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Abstra
t

This paper des
ribes four re
ent papers on 
lustering, ea
h of whi
h approa
hes the


lustering problem from a di�erent perspe
tive and with di�erent goals. It analyzes the

strengths and weaknesses of ea
h approa
h and des
ribes how a user 
ould 
ould de
ide

whi
h algorithm to use for a given 
lustering appli
ation. Finally, it 
on
ludes with

ideas that 
ould make the sele
tion and use of 
lustering algorithms for data analysis

less diÆ
ult.

1 Introdu
tion

1.1 Informal Problem De�nition

Clustering 
an be loosely de�ned as the pro
ess of organizing obje
ts into groups whose

members are similar in some way. There are two major styles of 
lustering: partitioning

(often 
alled k-
lustering), in whi
h every obje
t is assigned to exa
tly one group, and

hierar
hi
al 
lustering, in whi
h ea
h group of size greater than one is in turn 
omposed of

smaller groups.

Both hierar
hi
al 
lustering and k-
lustering had been studied extensively by the mid-

1970's, and 
omparatively little 
lustering resear
h was 
arried out in the 1980's. In re
ent

�
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years, however, the advent of World Wide Web sear
h engines (and, spe
i�
ally, the problem

of organizing the large amount of data they produ
e) and the 
on
ept of \data mining"

massive databases has lead to a renewal of interest in 
lustering algorithms.

The goal of this paper is to examine re
ent work in 
lustering. In parti
ular, the fo
us is

on 
lustering algorithms whose goal is to identify groups of related items in an input

set. This is in 
ontrast to 
ertain \
lustering-like" problems su
h as graph partitioning [33℄

or segmentation problems [23℄, whi
h organize obje
ts into groups but often have other ob-

je
tives. As mu
h as possible, this paper also emphasizes the fundamental ideas behind the


onstru
tion of 
lusters and attempts to avoid the details of spe
i�
 
lustering appli
ations,

su
h as determining good measures for text do
ument similarity.

The remainder of this se
tion summarizes prior work in 
lustering and 
ertain related

problems, and brie
y des
ribes the issues involved in representing the input to 
lustering

algorithms. Se
tion 2 fo
uses on summarizing and independently 
ritiquing a set of four

re
ent papers on 
lustering. Finally, Se
tion 3 
ompares the strengths and weaknesses of

the various algorithms and suggests ways in whi
h the positive aspe
ts of ea
h 
ould be

synthesized in future work.

For a more detailed introdu
tion to 
lustering, see the works by Everitt [12℄, Ras-

mussen [29℄, Kaufman and Rousseeuw [21℄, Jain and Dubes [20℄, and Gordon [18℄. In par-

ti
ular, the works by Everitt and Jain and Dubes provide 
lear and 
omprehensive 
overage

of the \
lassi
al" approa
hes to 
lustering.

1.2 k-
lustering

In general, k-
lustering algorithms take as input a set S of obje
ts and an integer k, and

output a partition of S into subsets S

1

, S

2

, : : : , S

k

. By far the most 
ommon type of

k-
lustering algorithm is the optimization algorithm. Optimization algorithms typi
ally

assume that the elements of S are drawn from a d-dimensional metri
 spa
e, usually R

d

,

and de�ne a 
ost fun
tion 
 : fX : X � Sg ! R

+

whi
h asso
iates a 
ost with ea
h


luster. The goal of the algorithm is then to minimize

P

k

i=1


(S

i

), the sum of the 
osts of

the 
lusters.

The most well-known optimization 
riterion is the sum-of-squares 
riterion. Let x

i

r

be

the rth element of S

i

, jS

i

j be the number of elements in S

i

, and d(x

i

r

;x

i

s

) be the distan
e

between x

i

r

and x

i

s

. The sum-of-squares 
riterion is then de�ned with the following 
ost

fun
tion:


(S

i

) =

jS

i

j

X

r=1

jS

i

j

X

s=1

�

d

�

x

i

r

;x

i

s

��

2

: (1.1)

This de�nition of the 
lustering problem is known to be NP-hard [15℄. Nevertheless, the

k-means algorithm of Ma
Queen [24℄ is a popular 
lustering algorithm whi
h uses the sum-

of-squares 
riterion. The algorithm relies on the ability to 
al
ulate the 
entroid of ea
h
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luster S

i

, denoted
�
x

i

. Te
hni
ally the algorithm optimizes using the 
ost fun
tion


(S

i

) =

jS

i

j

X

r=1

d

�

�
x

i

;x

i

r

�

; (1.2)

whi
h 
an be shown to produ
e the same results as (1.1) above. Thus the k-means algo-

rithm produ
es the requisite set of k 
lusters, along with the 
entroid (often termed the

representative element) for ea
h.

Sin
e many types of data do not belong to spa
es in whi
h the mean is de�ned, Kaufman

and Rousseeuw [21℄ have developed a similar algorithm for what they term the \k-medioids"

problem. Their algorithm, 
alled PAM (for \Partitioning Around Medioids"), relies on the

ability to �nd the median of ea
h S

i

, denoted
^
x

i

. Note that
^
x

i

2 S

i

, and
^
x

i

is 
hosen to

minimize

P

jS

i

j

r=1

d

�

^
x

i

;x

i

r

�

. This leads to the optimization 
riterion


(S

i

) =

jS

i

j

X

r=1

d

�

^
x

i

;x

i

r

�

: (1.3)

Kaufman and Rousseeuw's work has spawned a re
ent series of papers in the data mining


ommunity [28, 11, 10, 39, 1℄.

An alternate optimization 
riterion has been proposed by Gonzalez [17℄. Instead of

minimizing

P

k

i=1


(S

i

), Gonzalez minimizes max

1�i�k


(S

i

), where 
(S

i

) is given by


(S

i

) = max

x

i

r

;x

i

s

2S

i

d

�

x

i

r

;x

i

s

�

: (1.4)

This formulation is interesting mainly be
ause there is a simple 2-approximation algorithm

for its solution, whi
h Gonzalez shows is the best bound possible if P 6= NP . Subsequent

work by Xiang [38℄ has shown this approximation algorithm to be e�e
tive in pra
ti
e for


olor quantization.

These optimization algorithms have several notable weaknesses. The �rst is that they

heavily favor spheri
al 
lusters. Se
ondly, they do not deal adequately with \noise"; i.e., ele-

ments of S whi
h do not 
luster naturally with any other elements. Ban�eld and Raftery [2℄

and Celeux and Govaert [4℄ both develop frameworks in the 
ontext of statisti
al mixture

models for 
lustering whi
h subsume the optimization models above and deal with these

issues. Mixture models in general and Ban�eld and Raftery's work in parti
ular will be

dis
ussed in Se
tion 2.1.

