
UW-CSE-01-06-06 1

Investigation of a
Digital Camera Imaging Pipeline

on the RaPiD Array1

Technical Report UW-CSE-01-06-06

Kevin B. Rennie
University of Washington

Seattle, WA. 98195
rennie@u.washington.edu

Abstract

RaPiD has been shown to provide high performance and low power for many computationally intensive
applications. RaPiD’s success with these applications has been in part due to their regular structure, which
leads to a homogeneous datapath and highly correlated control. To demonstrate RaPiD’s ability to handle a
new set of computations with a less regular structure and to further develop the architecture, we explore the
implementation of a digital camera image-processing pipeline on the RaPiD array.

Introduction

RaPiD is a coarse grained reconfigurable architecture targeted for computationally intensive applications.
The architecture’s ability to maintain flexibility while achieving high performance at a reasonable cost has
made it a strong candidate for system on a chip (SOC) solutions in the embedded and mobile application
areas.

The continuing execution of Moore’s Law, has propelled the digital camera marketplace in two directions.
The increase in the use of CMOS sensors allows manufacturers to build lower cost, lower power solution
by incorporating the camera circuitry onto the same chip. The strong yields and increasing silicon densities
have made CMOS based SOC solutions increasingly attractive. On the high performance end of the
spectrum, cameras using charge coupled devices (CCDs) continue to produce images with higher
resolutions and increased features such as digital video. The high-end cameras will continue push envelop
for performance in embedded systems. The goal of the industry to produce both low power, low cost as
well as high performance digital cameras presents opportunities for reconfigurable computing solutions
such as RaPiD.

This investigation of a digital camera pipeline challenges the RaPiD architecture in new ways. The
computations required in an image-processing pipeline have less regularity than many of the signal
processing applications we have previous considered. The imaging pipeline also requires composing
several, often quite different, computations in a single datapath, another area that we have not explored in
depth. These characteristics create datapath and control complexities that will test the ability of RaPiD to
perform in the image-processing domain.

1 This research was supported in part by the National Science Foundation under Grant No.
9901377.

UW-CSE-01-06-06 2

These challenges led us to develop a novel technique for obtaining high throughput and low power for two-
dimensional filtering algorithms. The digital camera pipeline has also provided the opportunity for us to
look at the implementation of a complex embedded system. This paper reports the results of our evaluation
of digital cameras on the RaPiD array.

The paper is organized into three sections. The first section describes our method for exploiting parallelism
in any two-dimensional filtering computation. This is followed by a demonstration of the technique
through the implementation of a median filter. The final section builds on the previous two by exploring
the structure of a RaPiD based digital camera and concludes with results from an implementation of a real
pipeline.

Pipelining a Two-Dimensional Filter

Two-dimensional filters make up a large part of image processing algorithms, so it is important to develop
an efficient implementation. In the context of the digital camera, this means coming up with a method that
allows high performance and low power filtering.

A description of a generic 3x3 filter helps reveal the challenges for an embedded system. The following
pseudo code describes a generic 3x3 filter operating on image P of size ImageWidth by ImageHeight:

for (j=0; j<ImageWidth; j++) {
 for (i=0; i<ImageHeight; i++) {
 P[i][j] = filter(P[i-1][j-1], P[i][j-1], P[i+1][j-1],
 P[i-1][j], P[i][j], P[i+1][j],
 P[i-1][j+1], P[i][j+1], P[i+1][j+1]);
 }
}

While this code may be suitable for a general purpose processor, it will lead to poor results in a system with
limited power resources. When described in this way, the computation of each output pixel requires N2
memory accesses where N is the height and width of the filter, 3 in this case. The high number of memory
accesses places strains the power budget as well as memory bandwidth. Furthermore, the code does not
expose any parallelism that could be taken advantage of in a customized pipeline available on the RaPiD
array. In order to effectively map image-processing algorithms to the RaPiD array, we developed a generic
method for pipelining any NxN filter.

Our method provides the datapath with access to all pixels of the NxN filtering window on each
computational cycle and reduces the required number of reads to one pixel per cycle. The key observation
that makes this possible is that data can be reused between filtering windows. Visualizing the computation
as an NxN window sliding around the image helps to reveal the data dependencies. For example, consider
the center pixel in a 3x3 filtering window shown in the left panel of Figure 1. If the window moves down
one row, as shown in the center panel, this pixel will be the upper middle pixel of a new processing
window. Figure 1 shows how the pixel can be a part the same column of multiple filter windows.
Similarly, when the window moves to the side, the columns of the filter windows overlap creating a
dependency between columns. By sliding the window in a predictable way and buffering data
appropriately, it is possible to reuse the pixels from one window to the next.

UW-CSE-01-06-06 3

Figure 1 - Illustration of data dependency between filtering windows

Next I will develop the datapath structure for pipelining a 3x3 filter. This method can be used for any NxN
filter, but a 3x3 filter will be used for purpose of illustration. In the example, I have chosen to process the
image in column major order from left to right, i.e. the filtering window slides down and then across. This
choice is arbitrary; the image could be processed in row major order with no significant difference. I will
leave a discussion of edge effects that occur as the borders of the image and performance considerations
until after the model has been fully developed.

