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Abstract

Clustering is a useful exploratory technique for the arialgé gene expression data. Many differ-
ent heuristic clustering algorithms have been proposelisncontext. Clustering algorithms based on
probability models offer a principled alternative to hetid algorithms. In particular, model-based clus-
tering assumes that the data is generated by a finite mixtunedrlying probability distributions such
as multivariate normal distributions. This Gaussian nrgtmodel has been shown to be a powerful tool
for many applications. In addition, the issues of selectirigood” clustering method and determining
the “correct” number of clusters are reduced to model selegroblems in the probability framework.

We benchmarked the performance of model-based clustennggeeral synthetic and real gene
expression data sets for which external evaluation caiteere available. The model-based approach has
superior performance on our synthetic data sets, conslistiecting the correct model and the right
number of clusters. On real expression data, the modedb@sgroach produced clusters of quality
comparable to a leading heuristic clustering algorithnt, veith the key advantage of suggesting the
number of clusters and an appropriate model. We also ass#ssalegree to which these real gene
expression data sets fit multivariate Gaussian distribstiooth before and after subjecting them to
commonly used data transformations. Suitably chosenfoamations seem to result in reasonable fits.
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1 Introduction and Motivation

DNA microarrays offer the first great hope of studying theatgwn of many genes simultaneously [Lander, 1999].
Large amounts of gene expression data have been generateddaychers. There is a great need to de-
velop analytical methodology to analyze and to exploit tiferination contained in gene expression data
[Lander, 1999]. Because of the large number of genes anathplexity of biological networks, clustering

is a useful exploratory technique for the analysis of gempeession data.

A wide range of clustering algorithms have been proposeddtyae gene expression data, including hi-
erarchical clustering [Eisegt al., 1998], self-organizing maps [Tamagbal.,, 1999], k-means [Tavazort al., 1999],
graph-theoretic approaches (for example, [Ben-Dor andhiviakl999] and [Hartuet al,, 1999]), and sup-
port vector machines [Browet al,, 2000]. Success in applications has been reported for mastedng
approaches, but so far no single method has emerged as thechoéchoice in the gene expression analysis
community. Most of the proposed clustering algorithms argdly heuristically motivated, and the issues
of determining the “correct” number of clusters and chogsirfgood” clustering algorithm are not yet rig-
orously solved. [Eisert al, 1998] and [Tamayet al., 1999] used visual display to determine the number
of clusters. [Yeunget al,, 2001] suggested clustering the data set leaving out oneriexgnt at a time and
then compared the performance of different clusteringrélyns using the left-out experiment. The gap
statistic [Tibshirankt al.,, 2000] estimates the number of clusters by comparing withister dispersion to
that of a reference null distribution.

Clustering algorithms based on probability models offeriagipled alternative to heuristic-based algo-
rithms. Model-based approach assumes that the data isageddry a finite mixture of underlying probabil-
ity distributions such as multivariate normal distribuigo The Gaussian mixture model has been shown to
be a powerful tool for many applications (for example, [Balafiand Raftery, 1993], [Celeux and Govaert, 1993],
[McLachlan and Basford, 1988]). With the underlying proitigbmodel, the problems of determining the
number of clusters and of choosing an appropriate clugteniethod become statistical model choice prob-
lems ([Dasgupta and Raftery, 1998], [Fraley and Rafter98]@ This is a great advantage over heuristic
clustering algorithms, in which there is no establishedhoétto determine the number of clusters or the
best clustering method. Details of the model-based appraad the model selection methodologies are
discussed in Section 2.

Since the model-based approach is based on the assumptaihéhdata are distributed according to
a mixture of Gaussian distributions, we assess whetheagssmption holds before applying the model-
based approach. Moreover, the raw gene expression datat datigfy the Gaussian mixture assumption
as we will see in Section 4. Hence, we explore different fiansations of gene expression data sets and
assess the extent to which the transformed data sets shtisfiprmality assumption.

In Section 6, we show that the existing model-based clugjemplementations produce higher quality
clustering results than a leading heuristic approach wherdata set is appropriately transformed. The
existing model-based clustering methods were designedpplications other than gene expression, and
yet they perform well in this context. We therefore feel thaith further refinements specifically for the
gene expression problem, the model-based approach hastdmial to become the approach of choice for
clustering gene expression data.
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2 Mode-based clustering approach
2.1 The model-based framework

The mixture model assumes that each component (group) afétiaeis generated by an underlying proba-
bility distribution. Suppose the dagaconsist of independent multivariate observatignsys, ..., yn. Let
G be the number of components in the data. The likelihood f@ntixture model is

n G
Larx(01,-..,06ly) = [1 D2 mfe(yiltw), 1)
i=1h=1

wheref;, andfy are the density and parameters of ttie component in the mixture, ang is the probability
that an observation belongs to tklh component4, > 0 andeG:1 e = 1).

In the Gaussian mixture model, each comporieig modeled by the multivariate normal distribution
with parameterg (mean vector) ani;, (covariance matrix):

exp{—3(yi — ) Sy (yi — ) }
det(27Xy) '

fe(yilpk, Zx) = 2

Geometric features (shape, volume, orientation) of eantpomentt are determined by the covariance
matrix 3. [Banfield and Raftery, 1993] proposed a general frameworkrépresenting the covariance
matrix in terms of its eigenvalue decomposition

Yk = MDAy D}, (3

whereD,, is the orthogonal matrix of eigenvectors, is a diagonal matrix whose elements are proportional
to the eigenvalues of, and )\, is a scalar. The matri¥);, determines the orientation of the component,
Ay, determines the shape of the component, &ndetermines its volume.

Allowing some but not all of the parameters in Equation (3)doy yields an expressive array of models
within this general framework. In this paper, we considee fuch models, outlined below. Constraining
Dy A DY to be the identity matrix corresponds to Gaussian mixtures in which each componephavi-
cally symmetric. Theequal volume sphericahodel (denoted by El), which is parameterizeddy= A1,
represents the most constrained model under this framewiikthe smallest number of parameters. The
unequal volume sphericahodel (VI1), ¥, = ArI, allows the spherical components to have different vol-
umes, determined by a differeif, for each component. Theunconstrainednodel (VVV) allows all of
Dy, A and ), to vary between components. The unconstrained model hasitaatage that it is the most
general model, but has the disadvantage that the maximunberaf parameters need to be estimated,
hence, requiring relatively more data points in each corapbrirhere are a range of elliptical models with
other constraints and fewer parameters. For example, hgtparameterization;, = ADAD?T, each com-
ponent is elliptical, but all have equal volume, shape aiehtation (denoted by EEE). All of these models
are implemented in MLUST [Fraley and Raftery, 1998]. [Celeux and Govaert, 1995] alsosidered the
model in whichX; = \; By, whereBy, is a diagonal matrix withB;| = 1. Geometrically, the diagonal
model corresponds to axis-aligned elliptical components. the experiments reported in this paper, we
considered the equal volume spherical (El), unequal volsjpmerical (V1), EEE and unconstrained (VVV)
models as implemented in M usT [Fraley and Raftery, 1999], and the diagonal model as impleged by
[Muruaet al., 2001].

