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Abstract 
 
RaPiD has been shown to provide high performance and low power for many computationally intensive 
applications.  RaPiD’s success with these applications has been in part due to their regular structure, which 
leads to a homogeneous datapath and highly correlated control.  To demonstrate RaPiD’s ability to handle a 
new set of computations with a less regular structure and to further develop the architecture, we explore the 
implementation of a digital camera image-processing pipeline on the RaPiD array. 
 
 
Introduction 
 
RaPiD is a coarse grained reconfigurable architecture targeted for computationally intensive applications.  
The architecture’s ability to maintain flexibility while achieving high performance at a reasonable cost has 
made it a strong candidate for system on a chip (SOC) solutions in the embedded and mobile application 
areas. 
 
The continuing execution of Moore’s Law, has propelled the digital camera marketplace in two directions.  
The increase in the use of CMOS sensors allows manufacturers to build lower cost, lower power solution 
by incorporating the camera circuitry onto the same chip.  The strong yields and increasing silicon densities 
have made CMOS based SOC solutions increasingly attractive.  On the high performance end of the 
spectrum, cameras using charge coupled devices (CCDs) continue to produce images with higher 
resolutions and increased features such as digital video.  The high-end cameras will continue push envelop 
for performance in embedded systems.  The goal of the industry to produce both low power, low cost as 
well as high performance digital cameras presents opportunities for reconfigurable computing solutions 
such as RaPiD. 
  
This investigation of a digital camera pipeline challenges the RaPiD architecture in new ways.  The 
computations required in an image-processing pipeline have less regularity than many of the signal 
processing applications we have previous considered.  The imaging pipeline also requires composing 
several, often quite different, computations in a single datapath, another area that we have not explored in 
depth.  These characteristics create datapath and control complexities that will test the ability of RaPiD to 
perform in the image-processing domain. 
  

                                            
1 This research was supported in part by the National Science Foundation under Grant No. 
9901377. 
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These challenges led us to develop a novel technique for obtaining high throughput and low power for two-
dimensional filtering algorithms.  The digital camera pipeline has also provided the opportunity for us to 
look at the implementation of a complex embedded system.  This paper reports the results of our evaluation 
of digital cameras on the RaPiD array. 
 
The paper is organized into three sections.  The first section describes our method for exploiting parallelism 
in any two-dimensional filtering computation.  This is followed by a demonstration of the technique 
through the implementation of a median filter.  The final section builds on the previous two by exploring 
the structure of a RaPiD based digital camera and concludes with results from an implementation of a real 
pipeline. 
 
Pipelining a Two-Dimensional Filter 
 
Two-dimensional filters make up a large part of image processing algorithms, so it is important to develop 
an efficient implementation.  In the context of the digital camera, this means coming up with a method that 
allows high performance and low power filtering. 
 
A description of a generic 3x3 filter helps reveal the challenges for an embedded system.  The following 
pseudo code describes a generic 3x3 filter operating on image P of size ImageWidth by ImageHeight: 
 

for (j=0; j<ImageWidth; j++) { 
 for (i=0; i<ImageHeight; i++) { 
  P[i][j] = filter( P[i-1][j-1], P[i][j-1], P[i+1][j-1], 
    P[i-1][j],  P[i][j],  P[i+1][j], 
    P[i-1][j+1], P[i][j+1], P[i+1][j+1]  ); 
 } 
} 

 
While this code may be suitable for a general purpose processor, it will lead to poor results in a system with 
limited power resources.  When described in this way, the computation of each output pixel requires N2 
memory accesses where N is the height and width of the filter, 3 in this case.   The high number of memory 
accesses places strains the power budget as well as memory bandwidth.  Furthermore, the code does not 
expose any parallelism that could be taken advantage of in a customized pipeline available on the RaPiD 
array.  In order to effectively map image-processing algorithms to the RaPiD array, we developed a generic 
method for pipelining any NxN filter. 

Our method provides the datapath with access to all pixels of the NxN filtering window on each 
computational cycle and reduces the required number of reads to one pixel per cycle.  The key observation 
that makes this possible is that data can be reused between filtering windows.  Visualizing the computation 
as an NxN window sliding around the image helps to reveal the data dependencies.  For example, consider 
the center pixel in a 3x3 filtering window shown in the left panel of Figure 1.  If the window moves down 
one row, as shown in the center panel, this pixel will be the upper middle pixel of a new processing 
window.  Figure 1 shows how the pixel can be a part the same column of multiple filter windows.  
Similarly, when the window moves to the side, the columns of the filter windows overlap creating a 
dependency between columns.  By sliding the window in a predictable way and buffering data 
appropriately, it is possible to reuse the pixels from one window to the next. 
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Figure 1 - Illustration of data dependency between filtering windows 

Next I will develop the datapath structure for pipelining a 3x3 filter.  This method can be used for any NxN 
filter, but a 3x3 filter will be used for purpose of illustration.  In the example, I have chosen to process the 
image in column major order from left to right, i.e. the filtering window slides down and then across.  This 
choice is arbitrary; the image could be processed in row major order with no significant difference.  I will 
leave a discussion of edge effects that occur as the borders of the image and performance considerations 
until after the model has been fully developed. 

Datapath Structure 

The goal of reusing data between filter windows drives the structure of the datapath.  By exploiting data 
dependencies between filter windows, our NxN filter implementation reads approximately one pixel per 
cycle and produces an output value every cycle (after some latency to fill the pipeline). 

The first step is to take advantage of the data dependency within a column through the use of a column 
buffer.  Each pixel will be a part of the same column three sequential filtering windows.  First it will be in 
the bottom row of a filter window, then the middle, and finally the top row of the window.  The structure 
shown in Figure 2 can be used to buffer one column of data in the 3x3 filter window. 
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Figure 2 - Column buffer shown as a schematic and as a symbolic block diagram. 

Data is serially loaded into single cycle delay buffers, or registers, and read out in parallel.  Each cycle, data 
will advance through the pipeline as the computational window slides down the image.  Three cycles after 
initialization, the data buffers will contain pixel values for one column in the top most filter window.  On 
each cycle after the pipeline has been filled, the data buffers will hold the pixel values for sequential 
processing windows.  Figure 3 shows how three column buffers can be used together to reuse data within 
the three columns of the 3x3 filter.  The pixels in the filtering window are labeled by an abbreviation of 
their directional relationship to the center pixel c.  For example, pixel nw is northwest of the center pixel.  
The required memory bandwidth for an NxN filter can be reduced from N2 to N using N column buffers. 

Within a Co lu mn Between Colu mnsWithin a Co lu mn Between Colu mns
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Figure 3 - Implementation of a 3x3 filter using column buffers to reduce memory reads to 3 pixels per cycle. 

To further reduce memory accesses, data can also be reused between columns.  As the filtering window 
slides down the image, it will eventually reach the bottom of the image.  When this happens, it moves back 
to the top, over a column, and then goes back down the image.  The third panel of Figure 1 illustrates the 
resulting data dependency between columns.  In order to reuse data between columns, a memory element 
(RAM) that behaves as shift register is added between the column buffers.  When a shift register of the 
correct size is used, it will store a pixel until it is ready to be used in the next column of the filtering 
window.  Turning the column buffer sideways (to show data flowing from left to right in a conventional 
manner), and adding a shift register between column buffers gives the structure shown in Figure 4.  When 
this structure is used as the pipeline for the input data, it becomes easy to expose the parallelism in the 
computation.  
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Figure 4 - Input pipeline structure for a 3x3 filter. 

Each cycle a new data item will enter the pipeline from the left, and pixels will advance one position in the 
pipeline in the direction indicated by the arrows.  On each cycle, the nine labeled registers will hold the 
values of sequential filter windows.   

This result has two desirable effects.  First, the availability of all pixels of a filter window on successive 
cycles provides a basis for a high throughput implementation.  Second, the pixels of the filter window will 
always be in the same registers i.e. the southeast pixel of a filter window will always be in the first register 
in the pipeline.  This allows the computation to be decoupled from the complexity of accessing the data.  In 
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a sense, the filter computation can treat the registers as direct input and not have to worry about how the 
data got there.  Thus, this pipeline structure provides an efficient method for exploiting parallelism in any 
NxN filter. 

To help represent designs using this technique I use a simplified representation of the pipeline shown in 
Figure 5.  This format combines the registers of the column buffer in a cluster and leaves out the shift 
registers between column buffers. 
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Figure 5 - Simplified block diagram of the input pipeline for a 3x3 filter. 

Practical Considerations 

While the structure in Figure 4 promises to reduce the number of times each pixel is read to one, this may 
not be possible or desirable.  In order to process the whole image in one swath, the length of the shift 
registers used to buffer data between columns must be approximately equal to the height of the image.  As 
a result, the size of the RAM scales with the height of the image and can require a RAM with thousands of 
entries for a high resolution images.  The larger the memory, the more area it takes and the slower the 
access time.  Furthermore, the RaPiD datapath does not support large memories within the datapath.  
Consequently, we fix the size of the shift register and introduce the notion of processing strips. 

When the image is divided into horizontal strips, the size of the shift register is no longer tied to the height 
of the image.  Instead, the height of the processing strip determines the length of the shift register.  In order 
to process a strip, the datapath must be able to buffer the full height of the strip.  This means that the 
maximum height of the strip is the sum of N, the filter size, and the height of the processing strip.  For 
example, in the RaPiD benchmark architecture the datapath RAMs have 64 entries, so we process the 
image in horizontal strips of heights up to 64+N.  The structure of the input pipeline remains the same, only 
the order in which the pixels are read changes. 
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Figure 6 - An image divided into horizontal processing strips.  (Scale not representative). 

In the same way that the image is broken up into horizontal processing strips, the horizontal processing 
strips could in turn be divided into vertical strips.  This allows the image to be processed in smaller pieces.  
This may be desirable if the memory supplying the pixel values to the datapath cannot hold the entire 
image.  The benefits of this approach will be evaluated in a later section discussing memory models for a 
RaPiD based digital camera pipeline. 
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Edge Effects 

While processing the image in strips adds benefits, it creates additional edge effects.  Edge effects occur at 
the borders of the image where the filtering window is incomplete.  For example, the filter cannot be 
applied to the top left pixel in the image because it has no neighbors above or to the left.  In a 3x3 filter, 
results cannot be computed for the top and bottom rows as well as the left and right most columns of the 
image.  These edge effects are inherent in the image and also exist in every processing strip. A filtering 
algorithm may specify special cases for the border pixels, but our model must handle the edge effects in the 
processing strips.  In order to produce a valid result at each possible location, N-1 rows of the horizontal 
processing strips must overlap as shown in Figure 6.  Similarly, N-1 columns of the vertical processing 
strips must overlap. 