Datapath Structure

The goal of reusing data between filter windows drives the structure of the datapath. By exploiting data
dependencies between filter windows, our NxN filter implementation reads approximately one pixel per
cycle and produces an output value every cycle (after some latency to fill the pipeline).

The first step is to take advantage of the data dependency within a column through the use of a column
buffer. Each pixel will be a part of the same column three sequential filtering windows. First it will be in
the bottom row of a filter window, then the middle, and finally the top row of the window. The structure
shown in Figure 2 can be used to buffer one column of data in the 3x3 filter window.

Input

To
Co

m
pu

ta
tio

n

D
at

a
B

uf
fe

rsClock

Input

To
Co

m
pu

ta
tio

n

Schematic Block Diagram

Input

To
Co

m
pu

ta
tio

n

D
at

a
B

uf
fe

rs

Input

To
Co

m
pu

ta
tio

n

D
at

a
B

uf
fe

rsClock

Input

To
Co

m
pu

ta
tio

nClock

Input

To
Co

m
pu

ta
tio

n

Schematic Block Diagram

Figure 2 - Column buffer shown as a schematic and as a symbolic block diagram.

Data is serially loaded into single cycle delay buffers, or registers, and read out in parallel. Each cycle, data
will advance through the pipeline as the computational window slides down the image. Three cycles after
initialization, the data buffers will contain pixel values for one column in the top most filter window. On
each cycle after the pipeline has been filled, the data buffers will hold the pixel values for sequential
processing windows. Figure 3 shows how three column buffers can be used together to reuse data within
the three columns of the 3x3 filter. The pixels in the filtering window are labeled by an abbreviation of
their directional relationship to the center pixel c. For example, pixel nw is northwest of the center pixel.
The required memory bandwidth for an NxN filter can be reduced from N2 to N using N column buffers.

Within a Co lu mn Between Colu mnsWithin a Co lu mn Between Colu mns

UW-CSE-01-06-06 4

nw
w
sw

n
c
s

ne
e
se

To Computation

sw

w

nw

Input[0]

D
at

a
B

uf
fe

rs s

c

n

Input[1]

se

e

ne

Input[2]

Filter Window
nw
w
sw

n
c
s

ne
e
se

nw
w
sw

n
c
s

ne
e
se

To Computation

sw

w

nw

Input[0]

D
at

a
B

uf
fe

rs sw

w

nw

Input[0]

D
at

a
B

uf
fe

rs s

c

n

Input[1]

s

c

n

Input[1]

se

e

ne

Input[2]

se

e

ne

Input[2]

Filter Window

Figure 3 - Implementation of a 3x3 filter using column buffers to reduce memory reads to 3 pixels per cycle.

To further reduce memory accesses, data can also be reused between columns. As the filtering window
slides down the image, it will eventually reach the bottom of the image. When this happens, it moves back
to the top, over a column, and then goes back down the image. The third panel of Figure 1 illustrates the
resulting data dependency between columns. In order to reuse data between columns, a memory element
(RAM) that behaves as shift register is added between the column buffers. When a shift register of the
correct size is used, it will store a pixel until it is ready to be used in the next column of the filtering
window. Turning the column buffer sideways (to show data flowing from left to right in a conventional
manner), and adding a shift register between column buffers gives the structure shown in Figure 4. When
this structure is used as the pipeline for the input data, it becomes easy to expose the parallelism in the
computation.

-

-

-

-

sw nww

-

-

-

-

s ncs ncse nee

nw
w
sw

n
c
s

ne
e
se

nw
w
sw

n
c
s

ne
e
se

3x3 Filtering Window

Shift Registers

(RAMs)

Figure 4 - Input pipeline structure for a 3x3 filter.

Each cycle a new data item will enter the pipeline from the left, and pixels will advance one position in the
pipeline in the direction indicated by the arrows. On each cycle, the nine labeled registers will hold the
values of sequential filter windows.

This result has two desirable effects. First, the availability of all pixels of a filter window on successive
cycles provides a basis for a high throughput implementation. Second, the pixels of the filter window will
always be in the same registers i.e. the southeast pixel of a filter window will always be in the first register
in the pipeline. This allows the computation to be decoupled from the complexity of accessing the data. In

UW-CSE-01-06-06 5

a sense, the filter computation can treat the registers as direct input and not have to worry about how the
data got there. Thus, this pipeline structure provides an efficient method for exploiting parallelism in any
NxN filter.

To help represent designs using this technique I use a simplified representation of the pipeline shown in
Figure 5. This format combines the registers of the column buffer in a cluster and leaves out the shift
registers between column buffers.

se e ne s c n sw w nw

RegisterColumn buffer

Data Flow

se e ne s c n sw w nwse e ne s c n sw w nw

RegisterColumn buffer

Data Flow

Figure 5 - Simplified block diagram of the input pipeline for a 3x3 filter.