In both the McLUST implementation and the diagonal model implementationybdel parameters are
estimated by the EM algorithm, in which expectation (E) stepd maximization (M) steps alternate. In the
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E-step, the probability of each observation belonging theduster is estimated conditionally on the current
parameter estimates. In the M-step, the model parametersséimated given the current group member-
ship probabilities. When the EM algorithm converges, eda$eovation is assigned to the group with the
maximum conditional probability. (“Soft clustering,” inhich a data point may have a nonzero probability
of belonging to several clusters is a simple generalizatiom we do not pursue this here.) The EM algo-
rithm is usually initialized with a model-based hierar@iiclustering step [Dasgupta and Raftery, 1998],
[Fraley and Raftery, 1998].

The classical iterative k-means clustering algorithm{ fireposed as a heuristic clustering algorithm,
has been shown to be very closely related to model-base@iGhg using the equal volume spherical model
(El), as computed by the EM algorithm [Celeux and Govaer®2]1.9K-means has been successfully used
for a wide variety of clustering tasks, including clusteriof gene expression data. This is not surprising,
from the model-based perspective, given k-means’ inteapoa as an approximate estimation method for
a parsimonious model of simple independent Gaussians, alri@d arises commonly in many contexts.

Nevertheless, it should also be unsurprising that k-meanstithe right model in many other circum-
stances. For example, the unequal volume spherical modeh{&y be more appropriate if some groups
of genes are much more tightly co-regulated than othersil&lyn the diagonal model also assumes that
experiments are uncorrelated, but allows for unequal nees in different experiments, as might be the
case in a stress-response experiment or a tumor/normalecop, say. We have observed considerable
correlation between samples in time-series experimeatgled with unequal variances. One of the more
general elliptical models may better fit the data in thesexa®ne of the key advantages of the model-
based approach is the availability of a variety of model$ $in@oothly interpolate between these scenarios
(and others). Of course, there is a tradeoff in that the mere@l models require more parameters to be
estimated, and choice of which model to use may sadrhoc A second key advantage of model-based
clustering is that there is a principled, data-driven wagpproach the latter problem. This is the topic of
the next subsection.

2.2 Mode selection

Each combination of a different specification of the cowat@matrices and a different number of clusters
corresponds to a separate probability model. Hence, tHmpilistic framework of model-based clustering
allows the issues of choosing the best clustering algordhohthe correct number of clusters to be reduced
simultaneously to model selection problems. This is ingrurbecause there is a tradeoff between proba-
bility model (and the corresponding clustering methodyil anmber of clusters. For example, if one uses a
complex model, a small number of clusters may suffice, wisdfeame uses a simple model, one may need
a larger number of clusters to fit the data adequately.

Let D be the observed data, and, and M, be two different models with parametdtsandé, respec-
tively. Theintegrated likelihoods defined a®(D|My) = [ p(D |0, My)p(0x| My )d0, wherek = 1,2 and
p(0x| M) is the prior distribution of,. The integrated likelihood represents the probabilityt thetaD is
observed given that the underlying modeli&.. The Bayes factor [Kass and Raftery, 1995] is defined as
the ratio of the integrated likelihoods of the two modeéls,, By, = p(D|M;)/p(D|Ms). In other words,
the Bayes facto3;, represents the posterior odds that the data were distilag¢eording to model;
against model/, assuming that neither model is favored a prioriBlf, > 1, model M, is favored over
M,. The method can be generalized to more than two models. Thredifficulty in using the Bayes factor
is the evaluation of the integrated likelihood. We used gor@gmation called théayesian Information
Criterion (BIC) [Schwarz, 1978]:

21log p(D|My) = 21og p(D|0k, My) — vi log(n) = BIC), @)
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wherev;, is the number of parameters to be estimated in mddgl and 0 is the maximum likelihood
estimate for the parameter vector of modé}, 6. For discussion of its use and justification in the context
of model-based clustering, see [Fraley and Raftery, 200Qiitively, the first term in Equation 4, which
is the maximized mixture likelihood for the model, rewardsiadel that fits the data well, and the second
term discourages overfitting by penalizing models with nfoge parameters (the formal derivation of the
BIC approximation does not rely on this intuition). A largé(Bscore indicates strong evidence for the
corresponding model. Hence, the BIC score can be used toarenmpodels with different covariance
matrix parameterizations and different numbers of clgsteisually, BIC score differences greater than 10
are considered as strong evidence favoring one model oeghe@mnKass and Raftery, 1995].

2.3 Prior Work

We are aware of only two published papers attempting modsédh formulations of gene expression clus-
tering. [Holmes and Bruno, 2000] formulate a model that appdo be equivalent to the unconstrained
model defined above. [Barash and Friedman, 2001] define almsimdéar to the diagonal model above.
The main focus of both papers is incorporation of additidmawledge, specifically transcription factor
binding motifs in upstream regions, into the clustering wlpdnd so do not consider model-based cluster-
ing of expression profileper sein the depth or generality that we do. Our results are comgiaany to
those efforts.

3 Data sets

We used two gene expression data sets for which externalaial criteria were available, and three sets
of synthetic data to test the Gaussian mixture assumptidnt@arcompare the performance of different
clustering algorithms. We used the tectassor componento refer to a group in the external criterion. The
word clusterrefers to clusters obtained by a clustering algorithm.

3.1 Geneexpression data sets

The ovary data: A subset of the ovary data obtained by ([Schumetaal., 1999], [Schummer, 2000]) is
used. The ovary data set is generated by hybridizing randeeiected cDNA'S to membrane arrays. The
subset of the ovary data we used contains 235 clones ands24 tamples (experiments), some of which
are derived from normal tissues, and some from ovarian cafiicearious stages of malignancy. The 235
clones were sequenced, and discovered to correspond tferedifgenes. These 4 genes were represented
58, 88, 57, and 32 times on the membrane arrays, respectiWywould hope that clustering algorithms
would separate the clones corresponding to these fourdliffegenes. Hence, the four genes form the four
classes in this data.