Performance 
 

The performance of the model will be analyzed by comparing it to an optimal solution.  I define an optimal 
solution to be one that processes the image in the same number of cycles as there are pixels in the image.  
In essence, the optimal solution takes one cycle per output pixel.  Our model increases the total number of 
cycles by using processing strips and by introducing latency to fill the pipeline.  Generally, the overhead of 
processing strips dominates the effect on performance.  A detailed derivation of the performance can be 
found in Appendix A.  Summaries of the results are presented in Table 1 and Table 2. 

The most encouraging result is that the overhead of processing strips is relatively low, even with a 
modestly sized datapath memory.  For a 5x5 filter, and the default datapath memory size of 64, the 
overhead is only 7% for horizontal processing strips and 14% for both horizontal and vertical processing 
strips.  For comparison, consider the naïve implementation suggested the by original code sample at the 
introduction to this section.  Using the same bandwidth to main memory of one read per cycle, this solution 
requires 25 cycles per output pixel, an order of magnitude worse than the optimal solution. 

Table 1 – Ratio of total processing cycles when using horizontal strips  
versus an optimal solution for various filter sizes and strip heights. 

  Filter Size (N) 
 3 5 9 

32 1.067 1.143 1.333 

64 1.032 1.067 1.143 

St
ri

p 
H

ei
gh

t 

256 1.008 1.016 1.032 

 

Table 2 – Ratio of total processing cycles when using horizontal and vertical strips versus an optimal solution 
for various filter sizes and strip widths and a fixed strip height of 64. 

  Filter Size (N) 
 3 5 9 

48 1.077 1.164 1.371 

64 1.065 1.138 1.306 

St
ri

p 
W

id
th

 

128 1.048 1.101 1.219 
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By buffering data locally in registers and small, distributed memories, the described method achieves near 
optimal throughput while reading one pixel per cycle.  The method can be applied to a custom datapath in 
an ASIC or an FPGA and is particularly well suited for the implementation of the digital camera imaging 
pipeline on the RaPiD array.  The next section will demonstrate this with a median filter. 

Median Filter 
 
A median filter has a smoothing effect, which can be used in a digital camera pipeline to correct sensor 
errors.  A median filter compares a pixel with its nearest neighbors to gauge whether the pixel value is 
reasonable or not.  If the value of the comparison pixel exceeds the maximum of its neighbors by a given 
amount, it may be considered a defect.  A similar comparison can be made to the minimum neighboring 
value.  Depending on the type of filter the pixel found to be defective might be replaced by the minimum, 
maximum, or median of the surrounding pixels.  For the purpose of demonstration, I have chosen to 
implement the most computationally challenging filter, which replaces defective pixels with the median of 
its neighbors.  I will describe the implementation and results of using the median filter as the first stage in a 
digital camera image-processing pipeline. 

Implementation 
 
The implementation of the median filter on RaPiD can be described in three parts.  The first step exposes 
the parallelism in the computation through the application of the input pipeline model developed in the 
previous section.  The next step combines the input pipeline with the calculation of the median, maximum 
and minimum values.  The final portion of the implementation explores opportunities and challenges for 
resource sharing between the red/blue and green computations. 
 
The Bayer pattern, shown in Figure 7, dictates the shape of the median filter window.  Cameras use this 
pattern because the sensors only detect one of the three primary colors of light.  There are twice as many 
green sensors as red or blue because the human eye is most sensitive to green light.  Using more green 
pixels increases the accuracy of the green data and provides the appearance of a better quality image. 
 

 
Figure 7 - Bayer matrix pattern 

The median filter compares a pixel with its eight nearest neighbors of the same color to determine if it 
should be replaced.  In the green computation, the neighboring eight pixels form a diamond around the 
center pixel.   For the red and blue cases, the nearest surrounding pixels form a square around the center 
pixel.  Since the filter window for red and blue pixels is identical, they can be treated as one color for the 
purpose of describing the algorithm.  Figure 8 depicts the filter windows separately and shows how the two 
computations can be combined in single 5x5 window.  Even though this may appear to be two separate 
filters, both filters can be implemented using the same input pipeline. 
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Combined Window

Overlapping Green and
Red/Blue windows=

Combined Window

Overlapping Green and
Red/Blue windows=

Green WindowGreen Window Red/Blue WindowRed/Blue Window

 
Figure 8 - 5x5 filter window for the median filter. 

The method for pipelining a 2-D filter developed in the previous section can be applied to the combined 
filter window to produce a datapath for pipelining the computation.  The block diagram in Figure 9 
represents the pipeline using the format introduced in Figure 5.  The transformation of the filter window in 
to a pipeline can be visualized by taking each column, turning it sideways, and placing them together in a 
row.  The color coding in Figure 9 makes it clear which values will be used in the median filter 
computation based on the color of the center pixel.  Green colored registers will be used when the center 
pixel is green and the red registers will be used for either the red or blue computation.  Because of the 
Bayer pattern, the computation will switch between colors on every cycle.  This pipeline sets the stage for a 
high throughput implementation. 
 

 
Figure 9 - Symbolic representation of the input pipeline for the median filter. 

The next step in the implementation combines the filter with the input pipeline.  In the case of the median 
filter, the computation of the maximum, minimum, and median values essentially requires sorting a list of 8 
pixels.  Since the list has an even number of pixels, the median will be an average of the middle two values 
of the sorted list.  A pipelined version of insertion sort provides a good match for both the application and 
the RaPiD architecture.  Figure 10 shows the combination of an insertion sort pipeline with the input 
pipeline for each color.  To more clearly illustrate the implementation of the datapath, the green pipeline is 
shown separately from the red/blue pipeline. 
 



UW-CSE-01-06-06 9

1 4 5 8

So
rt

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

2 3 6 7

Max

Min

1 4 5 8

So
rt

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

2 3 6 7

Max

Min

1 4 5 8

So
rt

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

2 3 6 7

Max

Min

1 4 5 8

So
rt

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

2 3 6 7

Max

Min

1 2 3 4 5 6 7 8

So
rt

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

1 2 3 4 5 6 7 8

So
rt

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

In
se

rt 
&

 S
or

t

Max

Min

Green Pipeline

Red/Blue Pipeline

 
Figure 10 - Implementation of maximum, minimum and median calculation 

 in the median filter for both pipelines. 

The final step in the implementation of the median filter is sharing resources between the two pipelines 
shown in Figure 10.  As suggested in Figure 8 and Figure 9 the input pipeline can be completely shared.  
Even though the filter windows require values from different registers, the column buffers and shift 
registers required to pipeline the input data are used in the same way by both filters.  The greater challenge 
lies in sharing the insertion sort hardware.  With sufficient communication, all functional units could be 
shared between both pipelines.  Increased communication requires additional data buses, or pipes in RaPiD, 
and increases the area and complexity cost.  Consequently, it is important to balance the desire to multiplex 
hardware resources with the increased cost of communication.  In order to minimize the number of pipes, 
only functional units in the same stage of the RaPiD datapath were shared between computations.  The 
horizontal position of resources in Figure 10 corresponds to the location in the datapath, i.e. resources that 
fall on the same vertical line occur in the same stage.  This feature of the diagram quickly points out the 
opportunities to share functional units between the first three parts of the sorting pipeline and the stage that 
handles the 8th green pixel and the 7th red/blue pixel.  Overall, the majority of the insertion sort pipeline can 
be shared between the green and red/blue filters. 
 
Further reductions in resource usage are possible by optimizing the insertion sort computation.  The median 
filter requires only the first, last and middle two values from a sorted list.  As soon as the pipeline can 
detect that a value will not be one of the four desired values, it can be dropped from the pipeline.  For 
example, in sorted a list of size 7, the 2nd largest value will not be of interest for the final sorted list.  Only 
one value remains to be added to the list, so the 2nd largest pixel in a list of size 7 can be only the 2nd or the 
3rd largest in a list of size 8.  This optimization to insertion sort reduces both the number of functional units 
and the communication used between stages.  The decrease in communication is reflected in Figure 10 by 
the decreasing number of buses after stage 7. 
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Results 
Table 3 – Median filter resource requirements 

The resource requirements for the median filter shown in 
Table 3 reflect tradeoffs made to reduce communication 
resources.  Complete sharing of functional units uses 10 pipes 
and 30 ALUs.  With no sharing, 60 ALUs and 8 pipes are 
needed.  The implementation described above manages to 
maintain the minimum of 8 pipes while reducing the required 
ALUs to 40.  Depending on the final application it may be 
desirable to trade 2 pipes for 10 ALUs. 

Two unexpected results from the implementation of the 
median filter are the small number of control bits and low 
memory bandwidth.   At first glance, the median filter does 
not seem like a good candidate for RaPiD because of the 
apparent high memory bandwidth and complexity of multiplexing two sorting calculations.  The method 
developed for pipelining a 2-D filter made this a successful application.  It turns the irregular memory 
access pattern of a naïve solution into a regular column major pattern, which contributed to using only 11 
of the available 31 control bits.  More complex applications require a larger number of control bits.  For 
comparison, matrix multiplication uses 9 control bits.  The use of the input pipeline model also reduced the 
required memory bandwidth to two pixels per cycle, one read and one write. 

The throughput of the median filter is nearly the same as the throughput of the generic 5x5 filter.  In the 
final implementation, the datapath will be pipelined and retimed adding additional latency.  The penalty of 
filling the pipeline will be small relative to the total number of processing cycles.  The throughput using 
horizontal processing strips will be very near to 1.07 cycles per pixel, only 0.07 cycles per pixel above an 
optimal solution. 

Power is another consideration for a median filter.  We have chosen to implement the most computationally 
challenging correction, which replaces defective pixels with the median of its neighbors.  The most 
intensive part of the computation is finding the median value, which may or may not be used.  Computing 
the median only when necessary could reduce power consumption.  Most likely, this would require another 
pass through the data and hence reduce the throughput.  Nevertheless, performance can be traded for 
power. 