Practical Considerations

While the structure in Figure 4 promises to reduce the number of times each pixel is read to one, this may
not be possible or desirable. In order to process the whole image in one swath, the length of the shift
registers used to buffer data between columns must be approximately equal to the height of the image. As
a result, the size of the RAM scales with the height of the image and can require a RAM with thousands of
entries for a high resolution images. The larger the memory, the more area it takes and the slower the
access time. Furthermore, the RaPiD datapath does not support large memories within the datapath.
Consequently, we fix the size of the shift register and introduce the notion of processing strips.

When the image is divided into horizontal strips, the size of the shift register is no longer tied to the height
of the image. Instead, the height of the processing strip determines the length of the shift register. In order
to process a strip, the datapath must be able to buffer the full height of the strip. This means that the
maximum height of the strip is the sum of N, the filter size, and the height of the processing strip. For
example, in the RaPiD benchmark architecture the datapath RAMs have 64 entries, so we process the
image in horizontal strips of heights up to 64+N. The structure of the input pipeline remains the same, only
the order in which the pixels are read changes.

Processing Strip Height

Image Width

Im
ag

e
H

ei
gh

t

Overlap (N-1 rows)

Figure 6 - An image divided into horizontal processing strips. (Scale not representative).

In the same way that the image is broken up into horizontal processing strips, the horizontal processing
strips could in turn be divided into vertical strips. This allows the image to be processed in smaller pieces.
This may be desirable if the memory supplying the pixel values to the datapath cannot hold the entire
image. The benefits of this approach will be evaluated in a later section discussing memory models for a
RaPiD based digital camera pipeline.

UW-CSE-01-06-06 6

Edge Effects

While processing the image in strips adds benefits, it creates additional edge effects. Edge effects occur at
the borders of the image where the filtering window is incomplete. For example, the filter cannot be
applied to the top left pixel in the image because it has no neighbors above or to the left. In a 3x3 filter,
results cannot be computed for the top and bottom rows as well as the left and right most columns of the
image. These edge effects are inherent in the image and also exist in every processing strip. A filtering
algorithm may specify special cases for the border pixels, but our model must handle the edge effects in the
processing strips. In order to produce a valid result at each possible location, N-1 rows of the horizontal
processing strips must overlap as shown in Figure 6. Similarly, N-1 columns of the vertical processing
strips must overlap.

Performance

The performance of the model will be analyzed by comparing it to an optimal solution. I define an optimal
solution to be one that processes the image in the same number of cycles as there are pixels in the image.
In essence, the optimal solution takes one cycle per output pixel. Our model increases the total number of
cycles by using processing strips and by introducing latency to fill the pipeline. Generally, the overhead of
processing strips dominates the effect on performance. A detailed derivation of the performance can be
found in Appendix A. Summaries of the results are presented in Table 1 and Table 2.

The most encouraging result is that the overhead of processing strips is relatively low, even with a
modestly sized datapath memory. For a 5x5 filter, and the default datapath memory size of 64, the
overhead is only 7% for horizontal processing strips and 14% for both horizontal and vertical processing
strips. For comparison, consider the naïve implementation suggested the by original code sample at the
introduction to this section. Using the same bandwidth to main memory of one read per cycle, this solution
requires 25 cycles per output pixel, an order of magnitude worse than the optimal solution.

Table 1 – Ratio of total processing cycles when using horizontal strips
versus an optimal solution for various filter sizes and strip heights.

 Filter Size (N)
 3 5 9

32 1.067 1.143 1.333

64 1.032 1.067 1.143

St
ri

p
H

ei
gh

t

256 1.008 1.016 1.032

Table 2 – Ratio of total processing cycles when using horizontal and vertical strips versus an optimal solution
for various filter sizes and strip widths and a fixed strip height of 64.

 Filter Size (N)
 3 5 9

48 1.077 1.164 1.371

64 1.065 1.138 1.306

St
ri

p
W

id
th

128 1.048 1.101 1.219

UW-CSE-01-06-06 7

By buffering data locally in registers and small, distributed memories, the described method achieves near
optimal throughput while reading one pixel per cycle. The method can be applied to a custom datapath in
an ASIC or an FPGA and is particularly well suited for the implementation of the digital camera imaging
pipeline on the RaPiD array. The next section will demonstrate this with a median filter.

Median Filter

A median filter has a smoothing effect, which can be used in a digital camera pipeline to correct sensor
errors. A median filter compares a pixel with its nearest neighbors to gauge whether the pixel value is
reasonable or not. If the value of the comparison pixel exceeds the maximum of its neighbors by a given
amount, it may be considered a defect. A similar comparison can be made to the minimum neighboring
value. Depending on the type of filter the pixel found to be defective might be replaced by the minimum,
maximum, or median of the surrounding pixels. For the purpose of demonstration, I have chosen to
implement the most computationally challenging filter, which replaces defective pixels with the median of
its neighbors. I will describe the implementation and results of using the median filter as the first stage in a
digital camera image-processing pipeline.

Implementation

The implementation of the median filter on RaPiD can be described in three parts. The first step exposes
the parallelism in the computation through the application of the input pipeline model developed in the
previous section. The next step combines the input pipeline with the calculation of the median, maximum
and minimum values. The final portion of the implementation explores opportunities and challenges for
resource sharing between the red/blue and green computations.