Theyeast cell cycledata: The yeast cell cycle data [Clat al,, 1998] showed the fluctuation of expression
levels of approximately 6000 genes over two cell cycles (i tpoints). We used two different subsets
of this data with independent external criteria. The firdisat (the 5-phase criterion) [Clebal., 1998]
consists of 384 genes peaking at different time points spomeding to the five phases of cell cycle. Since the
384 genes were identified according to the peak times of gameeexpect clustering results to approximate
the five phases. Hence, we used the 384 genes with the 5-pitaser as one of our data sets. The second
subset (the MIPS criterion) consists of 237 genes correipgrio four categories in the MIPS database
[Meweset al, 1999]. The four categories (DNA synthesis and replicatiorganization of centrosome,
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nitrogen and sulphur metabolism, and ribosomal proteireewshown to be reflected in clusters from the
yeast cell cycle data [Tavazo al.,, 1999].

3.2 Synthetic data sets

Since real expression data sets are expected to be noish@ndlusters may not fully reflect the class in-
formation, we complemented our study with synthetic datawhich the classes are known. Modeling gene
expression data sets is an ongoing effort by many reseatcedt there is no well-established model to rep-
resent gene expression data yet. We used the three syrthttisets proposed in [Yeung and Ruzzo, 2001].
Each of the three synthetic data sets has different pregerBy using all three sets of synthetic data, we
hope to evaluate the performance of the model-based appiodiferent situations. The first two synthetic
data sets represent attempts to generate replicates ofdhedata set by randomizing different aspects of
the original data. The last synthetic data set is generatedduleling expression data with cyclic behavior.
In each of the three synthetic data sets, ten replicateseaergted. In each replicate, 235 observations and
24 variables are randomly generated.

Mixture of normal distributions based on the ovary data: Each class in this synthetic data is
generated according to a multivariate normal distributiotin the sample covariance matrix and the mean
vector of the corresponding class in the ovary data. The dizmach class in the synthetic data is the
same as in the real ovary data. This synthetic data set pesstite mean vector and the covariance matrix
between the experiments in each class, but it assumes ¢handerlying distribution of genes in each class
is multivariate normal.

Randomly resampled ovary data: The data for an observation in clasgwherec = 1,...,4) under
experiment; (wherej = 1,...,24) is generated by randomly sampling (with replacement) Kpeession
levels under experimerjtin the same classof the ovary data. The size of each class in this syntheti dat
set is again the same as in the real ovary data. This data egthdd assume any underlying distribution.
However, any possible correlation between experimentsgfample, the normal tissue samples may be
correlated) is not preserved due to the independent randompling of the expression levels from each
experiment. Hence, the resulting sample covariance neatdtthis randomly resampled data set tend to be
close to diagonal.

Cyclic data: This synthetic data set models cyclic behavior of genes difegrent time points. The
cyclic behavior of genes is modeled by the sine function. s€#a are modeled as genes that have similar
peak times over the time course. Different classes haverdiit phase shifts and have different sizes.
Let z;; be the simulated expression level of genender experimenj in this data set with ten classes.
Letz;; = 6; + Aj * (s + Big(4,7)), wherep(i,j) = sin(% — wy, + €) [Zhao, 2000]. «; represents
the average expression level of genevhich is chosen according to the standard normal distabuts;

is the amplitude control for geng which is chosen according to a normal distribution with m8aand
standard deviation 0.5¢4(7, j) models the cyclic behavior. Each cycle is assumed to spame points
(experiments). k is the class number, and the sizes of the different classegeerated according to
Zipf's Law [Zipf, 1949]. Different classes are representddifferent phase shiftay;, which are chosen
according to the uniform distribution in the interv@l 27]. The random variable, which represents the
noise of gene synchronization, is generated accordingetstdmdard normal distribution. The parameter
A; is the amplitude control of conditiofy and is simulated according to the normal distribution waitban

3 and standard deviation 0.5. The quandifywhich represents an additive experimental error, is gdadr
from the standard normal distribution. Each observatiow]iis standardized to have mean 0 and variance
1.
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4 Data Transformations and the Gaussian mixture assumption

Before applying model-based clustering to gene expressdaia, we assessed the extent to which the
Gaussian mixture assumption holds. Since we do not expecexaression data to satisfy the Gaus-
sian mixture assumption, we explored the degree of noynalieach class after applying different data
transformations. In particular, we studied two types ohdednsformations: the Box-Cox transformations
[Box and Cox, 1964], and the standardization of each geneg@ae) to have mean 0 and standard deviation
1.

The Box-Cox transformation [Box and Cox, 1964] is a paraméamily of transformations frony to
yM) with parameten:

P
OV B e f 0 (5)
logy if A=0.

The Box-Cox transformation subsumes many commonly usedftsemations, including the log trans-
formation which is very popular for microarray data (for exae, [Speed, 2000]).

Standardizing each gene (or clone) to have mean 0 and stbdelaation 1 is another very popular data
transformation step before clustering, for example, [Teoret al., 1999] and [Tavazoiet al., 1999]. Note
that this standardization of subtracting the mean and idigily the standard deviation makes correlation
and Euclidean distance equivalent in the transformed ddta s

4.1 Methodology to test Gaussian mixture assumption

In order to test the Gaussian mixture assumption, gene ssipredata sets with external criteria in Sec-
tion 3.1 were used. We tested the multivariate normalitgaith classn each data set. There are large col-
lections of tests for multivariate normality. We used thdd@gerent approaches: goodness of fit tests based on
the empirical distribution function, e.g. [Aitchison, 88skewness and kurtosis tests, e.g. [Jobson, 1991],
and maximum likelihood estimation of the transformationapaeters, e.g. [Andrewst al., 1973].

Aitchison tests: [Aitchison, 1986] tested three aspects of the data for wasitite normality: the marginal
univariate distribution, the bivariate angle distribut@nd the radius distribution. Suppose a gene expression
data set has genes ang experiments. Since we are interested in clustering thesye¢hep experiments
are our variables. There are a totalpofests for each of the marginal distribution, a totalp@p — 1)/2
bivariate angle tests, and one radius test.

Let z;; be the expression level of gen@inder experimenf. Suppose the data set h@sclasses, and
classg hasn, genes }:ngl ng =n). Letji8 = [ﬁ,jg] and>y = [&,ij] (wherek,j =1,...,p) be the sample
mean vector and covariance matrix for clgss

i = wij/ng, (6)
=1
oy = > (@i — p)(wij — i)/ (ng — 1), ©)

i=1
In the marginal test, the normality of the marginal distribution of each experimh; is evaluated.
Let (-) denote the standard normal distribution function, and:fet=" ®{(z;; — if)/\/5%;} (where

i=1,...,ny). If thez;;'s are normally distributed in clagsunder experimen, the sorted values af in
ascending order should approximate the order statistiasuofform distribution over the interval (0,1).
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Three different forms of empirical distribution functiof&nderson-Darling, Cramer-won Mises, and
Watson) were used to measure departures of the seftedlues from the order statistics of the uniform
distribution. Assuming that! are the sorted values from clagsThe Anderson-Darling statistic is defined
asQa = —{227%, (21— 1){log 2{ +log(1—2) ., ;)} —ng}/n,. The Cramer-von Mises statistic is defined
asQc = Y10 {72! —(2i—1)/(2ny)}?+1/(12n,). The Watson statistic is defined@sy = Qc—ny(z—1)?
wherez = Z?ﬁl zJ /ng. Critical values of the empirical distribution functionstestatistics are given in
[Aitchison, 1986]. We used the critical values correspagdio the 1% significance level. For each class,
we computed the empirical distribution function test stats for each of the Anderson-Darling, Cramer-
won Mises, and Watson forms using thgs. If a given test statistic for experimeljtis greater than the
critical value, we say that the marginal distribution of esiment; shows departure from normality.