An alternative k-
lustering approa
h whi
h addresses the issues of 
luster shape and

noise is 
alled density based 
lustering. The intuitive idea of these approa
hes is that 
lusters


an be 
onsidered \densely populated areas" in the spa
e 
ontaining S. These areas 
an

have arbitrary shape and ideally are well separated from one another. Although density

based methods are 
omparatively un
ommon, re
ent papers in the data mining literature
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by Ester et. al. [10℄ and Agrawal et. al. [1℄ have followed this approa
h. The latter paper

will be dis
ussed in detail in Se
tion 2.4.

Finally, 
losely related to density based 
lustering is graph theoreti
 
lustering. De�ne

a similarity graph G(S) for the set S as follows: let S be the verti
es of G(S), and given

x

r

;x

s

2 S, let fx

r

;x

s

g be an edge in G(S) if and only if x

r

and x

s

are \similar" under

some de�nition of similarity. Intuitively, if S has an obvious 
luster stru
ture then G(S)

should appear as a 
olle
tion of vertex-disjoint 
liques, ea
h 
orresponding to a 
luster. In

pra
ti
e, G(S) will not �t this des
ription perfe
tly, but ideally should have highly-
onne
ted


omponents separated by small sets of edges. Ben-Dor and Yakhini [3℄ use this observation

to design a performan
e test for their 
lustering algorithm, whi
h will be dis
ussed further

in Se
tion 2.3. Hartuv et. al. [19℄ also use the similarity graph notion. They repeatedly

apply a minimum 
ut algorithm to form 
lusters. Additional dis
ussion of the relationship

between 
ertain graph problems and 
lustering 
an be found in a paper by Matula [25℄ and

in Jain and Dubes' book.

1.3 Hierar
hi
al Clustering

Hierar
hi
al 
lustering is an appealing approa
h to problems in whi
h the input set S does

not have a single \obvious" partition into well-separated 
lusters. The goal of a hierar
hi
al


lustering algorithm is to produ
e a tree T (S) in whi
h the nodes represent subsets of S.

In parti
ular, S itself is at the root of the tree, the leaves 
omprise the individual elements

of S, and internal nodes are de�ned as the union of their 
hildren. A path down a well-


onstru
ted tree should then visit sets of in
reasingly tightly-related elements, and any set

of nodes su
h that every path from a leaf to the root hits exa
tly one element in the set 
an

be 
onsidered a partition of S into 
lusters. Hen
e, given the tree, the user 
an 
onveniently

trade o� between the number of 
lusters and the 
ompa
tness of ea
h 
luster.

There are two major types of hierar
hi
al 
lustering algorithms. Divisive algorithms

work by re
ursively partitioning S until singleton sets are a
hieved; agglomerative algo-

rithms work by beginning with singleton sets and merging them until S is a
hieved. This

se
tion will fo
us on agglomerative methods, whi
h are far more 
ommon.

Most agglomerative methods follow the same 
on
eptual framework. First, the elements

are pla
ed into a list of singleton sets S

1

, S

2

, : : : , S

n

. Then a 
ost fun
tion is used to �nd

the pair of sets fS

i

; S

j

g from the list whi
h is \
heapest" to merge. Finally, S

i

and S

j

are

removed from the list of sets and repla
ed with S

i

[S

j

. This pro
ess is repeated until there

is only one set remaining. Hen
e, the major di�eren
e between agglomerative 
lustering

algorithms is the de�nition of the 
ost of merging two sets S

i

and S

j

, whi
h will be denoted


(S

i

; S

j

). Figure 1 summarizes the most well-known 
ost fun
tions and lists examples of

algorithms that use ea
h.

In addition to the methods in Figure 1, Ward's method [36℄ is also frequently used.

Ward's method 
an be seen as the hierar
hi
al 
lustering equivalent to the sum-of-squares
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Representative

Method Cost Fun
tion Algorithm

Single-link

min

x

i

2S

i

;x

j

2S

j

d(x

i

;x

j

)

SLINK [32℄

Average-link

1

jS

i

jjS

j

j

X

x

i

2S

i

X

x

j

2S

j

d(x

i

;x

j

)

Voorhees' method [35℄

Complete-link

max

x

i

2S

i

;x

j

2S

j

d(x

i

;x

j

)

CLINK [6℄

Figure 1: Common hierar
hi
al 
lustering models


riterion for k-
lustering. As in the above methods, at ea
h step of the algorithm there is a

list of 
lusters S

1

, : : : , S

n

and the goal is to 
hoose a pair to merge. As in the sum-of-squares

method, the 
ost of ea
h S

i

is de�ned as


(S

i

) =

jS

i

j

X

r=1

jS

i

j

X

s=1

�

d

�

x

i

r

;x

i

s

��

2

: (1.5)

The 
ost of the 
urrent solution is then de�ned as

P

n

i=1


(S

i

), and the pair of sets to merge

is 
hosen to minimize the in
rease in the 
ost of the total solution. Also as in the sum-of-

squares method, algorithms implementing Ward's method typi
ally rely on the ability to


al
ulate the 
entroid of ea
h 
luster.

Hierar
hi
al methods su�er similar 
riti
ism to statisti
al k-
lustering methods. The

average-link, total-link, and Ward's methods tend to favor spheri
al 
lusters, while single-

link 
lustering is more analogous to density based methods and 
an produ
e undesirably

\elongated" 
lusters. Nevertheless, hierar
hi
al methods are widely used, parti
ularly in

the do
ument 
lustering 
ommunity [5, 37, 35℄.

1.4 Input to Clustering Algorithms

Fundamentally, every 
lustering algorithm operates on a set of input ve
tors x

1

, x

2

, : : : ,

x

n

in a d-dimensional spa
e. It is important to note that the input spa
es from di�erent


lustering problems may have di�erent mathemati
al properties, and that these properties


an in
uen
e whi
h 
lustering algorithms may be applied to the data. For example, methods

whi
h 
al
ulate 
entroids 
annot be used with spa
es whose dimensions whi
h are not

numeri
al, and the method of Gonzalez in Se
tion 1.2 must be used with ve
tors from a

metri
 spa
e.
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In pra
ti
e, many 
lustering algorithms do not dire
tly examine or manipulate the in-

put ve
tors. For example, the algorithms of Kaufman and Rousseeuw all take as input a

similarity matrix M in whi
h entry M

ij

represents the degree of similarity between x

i

and

x

j

. This matrix is assumed to be pre-
al
ulated in an appli
ation-spe
i�
 step. Their book

goes into great detail on how to 
al
ulate similarity 
oeÆ
ients for di�erent types of data,

in
luding non-numeri
al data.