The Bayer pattern, shown in Figure 7, dictates the shape of the median filter window. Cameras use this
pattern because the sensors only detect one of the three primary colors of light. There are twice as many
green sensors as red or blue because the human eye is most sensitive to green light. Using more green
pixels increases the accuracy of the green data and provides the appearance of a better quality image.

Figure 7 - Bayer matrix pattern

The median filter compares a pixel with its eight nearest neighbors of the same color to determine if it
should be replaced. In the green computation, the neighboring eight pixels form a diamond around the
center pixel. For the red and blue cases, the nearest surrounding pixels form a square around the center
pixel. Since the filter window for red and blue pixels is identical, they can be treated as one color for the
purpose of describing the algorithm. Figure 8 depicts the filter windows separately and shows how the two
computations can be combined in single 5x5 window. Even though this may appear to be two separate
filters, both filters can be implemented using the same input pipeline.

UW-CSE-01-06-06 8

Combined Window

Overlapping Green and
Red/Blue windows=

Combined Window

Overlapping Green and
Red/Blue windows=

Green WindowGreen Window Red/Blue WindowRed/Blue Window

Figure 8 - 5x5 filter window for the median filter.

The method for pipelining a 2-D filter developed in the previous section can be applied to the combined
filter window to produce a datapath for pipelining the computation. The block diagram in Figure 9
represents the pipeline using the format introduced in Figure 5. The transformation of the filter window in
to a pipeline can be visualized by taking each column, turning it sideways, and placing them together in a
row. The color coding in Figure 9 makes it clear which values will be used in the median filter
computation based on the color of the center pixel. Green colored registers will be used when the center
pixel is green and the red registers will be used for either the red or blue computation. Because of the
Bayer pattern, the computation will switch between colors on every cycle. This pipeline sets the stage for a
high throughput implementation.

Figure 9 - Symbolic representation of the input pipeline for the median filter.

The next step in the implementation combines the filter with the input pipeline. In the case of the median
filter, the computation of the maximum, minimum, and median values essentially requires sorting a list of 8
pixels. Since the list has an even number of pixels, the median will be an average of the middle two values
of the sorted list. A pipelined version of insertion sort provides a good match for both the application and
the RaPiD architecture. Figure 10 shows the combination of an insertion sort pipeline with the input
pipeline for each color. To more clearly illustrate the implementation of the datapath, the green pipeline is
shown separately from the red/blue pipeline.

UW-CSE-01-06-06 9

1 4 5 8

So
rt

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

2 3 6 7

Max

Min

1 4 5 8

So
rt

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

2 3 6 7

Max

Min

1 4 5 8

So
rt

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

2 3 6 7

Max

Min

1 4 5 8

So
rt

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

2 3 6 7

Max

Min

1 2 3 4 5 6 7 8

So
rt

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

1 2 3 4 5 6 7 8

So
rt

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

In
se

rt
&

 S
or

t

Max

Min

Green Pipeline

Red/Blue Pipeline

Figure 10 - Implementation of maximum, minimum and median calculation

 in the median filter for both pipelines.

The final step in the implementation of the median filter is sharing resources between the two pipelines
shown in Figure 10. As suggested in Figure 8 and Figure 9 the input pipeline can be completely shared.
Even though the filter windows require values from different registers, the column buffers and shift
registers required to pipeline the input data are used in the same way by both filters. The greater challenge
lies in sharing the insertion sort hardware. With sufficient communication, all functional units could be
shared between both pipelines. Increased communication requires additional data buses, or pipes in RaPiD,
and increases the area and complexity cost. Consequently, it is important to balance the desire to multiplex
hardware resources with the increased cost of communication. In order to minimize the number of pipes,
only functional units in the same stage of the RaPiD datapath were shared between computations. The
horizontal position of resources in Figure 10 corresponds to the location in the datapath, i.e. resources that
fall on the same vertical line occur in the same stage. This feature of the diagram quickly points out the
opportunities to share functional units between the first three parts of the sorting pipeline and the stage that
handles the 8th green pixel and the 7th red/blue pixel. Overall, the majority of the insertion sort pipeline can
be shared between the green and red/blue filters.

Further reductions in resource usage are possible by optimizing the insertion sort computation. The median
filter requires only the first, last and middle two values from a sorted list. As soon as the pipeline can
detect that a value will not be one of the four desired values, it can be dropped from the pipeline. For
example, in sorted a list of size 7, the 2nd largest value will not be of interest for the final sorted list. Only
one value remains to be added to the list, so the 2nd largest pixel in a list of size 7 can be only the 2nd or the
3rd largest in a list of size 8. This optimization to insertion sort reduces both the number of functional units
and the communication used between stages. The decrease in communication is reflected in Figure 10 by
the decreasing number of buses after stage 7.

