄, Jain and Dubes [20℄, and Gordon [18℄. In par-

tiular, the works by Everitt and Jain and Dubes provide lear and omprehensive overage

of the \lassial" approahes to lustering.

1.2 k-lustering

In general, k-lustering algorithms take as input a set S of objets and an integer k, and

output a partition of S into subsets S

1

, S

2

, : : : , S

k

. By far the most ommon type of

k-lustering algorithm is the optimization algorithm. Optimization algorithms typially

assume that the elements of S are drawn from a d-dimensional metri spae, usually R

d

,

and de�ne a ost funtion  : fX : X � Sg ! R

+

whih assoiates a ost with eah

luster. The goal of the algorithm is then to minimize

P

k

i=1

(S

i

), the sum of the osts of

the lusters.

The most well-known optimization riterion is the sum-of-squares riterion. Let x

i

r

be

the rth element of S

i

, jS

i

j be the number of elements in S

i

, and d(x

i

r

;x

i

s

) be the distane

between x

i

r

and x

i

s

. The sum-of-squares riterion is then de�ned with the following ost

funtion:

(S

i

) =

jS

i

j

X

r=1

jS

i

j

X

s=1

�

d

�

x

i

r

;x

i

s

��

2

: (1.1)

This de�nition of the lustering problem is known to be NP-hard [15℄. Nevertheless, the

k-means algorithm of MaQueen [24℄ is a popular lustering algorithm whih uses the sum-

of-squares riterion. The algorithm relies on the ability to alulate the entroid of eah
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luster S

i

, denoted
�
x

i

. Tehnially the algorithm optimizes using the ost funtion

(S

i

) =

jS

i

j

X

r=1

d

�

�
x

i

;x

i

r

�

; (1.2)

whih an be shown to produe the same results as (1.1) above. Thus the k-means algo-

rithm produes the requisite set of k lusters, along with the entroid (often termed the

representative element) for eah.

Sine many types of data do not belong to spaes in whih the mean is de�ned, Kaufman

and Rousseeuw [21℄ have developed a similar algorithm for what they term the \k-medioids"

problem. Their algorithm, alled PAM (for \Partitioning Around Medioids"), relies on the

ability to �nd the median of eah S

i

, denoted
^
x

i

. Note that
^
x

i

2 S

i

, and
^
x

i

is hosen to

minimize

P

jS

i

j

r=1

d

�

^
x

i

;x

i

r

�

. This leads to the optimization riterion

(S

i

) =

jS

i

j

X

r=1

d

�

^
x

i

;x

i

r

�

: (1.3)

Kaufman and Rousseeuw's work has spawned a reent series of papers in the data mining

ommunity [28, 11, 10, 39, 1℄.

An alternate optimization riterion has been proposed by Gonzalez [17℄. Instead of

minimizing

P

k

i=1

(S

i

), Gonzalez minimizes max

1�i�k

(S

i

), where (S

i

) is given by

(S

i

) = max

x

i

r

;x

i

s

2S

i

d

�

x

i

r

;x

i

s

�

: (1.4)

This formulation is interesting mainly beause there is a simple 2-approximation algorithm

for its solution, whih Gonzalez shows is the best bound possible if P 6= NP . Subsequent

work by Xiang [38℄ has shown this approximation algorithm to be e�etive in pratie for

olor quantization.

These optimization algorithms have several notable weaknesses. The �rst is that they

heavily favor spherial lusters. Seondly, they do not deal adequately with \noise"; i.e., ele-

ments of S whih do not luster naturally with any other elements. Ban�eld and Raftery [2℄

and Celeux and Govaert [4℄ both develop frameworks in the ontext of statistial mixture

models for lustering whih subsume the optimization models above and deal with these

issues. Mixture models in general and Ban�eld and Raftery's work in partiular will be

disussed in Setion 2.1.

An alternative k-lustering approah whih addresses the issues of luster shape and

noise is alled density based lustering. The intuitive idea of these approahes is that lusters

an be onsidered \densely populated areas" in the spae ontaining S. These areas an

have arbitrary shape and ideally are well separated from one another. Although density

based methods are omparatively unommon, reent papers in the data mining literature
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by Ester et. al. [10℄ and Agrawal et. al. [1℄ have followed this approah. The latter paper

will be disussed in detail in Setion 2.4.

Finally, losely related to density based lustering is graph theoreti lustering. De�ne

a similarity graph G(S) for the set S as follows: let S be the verties of G(S), and given

x

r

;x

s

2 S, let fx

r

;x

s

g be an edge in G(S) if and only if x

r

and x

s

are \similar" under

some de�nition of similarity. Intuitively, if S has an obvious luster struture then G(S)

should appear as a olletion of vertex-disjoint liques, eah orresponding to a luster. In

pratie, G(S) will not �t this desription perfetly, but ideally should have highly-onneted

omponents separated by small sets of edges. Ben-Dor and Yakhini [3℄ use this observation

to design a performane test for their lustering algorithm, whih will be disussed further

in Setion 2.3. Hartuv et. al. [19℄ also use the similarity graph notion. They repeatedly

apply a minimum ut algorithm to form lusters. Additional disussion of the relationship

between ertain graph problems and lustering an be found in a paper by Matula [25℄ and

in Jain and Dubes' book.

1.3 Hierarhial Clustering

Hierarhial lustering is an appealing approah to problems in whih the input set S does

not have a single \obvious" partition into well-separated lusters. The goal of a hierarhial

lustering algorithm is to produe a tree T (S) in whih the nodes represent subsets of S.