In thebivariate angle test, the bivariate normality of each pair of experimefits;) is evaluated. The
idea is that if a pair of variablgs:; , us) is circular normal, then the radian angle between the véaior the
origin (0,0) to(u1, u2) and theu, -axis is approximately uniform in the intervgl, 2=|. Since any bivariate
normal distribution can be reduced to a circular normalitistion by a suitable transformation, we applied
the transformation to each pair of experimefitsj) and tested the resulting angle for the uniform property.
Again, the empirical distribution function test statistiare used to measure the departure from the uniform
distribution.

In theradiustest, the radius of each gerién classg is defined as,; = (x; — ﬂg)T(ﬁlg)fl(xi — [i8),
wherex; is the vector of expression levels of genender allp experiments. Under the multivariate normal
assumption ok;’s, the radiiu;’s are approximately distributed a$(p). If we definez; as the sorted values
of F(u;), whereF is the distribution function of?(p), we can again use the empirical distribution function
test statistics to measure deviation from the uniform ithistion.

Skewness and Kurtosis: Skewness measures the amount of asymmetry in a distribuion a normal
distribution, the skewness is 0. Kurtosis measures theetdevhich the data are peaked or flat relative to

the normal distribution. For the standard normal distidoutthe kurtosis is 3. We computed the skewness
and kurtosis of each clagsin the data. Letn;, = (x; — ﬂg)r‘-"(ﬁ}g)_l(xr — (i8), wherei,r = 1,...,n,.
Multivariate skewness and kurtosis are definedbly, 5| mj. /n2 andy_;“, u?/n,, and there are dis-
tributions for both the multivariate skewness and kurt¢slardia, 1970]. A small p-value suggests the

multivariate normal assumption to be questionable.

Maximum likelihood estimation of the transformation parameters. The parametei in the Box-Cox
transformation in Equation 5 is estimated by maximum Ikedid using the observations [Andreetsal.,, 1973].
The estimated value of suggests both the scale on which the data are closest to litgrraad also the
extent to which the data on other scales deviate from notynali

4.2 Resultsof testing the Gaussian mixture assumption

We focused on the popular array data transformations: tieritbhmic and square root transformations and
the standardization to mean 0 and standard deviation 1. \Medpghe Aitchison tests and the skewness
and kurtosis tests to each class in the transformed ovaayathat the transformed yeast cell cycle data. Due
to the large number of test statistics from the Aitchisonst§® + p(p — 1)/2 + 1) * 3) for each class on
any data, only a summary of the Aitchison tests is presemtéiais technical report. In addition, we found
the maximum likelihood estimates of the transformatiorapsater for each class.

Geometrically, the standardization of subtracting the maad dividing by the standard deviation of
each observation puts the data points on the (p-2) dimeaissoinface of a (p-1)-dimensional sphere. More-
over, the covariance matrices of the standardized datasetingular. Hence, the skewness and kurtosis
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tests and the radius test (which involve the inverse of thargance matrix) are not applicable to the stan-
dardized data.

Ovary data: Table 1 shows the results of the Aitchison tests on each dbtiveclasses in the ovary data. In
the marginal test, if the test statistics of an experinjefnom all three empirical distribution functions are
greater than their corresponding critical values at 1 %iaamce level, we adopt the shorthand convention
of saying that experimentviolatesthe normality assumption. The colummin Table 1 shows the number
of violations from the 24 marginal tests on each class in tleyodata. Similarly, the columhb in Table 1

shows the number of violations fro 24 = 276 bivariate angle tests on each class in the ovary data. The

columnr has an entry 1 if the test statistics from all three empirgisiribution functions are greater than
their corresponding critical values at 1 % significancellavéhe radius test. Otherwise, the columhas an
entry 0. The results from Table 1 suggest that the squardrayaformation is closer to multivariate normal
than the log transformation. On the square root transfordad, the marginal test shows that only one
experiment (out of 24) deviates from normality in class Ini&irly, class 2 has 6 experiments, class 3 has 4
experiments and class 4 has 3 experiments that deviate flamgimal normality. None of the classes in the
square root transformed data shows any deviation in theiéieaangle or radius tests. On the standardized
data, the radius tests are not applicable, s@ t@umns for the standardized data are marked “NA” in Table
1.

class 1 class 2 class 3 class 4

m b r m b r m b r m b r

raw 0O 0 O 5 0 O 18 12 0 (4 1 O

log 9 0 O 14 12 0 (2 0 O 4 0 O

sqrt 1 0 O 6 0 O 4 0 O 3 0 O
standardized 3 0 NA|7 13 NA|6 O NA|5 2 NA

Table 1: Results of Aitchison tests on the ovary data.

class1 class2 class3 class/4
raw | skewnesg 0.844 0 0 1
raw | kurtosis | 0.999 0.001 0.31 1
log | skewnesg 0.002 O 0854 1
log | kurtosis | 0.826 0 0999 1
sgrt | skewness 0.768 0 0559 1
sgrt | kurtosis | 0.999 0.057 0.998 1

Table 2: p-values of skewness and kurtosis on the ovary data.

Table 2 shows the p-values of skewness and kurtosis for dash on the raw, log and square root
transformed ovary data. A small p-value indicates dewviatiipom the skewness and kurtosis criteria. From
Table 2, class 2 deviates from the skewness and kurtosisiarit the raw, log and square root transformed
data. On the other hand, class 4 does not violate the skewn&astosis criteria. Both the square root and
log transformations improve skewness in the raw data, leuliotp transformation makes class 1 skewed. To
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summarize, the skewness and kurtosis tests show the samad pieture as the Aitchison tests: the square

root transformation is relatively close to multivariatermmal.

class| A Lomaz(N) | Linaz(0.5)  Lonaz(0)
1 0.728 750 744 678

2 0.658 1195 1188 1060

3 0.405 1221 1219 1179

4 0.590 725 724 689

Table 3: Estimates of the transformation parameter for tlagyodata.