UW-CSE-01-06-06 10

Results
Table 3 – Median filter resource requirements

The resource requirements for the median filter shown in
Table 3 reflect tradeoffs made to reduce communication
resources. Complete sharing of functional units uses 10 pipes
and 30 ALUs. With no sharing, 60 ALUs and 8 pipes are
needed. The implementation described above manages to
maintain the minimum of 8 pipes while reducing the required
ALUs to 40. Depending on the final application it may be
desirable to trade 2 pipes for 10 ALUs.

Two unexpected results from the implementation of the
median filter are the small number of control bits and low
memory bandwidth. At first glance, the median filter does
not seem like a good candidate for RaPiD because of the
apparent high memory bandwidth and complexity of multiplexing two sorting calculations. The method
developed for pipelining a 2-D filter made this a successful application. It turns the irregular memory
access pattern of a naïve solution into a regular column major pattern, which contributed to using only 11
of the available 31 control bits. More complex applications require a larger number of control bits. For
comparison, matrix multiplication uses 9 control bits. The use of the input pipeline model also reduced the
required memory bandwidth to two pixels per cycle, one read and one write.

The throughput of the median filter is nearly the same as the throughput of the generic 5x5 filter. In the
final implementation, the datapath will be pipelined and retimed adding additional latency. The penalty of
filling the pipeline will be small relative to the total number of processing cycles. The throughput using
horizontal processing strips will be very near to 1.07 cycles per pixel, only 0.07 cycles per pixel above an
optimal solution.

Power is another consideration for a median filter. We have chosen to implement the most computationally
challenging correction, which replaces defective pixels with the median of its neighbors. The most
intensive part of the computation is finding the median value, which may or may not be used. Computing
the median only when necessary could reduce power consumption. Most likely, this would require another
pass through the data and hence reduce the throughput. Nevertheless, performance can be traded for
power.

The implementation of the median filter demonstrates the successful mapping of a complex image-
processing algorithm onto the RaPiD array. This result will be extended in the next section to a sample
processing pipeline for a digital camera.

Item Quantity
ALU 40
Multiplier 0
Shifter 1
RAM 4
Control Bits 11
Max Pipe Usage 8
Memory I/O (P/cycle) 2

UW-CSE-01-06-06 11

A RaPiD Based Digital Camera Pipeline

This section describes a SOC solution based on RaPiD for a digital camera. The initial investigation
involved the implementation and analysis of a digital camera pipeline from STMicroelectronics. In order
to protect their intellectual property, I will propose a system solution using a generic imaging pipeline but
present the results from our implementation of their pipeline. In proposing a solution for a generic pipeline,
I will qualitatively examine the architecture of a RaPiD based solution and suggest two possible memory
models.

Basic Architecture

The sample pipeline in Figure 11 provides a framework for developing a digital camera implementation
using RaPiD [2]. The pipeline, while generic, is representative of the steps required to take data values
from the camera’s sensors and turn them into a final compressed image. The interpolation stage converts a
Bayer matrix, where each pixel only has one color value, into an RGB image where each pixel is composed
of three values, one for each primary color of light. Following interpolation, various filters are applied to
the image to improve its quality. Two stages of image improvement, correction and enhancement, are
shown in the same datapath configuration to represent that several parts of an algorithm may be combined
into the same configuration. Lastly, the image is compressed using standard techniques such as JPEG.

Configure Datapath

Processing Pipeline

Color
Interpolation Compression

Start First Image Start Next Image

EnhancementCorrectionColor
Interpolation Compression

Start First Image Start Next Image

EnhancementCorrection

Figure 11 - Sample image processing pipeline for a Digital Camera.

The custom reconfigurable datapath provided by the RaPiD architecture performs the computationally
intensive portion of the image processing represented by the sample pipeline. The datapath could be
constructed to process the entire image in one configuration, but the reconfigurability of RaPiD can be
leveraged to partition the algorithm into stages and reduce the size of the datapath. Figure 11 shows a
possible partitioning of a generic pipeline. When the image is captured, the RaPiD datapath will be
configured for color interpolation. The image will be processed in whole or in part, and the results written
back to memory. Then the datapath will be reconfigured for the next stage of the computation.

Using RaPiD to build an image-processing pipeline in this way provides several design wins. First, the
algorithms can be implemented in a manner that exposes fine-grained parallelism in the computations. In
this way, a custom datapath will experience improved performance and reduced power consumption as
compared with general purpose processor solution. This feature was demonstrated with the median filter in
which a throughput of near one pixel per cycle was obtained using only 2 pixels per cycle of memory
bandwidth. The techniques used with the median filter are useful in the generic pipeline as well,
particularly in the color interpolation and image improvement stages. In color interpolation the size of the
processing window can be as large as 9x9 [3], in which case a custom datapath will have a significant
advantage over a general purpose processor. The processor must read 81 pixels to produce a single output,
while our solution reads only one. ASICs or other reconfigurable solutions can also reap these same
benefits. However, I expect the coarse grained functional units available on the RaPiD array will lead to
higher performance than an FPGA for mathematical filtering operations.