A 
losely related style of input is the distan
e matrix D, in whi
h D

ij

represents the

distan
e between element i and element j. This distan
e relation must typi
ally follow the

de�nition for a distan
e metri
 on the input spa
e. A major advantage of this method is its

simpli
ity; the Eu
lidean or Manhattan distan
e metri
s 
an be used on any problem with

numeri
al ve
tors.

Lastly, some 
lustering methods su
h as single-link hierar
hi
al 
lustering and re
ipro
al

nearest neighbor 
lustering [9, 27℄ require as input only a list of the input ve
tors and a

fun
tion whi
h returns the nearest neighbor of any input. This method has the advantage

that the input is not of size n

2

, whi
h may be prohibitive for some appli
ations.

2 Four Re
ent Papers on Clustering

The purpose of this se
tion is to introdu
e four re
ently-developed approa
hes to 
lustering.

Signi�
ant 
omparison of these methods is withheld until Se
tion 3 so that the reader 
an

be
ome familiar with all methods before they are 
ompared and 
riti
ized. There are many

tradeo�s involved in the 
onstru
tion of a 
lustering algorithm, and it would be misleading

to present only the best features of ea
h algorithm and 
laim that they 
ould be merged

easily into a single new, superior approa
h.

2.1 Ban�eld and Raftery: Mixture Models

This se
tion des
ribes the paper \Model-Based Gaussian and Non-Gaussian Clustering"

by Ban�eld and Raftery [2℄. Their approa
h is based on statisti
al mixture models for


lustering. The idea of su
h models is that the input ve
tors x

1

, x

2

, : : : , x

n

are observations

from a set of k unknown distributionsE

1

, E

2

, : : : , E

k

. Suppose the density of an observation

x

r

with respe
t to E

i

is given by f

i

(x

r

j �) for some unknown set of parameters �. Also,

suppose for ea
h x

r

and distribution E

i

, �

i

r

represents the probability that x

r

belongs to

E

i

. Ea
h input is 
onstrained to belong to some distribution, so

P

k

i=1

�

i

r

= 1. Given these

de�nitions, the goal of the s
heme is to �nd the parameters � and � (de�ned as the ve
tor

of all the �

i

r

's) that maximize the likelihood

L(�; �) =

n

Y

r=1

k

X

i=1

�

i

r

f

i

(x

r

j �): (2.1)
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Ban�eld and Raftery restri
t their work to a simpler model in whi
h ea
h input must

belong to exa
tly one distribution. Their work dis
ards the � ve
tor and instead uses the

ve
tor 
 = (


1

; 


2

; : : : ; 


n

) to represent the identifying labels for the observations, so 


r

= i

if x

r


omes from E

i

. The goal then is to �nd the parameters � and 
 whi
h maximize the

likelihood

L(�; 
) =

n

Y

r=1

f




r

(x

r

j �): (2.2)

Previous work in mixture models [31, 34℄ have modeled the distributions as multivariate

normal fun
tions; in this 
ase the unknown parameters � are the mean ve
tor and 
ovarian
e

matrix of ea
h distribution. Let �

i

and �

i

denote the mean ve
tor and 
ovarian
e matrix

respe
tively for E

i

. This framework is quite general; for example, observe that if �

i

= �

2

I

for all i then maximizing (2.2) is equivalent to optimizing with the sum-of-squares 
riterion.

Given this parameterization, a standard iterative expe
tation-maximization (EM) pro
ess


an be used to �nd the values of �

i

, �

i

, and 
.

The major problem with this model is that if the parameters �

i

and �

i

are allowed to

vary freely for ea
h distribution then �nding a global optimum for (2.2) 
an be too time and

spa
e intensive for large problems. On the other hand, previously-suggested 
onstraints,

su
h as�

i

= �

2

I, are too limiting. A major 
ontribution of Ban�eld and Raftery's work is to

reparameterize the distributions in a way whi
h allows more 
exibility in the 
hara
teristi
s

of ea
h distribution while still being solvable for larger problems than the un
onstrained

model. Spe
i�
ally, they assume ea
h distribution is multivariate normal as before, but

de
ompose �

i

via singular value de
omposition as follows:

�

i

= D

i

�

i

D

T

i

; (2.3)

where D

i

is the matrix of normalized eigenve
tors and �

i

is the diagonal matrix of eigen-

values of �

i

. Sin
e the 
ovarian
e matrix is positive semi-de�nite, this de
omposition is

always possible. Under this parameterization, the orientation of E

i

is determined by D

i

,

and its shape and density 
ontours are determined by �

i

. The matrix �

i


an then be further

parameterized as �

i

A

i

, where �

i

is the prin
ipal eigenvalue of �

i

. Hen
e �

i

determines the

\volume" of ea
h 
luster and A

i

determines the shape.

Ban�eld and Raftery use this parameterization to derive several 
onstrained 
lustering

models. They propose one model in whi
h A

i

= I for all A

i

; under this assumption,

the distributions are all spheri
al but have di�erent sizes. Another proposed model is to


onstrain all the A

i

's to be equal, but allow �

i

and D

i

to vary for ea
h distribution. This

results in 
lusters whi
h have the same shape but di�erent orientations and sizes. Finally,

Ban�eld and Raftery demonstrate the derivation of a model whi
h is not purely Gaussian,

but instead has one designated dimension in whi
h the points vary uniformly in a 
luster-

determined interval. While these 
onstrained models do not apply to all sets of input, when
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used appropriately they 
an signi�
antly speed up the 
lustering pro
ess by redu
ing the

number of model parameters.

Ban�eld and Raftery also derive a statisti
 
alled the approximate weight of eviden
e

(AWE) whi
h estimates the Bayesian posterior probability of a 
lustering solution produ
ed

via the above pro
ess. This statisti
 
an be used to 
ompare the results obtained with

di�erent mixture models and/or values of k. In subsequent work by Raftery and Fraley [13℄,

the AWE statisti
 has been repla
ed by an alternative approximation 
alled the Bayesian

information 
riterion (BIC) derived by S
hwarz [30℄.

Finally, a 
ommon 
riti
ism of mixture models (and related methods su
h as k-means)

is that they do not address the problem of \noise", de�ned loosely as input elements whi
h

do not belong to any 
luster. Ban�eld and Raftery address this short
oming by formally

de�ning a notion of noise as a Poisson pro
ess with intensity � whi
h distributes points

throughout the spa
e 
ontaining all of the input points. Suppose that 


r

= 0 if x

r

is


onsidered noise, and that E

0

is the set of all noise points. Then (2.2) 
an be generalized

to

L(�; �; 
) =

(�V )

jE

0

j

e

��V

jE

0

j!

n

Y

r=1

f




r

(x

r

j �); (2.4)

where V denotes the hypervolume of the spa
e 
ontaining the input points.