Table 3 shows the results of the maximum likelihood estiomatf the transformation parameters on
each of the four classes on the raw ovary dafg,,,(0.5) and L,,.,(0) are the maximum likelihood of
the square root and log transformations respectively FrabteT2, the optimal parameters for the Box-Cox
transformation X) lie between 0.40 and 0.73 for the four classes in the ovagy. @@omparing the maximum
likelihood values of the square root transformation to ¢hosthe log transformation shows that the square
root transformation is closer to the multivariate normatdbution in all four classes.

Yeast cell cycle data with the 5-phase criterion: Table 4 shows the results of the Aitchison tests on the
yeast cell cycle data with the 5-phase criterion. The redtdim Table 4 show that the log transformed yeast
cell cycle data is relatively close to the multivariate nafmistribution than the square root transformation.
With the log transformation, classes 1, 3, and 4 show no tlesidrom any of the marginal, bivariate angle
and radius tests. The only deviations from normality in tééa set are: class 2 shows deviation from
the radius test, and one experiment (out of 17) in class 5 shmwviation from marginal normality. The
Aitchison tests show that the log transformation greatlyagtes normality in all of the 5 classes: the raw
data shows significant deviations from the marginal, batarangle and radius tests in all of the 5 classes.
The standardized yeast cell cycle data is also much mores@@auhan the raw data, but not as much as the
log transformed data.

class 1 class 2 class 3 class 4 class 5
m b r m b r m b r m b r m b r
raw 17 49 1 17 136 1 |17 94 1 17 0 1 17 33 1
log O 0 O 0O O 1 0O 0 O 0O 0 O 1 0 O
sqrt 8 0 1 17 1 1 15 0 1 0O 0 O 7 0 O
standardized 5 0 NA|4 5 NA|1 O NA|1 O NA|2 O NA

Table 4: Results of Aitchison tests on the yeast cell cycta dath the 5-phase criterion.

Table 5 portrays a different picture than the Aitchisondeghe raw, square root and log transformed
data all show deviations from the skewness and kurtosisriitHowever, the log transformation seems to
show relatively less deviation.

Table 6 supports the conclusions from the other approadhesoptimal transformation is closer (in
terms of difference between Box-Cox power parameter) tddbdransformation than to than the square
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class1 class2 class3 class4 classbh
raw | skewnesg O 0 0 0 0
raw | kurtosis | O 0 0 0 0
log | skewness 0.051 O 0 0.046 O
log | kurtosis | 0.735 O 0 0.678 0.001
sqrt | skewnesg 0 0 0 0 0
sqrt | kurtosis | O 0 0 0.003 0.001

Table 5: p-values of skewness and kurtosis on the yeastyad data with the 5-phase criterion.

class| A Lomaz(N) | Linaz(0.5)  Linaz(0)
1 0.136 -4833 -4910 -4844
2 0.140 -9398 -9591 -9429
3 0.202 -4920 -4975 -4945
4 0.153 -3422 -3468 -3431
5 0.219 -3676 -3713 -3701

Table 6: Estimates of the transformation parameter for &ast/cell cycle data with the 5-phase criterion.

root transformation. The estimatasare between 0.14 and 0.22 for all 5 classes.

Yeast cell cycle data with the MIPS criterion: In general, the Aitchison tests, the skewness and kurtosis
tests, and the maximum likelihood estimation all show sampatterns to the 5-phase criterion: the log
transform is relatively more Gaussian than the square ranstormation (see Tables 7, 8 and 9). However,
class 4 (ribosomal proteins) shows significantly more dena from normality with very low p-values for
both the skewness and kurtosis tests using the log and sepadreansformations.

class 1 class 2 class 3 class 4
m b r m b r m b r m b r
raw 17 3 1 17 48 0 |17 2 1 9 0 1
log 0O 0 O 0O 0 O 4 0 1 17 67 1
sqrt 8 0 O 15 0 O 12 0 1 14 1 1
standardized 6 1 NA|2 0 NA|3 0 NA|15 28 NA

Table 7: Results of Aitchison tests on the yeast cell cycta ddth the MIPS criterion.

5 Independent Assessment of Clustering Results

The major contribution of this paper is the demonstratiothefpotential usefulness of the model-based ap-
proach, both in terms of the quality of the clustering resafid the quality of models selected using the BIC
criterion. We compared the performance of the model-bagprbach to CAST [Ben-Dor and Yakhini, 1999],
a leading heuristic-based clustering algorithm. [Yeehgl, 2001] compared the performance of many
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class1 class2 class3 class4
raw | skewness 0 0 1
raw | kurtosis | O 0.046 1
log | skewnesg 0.136 0.999 1
1
1

log | kurtosis | 0.896  0.999
sqrt | skewness 0 0.747
sgrt | kurtosis | 0.014 0.996 1

09000

Table 8: p-values of skewness and kurtosis on the yeastysad data with the MIPS criterion.

class| A Lomaz(N) | Linaz(0.5)  Linaz(0)
1 0.175 -3448 -3483 -3459
2 0.096 -1912 -1951 -1915
3 0.088 -808 -998 -969

4 0.308 -13188 | -13234 -13323

Table 9: Estimates of the transformation parameter for #astycell cycle data with the MIPS criterion.

heuristic-based clustering approaches, including sewesegarchical clustering algorithms, k-means, and
CAST, and concluded that CAST and k-means tend to produeévely high quality clusters. Since k-
means is closely related to the EM algorithm for the equaliva spherical model (El), we compared the
quality of clusters obtained from the model-based appraeachat of CAST using correlation as the sim-
ilarity metric. There is a summary of CAST in Appendix A. Inder to assess the clustering results and
the number of clusters inferred by the BIC scores indepdiyame used synthetic data sets in which the
classes are known and real gene expression sets with dxtateaa described in Section 3.

5.1 Measureof agreement

A clustering result can be considered as a partition of abjeto groups. Thus, comparing two clustering
results is equivalent to assessing the agreement of twitiggast The adjusted Rand index [Hubert and Arabie, 1985
assesses the degree of agreement between two partitioniiggiMand Cooper, 1986] recommended the
adjusted Rand index as the measure of agreement even wheamwognpartitions with different number of
clusters.

Given a set ofn objectsS = {Oi,...,0,}, supposelU = {uy,...,ur} andV = {vy,...,vc}
represent two different partitions of the objectsSirsuch thatuZ ;u; = S = chzlvj andu; Nuy = =
vjNwjforl <i# ¢ < Randl < j # j/ < C. Suppose thal/ is our external criterion andl is a
clustering result. Let be the number of pairs of objects that are placed in the saass @i and in the
same cluster iV, b be the number of pairs of objects in the same clad$ ut not in the same cluster in
V', ¢ be the number of pairs of objects in the same clustéf lout not in the same class U4, andd be the
number of pairs of objects in different classes and diffectusters in both partitions. The quantitiesnd
d can be interpreted as agreements, @addc as disagreements. The Rand index [Rand, 1971] is simply

#%- The Rand index lies between 0 and 1. When the two partitignsegperfectly, the Rand index is
1.