The implementation of the median filter demonstrates the successful mapping of a complex image-
processing algorithm onto the RaPiD array.  This result will be extended in the next section to a sample 
processing pipeline for a digital camera. 

Item Quantity
ALU 40 
Multiplier 0 
Shifter 1 
RAM 4 
Control Bits 11 
Max Pipe Usage 8 
Memory I/O (P/cycle) 2 
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A RaPiD Based Digital Camera Pipeline 

This section describes a SOC solution based on RaPiD for a digital camera.  The initial investigation 
involved the implementation and analysis of a digital camera pipeline from STMicroelectronics.  In order 
to protect their intellectual property, I will propose a system solution using a generic imaging pipeline but 
present the results from our implementation of their pipeline.  In proposing a solution for a generic pipeline, 
I will qualitatively examine the architecture of a RaPiD based solution and suggest two possible memory 
models. 

Basic Architecture 

The sample pipeline in Figure 11 provides a framework for developing a digital camera implementation 
using RaPiD [2].  The pipeline, while generic, is representative of the steps required to take data values 
from the camera’s sensors and turn them into a final compressed image.  The interpolation stage converts a 
Bayer matrix, where each pixel only has one color value, into an RGB image where each pixel is composed 
of three values, one for each primary color of light.  Following interpolation, various filters are applied to 
the image to improve its quality.  Two stages of image improvement, correction and enhancement, are 
shown in the same datapath configuration to represent that several parts of an algorithm may be combined 
into the same configuration.  Lastly, the image is compressed using standard techniques such as JPEG. 

Configure Datapath

Processing Pipeline

Color
Interpolation Compression

Start First Image Start Next Image

EnhancementCorrectionColor
Interpolation Compression

Start First Image Start Next Image

EnhancementCorrection

 

Figure 11 - Sample image processing pipeline for a Digital Camera. 

The custom reconfigurable datapath provided by the RaPiD architecture performs the computationally 
intensive portion of the image processing represented by the sample pipeline.  The datapath could be 
constructed to process the entire image in one configuration, but the reconfigurability of RaPiD can be 
leveraged to partition the algorithm into stages and reduce the size of the datapath.  Figure 11 shows a 
possible partitioning of a generic pipeline.  When the image is captured, the RaPiD datapath will be 
configured for color interpolation.  The image will be processed in whole or in part, and the results written 
back to memory.  Then the datapath will be reconfigured for the next stage of the computation.   

Using RaPiD to build an image-processing pipeline in this way provides several design wins.  First, the 
algorithms can be implemented in a manner that exposes fine-grained parallelism in the computations.  In 
this way, a custom datapath will experience improved performance and reduced power consumption as 
compared with general purpose processor solution.  This feature was demonstrated with the median filter in 
which a throughput of near one pixel per cycle was obtained using only 2 pixels per cycle of memory 
bandwidth.  The techniques used with the median filter are useful in the generic pipeline as well, 
particularly in the color interpolation and image improvement stages.  In color interpolation the size of the 
processing window can be as large as 9x9 [3], in which case a custom datapath will have a significant 
advantage over a general purpose processor.  The processor must read 81 pixels to produce a single output, 
while our solution reads only one.  ASICs or other reconfigurable solutions can also reap these same 
benefits.  However, I expect the coarse grained functional units available on the RaPiD array will lead to 
higher performance than an FPGA for mathematical filtering operations. 

The reconfigurability of the datapath also provides advantages over a camera built on ASICs.  The ability 
to adapt the hardware provides a way to keep up with evolving standards and tailor the camera to a specific 
market without having to fabricate new hardware.  These features improve the time to market and could be 
a critical edge over competitors.  Reconfigurability also relaxes the constraint placed on ASICs that the 
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algorithm must be implemented in a single pipeline.  Partitioning the algorithm essentially folds pipeline 
into a smaller piece.  Depending on how well the resource requirements of the stages can be matched, there 
may be potential area savings for reconfiguring the same hardware.  The area overhead required to provide 
reconfigurability will work against this benefit.  

Overall, a course grained reconfigurable architecture like RaPiD offers opportunities to improve upon 
processor and ASIC solutions.  These advantages must be balanced with the potential drawbacks such as 
the complexity of implementing a reconfigurable solution. 

Memory Models 

As a component of an embedded system, the architecture of the memory system is an important design 
consideration. Partitioning the imaging pipeline means that intermediate results must be stored in memory 
between stages of the computation.  The memory accesses created by reading and storing the intermediate 
values places a large strain on the memory bandwidth.  I will qualitatively examine the implications of a 
basic model that connects the datapath directly to memory as well as a second model, which uses a local 
memory to reduce the required main memory bandwidth. 

In the most basic memory model, the datapath will interact directly with main memory.  Data is streamed 
into the RaPiD datapath, processed, and written back to memory.  Once the entire image has been 
processed, the datapath is reconfigured for the next computation.  The data flow for this main memory 
model is shown in the left panel of Figure 12.  In this model, the datapath will be reading and writing 
memory at the same time.  At the input and output of the image improvement stage, each pixel will have 
red, green and blue values, meaning that the memory must be able to handle 6 pixel-sized transactions per 
cycle to maintain maximum throughput. 

Main
Memory RaPiD Datapath

Main Memory Model

Main
Memory RaPiD Datapath

Local Memory Model

Local
Memory

Main
Memory RaPiD Datapath

Main Memory Model

Main
Memory RaPiD Datapath
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Local Memory Model

Local
Memory

 

Figure 12 - Memory system models.  Main memory stores the complete image in both cases. 

The high peak bandwidth and redundant memory accesses of the main memory model lead to a second 
model which uses a small memory local to the datapath chip to buffer part of the image.  Instead of 
performing one computation on the entire image, all computations are now performed on the portion of the 
image stored in the local memory before moving onto another area of the image.  The flow of data for this 
scheme is shown in Figure 13. 

The local memory model achieves a reduction in main memory bandwidth at a cost of an increased number 
of processing cycles.  Because the main memory is only being read or written, but not both, the peak 
memory bandwidth is half that used in the main memory model.  The average bandwidth, and in turn 
power, experiences greater than 50% reduction because the memory is idle during the image improvement 
calculation.  Unfortunately, processing the image in smaller pieces requires more cycles and reduces the 
throughput of the pipeline.  The performance penalty due to edge effect of the strips is compounded when 
several filters are applied to the same subset of the image.  (Appendix A describes this effect in more 
detail).  Furthermore, the datapath must be reconfigured many more times per image than in the main 
memory model.  In order to support this model, the RaPiD datapath must provide fast context switching to 
minimize the reconfiguration penalty.  In spite of increasing the number of processing cycles, using the 
local memory model moves the high bandwidth demands to a smaller on chip memory, which may have 
performance benefits.  As an order of magnitude or two smaller than main memory, the local memory will 
be better able to keep up with the throughput and access time requirements of a high performance datapath. 
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Overall, the main and local memory models provide the opportunity to trade performance and main 
memory bandwidth. 
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Figure 13 - Data flow for processing a subset of the image using the local memory model. 
These steps will be repeated several times to process the entire image. 

Performance 

While the specifics of the STMicroelectronics imaging pipeline cannot be disclosed, the results of the 
implementation quantify the performance of the proposed methodology.  The STMicroelectronics pipeline 
was divided into three configurations, just like the sample pipeline.  The results in Table 4 were derived 
from the results of the implementation and with the help of the equations developed in Appendix A   

Table 4 - Performance Summary for the Implementation of a  
Digital Camera Pipeline Using 3 Memory Models. 

 Main 128KB Local 16KB Local 

Peak Main Memory Bandwidth (P/cycle) 6 3 3 

Average Main Memory Bandwidth (P/cycle) 5.33 1.33 1.33 

Cycles per pixel 3.167 3.386 3.781 

Mega-pixels/second at 50 MHz 14.63 13.67 12.26 
 

First and foremost, the results demonstrate the feasibility of RaPiD as a platform for a high performance 
digital camera.  The results also show the effectiveness of the local memory model in reducing the main 
memory bandwidth at the cost of a relatively small reduction in performance.  The throughput numbers do 
not take into account the reconfiguration time.  With only three configurations per image an 
implementation, the main memory model will allow for longer reconfiguration without a significant impact 
on performance.  In the local memory models, it is critical for the datapath to support fast reconfiguration.  
This could be supported by caching several configurations in the datapath to minimize the overhead of 
switching between computations. 

To provide a frame of reference for the numbers, an $800 semi-pro Nikon CoolPix 990 supports resolutions 
up to 3.3M pixels for still images and digital video at 30 FPS for a 300K pixel image.  Many additional 
design considerations and unknown factors prevent comparing the performance of the Nikon with the 
implementation of STMicroelectronics’ pipeline on the RaPiD array.  I provide them only to give context to 
the results and to reinforce the potential of RaPiD for a digital camera solution.  
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Conclusions 
The marketplace forces in digital still cameras demand hardware solutions that can balance high 
performance with low power and low cost.  These forces provide opportunities for coarse-grained 
reconfigurable architectures like RaPiD.  The complexity of the image processing filters promoted the 
development of a new method for pipelining filters on RaPiD.  This technique provided a platform for a 
high throughput solution that minimizes memory bandwidth and fits well within the bounds of the 
complexity RaPiD can handle. 

The results from the implementation of STMicroelectronics’ imaging pipeline demonstrate RaPiD to be a 
strong candidate for a high performance, low power SOC digital camera solution. 

 

Future Work 
The implementation of the digital camera pipeline raises some interesting questions for future investigation.  
Throughout the implementation I made an effort to reuse resources, both between configurations and within 
a single configuration.  The local memory model depends heavily on the ability to quickly switch between 
configurations of the datapath.  While it is certainly feasible to cache different configurations in the 
datapath, this is an area we have not explored in depth.  The architecture must also address how to quickly 
switch between controlling one datapath and the next.  Multiplexing the hardware within a single 
configuration had to be done manually.  It may be possible to add support to the language to make it easier 
to explicitly time multiplex or an even better solution would be to have the tools automatically detect these 
opportunities.  With the development of the emulation system, we will have the opportunity to further 
explore some of these topics. 
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Appendix A - Performance Derivation for the  
Two-Dimensional Filtering Model 

This supplement to the text derive equations for the performance of the two dimensional filtering model.  
The model provides a method for pipelining the computation of any NxN filter, where N is the height or 
width of the filter window.  The derivation will analyze the implications of pipeline latency and the 
performance of using only horizontal processing strips as well as horizontal and vertical processing strips. 