Despite Ban�eld and Raftery's attempts to make 
lustering via mixture models more

pra
ti
al, the te
hnique is still relatively unknown 
ompared to older approa
hes su
h as

k-means and single link 
lustering. There are several probable 
auses.

First, the te
hnique does not fo
us on eÆ
ien
y. No attempt is made to analyze the

time or spa
e required for the algorithm as a fun
tion of input size, and the examples upon

whi
h the algorithm is run are in general quite small. Hen
e, 
lustering by mixture models

may not be suitable for the 
urrently trendy appli
ations of 
lustering in 
omputer s
ien
e,

sin
e these often impose severe time and spa
e limitations. At a minimum, further study

should be 
ondu
ted to determine the pra
ti
al limits of the algorithm as a fun
tion of input

size and dimensionality.

Se
ond, a large degree of manual intervention is required. As 
urrently implemented,

the user is required to spe
ify to the algorithm a model and a number of 
lusters along

with the data set. The user 
an then vary the model and number of 
lusters and use the

AWE/BIC statisti
 to 
ompare the results. The user 
an also alter the results by sele
ting

whi
h attributes of the data to use as input, as well as how those attributes are represented.

It would be interesting to see an attempt to make the 
omputer optimize over all of these

parameters simultaneously instead of splitting the task between the user and the 
omputer.

This idea will be dis
ussed further in Se
tion 3.2.

Finally, mixture models rely on the assumption that the data �ts a Gaussian distribution.

This may not be true in many 
ases; but even worse, the data may not be numeri
al, making
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1. For ea
h node v update w

v

as follows:

For ea
h tuple � = fv; u

1

; : : : ; u

d�1

g


ontaining v do

x

�

 �(w

u

1

; : : : ; w

u

d�1

)

w

v

 

P

�

x

�

2. Normalize the 
onfiguration su
h that the sum of

the squares of the weights in ea
h field is 1.

Figure 2: The 
on�guration update pro
edure of Gibson et. al.. The 
om-

bining operator � 
an take on a number of di�erent de�nitions.

this approa
h totally inappli
able. In parti
ular, most databases 
ontain a large amount

of 
ategori
al data, meaning that ea
h item has attributes whi
h are drawn from a small

set of possibilities over whi
h there is no inherent notion of distan
e. Examples would be

the 
olor of a person's hair or the manufa
turer of a 
ar. The next se
tion des
ribes an

approa
h whi
h spe
ializes in this type of data.

2.2 Gibson, Kleinberg, and Raghavan: Dynami
al Systems

This se
tion des
ribes the paper \Clustering Categori
al Data: An Approa
h Based on

Dynami
al Systems" by Gibson, Kleinberg, and Raghavan [16℄. Their approa
h relies on a

simple pro
ess whi
h iteratively 
omputes weights on the verti
es of a graph until a �xed

point is rea
hed; in this respe
t it is similar to the work of Kleinberg on �nding authoritative

web sour
es [22℄ and to the work of Teng et. al. on spe
tral graph partitioning [33, 26℄.

In this approa
h, the input data is a set T = f�

1

; �

2

; : : : ; �

n

g of tuples with d �elds,

ea
h of whi
h 
an take one of a small set of values. A key assumption of this approa
h

is that this set is not metri
, so one 
an determine if two tuples have the same value for

a parti
ular �eld, but no additional information su
h as degree of similarity is asso
iated

with non-mat
hing values.

A 
onvenient way to view the input is as a graph in whi
h the verti
es are the set of all

values appearing in the input tuples. In this view of the data, the values are referred to as

nodes and the set of nodes is denoted V = fv

1

; v

2

; : : : ; v

m

g. Ea
h tuple 
an be 
onsidered

a path through the graph, and the edge set of the graph is simply the 
olle
tion of edges

in the paths. Asso
iated with ea
h node v in the graph is a weight w

v

, and the ve
tor w


ontaining the weights of all of the nodes is referred to as a 
on�guration of the graph.

At the 
ore of this approa
h is a fun
tion f whi
h maps the 
urrent 
on�guration to

the next 
on�guration. The idea is to repeatedly apply f until a �xed point (referred to by

the authors as a basin) is rea
hed; i.e., f(w) � w. The fun
tion f is de�ned pro
edurally

9



in Figure 2. In order to fully spe
ify f , the 
ombining operator � must be de�ned. The

operators 
onsidered in the paper in
lude the following:

� The produ
t operator

Q

: �(w

1

; : : : ; w

d

) = w

1

w

2

� � �w

d

.

� The S

p

operator: �(w

1

; : : : ; w

d

) = ((w

1

)

p

+ (w

2

)

p

+ � � �+ (w

d

)

p

)

1=p

.

� The S

1

operator: �(w

1

; : : : ; w

d

) = max fjw

1

j; : : : ; jw

d

jg.

In addition to 
hoosing the 
ombining operator, the user must also 
hoose an initial


on�guration. The authors suggest two methods. In order to explore the data without

introdu
ing any bias, one 
an use random or uniform node weights for the initial 
on�gu-

ration. On the other hand, to bias the results towards a grouping based on a 
ertain set of

values, one 
an give those values high initial weight.

Gibson et. al. 
laim that relatively little has been formally proved about the behavior

of dynami
al systems su
h as the one outlined above. However, they do present a few

formal results in their paper. To avoid unne
essary repetition of the paper these results are

summarized in a non-rigorous fashion below; see the paper for a more te
hni
al presentation.

Result 2.2.1 For every set T of tuples and every initial 
on�guration w, f

i

(w) 
onverges

to a �xed point as i!1 when S

1

is used as the 
ombining rule.

Result 2.2.2 If T

a

and T

b

are two sets of tuples with no �eld values in 
ommon and the

input set is T

a

[ T

b

, the 
han
e that the iterative pro
ess will 
onverge to weights whi
h

\distinguish" the values in T

a

from those in T

b

grows qui
kly as the sets get more unequal

in size.

Result 2.2.3 If the dynami
al system has multiple basins, they 
an all be dis
overed by

starting iteration with a \relatively small" set of random initial 
on�gurations.