The reconfigurability of the datapath also provides advantages over a camera built on ASICs. The ability
to adapt the hardware provides a way to keep up with evolving standards and tailor the camera to a specific
market without having to fabricate new hardware. These features improve the time to market and could be
a critical edge over competitors. Reconfigurability also relaxes the constraint placed on ASICs that the

UW-CSE-01-06-06 12

algorithm must be implemented in a single pipeline. Partitioning the algorithm essentially folds pipeline
into a smaller piece. Depending on how well the resource requirements of the stages can be matched, there
may be potential area savings for reconfiguring the same hardware. The area overhead required to provide
reconfigurability will work against this benefit.

Overall, a course grained reconfigurable architecture like RaPiD offers opportunities to improve upon
processor and ASIC solutions. These advantages must be balanced with the potential drawbacks such as
the complexity of implementing a reconfigurable solution.

Memory Models

As a component of an embedded system, the architecture of the memory system is an important design
consideration. Partitioning the imaging pipeline means that intermediate results must be stored in memory
between stages of the computation. The memory accesses created by reading and storing the intermediate
values places a large strain on the memory bandwidth. I will qualitatively examine the implications of a
basic model that connects the datapath directly to memory as well as a second model, which uses a local
memory to reduce the required main memory bandwidth.

In the most basic memory model, the datapath will interact directly with main memory. Data is streamed
into the RaPiD datapath, processed, and written back to memory. Once the entire image has been
processed, the datapath is reconfigured for the next computation. The data flow for this main memory
model is shown in the left panel of Figure 12. In this model, the datapath will be reading and writing
memory at the same time. At the input and output of the image improvement stage, each pixel will have
red, green and blue values, meaning that the memory must be able to handle 6 pixel-sized transactions per
cycle to maintain maximum throughput.

Main
Memory RaPiD Datapath

Main Memory Model

Main
Memory RaPiD Datapath

Local Memory Model

Local
Memory

Main
Memory RaPiD Datapath

Main Memory Model

Main
Memory RaPiD Datapath

Main Memory Model

Main
Memory RaPiD Datapath

Local Memory Model

Local
Memory

Figure 12 - Memory system models. Main memory stores the complete image in both cases.

The high peak bandwidth and redundant memory accesses of the main memory model lead to a second
model which uses a small memory local to the datapath chip to buffer part of the image. Instead of
performing one computation on the entire image, all computations are now performed on the portion of the
image stored in the local memory before moving onto another area of the image. The flow of data for this
scheme is shown in Figure 13.

The local memory model achieves a reduction in main memory bandwidth at a cost of an increased number
of processing cycles. Because the main memory is only being read or written, but not both, the peak
memory bandwidth is half that used in the main memory model. The average bandwidth, and in turn
power, experiences greater than 50% reduction because the memory is idle during the image improvement
calculation. Unfortunately, processing the image in smaller pieces requires more cycles and reduces the
throughput of the pipeline. The performance penalty due to edge effect of the strips is compounded when
several filters are applied to the same subset of the image. (Appendix A describes this effect in more
detail). Furthermore, the datapath must be reconfigured many more times per image than in the main
memory model. In order to support this model, the RaPiD datapath must provide fast context switching to
minimize the reconfiguration penalty. In spite of increasing the number of processing cycles, using the
local memory model moves the high bandwidth demands to a smaller on chip memory, which may have
performance benefits. As an order of magnitude or two smaller than main memory, the local memory will
be better able to keep up with the throughput and access time requirements of a high performance datapath.

UW-CSE-01-06-06 13

Overall, the main and local memory models provide the opportunity to trade performance and main
memory bandwidth.

Main
Memory Image Improvement Local

Memory

Configuration 2

Main
Memory Color Interpolation Local

Memory

Configuration 1

Main
Memory Compression Local

Memory

Configuration 3

Main
Memory Image Improvement Local

Memory

Configuration 2

Main
Memory Color Interpolation Local

Memory

Configuration 1

Main
Memory Color Interpolation Local

Memory
Main

Memory Color Interpolation Local
Memory

Configuration 1

Main
Memory Compression Local

Memory

Configuration 3

Main
Memory Compression Local

Memory

Configuration 3

Figure 13 - Data flow for processing a subset of the image using the local memory model.
These steps will be repeated several times to process the entire image.

Performance

While the specifics of the STMicroelectronics imaging pipeline cannot be disclosed, the results of the
implementation quantify the performance of the proposed methodology. The STMicroelectronics pipeline
was divided into three configurations, just like the sample pipeline. The results in Table 4 were derived
from the results of the implementation and with the help of the equations developed in Appendix A

Table 4 - Performance Summary for the Implementation of a
Digital Camera Pipeline Using 3 Memory Models.

 Main 128KB Local 16KB Local

Peak Main Memory Bandwidth (P/cycle) 6 3 3

Average Main Memory Bandwidth (P/cycle) 5.33 1.33 1.33

Cycles per pixel 3.167 3.386 3.781

Mega-pixels/second at 50 MHz 14.63 13.67 12.26

First and foremost, the results demonstrate the feasibility of RaPiD as a platform for a high performance
digital camera. The results also show the effectiveness of the local memory model in reducing the main
memory bandwidth at the cost of a relatively small reduction in performance. The throughput numbers do
not take into account the reconfiguration time. With only three configurations per image an
implementation, the main memory model will allow for longer reconfiguration without a significant impact
on performance. In the local memory models, it is critical for the datapath to support fast reconfiguration.
This could be supported by caching several configurations in the datapath to minimize the overhead of
switching between computations.