The problem with the Rand index is that the expected valueeRand index of two random partitions
does not take a constant value (say zero). The adjusted Rdexl proposed by [Hubert and Arabie, 1985]
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assumes the generalized hypergeometric distributioneamtidel of randomnesse., the U andV parti-
tions are picked at random such that the number of objectseiciasses and clusters are fixed. h.gtbe
the number of objects that are in both clagsand clustew;. Letn; andn ; be the number of objects in
classu; and clustemw; respectively. The notations are illustrated in Table 10.

Class or Cluster| v V9 N 7o Sums
uy ni1 ni2 e nic ni.

U2 na21 n22 s nac na.

UR Nrl NMR2 ... NRC | NR.
Sums ni MNo ... Ng |n.=n

Table 10: Notation for the contingency table for comparinwg partitions.

lue ;C..mdezfezpected index

The general form of an index with a constant expected valygejs—t dor—capected ndex”
bounded above by 1, and takes the value 0 when the index atpuakpected value.
Under the generalized hypergeometric model, it can be shidwbert and Arabie, 1985] that:

0] [2 ()2 () )

( J
The expression + d can be simplified to a linear transformationof; ; ( 9 ) With simple algebra,
the adjusted Rand index [Hubert and Arabie, 1985] can beliietbto:

o () - (= (%)= (%)) ()
He(y)em (9)] -2 (3)= (%)) G)

Example 1 in Appendix B illustrates how the adjusted Ranexnid computed. The Rand index for
comparing the two partitions in Example 1 is 0.711, while #itfusted Rand index is 0.313. The Rand
index is much higher than the adjusted Rand index, whichpge#). Since the Rand index lies between 0
and 1, the expected value of the Rand index (although notstaoinvalue) must be greater than or equal to
0. On the other hand, the expected value of the adjusted Rdea has value zero and the maximum value
of the adjusted Rand index is also 1. Hence, there is a widgreraf values that the adjusted Rand index
can take on, thus increasing the sensitivity of the index.

which is

9)

6 Resultsand Discussion

In this section, we show how model-based clustering peormvhen applied to both synthetic and gene
expression data. In the model-based approach, paramétaatsn becomes difficult when there are too
few data points in each componenmi(, too many clusters). Therefore, the BIC scores of some of the
models are not available when the number of clusters is.|&8gee CAST is an iterative algorithm with a
parameter that indirectly controls the number of clusteosipced, the algorithm may not produce a result
for every number of clusters. So, in the following resultgrs, not all data points are available for CAST.
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6.1 Synthetic data sets

Mixture of normal distributions based on the ovary data:
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Figure 1: Average adjusted Rand indices for the mixture ofrrad synthetic data.

Figure 1 shows the average adjusted Rand indices of CASTaamdlifferent models using the model-
based approach over a range of different numbers of clustessaverage adjusted Rand indices reach the
maximum at 4 clusters, with the unconstrained model (VV\Wihg comparable average adjusted Rand
index to CAST. The spherical models (El and VI) achieve logquality clustering results than the elliptical
models. The diagonal model achieves higher quality cladtean the spherical models on average, but
lower than those from the unconstrained model (VVV). Insipacof the covariance matrices of the four
classes shows that the covariance matrices are elliptiodlthe unconstrained model (VVV) fits the data
the best. Hence, our results show the power of the modelbageroach when the underlying model is
correct.

0000 [+ + v e
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
110001 .

-12000 -

-13000 -

Q
m
-14000 -
-15000 - —*—El
—m—VI
-16000 - —O - diagonal
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numberofclusters

Figure 2: Average BIC values for the mixture of normal sytithdata.

Figure 2 shows the average BIC scores for three differentetsagsing the model-based approach over
a range of different numbers of clusters. The BIC scoresafiticonstrained model (VVV) are not shown
because reliable BIC scores cannot be computed due to tee haimber of parameters to be estimated.
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Nevertheless, with the diagonal model, the maximum aveBi@escore is reached at 4 clusters, which
is the number of classes in this data set. In addition, thgodial model (which achieves higher adjusted
Rand indices than the spherical models) also achieves migjiiescores than the spherical models up to
6 clusters. Therefore, the model-based approach favodiglgenal model which produces higher quality
clusters.

In order to compare the BIC scores of the unconstrained mwillkelthe other models, we generated
larger synthetic data sets (2350 observations) with theurgof normal distribution with the mean vectors
and covariance matrices of the ovary data. The number ofrieests, the number of classes and the
relative sizes of the classes remain the same. Our expdsncenfirmed our hypothesis: with enough
data points, the unconstrained model (VVV) produces hi@i€r scores than the other models, and the
maximum BIC score for the unconstrained model is reachdueatdrrect number of classes (4). As for the
smaller synthetic data sets, the unconstrained model (Myf®juces higher quality clusters.

Randomly resampled ovary data:

1.0

0.9 ——El

e ~m-VI

’ VWV
—0& - diagonal
—*%— CAST
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0.5 A

0.4 14
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numberofclusters

Figure 3: Average adjusted Rand indices for the synthetidomly resampled ovary data sets.

Figure 3 shows the average adjusted Rand indices for themagdesampled ovary data sets. The
diagonal model achieves clearly superior clustering tesidmpared to other models and CAST. Figure 4
shows that the BIC analysis selects the diagonal model atdirect number of clusters. Due to the in-
dependent sampling of expression levels between expetsmiiie covariance matrix of each class in this
synthetic data set is very close to diagonal. Our resultesshat the BIC analysis not only selects the right
model, but also determines the correct number of clusters.

Cyclic data:

Figure 5 shows that the average adjusted Rand indices of Gh8Tseveral of the models from the
model-based approach are comparable. This synthetic datstains ten classes. The adjusted Rand
indices from CAST are higher than any of the model-basedoambies at 10 clusters. In practice, however,
one would not know the correct number of clusters, so itsgoerdnce at the number of clusters that one
would select is the most relevant. Furthermore, all of tlgw@ihms show average adjusted Rand indices
peaking around 6 or 7 clusters. This set of synthetic dataistnof classes with varying sizes, with
some very small classes, which can be problematic for mastering methods including the model-based
approach (small clusters make estimation of parametdisulij. In Figure 6, the BIC scores of the models
also peak around 6 to 7 clusters, with the diagonal model stgpligher BIC scores (there are too few data
points to compute BIC scores for the unconstrained model}.r€sults show that the BIC scores select the
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Figure 4: Average BIC values for the synthetic randomly mgsiad ovary data.
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Figure 5: Average adjusted Rand indices for the synthetiiccgata sets.
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number of clusters that maximizes the adjusted Rand ind&rebthe quality of clusters are comparable to
CAST at 6 or 7 clusters.
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Figure 6: Average BIC values for the synthetic cyclic dats.se

6.2 Geneexpression data sets

We compared the clustering results from CAST and the modsédb approach on the log transformed,
square root transformed, and the standardized ovary datyeast cell cycle data. A summary of our
results is shown in Table 11.