These results hint at a methodology for using this type of dynami
al system for data

exploration. One 
an apply the iterative pro
ess to a set of tuples until it 
onverges (whi
h is

proven to happen in some 
ases by Result 2.2.1 above, and happens ane
dotally for a wider

range of 
ombining rules a

ording to the authors). At that point, some nodes will have high

weights and some will have lower weights. Result 2.2.2 indi
ates that by separating tuples


ontaining high weight nodes from those 
ontaining low weight nodes, one 
an often �nd

a partition in the input set that has some semanti
 meaning. Again, the authors provide

additional ane
dotal eviden
e to support this 
on
lusion. Finally, Result 2.2.3 shows that

runs from di�erent initial 
on�gurations 
an often �nd di�erent meaningful groupings within

the data. Sin
e the theorems in the paper are not suÆ
ient to fully support the behavioral


laims, the authors present a large number of additional empiri
al results in support of this

methodology.
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In addition to this methodology, the authors suggest another approa
h inspired by

spe
tral graph partitioning. Instead of operating on one 
on�guration at a time, the user


an maintain several 
on�gurations w

h1i

;w

h2i

; : : : ;w

hmi

simultaneously. The user 
an then

perform the following two steps until w

h1i

a
hieves a �xed point:

1. Update w

hii

 f

�

w

hii

�

for i = 1; 2; : : : ;m.

2. Update the set of ve
tors

�

w

h1i

;w

h2i

; : : : ;w

hmi

	

to be orthonormal.

The se
ond step in whi
h the ve
tors are made orthonormal 
an introdu
e negative weights

into the 
on�gurations; the authors 
laim that separating the positive weight nodes from the

negative weight nodes in the various 
on�gurations 
an result in an informative partition of

the data. They term 
on�guration w

h1i

after iteration the \prin
ipal basin", and the others

\non-prin
ipal basins."

This approa
h shows several promising features. It 
onverges qui
kly; generally less

than 20 iterations are required in most of the examples in the paper. The authors also

demonstrate that it 
an identify \
lusters" even in the presen
e of irrelevant �elds and

large numbers of randomly generated \noise" inputs. Also, the non-prin
ipal basins 
an

apparently be used to separate multiple 
lusters within the same input set.

Nevertheless, this approa
h has several weaknesses. The most basi
 is the 
urrent la
k of

both theoreti
al and pra
ti
al understanding of the behavior of the algorithm. Theoreti
ally,


onvergen
e is not guaranteed with most 
ombining operators, and there are few results


hara
terizing exa
tly what types of 
lusters may be identi�ed by this method. Partially

be
ause of the la
k of theoreti
al understanding, there is no 
learly de�ned methodology

to use this approa
h on pra
ti
al 
lustering algorithms. The authors allude to \masking"

and \augmenting" 
ertain terms in the 
ombining operator, but do not provide insight into

when or how to perform these modi�
ations. They also provide little in the way of insight

on how to 
hoose the right 
ombining operator or initial state for a spe
i�
 task. Until

these issues are addressed, this approa
h is likely to be little more than a 
uriosity item.

Additionally, the fa
t that the approa
h deals only with 
ategori
al data 
an be a draw-

ba
k. Categori
al data is more general than numeri
al data, be
ause even numeri
al ve
tors


an be treated as 
ategori
al data. However, doing so dis
ards useful similarity/distan
e

information, and should probably be avoided if possible. The next se
tion des
ribes a graph-

based approa
h, whi
h unlike the papers 
onsidered so far, 
an deal with any type of data

for whi
h there is a well-de�ned notion of similarity.

2.3 Ben-Dor and Yakhini: Clique Graphs

Clustering has re
ently be
ome popular in 
omputational biology as a te
hnique for an-

alyzing DNA mi
roarray data [8, 3, 19℄. A pair of re
ent papers, one by Ben-Dor and
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Yakhini [3℄ the other by Hartuv et. al. [19℄, stand out in this literature be
ause they de-

s
ribe novel 
lustering algorithms that 
ould potentially be useful for many appli
ations.

The papers 
ontain many similar ideas, but this se
tion will fo
us ex
lusively on the work

by Ben-Dor and Yahkini.

Underlying Ben-Dor and Yahkini's approa
h is a model of input 
alled the 
orrupted


lique model. The basi
 idea of this model is that ideally, all elements within ea
h 
luster

should be similar to one another, and not similar to any elements of other 
lusters. Hen
e,

the similarity graph for the data should appear as a set of vertex-disjoint 
liques; this type

of graph is 
alled a 
lique graph. In pra
ti
e, however, the similarity relation is usually

approximate, so the a
tual similarity graph derived from the data has some extra and some

missing edges in it when 
ompared to the ideal similarity graph. In the 
orrupted 
lique

model, one assumes that the input is a 
lique graph that has been 
orrupted by adding

ea
h non-existing edge with probability � and removing ea
h existing edge with probability

�. The goal of the 
lustering algorithm is thus to �nd the original 
lique graph given the


orrupted version.

Ben-Dor and Yakhini present two algorithms to a

omplish this task. The �rst is a

theoreti
al algorithm, about whi
h they prove several performan
e results. The se
ond is a

pra
ti
al heuristi
 implementation based on the ideas of the theoreti
al algorithm.

Several de�nitions are required to des
ribe the theoreti
al algorithm.

1

Suppose that

V denotes the set of verti
es in the input graph, and V is a union of disjoint sets so

V = E

1

[E

2

[� � �[E

k

where ea
h E

i

represents a 
luster. Suppose that for v 2 V , C(v) = i

if and only if v 2 E

i

, so C(v) is the label of the 
luster whi
h 
ontains v.

A 
ore V

0

of V is de�ned as V

0

= E

0

1

[ E

0

2

[ � � � [ E

0

k

, where ea
h E

0

i

is a non-empty

subset of E

i

. The 
ore V

0


lassi�es an input v 2 V � V

0

with the following fun
tion:

C

V

0

(v) = max

1�i�k

deg(v;E

0

i

)=jE

0

i

j: (2.5)

Intuitively, C

V

0

(v) represents the 
luster whi
h appears to 
ontain v based only on the

similarity of v to elements in the 
ore. Hen
e, if C

V

0

(v) = C(v), then V

0


orre
tly 
lassi�es

v. The essen
e of the 
lustering problem in this approa
h is to identify a small 
ore whi
h


orre
tly 
lassi�es all of the input elements.

The theoreti
al algorithm relies upon the following result, stated non-te
hni
ally here

for brevity.

Result 2.3.1 Let m denote the size of the smallest 
luster in the input. If � is not too

large and m is not too small, then with high probability a random small subset of V 
ontains

a 
ore whi
h 
orre
tly 
lassi�es all inputs.

Based on this result, the theoreti
al algorithm 
an be summarized as follows:

1

In order to be more 
onsistent with the other se
tions, the notation in this se
tion has been 
hanged

signi�
antly from that in the original paper.
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1. Consider a small subset V

0

of V .