To provide a frame of reference for the numbers, an $800 semi-pro Nikon CoolPix 990 supports resolutions
up to 3.3M pixels for still images and digital video at 30 FPS for a 300K pixel image. Many additional
design considerations and unknown factors prevent comparing the performance of the Nikon with the
implementation of STMicroelectronics’ pipeline on the RaPiD array. I provide them only to give context to
the results and to reinforce the potential of RaPiD for a digital camera solution.

UW-CSE-01-06-06 14

Conclusions
The marketplace forces in digital still cameras demand hardware solutions that can balance high
performance with low power and low cost. These forces provide opportunities for coarse-grained
reconfigurable architectures like RaPiD. The complexity of the image processing filters promoted the
development of a new method for pipelining filters on RaPiD. This technique provided a platform for a
high throughput solution that minimizes memory bandwidth and fits well within the bounds of the
complexity RaPiD can handle.

The results from the implementation of STMicroelectronics’ imaging pipeline demonstrate RaPiD to be a
strong candidate for a high performance, low power SOC digital camera solution.

Future Work
The implementation of the digital camera pipeline raises some interesting questions for future investigation.
Throughout the implementation I made an effort to reuse resources, both between configurations and within
a single configuration. The local memory model depends heavily on the ability to quickly switch between
configurations of the datapath. While it is certainly feasible to cache different configurations in the
datapath, this is an area we have not explored in depth. The architecture must also address how to quickly
switch between controlling one datapath and the next. Multiplexing the hardware within a single
configuration had to be done manually. It may be possible to add support to the language to make it easier
to explicitly time multiplex or an even better solution would be to have the tools automatically detect these
opportunities. With the development of the emulation system, we will have the opportunity to further
explore some of these topics.

References
[1] Ebeling, C.; Cronquist, D. C.; Franklin, P.; Berg, S.; “Mapping applications to the RaPiD configurable

architecture”, Field-Programmable Custom Computing Machines (FCCM-97), April 1997, pp. 106-15.

[2] Ping Wah Wong; Tretter, D.; Herley, C.; Moayeri, N.; Lee, R.; “Image Processing Considerations for Digital
Photography”, Compcon '97. Proceedings, IEEE , 1997.

[3] Curtin, D., “Understanding How Image Sensors Work”,
http://www.shortcourses.com/how/sensors/sensors.htm, 2001.

UW-CSE-01-06-06 15

Appendix A - Performance Derivation for the
Two-Dimensional Filtering Model

This supplement to the text derive equations for the performance of the two dimensional filtering model.
The model provides a method for pipelining the computation of any NxN filter, where N is the height or
width of the filter window. The derivation will analyze the implications of pipeline latency and the
performance of using only horizontal processing strips as well as horizontal and vertical processing strips.

Pipeline Latency

The 2-D filtering model appears to introduce latency to the results because of the time required to fill the
pipeline. Whether or not this increases the overhead above an optimal solution depends on the details of
the filter and the type of processing strips used. In the general case, we can consider two types of filters,
those that reduce the image size due to edge effects and those that use special cases to avoid the reduction
in image size. For reducing filters, the latency does not matter i.e. the number of processing cycles is equal
to the number of required reads. For non-reducing filters, the special cases for the border columns must be
considered. The columns on the left edge of the image can be processed during the pipeline fill time. The
columns on the right hand border of the image require additional cycles to be processed. This increased the
processing burden by (N-1)/2 columns for odd size filter and N/2 columns for even sized filters. For most
reasonable image sizes, these additional cycles are negligible. These claims will be quantified in the next
section.

Non-Reducing Filter with Horizontal Processing Strips

Consider the image with Ri rows and Ci columns, a filter size of N, and horizontal processing strips of
height Rs shown in Figure 14.

Processing Strip Height (Rs)

Image Width (Ci)

Im
ag

e
H

ei
gh

t (
R

i)

Overlap (N-1 rows)

Figure 14 - Image labeled with dimensions used in performance calculations.