Pipeline Latency 

The 2-D filtering model appears to introduce latency to the results because of the time required to fill the 
pipeline.  Whether or not this increases the overhead above an optimal solution depends on the details of 
the filter and the type of processing strips used.  In the general case, we can consider two types of filters, 
those that reduce the image size due to edge effects and those that use special cases to avoid the reduction 
in image size.  For reducing filters, the latency does not matter i.e. the number of processing cycles is equal 
to the number of required reads.  For non-reducing filters, the special cases for the border columns must be 
considered.  The columns on the left edge of the image can be processed during the pipeline fill time.  The 
columns on the right hand border of the image require additional cycles to be processed.  This increased the 
processing burden by (N-1)/2 columns for odd size filter and N/2 columns for even sized filters.  For most 
reasonable image sizes, these additional cycles are negligible.  These claims will be quantified in the next 
section. 

Non-Reducing Filter with Horizontal Processing Strips 

Consider the image with Ri rows and Ci columns, a filter size of N, and horizontal processing strips of 
height Rs shown in Figure 14. 
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Figure 14 - Image labeled with dimensions used in performance calculations. 

The performance in terms of the number of cycles per pixel can be found by first calculating the total 
number of cycles.  This is the product of the number of strips and the number of cycles per strip which are 
given by: 

 
The number of horizontal strips is the total number of rows divided by the number of rows of valid results 
in each strip.  The formula for cycles per strip is less obvious.  The first term is the minimum number of 
cycles per strip and is equal to the number of pixels in a strip.  The second term applies only to non-
reducing filters and reflects the number of additional cycles for processing the border columns on the right 
side of the image.  Depending on the filter, this may mean simply copying the columns or it may require 
specialized processing.  Either way, (N-1)/2 or (N/2) columns of additional cycles are necessary for odd or 
even sized filters.  The total number of cycles to process the image is the product of the number of strips 
and the number of cycles per strip.  A performance ratio to the optimal solution can be found by dividing 
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the total number of cycles by total number of pixels (Ri*Ci).  An optimal solution will process the image in 
(Ri*Ci) cycles, so the ratio will be greater than 1.  These equations are shown below: 
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The formula for cycles per pixel directly gives the performance ratio.  The formula is the product of the 
number of strips and one plus a term that captures the right side edge effects of non-reducing filters.  For 
typical filter sizes N and image sizes Ci this term will be on the order of 1/100 or 1/1000.  Therefore, edge 
effects only contribute around 1% to the overhead of the pipeline model. 

Because the contribution of edge effects and pipeline latency can be complicated, it is worth stating how I 
have incorporated these factors into my calculations.  By considering the performance of the image 
processing in terms of the number of strips and the cycles per strip, the latency of the results and the edge 
effects on the top, bottom, and left of the image and the strips are implicitly included in the equations.  
Only in non-reducing filters must additional cycles be considered.  The top and bottom edge effects reduce 
the number of valid results per strip and are incorporated into the equation that determines the number of 
strips.  The left side edge effects do not influence the performance because affected columns can be 
processed during the fill time of the pipeline. 

Non-Reducing Filter with Horizontal and Vertical Processing Strips 

The performance equations derived for horizontal strips can be extended to consider vertical processing 
strips of size Cs.  The main difference is that the number of processing strips is now a function of both Rs 
and Cs.  Furthermore, the additional cycles to account for the edge effects on the right side of the image 
only need to be added to the right most vertical processing strips.  The resulting formulas are shown below. 
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The decrease in performance of using both processing strips is reflected in the change in the second term of 
the cycles per pixel formula.  For horizontal processing strips, this term is 1, for both processing strips the 
term will be greater than one and increase as the Cs decreases.  This makes intuitive sense since the 
overhead should increase as the size of the strip is reduced because pixels must be reread more frequently. 

Complication of using Horizontal and Vertical Processing Strips 

The motivation for using both vertical and horizontal processing strips comes from a scenario in which the 
memory connected to the datapath cannot hold the entire image.  A complication arises when using this 
memory to store intermediate values between computations.  The edge effects of filtering in each 
successive computation will repeatedly reduce the size of the intermediate processing area regardless of the 
type of filter.  These effects are additive.  For example, suppose the memory can hold 64x64 pixels.  
Applying a 5x5 filter to this part of the image will produce 60x60 valid pixels.  If a 5x5 filter is applied to 
the intermediate result of size 60x60, the next result will be valid for only a strip of size 56x56.  This 
additive effect increases the required overlap, and the cost of processing the image in strips using a local 
memory.  Equations for the general case are not presented here. 
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Appendix B – Source Code for the  
Implementation of the Median Filter 

 

Header file: med_filt.h 
 
     1 ///////////////////////////////////////////////////////////////////// 
     2 // 
     3 //   Constants and Parameters for 
     4 //               Median Filter 
     5 // 
     6 // Kevin Rennie 
     7 // 21 March 2000 
     8 //  
     9 // med_filt.h 
    10 // 
    11 ///////////////////////////////////////////////////////////////////// 
    12  
    13 #define STAGES 28 
    14  
    15 #include "rapidb.h" 
    16  
    17 // Ve5 Constants 
    18 #define FALSE 0 
    19 #define TRUE 1 
    20 #define RED 0 
    21 #define GREEN 1 
    22 #define GRN GREEN 
    23 #define BLUE 2 
    24 #define BLU BLUE 
    25 #define COLORS 3 
    26 #define VJOG FALSE 
    27 #define HJOG FALSE 
    28 #define IP_B0 10  // input U (buswdith, U = unsigned) 
    29 #define IP_B1 IP_B0  // output U 
    30 #define DEF_REPORT FALSE 
    31 #define DEF_SCYTHE TRUE 
    32 #define DEF_FILTER FALSE 
    33 #define DEF_ORIGIN TRUE 
    34 #define DEF_RANK 1 
    35 #define DEF_THRESH 8 
    36 #define DEF_MAXDEFS 12 
    37 #define DE_B0 IP_B1  // input U 
    38 #define DE_B1 10  // truncation used in scythe sorts U 
    39 #define DE_B2 10  // truncation used in ring_median sorts U 
    40 #define DE_B3 6   // truncation used in map severity U 
    41 #define DE_B4 6   // truncation used in threshold input U 
    42  
    43 // Driver Program constants 
    44  
    45 #define CONSTANTS 0 
    46 #ifdef BIG_TEST 
    47 #define IVSIZE 164  // Number of input rows 
    48 #define IHSIZE 104  // Number of input columns 
    49 #define ROWS_PER_STRIP 8   // Number of rows in each processing strip 
    50 #else 
    51 #define IHSIZE 8 
    52 #define IVSIZE 32 
    53 #define ROWS_PER_STRIP 8 
    54 #endif 
    55  
    56 #define LOST_ROWS 5         //  
    57 #define LOST_COLS 5     //  
    58 #define STRIPS (IVSIZE / ROWS_PER_STRIP)  // Number of processing strips 
    59  
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RaPiD-C Code: med_filt.rc 
 