2. Consider all ways of partitioning V

0

into k non-empty 
lusters. Ea
h su
h partition

is 
alled a 
ore 
andidate.

3. With ea
h 
ore 
andidate, 
lassify all of the remaining points. Keep the 
lassi�
ation

whi
h results in the 
lique graph most similar to the input graph.

The pra
ti
al algorithm, whi
h the authors 
all Cast, works slightly di�erently. It

requires no prior knowledge of the number of 
lusters, and avoids brute-for
e enumeration

of 
ore 
andidates. It takes as input a similarity fun
tion s : V �V ! [0; 1℄ and a 
oeÆ
ient

t and de�nes the aÆnity a(v;E) of an element v to a 
luster E as

a(v;E) =

X

u2E

s(u; v): (2.6)

An element v is said to have high aÆnity for E if a(v;E) � tjEj; otherwise it has low

aÆnity for E. The algorithm operates by 
onstru
ting one 
luster at a time. In general,

it alternates between adding high aÆnity elements to a 
luster and removing low aÆnity

elements. When this pro
ess stabilizes, the 
luster is 
onsidered �nished, and a new 
luster

is started. The pro
ess stops when all elements have been assigned to a 
luster.

The authors present results of the pra
ti
al algorithm on both simulated and real bio-

logi
al data; the results on simulated data are impressive in terms of a

ura
y, but do not

report the running time or storage requirements of the algorithm. Hen
e, the s
alability

of the method is diÆ
ult to determine. However, the 
on
ept of identifying a high-quality

\
ore" with a small number of elements whi
h 
an be used to 
lassify the remaining points

hints at a useful way of s
aling the algorithm: use a relatively small set of elements to

generate the 
ore, then use a simpler strategy to 
lassify the remaining inputs and adjust

the 
lusters as needed. A similar strategy has been su

essfully applied in the data mining


ommunity in systems su
h as Clarans [28℄ and Bir
h [39℄.

Otherwise, the algorithm seems very appealing for data whose similarity patterns �t

the 
orrupted 
lique model. However, it is important to note that by assuming a similarity

matrix as input, the authors have avoided addressing issues su
h as how to sele
t whi
h

attributes to use for 
lustering and how to represent them to the algorithm. The next se
tion

des
ribes another general 
lustering algorithm that addresses these and other pragmati



on
erns.

2.4 Agrawal, Gehkre, et. al.: Subspa
e Clustering

This se
tion des
ribes the paper \Automati
 Subspa
e Clustering of High Dimensional

Data for Data Mining Appli
ations" by Agrawal, Gehrke, Gunopulos, and Raghavan [1℄.

The paper des
ribes the Clique 
lustering algorithm, whi
h is targeted spe
i�
ally at data
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mining large databases. In parti
ular, the authors identify three goals for pra
ti
al data

mining systems and argue that Clique satis�es all of them. These goals are summarized

below:

E�e
tive Treatment of High Dimensionality: Ea
h item in a database may have a

large number of attributes, many of whi
h may be irrelevant or misleading with respe
t

to the formation of 
lusters.

Interpretability of Results: Many appli
ations require that the algorithm produ
e a

simple \summary" of ea
h 
luster for the user.

S
alability and Usability: The 
lustering algorithm must be fast and easy to use even

on large databases, and be insensitive to noise and to the order in whi
h the data is

read.

The Clique system takes a three step approa
h to 
lustering. First, a set of \subspa
es"

is 
hosen in whi
h to 
luster the data. Then, 
lustering is performed independently in

ea
h subspa
e. Finally, a 
ompa
t summary of ea
h 
luster is generated in the form of a

disjun
tive normal form (DNF) expression.

Suppose the input is a set of n d-dimensional numeri
al

2

ve
tors from the spa
e A = A

1

�

A

2

�� � ��A

d

, where ea
h A

i

is an interval. Suppose furthermore that ea
h A

i

is partitioned

into � subintervals, where � is a user-supplied parameter. Applying su
h partitions in the

original d-spa
e divides the spa
e into a set of d-dimensional axis-aligned re
tangles whi
h

are termed regions by the authors. A region is termed dense if the proportion of input

ve
tors 
ontained within the region ex
eeds � , another user-supplied parameter.

Now 
onsider a graph in whi
h the verti
es are dense regions, and there is an edge

between verti
es if the 
orresponding regions in spa
e share a fa
e. A 
luster 
an then be

su

in
tly de�ned as a 
onne
ted 
omponent in this graph. Also, observe that a region 
an

be des
ribed simply as a 
onjun
tion of range 
he
ks in ea
h of the dimensions; hen
e, a


luster 
an be des
ribed as a disjun
tion of the 
onjun
tions des
ribing the regions whi
h


omprise it.

These de�nitions are suÆ
ient to des
ribe how the authors perform 
lustering in the

full-dimensional input spa
e. First, they identify the dense regions, then use the above

graph representation to �nd the 
lusters. Se
ond, a DNF formula is generated for ea
h


luster by taking a disjun
tion of the des
riptions of ea
h region in the 
luster and then

heuristi
ally simplifying the resulting expression.

However, the authors are not 
ontent to perform 
lustering only on the full-dimensional

data; they also want to 
onsider what they 
all the subspa
es of the original data. Spe
if-

i
ally, the input spa
e A has 2

d

subspa
es whi
h 
an be formed by sele
ting all possible

2

The authors show that the method 
an be modi�ed to handle 
ategori
al data, but presenting it in the


ontext of numeri
al data is more intuitive.
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subsets of the original dimensions to represent the input data. During a prepro
essing step,

the authors use an algorithm to identify every subspa
e whi
h 
ontains at least one dense

region. The 
lustering stages de�ned above are then run separately on ea
h su
h subspa
e.

Be
ause it may have to 
onsider every possible subspa
e of the original dimensions, this pre-

pro
essing step takes exponential time in the number of dimensions. However, the authors

argue that using various tri
ks and heuristi
s one 
an keep the a
tual time \reasonable" on

real data.

Instead of relying on subspa
es, traditional approa
hes to dimensional redu
tion have

relied upon singular value de
omposition of the original data [7, 14℄. The idea is that the

data 
an be transformed to the 
oordinate system de�ned by its eigenve
tors, and then

those axes 
orresponding to small eigenvalues 
an be dis
arded. The authors argue that

this approa
h 
ompli
ates the analysis of the �nal 
lusters, sin
e they are formed in terms

of linear 
ombinations of the original input values. They also demonstrate several situations

in whi
h \obvious" 
lusters are obs
ured by the SVD approa
h.