The ovary data:
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Figure 7: Adjusted Rand indices for the square root transéor ovary data.

Since the square root transformation shows the least dmviltbm the Gaussian mixture assumption,
only the results from the square root transformed ovary degadiscussed in detail. Figure 7 shows that
the spherical models (EI and VI) and the EEE model produckeniguality clusters than CAST and the
diagonal and unconstrained models at 4 clusters (the ¢orueacber) on the square root transformed ovary
data. The BIC curves in Figure 8 show a bend at 4 clusters fwisithe number of classes in this data
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Figure 8: Average BIC values for the square root transformeaty data.

set) for the spherical models, and a maximum at 4 clusterthéodiagonal and EEE models. The BIC
analysis selects the spherical models at 8 clusters. Ewemglhreal expression data may not fully reflect
the class structure due to noise, the BIC analysis favorsgherical (El and VI) and the EEE models over
the diagonal models, which is in line with the adjusted Ranttices. Furthermore, closer inspection of the
data reveals that the 8 cluster solution selected by BlGyaisails still a meaningful clustering — it differs
from the external criterion mainly in that the larger claskave been split into 2 or 3 clusters (which may
reflect differences in the constituent cDNAs, for example).
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Figure 9: Adjusted Rand indices for the log transformed pata.

The results on the log transformed ovary data show that fipiedl models produce clusters with
higher adjusted Rand indices than CAST (see Figure 9). TlecBives on the log transformed ovary data
also show a bend at 4 clusters in Figure 10. On the standdrdizary data, the adjusted Rand indices of
clusters produced by EEE and El are comparable to that frol8TC&ee Figure 11. The BIC curves start
to flatten at around 4 clusters on the standardized ovary blatdahe maximum occurs at around 7 clusters
in Figure 12.

Yeast cell cycle data with the 5-phase criterion:
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Figure 10: Average BIC values for the log transformed ovaatad
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Figure 11: Adjusted Rand indices for the standardized odats.
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Figure 12: Average BIC values for the standardized ovarg.dat
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Figure 13: Adjusted Rand indices for the log transformedsyeall cycle data with the 5-phase criterion.
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Figure 14: Average BIC values for the log transformed yeabtoycle data with the 5-phase criterion.
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With the exception of the EEE model, all the other models skowsiderably lower adjusted Rand
indices than those from CAST (see Figure 13) on the log teamsdd yeast cell cycle data with the 5-phase
criterion. Figure 14 shows that the BIC analysis select&tBE model at 5 clusters (which is the number of
classes in this data set). Although the model-based appaathis data set produces lower adjusted Rand
indices than CAST, the BIC analysis selects the correct murobclusters and a model with relatively high
quality clusters.
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Figure 15: Adjusted Rand indices for the standardized yasdktycle data with the 5-phase criterion.
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Figure 16: Average BIC values for the standardized yeaktygele data with the 5-phase criterion.

The standardized yeast cell cycle data set (Figure 15) shoxesy different picture from the log trans-
formed data: the equal volume spherical model (El) achiegagparable adjusted Rand indices to CAST at
5 clusters. A careful study of the nature of the data showistlthgis no surprise. The yeast cell cycle data
set consists of time course data, and so all the 17 expesnagathighly correlated (unlike the ovary data).
Figure 17 shows a pairs plot of the first four time points ofldgetransformed data. Data points from each
of the five classes are represented by different symbolsgar&il7. The pairs plots of the remaining 13
time points show a similar pattern. Figure 17 shows that tleedliasses are not well-separated, and the data
points are scattered along a line. Hence, the model-baggdagh cannot easily recover the cluster struc-
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ture. On the contrary, CAST uses correlation coefficientt@similarity measure, and correlation captures
the class structure. The five classes have different peadstiand hence have relatively high correlation

coefficients within classes compared to correlation betmsb@sses. Visualization of the standardized data
shows that the data points of the five classes are more spu¢ada are spherical in shape (see Figure 18).
Hence, the model-based approach (in particular, the EI hizdable to capture the class information once

the data have been standardized. The BIC analysis (seeeFiguselects model EEE at 5 clusters.

timel

time2

time3

time4

Figure 17: Visualization of the log transformed yeast cgtlle data with the 5-phase criterion.

Yeast cell cycle data with the MIPScriterion:

For the log-transformed yeast cell cycle data with the MIR®@&on, the results are very similar to that
with the 5-phase criterion: CAST produces much higher gualusters than the model-based approach
(figure not shown). Since this is a different subset of theesdata set, the standardization also spreads
out the highly correlated data points into spherical chgstand hence enables the model-based approach
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Figure 18: Visualization of the standardized yeast cellegata with the 5-phase criterion.
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Figure 19: Adjusted Rand indices for the standardized yasktycle data with the MIPS criterion.
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Figure 20: BIC scores on the standardized yeast cell cyctewli#h the MIPS criterion.
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data set # classes Adjusted Rand at # classes model selgcBCh
log ovary data 4 EEE>VVV > EI > CAST > VI >diag Vlat9 clusters

sqrt ovary data 4 EEE > EI >VI>CAST >VVV >diag Vlat8 clusters
standardized ovary 4 ElI > CAST > EEE >VI>VVV >diag EEEat7 clusters

log 5-phase cell cycle 5 CAST > EEE > EI >VVV >VI >diag EEE at5 clusters
standardized 5-phase 5 EI > CAST > diag > EEE >VI>VVV EEEat5 clusters

log MIPS cellcycle 4 CAST > EEE > EI > diag > VI >VVV  EEE at4 clusters
standardized MIPS 4 CAST > El > EEE > diag > VVV > VI EEE at4 clusters

Table 11: Summary of results on real expression data.

to recover the class structure. As for the yeast cell cycla déth the 5-phase criterion, the equal volume
spherical (EI) model produces comparable adjusted Rarnckisdo CAST (see Figure 19) on the standard-
ized data. The BIC curve of model El shows a bend at 4 clusteesnumber of classes in this data set).
However, the BIC analysis selects the EEE model at 4 clusiéoge that although the BIC analysis does
not select the best model, it does select the correct nunflousiers in this data set.