     1 ///////////////////////////////////////////////////////////////////// 
     2 // 
     3 //        Rapid Program for  
     4 //               Median Filter 
     5 // 
     6 // Kevin Rennie 
     7 // 21 March 2000 
     8 // 
     9 // med_filt.rc 
    10 // 
    11 ///////////////////////////////////////////////////////////////////// 
    12  
    13 #include "med_filt.h" 
    14  
    15 void med_filt_rapid(Word in[IVSIZE][IHSIZE], Word out[IVSIZE][IHSIZE]) 
    16  
    17 /* 
    18 void med_filt_rapid(Word in[IVSIZE][IHSIZE], 
    19                   Word outA[IVSIZE][IHSIZE], Word outB[IVSIZE][IHSIZE], Word 
outC[IVSIZE][IHSIZE]) 
    20     */ 
    21 { 
    22   StreamOut outStream;   // Explicitly fill output stream 
    23   Pipe inData(1);   // Delayed Input pipe 
    24   Pipe inDataBroad;   // Broadcast Input data 
    25   Pipe onePipe, twoPipe, threePipe; // Pipes for sorted list 
    26   Pipe fourPipe, fivePipe;  // Pipes for sorted list 
    27   Pipe pixelPipe;   // Pipe for the center pixel 
    28   Pipe maxPipe, minPipe;  // Pipe for min and max values 
    29   Pipe outPipe;    // Ouptut Pipe 
    30  
    31   Pipe one; 
    32  
    33   Bit gsiteBit; 
    34   BitPipe gsite; 
    35    
    36   Pipe testPipeA, testPipeB, testPipeC; 
    37    
    38   Ram inCol1, inCol2, inCol3, inCol4; 
    39  
    40   // Comparison bits for insertion 
    41   Bit CompOne[STAGES], CompTwo[STAGES], CompThree[STAGES]; 
    42   Bit CompFour[STAGES], CompFive[STAGES]; 
    43   Bit CompMax[STAGES], CompMin[STAGES]; 
    44   Bit correct[STAGES]; 
    45  
    46   // Storage for sorting 
    47   Word oneReg[STAGES], twoReg[STAGES], threeReg[STAGES]; 
    48   Word fourReg[STAGES], fiveReg[STAGES]; 
    49   Word tempReg[STAGES]; 
    50   Word pixelReg[STAGES]; 
    51   Word maxReg[STAGES], minReg[STAGES]; 
    52  
    53   Event outReady, outWrite; 
    54   Event outWrite0, outWrite1, outWrite2; 
    55  
    56   For c; 
    57   For i, j, k; 
    58   For io, jo, ko; 
    59   For ioF, joF, koF; 
    60   For ioM, joM, koM; 
    61   For ioL, joL, koL; 
    62   For isF, jsF, ksF; 
    63   For isM, jsM, ksM; 
    64   For isL, jsL, ksL; 
    65   For is, js, ks; 
    66   For q_cons, q_repeat, q_cols, q_rows; 
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    67   For outWait; 
    68  
    69   Par { 
    70  
    71   thread: 
    72     for (q_repeat=0; q_repeat<(IHSIZE*IVSIZE); q_repeat++) { 
    73       for (q_cols=0; q_cols<IHSIZE; q_cols++) { 
    74  for (q_rows=0; q_rows<ROWS_PER_STRIP-5; q_rows++) { 
    75    Datapath {} 
    76  } 
    77       } 
    78     } 
    79  
    80   thread: 
    81     for (k=0; k<=(IVSIZE-ROWS_PER_STRIP); k+=(ROWS_PER_STRIP-4)) { 
    82       for (j=0; j<(IHSIZE+5); j++) { 
    83  for (i=0; i<ROWS_PER_STRIP; i++) { 
    84    Datapath { 
    85      if ((i==2) && (j==2)) { 
    86        signal(outReady); 
    87      }  
    88      if (s==0) { 
    89        inDataBroad = in[i+k][j]; 
    90      } 
    91      if (s==1) {   // (25) +idip (R/B)  (RB1) 
    92        // Initial site indicator 
    93        //if (k.first) { 
    94        if (i.first && j.first) { 
    95   gsiteBit = !(VJOG^HJOG); 
    96        }   
    97        else if (!i.first) { 
    98   gsiteBit = !gsiteBit; 
    99        } 
   100        gsite = gsiteBit; 
   101        // Start delayed input pipe 
   102        inData = inDataBroad; 
   103  
   104        // if (!gsite) 
   105   onePipe = inData; 
   106      } 
   107      always if (s==2) {   // (24) 
   108      } 
   109      always if (s==3) {   // (23) -iinc (G & R/B) 
 (G1, RB2) 
   110        if (gsite) { 
   111   onePipe = inData; 
   112        } 
   113        else { 
   114   twoPipe = inData; 
   115        } 
   116      } 
   117      always if (s==4) {   // (22) 
   118      } 
   119      always if (s==5) {   // (21) -idim (R/B)  (RB3) 
   120        if (!gsite) { 
   121   threePipe = inData; 
   122        } 
   123        //if ((i.first && j.first) || (inCol1.address == (ROWS_PER_STRIP-
5))) { 
   124        if (q_rows.first) { 
   125   inCol1.address = 0; 
   126        } 
   127        tempReg[s] = inData; 
   128        inData = inCol1; 
   129        inCol1 = tempReg[s]; 
   130        inCol1.address++; 
   131      } 
   132      always if (s==6) {   // (20) 
   133      } 
   134      always if (s==7) {   // (19) +idipg (G)  (G2) 
   135        if (gsite) { 
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   136   twoPipe = inData; 
   137        } 
   138      }  
   139      always if (s==8) {   // (18) 
   140      } 
   141      always if (s==9) {   // (17) -idimp (G)  (G3) 
   142        if (gsite) { 
   143   threePipe = inData; 
   144        } 
   145      } 
   146      always if (s==10) {   // (16)   
 (Have G3, RB3) Shared 
   147        // Sort one, two and three 
   148  
   149        // oneReg = max(1P, 2P); twoReg = min(1P,2P) 
   150        if (onePipe > twoPipe) { 
   151   oneReg[s] = onePipe; 
   152   twoReg[s] = twoPipe; 
   153        } 
   154        else { 
   155   oneReg[s] = twoPipe; 
   156   twoReg[s] = onePipe; 
   157        } 
   158       
   159        // oneReg = max(3P,max(1P,2P)); threeReg = min(3P, max(1P,2P)); 
   160        if (oneReg[s] > threePipe) { // 1R is max 
   161   threeReg[s] = threePipe; 
   162        } 
   163        else { 
   164   threeReg[s] = oneReg[s];  
   165   oneReg[s] = threePipe;  // 3P is max 
   166        } 
   167       
   168        // twoReg = max(min(1P,2P), min(3P,max(1P,2P))); threeReg = 
min(min(1P,2P), min(3P,max(1P,2P))) 
   169        if (twoReg[s] < threeReg[s]) { // 2R is min, switch 
   170   tempReg[s] = twoReg[s]; 
   171   twoReg[s] = threeReg[s]; 
   172   threeReg[s] = tempReg[s]; 
   173        } 
   174        // 1R > 2R > 3R 
   175        onePipe = oneReg[s]; 
   176        twoPipe = twoReg[s]; 
   177        threePipe = threeReg[s]; 
   178  
   179        // End of column buffer 
   180        //if ((i.first && j.first) || (inCol2.address == (ROWS_PER_STRIP-
5))) { 
   181        if (q_rows.first) { 
   182   inCol2.address = 0; 
   183        } 
   184        tempReg[s] = inData; 
   185        inData = inCol2; 
   186        inCol2 = tempReg[s]; 
   187        inCol2.address++; 
   188      } 
   189      always if (s==11) {   // (15) +ijmp (G & R/B) 
 (G4, RB4) Shared 
   190        CompOne = inData > onePipe; 
   191        CompTwo = inData > twoPipe; 
   192        CompThree = inData > threePipe; 
   193  
   194        if (CompOne) {   // (In, One, Two, Three) 
   195   fourPipe = threePipe; 
   196   threePipe = twoPipe; 
   197   twoPipe = onePipe; 
   198   onePipe = inData; 
   199        } 
   200        else if (CompTwo) {  // (One, In, Two, Three) 
   201   fourPipe = threePipe; 
   202   threePipe = twoPipe; 
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   203   twoPipe = inData; 
   204        } 
   205        else if (CompThree) { // (One, Two, In, Three) 
   206   fourPipe = threePipe; 
   207   threePipe = inData; 
   208        } 
   209        else {   // (One, Two, Three, In) 
   210   fourPipe = inData; 
   211        } 
   212      } 
   213      always if (s==12) {   // (14) 
   214      } 
   215      always if (s==13) {   // (13)  iptr (G & R/B) 
   216        pixelPipe = inData; 
   217      } 
   218      always if (s==14) {   // (12) 
   219      } 
   220      always if (s==15) {   // (11) -ijmp (G & R/B) 
 (G5, RB5) Shared 
   221        CompOne = inData > onePipe; 
   222        CompTwo = inData > twoPipe; 
   223        CompThree = inData > threePipe; 
   224        CompFour = inData > fourPipe; 
   225  
   226        if (CompOne) {   // (In, One, Two, Three, Four) 
   227   fivePipe = fourPipe; 
   228   fourPipe = threePipe; 
   229   threePipe = twoPipe; 
   230   twoPipe = onePipe; 
   231   onePipe = inData; 
   232        } 
   233        else if (CompTwo) {  // (One, In, Two, Three, Four) 
   234   fivePipe = fourPipe; 
   235   fourPipe = threePipe; 
   236   threePipe = twoPipe; 
   237   twoPipe = inData; 
   238        } 
   239        else if (CompThree) { // (One, Two, In, Three, Four) 
   240   fivePipe = fourPipe; 
   241   fourPipe = threePipe; 
   242   threePipe = inData; 
   243        } 
   244        else if (CompFour) { // (One, Two, Three, In, Four) 
   245   fivePipe = fourPipe; 
   246   fourPipe = inData; 
   247        } 
   248        else {   // (One, Two, Three, Four, In) 
   249   fivePipe = inData; 
   250        } 
   251  
   252        // Buffer at end of column 
   253        //if ((i.first && j.first) || (inCol3.address == (ROWS_PER_STRIP-
5))) { 
   254        if (q_rows.first) { 
   255   inCol3.address = 0; 
   256        } 
   257        tempReg[s] = inData; 
   258        inData = inCol3; 
   259        inCol3 = tempReg[s]; 
   260        inCol3.address++; 
   261      } 
   262      always if (s==16) {   // (10) 
   263      } 
   264      always if (s==17) {   // ( 9) +idimp (G) 
 (G6) 
   265        if (gsite) { 
   266   CompOne = inData > onePipe; 
   267   CompTwo = inData > twoPipe; 
   268   CompThree = inData > threePipe; 
   269   CompFour = inData > fourPipe; 
   270   CompFive = inData > fivePipe; 
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   271  
   272   // Calculate Max 
   273   if (CompOne) { 
   274     maxPipe = inData; 
   275   } 
   276   else { 
   277     maxPipe = onePipe; 
   278   } 
   279  
   280   // Calculate Min 
   281   if (CompFive) { 
   282     minPipe = fivePipe; 
   283   } 
   284   else { 
   285     minPipe = inData; 
   286   } 
   287  
   288   // Sort 
   289   if (CompOne) {   // (X, One, Two, Three, Four) 
   290     fivePipe = fourPipe; 
   291     fourPipe = threePipe; 
   292     threePipe = twoPipe; 
   293     twoPipe = onePipe; 
   294   } 
   295   else if (CompTwo) { // (X, In, Two, Three, Four) 
   296     fivePipe = fourPipe; 
   297     fourPipe = threePipe; 
   298     threePipe = twoPipe; 
   299     twoPipe = inData; 