The main 
ontribution of this paper seems to lie in its 
on
rete de�nitions of the desirable

properties of approa
hes to data mining, and the unique 
on
ept of sear
hing for 
lusters

in the subspa
es of the input set. However, the spe
i�
 approa
h taken by Clique is easily


riti
ized. It makes use of an exponential time algorithm to analyze the subspa
e stru
ture.

In addition, the parameters � and � seem obs
ure, diÆ
ult to 
hoose, and potentially

limiting. For example di�erent 
lusters may have di�erent \densities", making a single

value of � for the whole data set impra
ti
al, and using the wrong value 
an obviously be

disastrous. Similarly, di�eren
es in the distributions in ea
h dimension may 
all for di�erent

optimal values of �. On the other hand, adding even more parameters su
h as a separate

value of � for ea
h dimension simply adds to the diÆ
ulty of tuning the algorithm for a

data set.

3 Analysis and Con
lusions

3.1 Choosing a Clustering Algorithm

Choosing a 
lustering algorithm for a parti
ular problem 
an be a daunting task. Be
ause


lustering has been addressed in a wide variety of dis
iplines, it 
an be hard to even �nd the

most relevant approa
hes to a parti
ular problem. This diÆ
ulty is exa
erbated by the fa
t

that di�erent dis
iplines use di�erent terminology and basi
 de�nitions to des
ribe their

approa
hes.

Below is a list of 
riteria whi
h is 
ru
ial to 
hoosing a 
lustering algorithm. In
luded

in the des
ription of ea
h 
riterion is an analysis of whi
h 
lustering algorithms dis
ussed

in this paper best addresses the various situations whi
h 
an arise under ea
h 
riterion.

The astute reader will noti
e that there are still tradeo�s involved in 
hoosing a 
lustering

approa
h; even analyzing a 
lustering problem with respe
t to the 
riteria below may not
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yield a single \best" algorithm to 
hoose. The details of the dis
ussion below is summarized

in Figure 3.

Data and Cluster Model: Perhaps the most important 
riterion for mat
hing an in-

stan
e of a 
lustering problem to a 
lustering algorithm is the nature of the data and

the anti
ipated 
lusters. As previously noted, many 
lustering algorithms assume a


ertain type of input su
h as numeri
al input in the 
ase of k-means or 
ategori
al

input as in Gibson's paper. Others require the availability of a distan
e metri
 or

similarity measure for the data. Similarly, many algorithms impli
itly assume that

the 
luster stru
ture has 
ertain 
hara
teristi
s. For example, in the 
ase of k-means

the 
lusters are assumed to be spheri
al, and in the 
ase of single-link hierar
hi
al


lustering the 
lusters are assumed to be \well separated" so that in
orre
t links are

not made.

Analysis based on these ideas 
an be applied to the algorithms in Se
tion 2. If the

data is numeri
al and the 
lusters are believed to be spheri
al or ellipsoidal, then

approa
hes based on mixture models may be appropriate. On the other hand, if

the data is non-numeri
al and/or little is known a priori about the geometry of the


lusters, one of the graph-based approa
hes may be more appropriate.

In general, 
ategori
al data is best handled by the approa
hes of Ben-Dor and Gibson.

The former is probably the best possibility when a well-de�ned notion of similarity is

available for the data in question, while the latter is a better heuristi
 approa
h for

\exploring" data and �nding 
lusters whi
h arise from the 
o-o

urren
e of 
ertain


ategori
al values.

Mixed data is handled best by the approa
hes of Ben-Dor and Agrawal. Ben-Dor's

more rigorous approa
h on
e again has the advantage in the presen
e of a known

similarity measure for the data, whereas Agrawal's approa
h is best used when it is

un
lear whi
h attributes of the data should be examined while 
lustering.

The most general 
ase, in whi
h little is known about the data or the 
lusters, is

not handled well by any of the algorithms sin
e they all require that the user have

suÆ
ient knowledge to 
hoose appropriate input parameters. This unfortunate 
ase

is dis
ussed more fully in Se
tion 3.2 below.

S
alability: Despite the ongoing exponential in
reases in the power of 
omputers, s
al-

ability remains still a major issue in many 
lustering appli
ations. In 
ommer
ial

data mining appli
ations, the quantity of the data to be 
lustered 
an far ex
eed the

main memory 
apa
ity of the 
omputer, making both time and spa
e eÆ
ien
y 
rit-

i
al; this issue is addressed by 
lustering systems in the database 
ommunity su
h

as Bir
h [39℄. In other 
ases su
h as 
lustering algorithms imbedded within World
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Wide Web sear
h engines, time eÆ
ien
y is imperative be
ause sear
h engine users

want results very qui
kly.

S
alability is not dire
tly addressed in Ban�eld or Ben-Dor's papers, while the other

two papers present empiri
al results showing that their algorithms 
an handle large

input sets, although the time required by Agrawal's approa
h grows qui
kly with the

number of dimensions of the input. Statisti
al mixture models often require quadrati


spa
e and the EM algorithm 
onverges relatively slowly, making s
alability an issue.

Ben-Dor's theoreti
al algorithm makes use of sampling to redu
e the amount of work

needed to form the \
ores" of ea
h 
luster, but the pra
ti
al algorithm does not use of

this methodology. Of 
ourse, sampling 
an be used to s
ale any 
lustering algorithm;

this idea will also be mentioned again in Se
tion 3.2.

Noise: While traditional methods su
h as those des
ribed in Se
tion 1 tend to ignore

the problem of noise, all of the algorithms presented in Se
tion 2 deal with noise in

some way or another. In the mixture model approa
h, noise is modeled as a Poisson

pro
ess and the 
lustering pro
edure expli
itly labels some inputs as noise. In the

dynami
al systems and subspa
e approa
hes, noise points are simply left out of the


lusters. Spe
i�
ally, in the former approa
h the authors 
laim that these elements

do not a
hieve high enough weights to be pla
ed in 
lusters, while in the latter noise

elements tend to fall outside \dense regions" and are thus ignored. Finally, Ben-Dor's

system does not spe
i�
ally address the issue of noise, but under the 
lique graph

model, noise points will tend to fall into extremely small 
lusters (often singletons)

whi
h 
an subsequently be ignored.

Result Presentation: In many pra
ti
al 
lustering appli
ations, it is useful if a su

in
t

\summary" of ea
h 
luster 
an be given to the user. All of the systems within this

paper ex
ept Ben-Dor's have this ability. Ban�eld's method generates a 
entroid and


ovarian
e matrix for ea
h 
luster, Gibson's dynami
al system identi�es a set of high-

weight values around whi
h ea
h 
luster is formed, and Agrawal's approa
h produ
es

a DNF expression summarizing ea
h 
luster. Perhaps a post-pro
essing phase 
ould

be added to Ben-Dor's algorithm to 
hoose a representative \median element" for

ea
h 
luster.