In partiular, S itself is at the root of the tree, the leaves omprise the individual elements

of S, and internal nodes are de�ned as the union of their hildren. A path down a well-

onstruted tree should then visit sets of inreasingly tightly-related elements, and any set

of nodes suh that every path from a leaf to the root hits exatly one element in the set an

be onsidered a partition of S into lusters. Hene, given the tree, the user an onveniently

trade o� between the number of lusters and the ompatness of eah luster.

There are two major types of hierarhial lustering algorithms. Divisive algorithms

work by reursively partitioning S until singleton sets are ahieved; agglomerative algo-

rithms work by beginning with singleton sets and merging them until S is ahieved. This

setion will fous on agglomerative methods, whih are far more ommon.

Most agglomerative methods follow the same oneptual framework. First, the elements

are plaed into a list of singleton sets S

1

, S

2

, : : : , S

n

. Then a ost funtion is used to �nd

the pair of sets fS

i

; S

j

g from the list whih is \heapest" to merge. Finally, S

i

and S

j

are

removed from the list of sets and replaed with S

i

[S

j

. This proess is repeated until there

is only one set remaining. Hene, the major di�erene between agglomerative lustering

algorithms is the de�nition of the ost of merging two sets S

i

and S

j

, whih will be denoted

(S

i

; S

j

). Figure 1 summarizes the most well-known ost funtions and lists examples of

algorithms that use eah.

In addition to the methods in Figure 1, Ward's method [36℄ is also frequently used.

Ward's method an be seen as the hierarhial lustering equivalent to the sum-of-squares
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Representative

Method Cost Funtion Algorithm

Single-link

min

x

i

2S

i

;x

j

2S

j

d(x

i

;x

j

)

SLINK [32℄

Average-link

1

jS

i

jjS

j

j

X

x

i

2S

i

X

x

j

2S

j

d(x

i

;x

j

)

Voorhees' method [35℄

Complete-link

max

x

i

2S

i

;x

j

2S

j

d(x

i

;x

j

)

CLINK [6℄

Figure 1: Common hierarhial lustering models

riterion for k-lustering. As in the above methods, at eah step of the algorithm there is a

list of lusters S

1

, : : : , S

n

and the goal is to hoose a pair to merge. As in the sum-of-squares

method, the ost of eah S

i

is de�ned as

(S

i

) =

jS

i

j

X

r=1

jS

i

j

X

s=1

�

d

�

x

i

r

;x

i

s

��

2

: (1.5)

The ost of the urrent solution is then de�ned as

P

n

i=1

(S

i

), and the pair of sets to merge

is hosen to minimize the inrease in the ost of the total solution. Also as in the sum-of-

squares method, algorithms implementing Ward's method typially rely on the ability to

alulate the entroid of eah luster.

Hierarhial methods su�er similar ritiism to statistial k-lustering methods. The

average-link, total-link, and Ward's methods tend to favor spherial lusters, while single-

link lustering is more analogous to density based methods and an produe undesirably

\elongated" lusters. Nevertheless, hierarhial methods are widely used, partiularly in

the doument lustering ommunity [5, 37, 35℄.

1.4 Input to Clustering Algorithms

Fundamentally, every lustering algorithm operates on a set of input vetors x

1

, x

2

, : : : ,

x

n

in a d-dimensional spae. It is important to note that the input spaes from di�erent

lustering problems may have di�erent mathematial properties, and that these properties

an inuene whih lustering algorithms may be applied to the data. For example, methods

whih alulate entroids annot be used with spaes whose dimensions whih are not

numerial, and the method of Gonzalez in Setion 1.2 must be used with vetors from a

metri spae.
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In pratie, many lustering algorithms do not diretly examine or manipulate the in-

put vetors. For example, the algorithms of Kaufman and Rousseeuw all take as input a

similarity matrix M in whih entry M

ij

represents the degree of similarity between x

i

and

x

j

. This matrix is assumed to be pre-alulated in an appliation-spei� step. Their book

goes into great detail on how to alulate similarity oeÆients for di�erent types of data,

inluding non-numerial data.

A losely related style of input is the distane matrix D, in whih D

ij

represents the

distane between element i and element j. This distane relation must typially follow the

de�nition for a distane metri on the input spae. A major advantage of this method is its

simpliity; the Eulidean or Manhattan distane metris an be used on any problem with

numerial vetors.

Lastly, some lustering methods suh as single-link hierarhial lustering and reiproal

nearest neighbor lustering [9, 27℄ require as input only a list of the input vetors and a

funtion whih returns the nearest neighbor of any input. This method has the advantage

that the input is not of size n

2

, whih may be prohibitive for some appliations.

2 Four Reent Papers on Clustering

The purpose of this setion is to introdue four reently-developed approahes to lustering.

Signi�ant omparison of these methods is withheld until Setion 3 so that the reader an

beome familiar with all methods before they are ompared and ritiized. There are many

tradeo�s involved in the onstrution of a lustering algorithm, and it would be misleading

to present only the best features of eah algorithm and laim that they ould be merged

easily into a single new, superior approah.