   300   } 
   301   else if (CompThree) { // (X, Two, In, Three, Four) 
   302     fivePipe = fourPipe;   
   303     fourPipe = threePipe; 
   304     threePipe = inData; 
   305   } 
   306   else if (CompFour) { // (X, Two, Three, In, Four) 
   307     fivePipe = fourPipe; 
   308     fourPipe = inData;  
   309   } 
   310   else if (CompFive) { // (X, Two, Three, Four, In) 
   311     fivePipe = inData; 
   312   } 
   313   else {   // (X, Two, Three, Four, Five) 
   314   } 
   315        } 
   316      } 
   317      always if (s==18) {   // ( 8) 
   318      } 
   319      always if (s==19) {   // ( 7) -idipg (G) 
 (G7) 
   320        if (gsite) { 
   321   CompMax = inData > maxPipe; 
   322   CompTwo = inData > twoPipe; 
   323   CompThree = inData > threePipe; 
   324   CompFour = inData > fourPipe; 
   325   CompFive = inData > fivePipe; 
   326   CompMin = inData > minPipe; 
   327  
   328   // Calculate Max 
   329   if (CompMax) { 
   330     maxPipe = inData; 
   331   } 
   332  
   333   // Calculate Min 
   334   if (!CompMin) { 
   335     minPipe = inData; 
   336   } 
   337  
   338   // Sort 
   339   if (CompTwo) {   // (X, X, Two, Three, Four) 
   340     fivePipe = fourPipe; 
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   341     fourPipe = threePipe; 
   342     threePipe = twoPipe; 
   343   } 
   344   else if (CompThree) { // (X, X, In, Three, Four) 
   345     fivePipe = fourPipe;   
   346     fourPipe = threePipe; 
   347     threePipe = inData; 
   348   } 
   349   else if (CompFour) { // (X, X, Three, In, Four) 
   350     fivePipe = fourPipe; 
   351     fourPipe = inData;  
   352   } 
   353   else if (CompFive) { // (X, X, Three, Four, In) 
   354     fivePipe = inData; 
   355   } 
   356   else {   // (X, X, Three, Four, Five) 
   357   } 
   358        } 
   359      } 
   360      always if (s==20) {   // ( 6) 
   361        //if ((i.first && j.first) || (inCol4.address == (ROWS_PER_STRIP-
5))) { 
   362        if (q_rows.first) { 
   363   inCol4.address = 0; 
   364        } 
   365        tempReg[s] = inData; 
   366        inData = inCol4; 
   367        inCol4 = tempReg[s]; 
   368        inCol4.address++; 
   369      } 
   370      always if (s==21) {   // ( 5) +idim (R/B) 
 (RB6) 
   371        if (!gsite) { 
   372   CompOne = inData > onePipe; 
   373   CompTwo = inData > twoPipe; 
   374   CompThree = inData > threePipe; 
   375   CompFour = inData > fourPipe; 
   376   CompFive = inData > fivePipe; 
   377  
   378   // Calculate Max 
   379   if (CompOne) { 
   380     maxPipe = inData; 
   381   } 
   382   else { 
   383     maxPipe = onePipe; 
   384   } 
   385  
   386   // Calculate Min 
   387   if (CompFive) { 
   388     minPipe = fivePipe; 
   389   } 
   390   else { 
   391     minPipe = inData; 
   392   } 
   393  
   394   // Sort 
   395   if (CompOne) {   // (X, One, Two, Three, Four) 
   396     fivePipe = fourPipe; 
   397     fourPipe = threePipe; 
   398     threePipe = twoPipe; 
   399     twoPipe = onePipe; 
   400   } 
   401   else if (CompTwo) { // (X, In, Two, Three, Four) 
   402     fivePipe = fourPipe; 
   403     fourPipe = threePipe; 
   404     threePipe = twoPipe; 
   405     twoPipe = inData; 
   406   } 
   407   else if (CompThree) { // (X, Two, In, Three, Four) 
   408     fivePipe = fourPipe;   
   409     fourPipe = threePipe; 
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   410     threePipe = inData; 
   411   } 
   412   else if (CompFour) { // (X, Two, Three, In, Four) 
   413     fivePipe = fourPipe; 
   414     fourPipe = inData;  
   415   } 
   416   else if (CompFive) { // (X, Two, Three, Four, In) 
   417     fivePipe = inData; 
   418   } 
   419   else {   // (X, Two, Three, Four, Five) 
   420   } 
   421        } 
   422      } 
   423      always if (s==22) {   // ( 4) 
   424      } 
   425      always if (s==23) {   // ( 3) -iinc (G & R/B) 
 (G8, RB7) 
   426        if (gsite) { 
   427   CompMax = inData > maxPipe; 
   428   CompThree = inData > threePipe; 
   429   CompFour = inData > fourPipe; 
   430   CompFive = inData > fivePipe; 
   431   CompMin = inData > minPipe; 
   432  
   433   // Calculate maximum 
   434   if (CompMax) { 
   435     maxPipe = inData; 
   436   } 
   437         
   438   // Calculate minimum 
   439   if (!CompMin) { 
   440     minPipe = inData; 
   441   } 
   442  
   443   // Sort 
   444   if (CompThree) {           // (X, X, X, Three, Four) 
   445     fivePipe = fourPipe; 
   446     fourPipe = threePipe; 
   447   } 
   448   else if (CompFour) {       // (X, X, X, inData, Four) 
   449     fivePipe = fourPipe; 
   450     fourPipe = inData; 
   451   } 
   452   else if (CompFive) {       // (X, X, X, Four, InData) 
   453     fivePipe = inData; 
   454   } 
   455   else {                     // (X, X, X, Four, Five)  
   456   } 
   457        } 
   458        else {   // RB7 
   459   CompMax = inData > maxPipe; 
   460   CompTwo = inData > twoPipe; 
   461   CompThree = inData > threePipe; 
   462   CompFour = inData > fourPipe; 
   463   CompFive = inData > fivePipe; 
   464   CompMin = inData > minPipe; 
   465  
   466   // Calculate Max 
   467   if (CompMax) { 
   468     maxPipe = inData; 
   469   } 
   470  
   471   // Calculate Min 
   472   if (!CompMin) { 
   473     minPipe = inData; 
   474   } 
   475  
   476   if (CompTwo) {   // (X, X, Two, Three, Four) 
   477     fivePipe = fourPipe; 
   478     fourPipe = threePipe; 
   479     threePipe = twoPipe; 
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   480   } 
   481   else if (CompThree) { // (X, X, In, Three, Four) 
   482     fivePipe = fourPipe;   
   483     fourPipe = threePipe; 
   484     threePipe = inData; 
   485   } 
   486   else if (CompFour) { // (X, X, Three, In, Four) 
   487     fivePipe = fourPipe; 
   488     fourPipe = inData;  
   489   } 
   490   else if (CompFive) { // (X, X, Three, Four, In) 
   491     fivePipe = inData; 
   492   } 
   493   else {   // (X, X, Three, Four, Five) 
   494   } 
   495        } 
   496      } 
   497      if (s==24) {   // ( 2) 
   498      } 
   499      always if (s==25) {   // ( 1) -idip (G & R/B) 
 (RB8) 
   500        if (!gsite) { 
   501   CompMax = inData > maxPipe; 
   502   CompThree = inData > threePipe; 
   503   CompFour = inData > fourPipe; 
   504   CompFive = inData > fivePipe; 
   505   CompMin = inData > minPipe; 
   506  
   507   // Calculate maximum 
   508   if (CompMax) { 
   509     maxPipe = inData; 
   510   } 
   511         
   512   // Calculate minimum 
   513   if (!CompMin) { 
   514     minPipe = inData; 
   515   } 
   516  
   517   // Sort 
   518   if (CompThree) {           // (X, X, X, Three, Four) 
   519     fivePipe = fourPipe; 
   520     fourPipe = threePipe; 
   521   } 
   522   else if (CompFour) {       // (X, X, X, inData, Four) 
   523     fivePipe = fourPipe; 
   524     fourPipe = inData; 
   525   } 
   526   else if (CompFive) {       // (X, X, X, Four, InData) 
   527     fivePipe = inData; 
   528   } 
   529   else {                     // (X, X, X, Four, Five)  
   530   } 
   531        } 
   532      } 
   533      always if (s==(STAGES-2)) { 
   534        CompMax = pixelPipe > maxPipe; 
   535        CompMin = pixelPipe < minPipe; 
   536        if (CompMax || CompMin) { 
   537   outPipe = (fivePipe + fourPipe) >> 1; 
   538        } 
   539        else { 
   540   outPipe = pixelPipe; 
   541        } 
   542      } 
   543    } // Datapath 
   544  }   // i 
   545       }     // j 
   546     }       // k 
   547  
   548     // Datapath output thread 
   549   thread:  
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   550     for (ko=0; ko<=(IVSIZE-ROWS_PER_STRIP); ko+=(ROWS_PER_STRIP-4)) {  
   551       wait(outReady); 
   552       for (jo=0; jo<IHSIZE; jo++) { 
   553  for (io=0; io<ROWS_PER_STRIP; io++) { 
   554    Datapath { 
   555      if (s==STAGES-1) { 
   556        if ((io>=2) && (io<(ROWS_PER_STRIP-2))) { 
   557   if (jo<2 || jo>=(IHSIZE-2)) { 
   558     outStream = pixelPipe; 
   559   }  
   560   else { 
   561     outStream = outPipe; 
   562          } 
   563        } 
   564        else if (((io<2) && ko.first) ||   
   565          ((io>=(ROWS_PER_STRIP-2)) && ko.last)) { 
   566   outStream = pixelPipe;  
   567        } 
   568      } 
   569    }   
   570  }  
   571       }  
   572     } 
   573  
   574     // Output Stream thread 
   575   thread: 
   576     // First Swath (ignore bottom two rows of swath) 
   577     wait(outReady); 
   578     for (jsF=0; jsF<IHSIZE; jsF++) { 
   579       for (isF=0; isF<ROWS_PER_STRIP-2; isF++) { 
   580  Datapath { 
   581    if (s==STAGES-1) { 
   582      out[isF][jsF] = outStream; 
   583     } 
   584  } 
   585       } 
   586       Datapath {} 
   587       Datapath {} 
   588     } 
   589      
   590     // Middle Swaths (ignore top and bottom two rows of swath) 
   591     for (ksM=(ROWS_PER_STRIP-4); ksM<(IVSIZE-ROWS_PER_STRIP); 
ksM+=(ROWS_PER_STRIP-4)) { 
   592       wait(outReady); 
   593       for (jsM=0; jsM<IHSIZE; jsM++) { 
   594  Datapath {} 
   595  Datapath {} 
   596  for (isM=2; isM<(ROWS_PER_STRIP-2); isM++) { 
   597    Datapath { 
   598      if (s==STAGES-1) { 
   599        out[ksM+isM][jsM] = outStream; 
   600      } 
   601     } 
   602  } 
   603  Datapath {} 
   604  Datapath {} 
   605       } 
   606     } 
   607      
   608     // Last Swath (ignore top two rows of swath) 
   609     wait(outReady); 
   610     for (jsL=0; jsL<IHSIZE; jsL++) { 
   611       Datapath {} 
   612       Datapath {} 
   613       for (isL=2; isL<ROWS_PER_STRIP; isL++) { 
   614  Datapath { 
   615    if (s==STAGES-1) { 
   616      out[isL+(IVSIZE-ROWS_PER_STRIP)][jsL] = outStream; 
   617    } 
   618  } 
   619       } 
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   620     } 
   621   }     // Par 
   622 } // med_filt_rapid 
   623  
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Driver Program: med_filtTest.cc 
 