3.2 Future Dire
tions for Clustering Resear
h

As the previous se
tion illustrates, one of the major 
hallenges in using a 
lustering algo-

rithm on a spe
i�
 problem lies not in performing the 
lustering itself, but rather in 
hoosing

the algorithm and the values of the asso
iated parameters. Ea
h of the papers dis
ussed in

Se
tion 2 
ontain enough positive empiri
al results that it is easy to 
on
lude that 
urrent
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Approa
h Data S
ales Noise Parameters

Mixture models Numeri
al Poorly

Models noise as a

Poisson pro
ess

and expli
itly

identi�es inputs

as noise.

X

The input set with

dimensions and

units sele
ted

appropriately

k

The number of


lusters

�

The model to be

used and its


orresponding

parameters

Dynami
al systems Categori
al Well

The nature of the

dynami
al system

prevents noisy

inputs from

gaining high

weight

T the input set

w

The initial 
on�g

(or set of initial


on�gs)

�

The 
ombining

operator

Clique graphs General Unknown

Noise points end

up in small


lusters

S A similarity matrix

t

The \aÆnity


oeÆ
ient"

Subspa
e 
lustering General

Well with

number of

inputs but very

poorly with

number of

dimensions

Noise points are

those whi
h lie

outside \dense"

regions

T

The input set with

units sele
ted

appropriately

�

The number of

partitions per

dimension

�

The \density


uto�"

Figure 3: Summary of the relevant features of the 
lustering algorithms from Se
tion 2.
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lustering algorithms do a good job when run on appropriate data with the appro-

priate parameters. It is 
hoosing the algorithm and the parameters that present the


hallenge; in parti
ular, a qui
k s
an of the \Parameters" 
olumn in Figure 2 demonstrates

that 
urrent approa
hes often rely on non-intuitive parameters whi
h may be diÆ
ult for

even the informed user to sele
t.

This leads to the 
on
lusion that there are three general 
atagories of 
lustering algo-

rithms. First, there is 
lassi�
ation in the presen
e of prior knowledge about the


lusters; this is often 
alled \supervised learning" and is not examined dire
tly in this pa-

per. Se
ond, there is 
lassi�
ation to test a hypothesis. In this instan
e, the user

has formed a hypothesis that under a 
ertain set of assumptions about the data, the data


an easily be organized into distin
t 
lusters. This hypothesis is the basis for sele
ting an

appropriate 
lustering algorithm, data representation, and set of algorithm parameters. If

the hypothesis is valid then the algorithm should produ
e \good 
lusters"; otherwise the

hypothesis requires modi�
ation. It is at this type of 
lustering that the methods in this

paper ex
el.

Finally, there is 
lassi�
ation to explore a data set, whi
h hereafter will be referred

to as data mining. In this 
ase the user has no a priori assumptions about the data, but

wants to know if it falls into \meaningful groups" (a term for whi
h the user may not

even have a spe
i�
 de�nition). Data mining is 
urrently a trendy appli
ation of 
lustering

te
hnology, but very little work has been done to gra
efully eliminate �xed input parameters

to 
lustering algorithms. Thus, most data mining approa
hes impli
itly require the user to

alternate between running the 
lustering algorithm, modifying the parameters, and 
hoosing

the results whi
h seem \best."

This leads to the following set of proposals for 
ontinuing resear
h in 
lustering, and in

parti
ular data mining:

� Gra
efully eliminate the need for a priori assumptions about the data. An obvious


andidate for elimination is �xed numeri
al inputs (su
h as � in Agrawal's subspa
e


lustering approa
h). Obviously, one 
an de�ne a notion of output quality, as Ban�eld

and Raftery have done with their AWE statisti
, and then iterate over many possible

parameter values sear
hing for a maximum. This trivially 
an eliminate the need for

�xed inputs, at the 
ost of a potentially large in
rease in running time. More intelligent

strategies than brute-for
e sampling to 
hoose parameters would be helpful.

Additionally, 
urrent 
lustering algorithms make impli
it assumptions about the input

data. Common examples of su
h assumptions are that the units in ea
h dimension are

s
aled appropriately, that the prede�ned notion of distan
e/similarity is ideal, and/or

that the set of data attributes used for 
lustering are 
orre
t (although the approa
hes

by Gibson and Agrawal are notable for attempting to avoid this assumption). An

interesting proposal would be to explore useful ways to expli
itly parameterize these

assumptions and allow the 
omputer to sear
h for good spe
i�
 
hoi
es. For example,
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the 
omputer 
ould be allowed to sele
t whi
h dimensions of the data to use in the

similarity 
al
ulation, or to 
hoose whether or not to normalize the data in some

dimension.

� Use sampling to improve eÆ
ien
y. Theoreti
ally-founded 
lustering algorithms are

often dismissed as too ineÆ
ient to be used in pra
ti
e. This problem will be exa
er-

bated if the previous proposal is followed and the 
omputer is for
ed to sear
h over

an even broader array of 
hoi
es in the pursuit of \good 
lustering." The theoreti
al

results of Ben-Dor show that with a good 
hoi
e of a similarity measure, forming a set

of \
luster 
ores" and then 
lassifying the remaining inputs is a very e�e
tive strategy

as long as the sample size is big enough to get representatives from every important


luster. This strategy 
ould be pursued to help \s
ale up" 
omputationally intensive


lustering methods.

3.3 Con
lusion

This paper has des
ribed four re
ently-developed approa
hes to 
lustering. Ea
h has both

positive and negative aspe
ts, and ea
h is suitable for di�erent types of data and di�erent

assumptions about the 
luster stru
ture of the input.

However, all of the algorithms still rely to some extent on rigid assumptions about the

data whi
h must be provided by the user. These assumptions appear both expli
itly as

�xed numeri
al parameters and impli
itly in the way whi
h the user represents the input

to the algorithm. While prior knowledge of the appli
ation 
an help the user 
hoose appro-

priate assumptions, oftentimes the user must still alternate between running the 
lustering

algorithm and updating the assumptions based on the result.

The paper 
on
ludes by suggesting a new general strategy for 
lustering as a method of

data mining. In this strategy, the assumptions required by the various 
lustering algorithms


an be expli
itly parameterized, allowing the 
omputer more freedom to sear
h for the best

way to 
luster the data. To 
ompensate for the broadening of sear
h spa
e of possible


lusterings, it is re
ommended that an implementation of this strategy use sampling to

redu
e the number of inputs if ne
essary. It is hoped that future work will lead to a spe
i�



lustering algorithm based on these ideas that 
an then be validated on a
tual data.
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