2.1 Ban�eld and Raftery: Mixture Models

This setion desribes the paper \Model-Based Gaussian and Non-Gaussian Clustering"

by Ban�eld and Raftery [2℄. Their approah is based on statistial mixture models for

lustering. The idea of suh models is that the input vetors x

1

, x

2

, : : : , x

n

are observations

from a set of k unknown distributionsE

1

, E

2

, : : : , E

k

. Suppose the density of an observation

x

r

with respet to E

i

is given by f

i

(x

r

j �) for some unknown set of parameters �. Also,

suppose for eah x

r

and distribution E

i

, �

i

r

represents the probability that x

r

belongs to

E

i

. Eah input is onstrained to belong to some distribution, so

P

k

i=1

�

i

r

= 1. Given these

de�nitions, the goal of the sheme is to �nd the parameters � and � (de�ned as the vetor

of all the �

i

r

's) that maximize the likelihood

L(�; �) =

n

Y

r=1

k

X

i=1

�

i

r

f

i

(x

r

j �): (2.1)
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Ban�eld and Raftery restrit their work to a simpler model in whih eah input must

belong to exatly one distribution. Their work disards the � vetor and instead uses the

vetor  = (

1

; 

2

; : : : ; 

n

) to represent the identifying labels for the observations, so 

r

= i

if x

r

omes from E

i

. The goal then is to �nd the parameters � and  whih maximize the

likelihood

L(�; ) =

n

Y

r=1

f



r

(x

r

j �): (2.2)

Previous work in mixture models [31, 34℄ have modeled the distributions as multivariate

normal funtions; in this ase the unknown parameters � are the mean vetor and ovariane

matrix of eah distribution. Let �

i

and �

i

denote the mean vetor and ovariane matrix

respetively for E

i

. This framework is quite general; for example, observe that if �

i

= �

2

I

for all i then maximizing (2.2) is equivalent to optimizing with the sum-of-squares riterion.

Given this parameterization, a standard iterative expetation-maximization (EM) proess

an be used to �nd the values of �

i

, �

i

, and .

The major problem with this model is that if the parameters �

i

and �

i

are allowed to

vary freely for eah distribution then �nding a global optimum for (2.2) an be too time and

spae intensive for large problems. On the other hand, previously-suggested onstraints,

suh as�

i

= �

2

I, are too limiting. A major ontribution of Ban�eld and Raftery's work is to

reparameterize the distributions in a way whih allows more exibility in the harateristis

of eah distribution while still being solvable for larger problems than the unonstrained

model. Spei�ally, they assume eah distribution is multivariate normal as before, but

deompose �

i

via singular value deomposition as follows:

�

i

= D

i

�

i

D

T

i

; (2.3)

where D

i

is the matrix of normalized eigenvetors and �

i

is the diagonal matrix of eigen-

values of �

i

. Sine the ovariane matrix is positive semi-de�nite, this deomposition is

always possible. Under this parameterization, the orientation of E

i

is determined by D

i

,

and its shape and density ontours are determined by �

i

. The matrix �

i

an then be further

parameterized as �

i

A

i

, where �

i

is the prinipal eigenvalue of �

i

. Hene �

i

determines the

\volume" of eah luster and A

i

determines the shape.

Ban�eld and Raftery use this parameterization to derive several onstrained lustering

models. They propose one model in whih A

i

= I for all A

i

; under this assumption,

the distributions are all spherial but have di�erent sizes. Another proposed model is to

onstrain all the A

i

's to be equal, but allow �

i

and D

i

to vary for eah distribution. This

results in lusters whih have the same shape but di�erent orientations and sizes. Finally,

Ban�eld and Raftery demonstrate the derivation of a model whih is not purely Gaussian,

but instead has one designated dimension in whih the points vary uniformly in a luster-

determined interval. While these onstrained models do not apply to all sets of input, when
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used appropriately they an signi�antly speed up the lustering proess by reduing the

number of model parameters.

Ban�eld and Raftery also derive a statisti alled the approximate weight of evidene

(AWE) whih estimates the Bayesian posterior probability of a lustering solution produed

via the above proess. This statisti an be used to ompare the results obtained with

di�erent mixture models and/or values of k. In subsequent work by Raftery and Fraley [13℄,

the AWE statisti has been replaed by an alternative approximation alled the Bayesian

information riterion (BIC) derived by Shwarz [30℄.

Finally, a ommon ritiism of mixture models (and related methods suh as k-means)

is that they do not address the problem of \noise", de�ned loosely as input elements whih

do not belong to any luster. Ban�eld and Raftery address this shortoming by formally

de�ning a notion of noise as a Poisson proess with intensity � whih distributes points

throughout the spae ontaining all of the input points. Suppose that 

r

= 0 if x

r

is

onsidered noise, and that E

0

is the set of all noise points. Then (2.2) an be generalized

to

L(�; �; ) =

(�V )

jE

0

j

e

��V

jE

0

j!

n

Y

r=1

f



r

(x

r

j �); (2.4)

where V denotes the hypervolume of the spae ontaining the input points.

Despite Ban�eld and Raftery's attempts to make lustering via mixture models more

pratial, the tehnique is still relatively unknown ompared to older approahes suh as

k-means and single link lustering. There are several probable auses.

First, the tehnique does not fous on eÆieny. No attempt is made to analyze the

time or spae required for the algorithm as a funtion of input size, and the examples upon

whih the algorithm is run are in general quite small. Hene, lustering by mixture models

may not be suitable for the urrently trendy appliations of lustering in omputer siene,

sine these often impose severe time and spae limitations. At a minimum, further study

should be onduted to determine the pratial limits of the algorithm as a funtion of input

size and dimensionality.