7 Conclusions

Summary: With our synthetic data sets, the model-based approachnhosbowed superior performance,
but also selected the correct model and the right numbewustaris using the BIC analysis. On the mixture
of normal distribution synthetic data sets, the unconséimodel (VVV) produced the highest quality
clusters and the BIC analysis chose the right model and th&bau of clusters when there are enough
data points. On the randomly resampled synthetic data stt<lese to diagonal covariance matrices, the
diagonal model produced much higher quality clusters, hadBIC analysis again selected the right model
and the correct number of clusters even though the synttiatacsets showed considerable deviation from
the Gaussian mixture assumption. On the cyclic data setilivgnowed significant deviations from the
Gaussian mixture assumption and contained very smallegasse showed that the model-based approach
and CAST (a leading heuristic-based approach) producega@hle quality clusters, and the BIC analysis
selected the number of clusters that maximized the averdjgstad Rand index.

We also showed the practicality of the model-based approacieal gene expression data sets. On the
ovary data, the model-based approach achieved slightlgrizesults than CAST, and the BIC analysis gave
a reasonable indication of the number of clusters in thestommed data. On two different subsets of the
yeast cell cycle data with different external criteria, dwgial volume spherical model (EI) and EEE model
produced comparable results to CAST on the standardized @hé BIC scores from the EEE model were
maximized at the correct number of clusters.

Conclusions: We showed that data transformations can greatly enhanceatity in expression data sets,
and models have varying performance on data sets that asédrened differently. Although real expression
data sets do not perfectly satisfy the Gaussian mixturengsson even after various data transformations,
the model-based approach nevertheless produces sliggtigrirquality clusters, and suggests the numbers
of clusters. It is interesting to note that simple modelss lihe equal volume spherical model (EI) and
the elliptical EEE model, produced relatively high qualitusters on all of our transformed data sets. The
EEE model even determined the right number of clusters ortifierent subsets from the yeast cell cycle
data set with different external criteria. On the ovary datf the BIC scores overestimated the number of
clusters and did not select the model with the highest agljuRand indices. However, inspection of the
clusters showed that the clustering result selected by lGeaBalysis is still meaningful.

In our study, we found different data transformations hdlpf clustering different types of expression
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data. For gene expression data sets with different tisqest{for example, the ovary data), we found the
log or the square root transformation to work best. For tim@&se data sets or other highly correlated data
sets, we recommend standardizing the data set and apphgmgtial volume spherical model (El) to cluster
the data sets. When k-means or the equal volume sphericallifieidlis used, we believe standardizing the
data set before the clustering step will generally be useful

Future work: Our results suggest the potential usefulness of modeldbelsistering even with existing
implementations, which are not tailored for gene expresgaia sets. We believe that custom refinements to
the model-based approach would be of great value for germessipn analysis. There are many directions
for such refinements. One direction is to design models tiadrporate specific information about the
experiments. For example, for expression data sets witardiit tissue types (like the ovary data), the
covariances among tissue samples of the same type are exgedbe higher than those between tissue
samples of different types. Hence, a block matrix pararnesteon of the covariance matrix would be a
reasonable assumption. Another advantage of customizathpterizations of the covariance matrices is
that the number of parameters to be estimated could begredticed. Another crucial direction of future
research is to incorporate missing data and outliers in théefn We believe that the overestimation of the
number of clusters on the ovary data may be due to noise aerutin this paper, we used subsets of data
without any missing values. With the underlying probabilitamework, we expect the ability to model
outliers and missing values explicitly to be another patértdvantage of the model-based approach over
the heuristic clustering methods.

In terms of data transformations, more types of data tramsftions can be explored. In particular, the
data transformation may depend on the technology with wihietarray data is produced. For example, the
ovary data set used in this study is produced by the membrasmgsawhile the yeast cell cycle data set is
produced by the Affymetrix arrays. Different array teclowes may produce data with different statistical
properties.
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Appendix
A Details of the CAST algorithm

The Cluster Affinity Search Technique (CAST) is an algorithroposed by [Ben-Dor and Yakhini, 1999]
to cluster gene expression data. The input to the algoritioiudes the pairwise similarities of the genes,
and a cutoff parameter(which is a real number between 0 and 1). The clusters ardrootesd one at a
time. The current cluster under construction is callgg.,,. Theaffinity of a geney, a(g), is defined to be
the sum of similarity values betwegnand all the genes it,,.,. A geneg is said to have high affinity if
a(g) > t|Copen|. Otherwisey is said to have low affinity. Note that the affinity of a gene elegis on the
genes that are already @},,.,,. The algorithm alternates between adding high affinity gen€’,,.,, and
removing low affinity genes frond,,c,,. Copen iS closedwhen no more genes can be added to or removed
from it. Once a cluster is closed, it is not considered anyangrthe algorithm. The algorithm iterates until
all the genes have been assigned to clusters and the cafggntis closed.

When a new cluste€’,,.,, is started, the initial affinity of all genes are 0 sinCg,.,, is empty. One
additional heuristic that the authors [Ben-Dor and Yakhi®i99] implemented in their softwara®CLUST
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is to choose a gene with the maximum number of neighbors tbasteew cluster. Another heuristic is that
after the CAST algorithm converges, there is an additiceahfive step, in which all clusters are considered
at the same time, and genes are moved to the cluster withghegtiaverage similarity.

B Exampleillustrating the adjusted Rand index

The following example illustrates how the adjusted Randein¢tiscussed in Section 5.1) is computed.
Example 1 is a contingency table in the same form as in Tahle 10

Class or Cluster| vy vy w3 | Sums
Ul 1 1 0 2
U9 1 2 1|4
us 0 0 4 4
Sums 2 3 5 |n=10

Example 1

a is defined as the number of pairs of objects in the same claSsand same cluster ifr, hencea
can be written a$_; ; "2”' . In Example 1,0 = g + 3 = 7. b is defined as the number of pairs
of objects in the same class ih but not in the same cluster . In terms of the notation in Table &,
can be written a§’, (Tg) — i <"2U> In Example 1) = @) + <3> + <3> — 7 = 6. Similarly, cis
defined as the number of pairs of objects in the same clusiétiat not in the same class Ih, soc can be

written asy_; <"2-J'> - <”2zy> = @) + @) + @) — 7= 1. dis defined as the number of pairs of
objects that are not in the same clas#/imnd not in the same cluster . Sincea +b+c+d = (Z)

d= (12()) —T7—6—T7 = 25. The Rand index for comparing the two partitions in Examp’b% = 0.711,

while the adjusted Rand index i1$4+715)1/42*—1§z/1i?3/45 = 0.313 (see Section 5.1 for the definitions of the Rand
and adjusted Rand indices). T$1

e Rand index is much higherttieaadjusted Rand index.
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