     1 ///////////////////////////////////////////////////////////////////// 
     2 // 
     3 //        Driver Program for  
     4 //               Median Filter 
     5 // 
     6 // Kevin Rennie 
     7 // 21 March 2000 
     8 // 
     9 // med_filtTest.cc 
    10 // 
    11 ///////////////////////////////////////////////////////////////////// 
    12  
    13 #include <assert.h> 
    14 #include <stdio.h> 
    15 #include <iostream.h> 
    16 #include <fstream.h> 
    17 #include <iomanip.h> 
    18 #include <math.h> 
    19 #include <stdlib.h> 
    20 #include <malloc.h> 
    21 #include "med_filt.h" 
    22  
    23 // Data structures implementation of med_filt 
    24 typedef unsigned char byte; 
    25 typedef byte boolean; 
    26 typedef struct { 
    27   int *s; 
    28   int *i; 
    29   int *j; 
    30 } DEFMAP; 
    31 typedef struct { 
    32   short int *sm; 
    33   short int *us; 
    34 } VTMP; 
    35  
    36 extern void med_filt_rapid(Word in[IVSIZE][IHSIZE], Word out[IVSIZE][IHSIZE]); 
    37 /* 
    38 extern void med_filt_rapid(Word in[IVSIZE][IHSIZE], 
    39     Word outA[IVSIZE][IHSIZE], Word outB[IVSIZE][IHSIZE], Word 
outC[IVSIZE][IHSIZE]); 
    40     */ 
    41  
    42 //////////////////////////////////////////////////////////////////// 
    43 // 
    44 //  Test Utility Functions 
    45 // 
    46 //////////////////////////////////////////////////////////////////// 
    47  
    48 // prints a single matrix (ie. R, G, or B) 
    49 void print_matrix(Word img[IVSIZE][IHSIZE]) { 
    50   int i, j; 
    51    
    52   for (i = 0; i < IVSIZE; i++) { 
    53     for (j = 0; j < IHSIZE; j++) { 
    54       printf("%4d ", img[i][j]); 
    55     } 
    56     printf("\n"); 
    57   } 
    58 } 
    59  
    60  
    61 void print_data(Word A[IVSIZE][IHSIZE], Word B[IVSIZE][IHSIZE], Word 
C[IVSIZE][IHSIZE]) 
    62 { 
    63   printf("\nA:\n"); 
    64   print_matrix(A); 
    65   printf("\nB:\n"); 
    66   print_matrix(B); 
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    67   printf("\nC:\n"); 
    68   print_matrix(C); 
    69 } 
    70  
    71 void print_vector(short int *img) 
    72 { 
    73   int i,j,k; 
    74   int iptr = 0; 
    75   int increment = 1; 
    76  
    77   for (i = 0; i < IVSIZE; i++) { 
    78     for (j = 0; j < IHSIZE; j++) { 
    79       printf("%4d ", img[iptr]); 
    80       iptr += increment; 
    81     } 
    82     printf("\n"); 
    83   } 
    84 } 
    85  
    86 void test_data(Word out[IVSIZE][IHSIZE], short int *test_vector) { 
    87   int i,j; 
    88   int iptr = 0; 
    89   int print_errors = 1; 
    90   int print_difference = 1; 
    91   int correct = TRUE; 
    92   int increment = 1; 
    93  
    94   Word Diff[IVSIZE][IHSIZE]; 
    95  
    96   printf("\n\nTesting results..."); 
    97   if (print_errors) 
    98     printf("\n\nErrors:"); 
    99   for (i=0; i<IVSIZE; i++) { 
   100     for (j=0; j<IHSIZE; j++) { 
   101       Diff[i][j] = out[i][j] - test_vector[iptr]; 
   102       if (Diff[i][j] != 0) { 
   103  if (print_errors) 
   104    printf("\nError occured at row %d, col %d, test = %d, rapid = %d", 
   105    i, j, test_vector[iptr], out[i][j]); 
   106  correct = FALSE; 
   107       } 
   108       iptr+=increment; 
   109     }  
   110   } 
   111  
   112   if (correct == FALSE) { 
   113     if (print_difference) { 
   114       printf("\n\nHere's the diffrence between Rapid and testbench:\n\n"); 
   115       print_matrix(Diff); 
   116     } 
   117     printf("\n\n----> Verification Failed! <-----\n\n"); 
   118   } 
   119   else 
   120     printf("\n\n----> Verification Succeeded! (woohoo) <-----\n\n"); 
   121 } 
   122  
   123 short int *med_filt(short int *img, int rank, int ihsize, int ivsize) 
   124 { 
   125   //FILE *fout; 
   126   register int i, j, x, y, p, iptr, optr, ijmp, idim, idip, iinc, ohsize, ovsize; 
   127   register int cptr, idimg, idipg, xhold; 
   128   int hpix, cpix, scy_shift, med_shift, sev_shift; 
   129   short int hival, loval, pixval, tmp, *tz, *rep; 
   130   short int by00, by01, by02, by03, by04, by05, by06, by07; 
   131   short int by10, by11, by12, by13, by14, by15, by16, by17; 
   132   short int by20, by21, by22, by23, by24, by25, by26, by27; 
   133   short int by30, by31, by32, by33, by34, by35, by36, by37; 
   134   short int by40, by41, by42, by43, by44, by45, by46, by47; 
   135   short int by50, by51, by52, by53, by54, by55, by56, by57; 
   136   short int by60, by61, by62, by63, by64, by65, by66, by67; 
   137   short int by70, by71, by72, by73, by74, by75, by76, by77; 
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   138   short int by81; 
   139   short int by90; 
   140   short int def_thresh_used, severity; 
   141   char c, filestring[80]; 
   142   char whoami[64] = "RaPiDTest";  // Added for RaPiD driver program 
   143   DEFMAP map; 
   144   boolean chuckit = FALSE; 
   145   
   146   ohsize = ihsize - 4; 
   147   ovsize = ivsize - 4; 
   148  
   149   map.s = (int *)malloc(sizeof(int)*(DEF_MAXDEFS+1)); 
   150   map.i = (int *)malloc(sizeof(int)*(DEF_MAXDEFS+1)); 
   151   map.j = (int *)malloc(sizeof(int)*(DEF_MAXDEFS+1)); 
   152   rep = (short int *)malloc(sizeof(short int)*ihsize*ivsize*COLORS); 
   153   if(DEF_REPORT) 
   154     for(i=0; i<ihsize*ivsize*COLORS; i++) 
   155       rep[i] = 0; 
   156  
   157   def_thresh_used = (DEF_THRESH << (DE_B3 - DE_B4)); 
   158   scy_shift = DE_B0 - DE_B1; 
   159   med_shift = DE_B0 - DE_B2; 
   160   sev_shift = DE_B0 - DE_B3; 
   161   /* scy_shift = 0; */ 
   162  
   163   tz = (short int *)malloc(sizeof(short int)*ihsize*ivsize); 
   164   /* copy in image to tmp to ease coding */ 
   165   for(i=0; i<ihsize*ivsize; i++) 
   166     tz[i] = img[i]; 
   167   ijmp = ihsize << 1; 
   168   iinc = 2; 
   169   idim = ijmp - iinc; 
   170   idip = ijmp + iinc; 
   171   idimg = idim >> 1; 
   172   idipg = idip >> 1; 
   173   iptr = idip; 
   174   cptr = COLORS * idip; 
   175   for(p=0; p<DEF_MAXDEFS+1; p++) map.s[p] = -(p+50); 
   176   optr = 0; 
   177   /* scythe filter detect, correct if requested */ 
   178   for(i=0; i<ovsize; i++) { 
   179     for(j=0; j<ohsize; j++) { 
   180       /* original or recursive neighbourhood assignments, centre included, tighter 
on green checkers */ 
   181       pixval = img[iptr]; 
   182       if(((i & 1) ^ VJOG) == ((j & 1) ^ HJOG)) {  
   183  hpix = sev_shift; 
   184  cpix = GRN; 
   185  by00 = DEF_ORIGIN ? img[iptr - idipg] : tz[iptr - idipg]; 
   186  by01 = DEF_ORIGIN ? img[iptr - ijmp] : tz[iptr - ijmp]; 
   187  by02 = DEF_ORIGIN ? img[iptr - idimg] : tz[iptr - idimg]; 
   188  by03 = DEF_ORIGIN ? img[iptr - iinc] : tz[iptr - iinc]; 
   189  by04 = img[iptr + iinc]; 
   190  by05 = img[iptr + idimg]; 
   191  by06 = img[iptr + ijmp]; 
   192  by07 = img[iptr + idipg]; 
   193       } 
   194       else { 
   195  hpix = sev_shift + 1; 
   196  cpix = ((i & 1) ^ VJOG) ? BLU : RED; 
   197  by00 = DEF_ORIGIN ? img[iptr - idip] : tz[iptr - idip]; 
   198  by01 = DEF_ORIGIN ? img[iptr - ijmp] : tz[iptr - ijmp]; 
   199  by02 = DEF_ORIGIN ? img[iptr - idim] : tz[iptr - idim]; 
   200  by03 = DEF_ORIGIN ? img[iptr - iinc] : tz[iptr - iinc]; 
   201  by04 = img[iptr + iinc]; 
   202  by05 = img[iptr + idim]; 
   203  by06 = img[iptr + ijmp]; 
   204  by07 = img[iptr + idip]; 
   205       } 
   206       /* batcher-banyan sort on 8-ring pels */ 
   207       if((by00 >> scy_shift) > (by01 >> scy_shift)) { by10 = by00; by11 = by01; } 
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   208       else            
{ by10 = by01; by11 = by00; } 
   209       if((by02 >> scy_shift) < (by03 >> scy_shift)) { by12 = by02; by13 = by03; } 
   210       else            
{ by12 = by03; by13 = by02; } 
   211       if((by04 >> scy_shift) > (by05 >> scy_shift)) { by14 = by04; by15 = by05; } 
   212       else            
{ by14 = by05; by15 = by04; } 
   213       if((by06 >> scy_shift) < (by07 >> scy_shift)) { by16 = by06; by17 = by07; } 
   214       else            
{ by16 = by07; by17 = by06; } 
   215       if((by10 >> scy_shift) > (by12 >> scy_shift)) { by20 = by10; by21 = by12; } 
   216       else            
{ by20 = by12; by21 = by10; } 
   217       if((by11 >> scy_shift) > (by13 >> scy_shift)) { by22 = by11; by23 = by13; } 
   218       else            