Seond, a large degree of manual intervention is required. As urrently implemented,

the user is required to speify to the algorithm a model and a number of lusters along

with the data set. The user an then vary the model and number of lusters and use the

AWE/BIC statisti to ompare the results. The user an also alter the results by seleting

whih attributes of the data to use as input, as well as how those attributes are represented.

It would be interesting to see an attempt to make the omputer optimize over all of these

parameters simultaneously instead of splitting the task between the user and the omputer.

This idea will be disussed further in Setion 3.2.

Finally, mixture models rely on the assumption that the data �ts a Gaussian distribution.

This may not be true in many ases; but even worse, the data may not be numerial, making
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1. For eah node v update w

v

as follows:

For eah tuple � = fv; u

1

; : : : ; u

d�1

g

ontaining v do

x

�

 �(w

u

1

; : : : ; w

u

d�1

)

w

v

 

P

�

x

�

2. Normalize the onfiguration suh that the sum of

the squares of the weights in eah field is 1.

Figure 2: The on�guration update proedure of Gibson et. al.. The om-

bining operator � an take on a number of di�erent de�nitions.

this approah totally inappliable. In partiular, most databases ontain a large amount

of ategorial data, meaning that eah item has attributes whih are drawn from a small

set of possibilities over whih there is no inherent notion of distane. Examples would be

the olor of a person's hair or the manufaturer of a ar. The next setion desribes an

approah whih speializes in this type of data.

2.2 Gibson, Kleinberg, and Raghavan: Dynamial Systems

This setion desribes the paper \Clustering Categorial Data: An Approah Based on

Dynamial Systems" by Gibson, Kleinberg, and Raghavan [16℄. Their approah relies on a

simple proess whih iteratively omputes weights on the verties of a graph until a �xed

point is reahed; in this respet it is similar to the work of Kleinberg on �nding authoritative

web soures [22℄ and to the work of Teng et. al. on spetral graph partitioning [33, 26℄.

In this approah, the input data is a set T = f�

1

; �

2

; : : : ; �

n

g of tuples with d �elds,

eah of whih an take one of a small set of values. A key assumption of this approah

is that this set is not metri, so one an determine if two tuples have the same value for

a partiular �eld, but no additional information suh as degree of similarity is assoiated

with non-mathing values.

A onvenient way to view the input is as a graph in whih the verties are the set of all

values appearing in the input tuples. In this view of the data, the values are referred to as

nodes and the set of nodes is denoted V = fv

1

; v

2

; : : : ; v

m

g. Eah tuple an be onsidered

a path through the graph, and the edge set of the graph is simply the olletion of edges

in the paths. Assoiated with eah node v in the graph is a weight w

v

, and the vetor w

ontaining the weights of all of the nodes is referred to as a on�guration of the graph.

At the ore of this approah is a funtion f whih maps the urrent on�guration to

the next on�guration. The idea is to repeatedly apply f until a �xed point (referred to by

the authors as a basin) is reahed; i.e., f(w) � w. The funtion f is de�ned proedurally
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in Figure 2. In order to fully speify f , the ombining operator � must be de�ned. The

operators onsidered in the paper inlude the following:

� The produt operator

Q

: �(w

1

; : : : ; w

d

) = w

1

w

2

� � �w

d

.

� The S

p

operator: �(w

1

; : : : ; w

d

) = ((w

1

)

p

+ (w

2

)

p

+ � � �+ (w

d

)

p

)

1=p

.

� The S

1

operator: �(w

1

; : : : ; w

d

) = max fjw

1

j; : : : ; jw

d

jg.

In addition to hoosing the ombining operator, the user must also hoose an initial

on�guration. The authors suggest two methods. In order to explore the data without

introduing any bias, one an use random or uniform node weights for the initial on�gu-

ration. On the other hand, to bias the results towards a grouping based on a ertain set of

values, one an give those values high initial weight.

Gibson et. al. laim that relatively little has been formally proved about the behavior

of dynamial systems suh as the one outlined above. However, they do present a few

formal results in their paper. To avoid unneessary repetition of the paper these results are

summarized in a non-rigorous fashion below; see the paper for a more tehnial presentation.

Result 2.2.1 For every set T of tuples and every initial on�guration w, f

i

(w) onverges

to a �xed point as i!1 when S

1

is used as the ombining rule.

Result 2.2.2 If T

a

and T

b

are two sets of tuples with no �eld values in ommon and the

input set is T

a

[ T

b

, the hane that the iterative proess will onverge to weights whih

\distinguish" the values in T

a

from those in T

b

grows quikly as the sets get more unequal

in size.

Result 2.2.3 If the dynamial system has multiple basins, they an all be disovered by

starting iteration with a \relatively small" set of random initial on�gurations.

These results hint at a methodology for using this type of dynamial system for data

exploration. One an apply the iterative proess to a set of tuples until it onverges (whih is

proven to happen in some ases by Result 2.2.1 above, and happens anedotally for a wider

range of ombining rules aording to the authors). At that point, some nodes will have high

weights and some will have lower weights. Result 2.2.2 indiates that by separating tuples

ontaining high weight nodes from those ontaining low weight nodes, one an often �nd

a partition in the input set that has some semanti meaning. Again, the authors provide

additional anedotal evidene to support this onlusion. Finally, Result 2.2.3 shows that

runs from di�erent initial on�gurations an often �nd di�erent meaningful groupings within

the data. Sine the theorems in the paper are not suÆient to fully support the behavioral

laims, the authors present a large number of additional empirial results in support of this

methodology.

10



In addition to this methodology, the authors suggest another approah inspired by

spetral graph partitioning. Instead of operating on one on�guration at a time, the user

an maintain several on�gurations w

h1i

;w

h2i

; : : : ;w

hmi

simultaneously. The user an then

perform the following two steps until w

h1i

ahieves a �xed point:

1. Update w

hii

 f

�

w

hii

�

for i = 1; 2; : : : ;m.

2. Update the set of vetors

�

w

h1i

;w

h2i

; : : : ;w

hmi

	

to be orthonormal.

The seond step in whih the vetors are made orthonormal an introdue negative weights

into the on�gurations; the authors laim that separating the positive weight nodes from the

negative weight nodes in the various on�gurations an result in an informative partition of

the data. They term on�guration w

h1i

after iteration the \prinipal basin", and the others

\non-prinipal basins."

This approah shows several promising features. It onverges quikly; generally less

than 20 iterations are required in most of the examples in the paper. The authors also

demonstrate that it an identify \lusters" even in the presene of irrelevant �elds and

large numbers of randomly generated \noise" inputs. Also, the non-prinipal basins an

apparently be used to separate multiple lusters within the same input set.

Nevertheless, this approah has several weaknesses. The most basi is the urrent lak of

both theoretial and pratial understanding of the behavior of the algorithm. Theoretially,

onvergene is not guaranteed with most ombining operators, and there are few results

haraterizing exatly what types of lusters may be identi�ed by this method. Partially

beause of the lak of theoretial understanding, there is no learly de�ned methodology

to use this approah on pratial lustering algorithms. The authors allude to \masking"

and \augmenting" ertain terms in the ombining operator, but do not provide insight into

when or how to perform these modi�ations. They also provide little in the way of insight

on how to hoose the right ombining operator or initial state for a spei� task. Until

these issues are addressed, this approah is likely to be little more than a uriosity item.

Additionally, the fat that the approah deals only with ategorial data an be a draw-

bak. Categorial data is more general than numerial data, beause even numerial vetors

an be treated as ategorial data. However, doing so disards useful similarity/distane

information, and should probably be avoided if possible. The next setion desribes a graph-

based approah, whih unlike the papers onsidered so far, an deal with any type of data

for whih there is a well-de�ned notion of similarity.

2.3 Ben-Dor and Yakhini: Clique Graphs

Clustering has reently beome popular in omputational biology as a tehnique for an-

alyzing DNA miroarray data [8, 3, 19℄. A pair of reent papers, one by Ben-Dor and
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Yakhini [3℄ the other by Hartuv et. al. [19℄, stand out in this literature beause they de-

sribe novel lustering algorithms that ould potentially be useful for many appliations.

The papers ontain many similar ideas, but this setion will fous exlusively on the work

by Ben-Dor and Yahkini.

Underlying Ben-Dor and Yahkini's approah is a model of input alled the orrupted

lique model. The basi idea of this model is that ideally, all elements within eah luster

should be similar to one another, and not similar to any elements of other lusters. Hene,

the similarity graph for the data should appear as a set of vertex-disjoint liques; this type

of graph is alled a lique graph. In pratie, however, the similarity relation is usually

approximate, so the atual similarity graph derived from the data has some extra and some

missing edges in it when ompared to the ideal similarity graph. In the orrupted lique

model, one assumes that the input is a lique graph that has been orrupted by adding

eah non-existing edge with probability � and removing eah existing edge with probability

�. The goal of the lustering algorithm is thus to �nd the original lique graph given the

orrupted version.

Ben-Dor and Yakhini present two algorithms to aomplish this task. The �rst is a

theoretial algorithm, about whih they prove several performane results. The seond is a

pratial heuristi implementation based on the ideas of the theoretial algorithm.

Several de�nitions are required to desribe the theoretial algorithm.

1

Suppose that

V denotes the set of verties in the input graph, and V is a union of disjoint sets so

V = E

1

[E

2

[� � �[E

k

where eah E

i

represents a luster. Suppose that for v 2 V , C(v) = i

if and only if v 2 E

i

, so C(v) is the label of the luster whih ontains v.

A ore V

0

of V is de�ned as V

0

= E

0

1

[ E

0

2

[ � � � [ E

0

k

, where eah E

0

i

is a non-empty

subset of E

i

. The ore V

0

lassi�es an input v 2 V � V

0

with the following funtion:

C

V

0

(v) = max

1�i�k

deg(v;E

0

i

)=jE

0

i

j: (2.5)

Intuitively, C

V

0

(v) represents the luster whih appears to ontain v based only on the

similarity of v to elements in the ore. Hene, if C

V

0

(v) = C(v), then V

0

orretly lassi�es

v. The essene of the lustering problem in this approah is to identify a small ore whih

orretly lassi�es all of the input elements.

The theoretial algorithm relies upon the following result, stated non-tehnially here

for brevity.

Result 2.3.1 Let m denote the size of the smallest luster in the input. If � is not too

large and m is not too small, then with high probability a random small subset of V ontains

a ore whih orretly lassi�es all inputs.

Based on this result, the theoretial algorithm an be summarized as follows:

1

In order to be more onsistent with the other setions, the notation in this setion has been hanged

signi�antly from that in the original paper.