{ by22 = by13; by23 = by11; } 
   219       if((by14 >> scy_shift) < (by16 >> scy_shift)) { by24 = by14; by25 = by16; } 
   220       else            
{ by24 = by16; by25 = by14; } 
   221       if((by15 >> scy_shift) < (by17 >> scy_shift)) { by26 = by15; by27 = by17; } 
   222       else            
{ by26 = by17; by27 = by15; } 
   223       if((by20 >> scy_shift) > (by22 >> scy_shift)) { by30 = by20; by31 = by22; } 
   224       else            
{ by30 = by22; by31 = by20; } 
   225       if((by21 >> scy_shift) > (by23 >> scy_shift)) { by32 = by21; by33 = by23; } 
   226       else            
{ by32 = by23; by33 = by21; } 
   227       if((by24 >> scy_shift) < (by26 >> scy_shift)) { by34 = by24; by35 = by26; } 
   228       else            
{ by34 = by26; by35 = by24; } 
   229       if((by25 >> scy_shift) < (by27 >> scy_shift)) { by36 = by25; by37 = by27; } 
   230       else            
{ by36 = by27; by37 = by25; } 
   231       if((by30 >> scy_shift) > (by34 >> scy_shift)) { by40 = by30; by41 = by34; } 
   232       else            
{ by40 = by34; by41 = by30; } 
   233       if((by31 >> scy_shift) > (by35 >> scy_shift)) { by42 = by31; by43 = by35; } 
   234       else            
{ by42 = by35; by43 = by31; } 
   235       if((by32 >> scy_shift) > (by36 >> scy_shift)) { by44 = by32; by45 = by36; } 
   236       else            
{ by44 = by36; by45 = by32; } 
   237       if((by33 >> scy_shift) > (by37 >> scy_shift)) { by46 = by33; by47 = by37; } 
   238       else            
{ by46 = by37; by47 = by33; } 
   239       if((by40 >> scy_shift) > (by44 >> scy_shift)) { by50 = by40; by51 = by44; } 
   240       else            
{ by50 = by44; by51 = by40; } 
   241       if((by42 >> scy_shift) > (by46 >> scy_shift)) { by52 = by42; by53 = by46; } 
   242       else            
{ by52 = by46; by53 = by42; } 
   243       if((by41 >> scy_shift) > (by45 >> scy_shift)) { by54 = by41; by55 = by45; } 
   244       else            
{ by54 = by45; by55 = by41; } 
   245       if((by43 >> scy_shift) > (by47 >> scy_shift)) { by56 = by43; by57 = by47; } 
   246       else            
{ by56 = by47; by57 = by43; } 
   247       if((by50 >> scy_shift) > (by52 >> scy_shift)) { by60 = by50; by61 = by52; } 
   248       else            
{ by60 = by52; by61 = by50; } 
   249       if((by51 >> scy_shift) > (by53 >> scy_shift)) { by62 = by51; by63 = by53; } 
   250       else            
{ by62 = by53; by63 = by51; } 
   251       if((by54 >> scy_shift) > (by56 >> scy_shift)) { by64 = by54; by65 = by56; } 
   252       else            
{ by64 = by56; by65 = by54; } 
   253       if((by55 >> scy_shift) > (by57 >> scy_shift)) { by66 = by55; by67 = by57; } 
   254       else            
{ by66 = by57; by67 = by55; } 
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   255  
   256       /* variable-rank scythe filter */ 
   257       switch(rank) { 
   258       case 1: hival = by60; loval = by67; break; 
   259       case 2: hival = by61; loval = by66; break; 
   260       case 3: hival = by62; loval = by65; break; 
   261       default: hival = by63; loval = by64; 
   262       } 
   263       if((pixval >> scy_shift) > (hival >> scy_shift)) { 
   264  tz[iptr] = (by63+by64) >> 1; 
   265  printf("\ntest: Sorted   pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d, 
%2d, %2d",pixval,by60,by61,by62,by63,by64,by65,by66,by67); 
   266  printf("\ntest: Original pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d, 
%2d, %2d\n",pixval,by00,by01,by02,by03,by04,by05,by06,by07); 
   267  //tz[iptr] = hival; 
   268       } 
   269       else if((pixval >> scy_shift) < (loval >> scy_shift)) { 
   270  tz[iptr] = (by63+by64) >> 1; 
   271  printf("\ntest: Sorted   pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d, 
%2d, %2d",pixval,by60,by61,by62,by63,by64,by65,by66,by67); 
   272  printf("\ntest: Original pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d, 
%2d, %2d\n",pixval,by00,by01,by02,by03,by04,by05,by06,by07); 
   273  //tz[iptr] = loval; 
   274       } 
   275       else 
   276  tz[iptr] = pixval; 
   277       severity = abs(tz[iptr] - pixval) >> hpix; 
   278       if(DEF_SCYTHE) 
   279  rep[COLORS * iptr + cpix] = abs(tz[iptr] - pixval) >> hpix; 
   280       /* insert in map if appropriate */ 
   281       if(severity < def_thresh_used) severity = 0; 
   282       p = DEF_MAXDEFS; 
   283       while((--p) >= 0) { 
   284  if(map.s[p] < severity) { 
   285    map.s[p+1] = map.s[p]; 
   286    map.i[p+1] = map.i[p]; 
   287    map.j[p+1] = map.j[p]; 
   288    map.s[p] = severity; 
   289    map.i[p] = i + 2; 
   290    map.j[p] = j + 2; 
   291  } 
   292  else { 
   293    break; 
   294  } 
   295       } 
   296       if(!DEF_SCYTHE) 
   297  tz[iptr] = pixval; 
   298       ++iptr; 
   299       cptr += COLORS; 
   300       ++optr; 
   301     } 
   302     cptr += 4 * COLORS; 
   303     iptr+=4; 
   304   } 
   305  
   306   free(rep); 
   307   free(map.s); free(map.i); free(map.j); 
   308   return(tz); 
   309   
   310 } 
   311  
   312 //////////////////////////////////////////////////////////////////// 
   313 // 
   314 //  Main Function 
   315 // 
   316 //////////////////////////////////////////////////////////////////// 
   317  
   318 int main() { 
   319   int i, j, k; 
   320   int iptr, tmp; 
   321    
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   322   int data_seq = 1; 
   323   int data_rand = 2; 
   324   int data_type = data_rand; 
   325   int correct = TRUE; 
   326  
   327   srandom(22); 
   328    
   329   Word in[IVSIZE][IHSIZE];  // Input matrix 
   330   Word in_v[IVSIZE*IHSIZE];      // Input vector 
   331   Word out[IVSIZE][IHSIZE];  // Output matrix 
   332   Word out_v[IVSIZE*IHSIZE];     // Output vector 
   333   Word cons_vec[CONSTANTS];  // Constants for matrix calculation 
   334   Word outA[IVSIZE][IHSIZE];  // Output matrix 
   335   Word outB[IVSIZE][IHSIZE];  // Output matrix 
   336   Word outC[IVSIZE][IHSIZE];  // Output matrix 
   337  
   338   int scy_shift, med_shift, sev_shift; 
   339  
   340   short int *ip, *de;   // testbench matrices, ip input to med_filt, 
de output from med_filt 
   341  
   342   ip = (short int *)malloc(sizeof(short int)*IHSIZE*IVSIZE); 
   343    
   344   // Generate input data 
   345   for (j = 0; j < IHSIZE; j++) { 
   346     for (i = 0; i < IVSIZE; i++) { 
   347       if (data_type == data_seq) {    
   348  tmp = j*IVSIZE + i;  // column major order 
   349  in[i][j] = tmp; 
   350       } 
   351       else if (data_type == data_rand) { 
   352  in[i][j] = RAND(63) + 1; 
   353       } 
   354     } 
   355   } 
   356  
   357   // Generate input vector from input matrix 
   358   iptr = 0; 
   359   for (i = 0; i < IVSIZE; i++) { 
   360     for (j = 0; j < IHSIZE; j++) { 
   361       ip[iptr++] = in[i][j]; 
   362     } 
   363   } 
   364   
   365   for (i = 0; i < IHSIZE*IVSIZE; i++) { 
   366     in_v[i] = ip[i]; 
   367   } 
   368  
   369   /* 
   370   // Build constant vector   
   371   printf("\nConstants:\n  "); 
   372   for (i=0; i<CONSTANTS; i++) { 
   373     printf("%d = %d, ", i, cons_vec[i]); 
   374   } 
   375   printf("\n"); 
   376   */ 
   377  
   378   // Defect Correction 
   379   de = med_filt(ip, 1, IHSIZE, IVSIZE); 
   380  
   381   // Rapid Calculation 
   382   printf("\nInput Data:\n===========\n"); 
   383   print_matrix(in); 
   384   med_filt_rapid(in, out); 
   385   //med_filt_rapid(in, outA, outB, outC); 
   386   printf("\nOutput Data:\n============\n"); 
   387   print_matrix(out); 
   388  
   389   printf("\n\nMed_Filt Data:\n============\n"); 
   390   print_vector(de); 
   391  
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   392   /* 
   393   printf("\n"); 
   394   iptr = 0; 
   395   for (i = 0; i < IVSIZE; i++) { 
   396     for (j = 0; j < IHSIZE; j++) { 
   397       if ((in[i][j] != de[iptr]) || ((outB[i][j] != de[iptr]) && (outB[i][j]>0))) 
   398  printf("\n(%2d,%2d) - in: %2d, rpd: %2d, test: %2d, max: %2d, min: 
%2d",i,j,in[i][j],outB[i][j],de[iptr],outA[i][j],outC[i][j]); 
   399       iptr++; 
   400     } 
   401   } 
   402   */ 
   403    
   404   // Compare rapid computation and testbench 
   405   test_data(out, de); 
   406  
   407    
   408   free(ip); 
   409   return 0; 
   410 } 
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