12



1. Consider a small subset V

0

of V .

2. Consider all ways of partitioning V

0

into k non-empty lusters. Eah suh partition

is alled a ore andidate.

3. With eah ore andidate, lassify all of the remaining points. Keep the lassi�ation

whih results in the lique graph most similar to the input graph.

The pratial algorithm, whih the authors all Cast, works slightly di�erently. It

requires no prior knowledge of the number of lusters, and avoids brute-fore enumeration

of ore andidates. It takes as input a similarity funtion s : V �V ! [0; 1℄ and a oeÆient

t and de�nes the aÆnity a(v;E) of an element v to a luster E as

a(v;E) =

X

u2E

s(u; v): (2.6)

An element v is said to have high aÆnity for E if a(v;E) � tjEj; otherwise it has low

aÆnity for E. The algorithm operates by onstruting one luster at a time. In general,

it alternates between adding high aÆnity elements to a luster and removing low aÆnity

elements. When this proess stabilizes, the luster is onsidered �nished, and a new luster

is started. The proess stops when all elements have been assigned to a luster.

The authors present results of the pratial algorithm on both simulated and real bio-

logial data; the results on simulated data are impressive in terms of auray, but do not

report the running time or storage requirements of the algorithm. Hene, the salability

of the method is diÆult to determine. However, the onept of identifying a high-quality

\ore" with a small number of elements whih an be used to lassify the remaining points

hints at a useful way of saling the algorithm: use a relatively small set of elements to

generate the ore, then use a simpler strategy to lassify the remaining inputs and adjust

the lusters as needed. A similar strategy has been suessfully applied in the data mining

ommunity in systems suh as Clarans [28℄ and Birh [39℄.

Otherwise, the algorithm seems very appealing for data whose similarity patterns �t

the orrupted lique model. However, it is important to note that by assuming a similarity

matrix as input, the authors have avoided addressing issues suh as how to selet whih

attributes to use for lustering and how to represent them to the algorithm. The next setion

desribes another general lustering algorithm that addresses these and other pragmati

onerns.

2.4 Agrawal, Gehkre, et. al.: Subspae Clustering

This setion desribes the paper \Automati Subspae Clustering of High Dimensional

Data for Data Mining Appliations" by Agrawal, Gehrke, Gunopulos, and Raghavan [1℄.

The paper desribes the Clique lustering algorithm, whih is targeted spei�ally at data
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mining large databases. In partiular, the authors identify three goals for pratial data

mining systems and argue that Clique satis�es all of them. These goals are summarized

below:

E�etive Treatment of High Dimensionality: Eah item in a database may have a

large number of attributes, many of whih may be irrelevant or misleading with respet

to the formation of lusters.

Interpretability of Results: Many appliations require that the algorithm produe a

simple \summary" of eah luster for the user.

Salability and Usability: The lustering algorithm must be fast and easy to use even

on large databases, and be insensitive to noise and to the order in whih the data is

read.

The Clique system takes a three step approah to lustering. First, a set of \subspaes"

is hosen in whih to luster the data. Then, lustering is performed independently in

eah subspae. Finally, a ompat summary of eah luster is generated in the form of a

disjuntive normal form (DNF) expression.

Suppose the input is a set of n d-dimensional numerial

2

vetors from the spae A = A

1

�

A

2

�� � ��A

d

, where eah A

i

is an interval. Suppose furthermore that eah A

i

is partitioned

into � subintervals, where � is a user-supplied parameter. Applying suh partitions in the

original d-spae divides the spae into a set of d-dimensional axis-aligned retangles whih

are termed regions by the authors. A region is termed dense if the proportion of input

vetors ontained within the region exeeds � , another user-supplied parameter.

Now onsider a graph in whih the verties are dense regions, and there is an edge

between verties if the orresponding regions in spae share a fae. A luster an then be

suintly de�ned as a onneted omponent in this graph. Also, observe that a region an

be desribed simply as a onjuntion of range heks in eah of the dimensions; hene, a

luster an be desribed as a disjuntion of the onjuntions desribing the regions whih

omprise it.

These de�nitions are suÆient to desribe how the authors perform lustering in the

full-dimensional input spae. First, they identify the dense regions, then use the above

graph representation to �nd the lusters. Seond, a DNF formula is generated for eah

luster by taking a disjuntion of the desriptions of eah region in the luster and then

heuristially simplifying the resulting expression.

However, the authors are not ontent to perform lustering only on the full-dimensional

data; they also want to onsider what they all the subspaes of the original data. Speif-

ially, the input spae A has 2

d

subspaes whih an be formed by seleting all possible

2

The authors show that the method an be modi�ed to handle ategorial data, but presenting it in the

ontext of numerial data is more intuitive.
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subsets of the original dimensions to represent the input data. During a preproessing step,

the authors use an algorithm to identify every subspae whih ontains at least one dense

region. The lustering stages de�ned above are then run separately on eah suh subspae.

Beause it may have to onsider every possible subspae of the original dimensions, this pre-

proessing step takes exponential time in the number of dimensions. However, the authors

argue that using various triks and heuristis one an keep the atual time \reasonable" on

real data.

Instead of relying on subspaes, traditional approahes to dimensional redution have

relied upon singular value deomposition of the original data [7, 14℄. The idea is that the

data an be transformed to the oordinate system de�ned by its eigenvetors, and then

those axes orresponding to small eigenvalues an be disarded. The authors argue that

this approah ompliates the analysis of the �nal lusters, sine they are formed in terms

of linear ombinations of the original input values. They also demonstrate several situations

in whih \obvious" lusters are obsured by the SVD approah.

The main ontribution of this paper seems to lie in its onrete de�nitions of the desirable

properties of approahes to data mining, and the unique onept of searhing for lusters

in the subspaes of the input set. However, the spei� approah taken by Clique is easily

ritiized. It makes use of an exponential time algorithm to analyze the subspae struture.

In addition, the parameters � and � seem obsure, diÆult to hoose, and potentially

limiting. For example di�erent lusters may have di�erent \densities", making a single

value of � for the whole data set impratial, and using the wrong value an obviously be

disastrous. Similarly, di�erenes in the distributions in eah dimension may all for di�erent

optimal values of �. On the other hand, adding even more parameters suh as a separate

value of � for eah dimension simply adds to the diÆulty of tuning the algorithm for a

data set.

3 Analysis and Conlusions

3.1 Choosing a Clustering Algorithm

Choosing a lustering algorithm for a partiular problem an be a daunting task. Beause

lustering has been addressed in a wide variety of disiplines, it an be hard to even �nd the

most relevant approahes to a partiular problem. This diÆulty is exaerbated by the fat

that di�erent disiplines use di�erent terminology and basi de�nitions to desribe their

approahes.

Below is a list of riteria whih is ruial to hoosing a lustering algorithm. Inluded

in the desription of eah riterion is an analysis of whih lustering algorithms disussed

in this paper best addresses the various situations whih an arise under eah riterion.

The astute reader will notie that there are still tradeo�s involved in hoosing a lustering

approah; even analyzing a lustering problem with respet to the riteria below may not
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yield a single \best" algorithm to hoose. The details of the disussion below is summarized

in Figure 3.

Data and Cluster Model: Perhaps the most important riterion for mathing an in-

stane of a lustering problem to a lustering algorithm is the nature of the data and

the antiipated lusters. As previously noted, many lustering algorithms assume a

ertain type of input suh as numerial input in the ase of k-means or ategorial

input as in Gibson's paper. Others require the availability of a distane metri or

similarity measure for the data. Similarly, many algorithms impliitly assume that

the luster struture has ertain harateristis. For example, in the ase of k-means

the lusters are assumed to be spherial, and in the ase of single-link hierarhial

lustering the lusters are assumed to be \well separated" so that inorret links are

not made.

Analysis based on these ideas an be applied to the algorithms in Setion 2. If the

data is numerial and the lusters are believed to be spherial or ellipsoidal, then

approahes based on mixture models may be appropriate. On the other hand, if

the data is non-numerial and/or little is known a priori about the geometry of the

lusters, one of the graph-based approahes may be more appropriate.

In general, ategorial data is best handled by the approahes of Ben-Dor and Gibson.

The former is probably the best possibility when a well-de�ned notion of similarity is

available for the data in question, while the latter is a better heuristi approah for

\exploring" data and �nding lusters whih arise from the o-ourrene of ertain

ategorial values.

Mixed data is handled best by the approahes of Ben-Dor and Agrawal. Ben-Dor's

more rigorous approah one again has the advantage in the presene of a known

similarity measure for the data, whereas Agrawal's approah is best used when it is

unlear whih attributes of the data should be examined while lustering.

The most general ase, in whih little is known about the data or the lusters, is

not handled well by any of the algorithms sine they all require that the user have

suÆient knowledge to hoose appropriate input parameters. This unfortunate ase

is disussed more fully in Setion 3.2 below.

Salability: Despite the ongoing exponential inreases in the power of omputers, sal-

ability remains still a major issue in many lustering appliations. In ommerial

data mining appliations, the quantity of the data to be lustered an far exeed the

main memory apaity of the omputer, making both time and spae eÆieny rit-

ial; this issue is addressed by lustering systems in the database ommunity suh

as Birh [39℄. In other ases suh as lustering algorithms imbedded within World
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Wide Web searh engines, time eÆieny is imperative beause searh engine users

want results very quikly.

Salability is not diretly addressed in Ban�eld or Ben-Dor's papers, while the other

two papers present empirial results showing that their algorithms an handle large

input sets, although the time required by Agrawal's approah grows quikly with the

number of dimensions of the input. Statistial mixture models often require quadrati

spae and the EM algorithm onverges relatively slowly, making salability an issue.

Ben-Dor's theoretial algorithm makes use of sampling to redue the amount of work

needed to form the \ores" of eah luster, but the pratial algorithm does not use of

this methodology. Of ourse, sampling an be used to sale any lustering algorithm;

this idea will also be mentioned again in Setion 3.2.

Noise: While traditional methods suh as those desribed in Setion 1 tend to ignore

the problem of noise, all of the algorithms presented in Setion 2 deal with noise in

some way or another. In the mixture model approah, noise is modeled as a Poisson

proess and the lustering proedure expliitly labels some inputs as noise. In the

dynamial systems and subspae approahes, noise points are simply left out of the

lusters. Spei�ally, in the former approah the authors laim that these elements

do not ahieve high enough weights to be plaed in lusters, while in the latter noise

elements tend to fall outside \dense regions" and are thus ignored. Finally, Ben-Dor's

system does not spei�ally address the issue of noise, but under the lique graph

model, noise points will tend to fall into extremely small lusters (often singletons)

whih an subsequently be ignored.

Result Presentation: In many pratial lustering appliations, it is useful if a suint

\summary" of eah luster an be given to the user. All of the systems within this

paper exept Ben-Dor's have this ability. Ban�eld's method generates a entroid and

ovariane matrix for eah luster, Gibson's dynamial system identi�es a set of high-

weight values around whih eah luster is formed, and Agrawal's approah produes

a DNF expression summarizing eah luster. Perhaps a post-proessing phase ould

be added to Ben-Dor's algorithm to hoose a representative \median element" for

eah luster.

3.2 Future Diretions for Clustering Researh

As the previous setion illustrates, one of the major hallenges in using a lustering algo-

rithm on a spei� problem lies not in performing the lustering itself, but rather in hoosing

the algorithm and the values of the assoiated parameters. Eah of the papers disussed in

Setion 2 ontain enough positive empirial results that it is easy to onlude that urrent
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t
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T
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�
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dimension

�

The \density

uto�"

Figure 3: Summary of the relevant features of the lustering algorithms from Setion 2.
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lustering algorithms do a good job when run on appropriate data with the appro-

priate parameters. It is hoosing the algorithm and the parameters that present the

hallenge; in partiular, a quik san of the \Parameters" olumn in Figure 2 demonstrates

that urrent approahes often rely on non-intuitive parameters whih may be diÆult for

even the informed user to selet.

This leads to the onlusion that there are three general atagories of lustering algo-

rithms. First, there is lassi�ation in the presene of prior knowledge about the

lusters; this is often alled \supervised learning" and is not examined diretly in this pa-

per. Seond, there is lassi�ation to test a hypothesis. In this instane, the user

has formed a hypothesis that under a ertain set of assumptions about the data, the data

an easily be organized into distint lusters. This hypothesis is the basis for seleting an

appropriate lustering algorithm, data representation, and set of algorithm parameters. If

the hypothesis is valid then the algorithm should produe \good lusters"; otherwise the

hypothesis requires modi�ation. It is at this type of lustering that the methods in this

paper exel.

Finally, there is lassi�ation to explore a data set, whih hereafter will be referred

to as data mining. In this ase the user has no a priori assumptions about the data, but

wants to know if it falls into \meaningful groups" (a term for whih the user may not

even have a spei� de�nition). Data mining is urrently a trendy appliation of lustering

tehnology, but very little work has been done to graefully eliminate �xed input parameters

to lustering algorithms. Thus, most data mining approahes impliitly require the user to

alternate between running the lustering algorithm, modifying the parameters, and hoosing

the results whih seem \best."

This leads to the following set of proposals for ontinuing researh in lustering, and in

partiular data mining:

� Graefully eliminate the need for a priori assumptions about the data. An obvious

andidate for elimination is �xed numerial inputs (suh as � in Agrawal's subspae

lustering approah). Obviously, one an de�ne a notion of output quality, as Ban�eld

and Raftery have done with their AWE statisti, and then iterate over many possible

parameter values searhing for a maximum. This trivially an eliminate the need for

�xed inputs, at the ost of a potentially large inrease in running time. More intelligent

strategies than brute-fore sampling to hoose parameters would be helpful.

Additionally, urrent lustering algorithms make impliit assumptions about the input

data. Common examples of suh assumptions are that the units in eah dimension are

saled appropriately, that the prede�ned notion of distane/similarity is ideal, and/or

that the set of data attributes used for lustering are orret (although the approahes

by Gibson and Agrawal are notable for attempting to avoid this assumption). An

interesting proposal would be to explore useful ways to expliitly parameterize these

assumptions and allow the omputer to searh for good spei� hoies. For example,
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the omputer ould be allowed to selet whih dimensions of the data to use in the

similarity alulation, or to hoose whether or not to normalize the data in some

dimension.

� Use sampling to improve eÆieny. Theoretially-founded lustering algorithms are

often dismissed as too ineÆient to be used in pratie. This problem will be exaer-

bated if the previous proposal is followed and the omputer is fored to searh over

an even broader array of hoies in the pursuit of \good lustering." The theoretial

results of Ben-Dor show that with a good hoie of a similarity measure, forming a set

of \luster ores" and then lassifying the remaining inputs is a very e�etive strategy

as long as the sample size is big enough to get representatives from every important

luster. This strategy ould be pursued to help \sale up" omputationally intensive

lustering methods.

3.3 Conlusion

This paper has desribed four reently-developed approahes to lustering. Eah has both

positive and negative aspets, and eah is suitable for di�erent types of data and di�erent

assumptions about the luster struture of the input.

However, all of the algorithms still rely to some extent on rigid assumptions about the

data whih must be provided by the user. These assumptions appear both expliitly as

�xed numerial parameters and impliitly in the way whih the user represents the input

to the algorithm. While prior knowledge of the appliation an help the user hoose appro-

priate assumptions, oftentimes the user must still alternate between running the lustering

algorithm and updating the assumptions based on the result.

The paper onludes by suggesting a new general strategy for lustering as a method of

data mining. In this strategy, the assumptions required by the various lustering algorithms

an be expliitly parameterized, allowing the omputer more freedom to searh for the best

way to luster the data. To ompensate for the broadening of searh spae of possible

lusterings, it is reommended that an implementation of this strategy use sampling to

redue the number of inputs if neessary. It is hoped that future work will lead to a spei�

lustering algorithm based on these ideas that an then be validated on atual data.
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