The performance in terms of the number of cycles per pixel can be found by first calculating the total
number of cycles. This is the product of the number of strips and the number of cycles per strip which are
given by:

The number of horizontal strips is the total number of rows divided by the number of rows of valid results
in each strip. The formula for cycles per strip is less obvious. The first term is the minimum number of
cycles per strip and is equal to the number of pixels in a strip. The second term applies only to non-
reducing filters and reflects the number of additional cycles for processing the border columns on the right
side of the image. Depending on the filter, this may mean simply copying the columns or it may require
specialized processing. Either way, (N-1)/2 or (N/2) columns of additional cycles are necessary for odd or
even sized filters. The total number of cycles to process the image is the product of the number of strips
and the number of cycles per strip. A performance ratio to the optimal solution can be found by dividing

2
))((NoddNRCRStripperCycles sis

−×+×=))1((−−
=

NR
R

StripsofNumber
s

i

UW-CSE-01-06-06 16

the total number of cycles by total number of pixels (Ri*Ci). An optimal solution will process the image in
(Ri*Ci) cycles, so the ratio will be greater than 1. These equations are shown below:

)
2

))((1(
))1((

)
2

))(((
))1((

is

s

sis
s

i

C
NoddN

NR
RPixelperCycles

NoddNRCR
NR

RCyclesTotal

×
−+×

−−
=

−×+××
−−

=

The formula for cycles per pixel directly gives the performance ratio. The formula is the product of the
number of strips and one plus a term that captures the right side edge effects of non-reducing filters. For
typical filter sizes N and image sizes Ci this term will be on the order of 1/100 or 1/1000. Therefore, edge
effects only contribute around 1% to the overhead of the pipeline model.

Because the contribution of edge effects and pipeline latency can be complicated, it is worth stating how I
have incorporated these factors into my calculations. By considering the performance of the image
processing in terms of the number of strips and the cycles per strip, the latency of the results and the edge
effects on the top, bottom, and left of the image and the strips are implicitly included in the equations.
Only in non-reducing filters must additional cycles be considered. The top and bottom edge effects reduce
the number of valid results per strip and are incorporated into the equation that determines the number of
strips. The left side edge effects do not influence the performance because affected columns can be
processed during the fill time of the pipeline.

Non-Reducing Filter with Horizontal and Vertical Processing Strips

The performance equations derived for horizontal strips can be extended to consider vertical processing
strips of size Cs. The main difference is that the number of processing strips is now a function of both Rs
and Cs. Furthermore, the additional cycles to account for the edge effects on the right side of the image
only need to be added to the right most vertical processing strips. The resulting formulas are shown below.

)
2

))((
))1((

(
))1((

2
))((

))1(())1(())1((

is

s

s

s

s

i
ss

ss

ii

C
NoddN

NC
C

NR
R

PixelperCycles

NoddN
NR

R
CR

NCNR
CR

CyclesTotal

×
−+

−−
×

−−
=

−×
−−

+××
−−×−−

×
=

The decrease in performance of using both processing strips is reflected in the change in the second term of
the cycles per pixel formula. For horizontal processing strips, this term is 1, for both processing strips the
term will be greater than one and increase as the Cs decreases. This makes intuitive sense since the
overhead should increase as the size of the strip is reduced because pixels must be reread more frequently.

Complication of using Horizontal and Vertical Processing Strips

The motivation for using both vertical and horizontal processing strips comes from a scenario in which the
memory connected to the datapath cannot hold the entire image. A complication arises when using this
memory to store intermediate values between computations. The edge effects of filtering in each
successive computation will repeatedly reduce the size of the intermediate processing area regardless of the
type of filter. These effects are additive. For example, suppose the memory can hold 64x64 pixels.
Applying a 5x5 filter to this part of the image will produce 60x60 valid pixels. If a 5x5 filter is applied to
the intermediate result of size 60x60, the next result will be valid for only a strip of size 56x56. This
additive effect increases the required overlap, and the cost of processing the image in strips using a local
memory. Equations for the general case are not presented here.

UW-CSE-01-06-06 17

Appendix B – Source Code for the
Implementation of the Median Filter

Header file: med_filt.h

 1 ///
 2 //
 3 // Constants and Parameters for
 4 // Median Filter
 5 //
 6 // Kevin Rennie
 7 // 21 March 2000
 8 //
 9 // med_filt.h
 10 //
 11 ///
 12
 13 #define STAGES 28
 14
 15 #include "rapidb.h"
 16
 17 // Ve5 Constants
 18 #define FALSE 0
 19 #define TRUE 1
 20 #define RED 0
 21 #define GREEN 1
 22 #define GRN GREEN
 23 #define BLUE 2
 24 #define BLU BLUE
 25 #define COLORS 3
 26 #define VJOG FALSE
 27 #define HJOG FALSE
 28 #define IP_B0 10 // input U (buswdith, U = unsigned)
 29 #define IP_B1 IP_B0 // output U
 30 #define DEF_REPORT FALSE
 31 #define DEF_SCYTHE TRUE
 32 #define DEF_FILTER FALSE
 33 #define DEF_ORIGIN TRUE
 34 #define DEF_RANK 1
 35 #define DEF_THRESH 8
 36 #define DEF_MAXDEFS 12
 37 #define DE_B0 IP_B1 // input U
 38 #define DE_B1 10 // truncation used in scythe sorts U
 39 #define DE_B2 10 // truncation used in ring_median sorts U
 40 #define DE_B3 6 // truncation used in map severity U
 41 #define DE_B4 6 // truncation used in threshold input U
 42
 43 // Driver Program constants
 44
 45 #define CONSTANTS 0
 46 #ifdef BIG_TEST
 47 #define IVSIZE 164 // Number of input rows
 48 #define IHSIZE 104 // Number of input columns
 49 #define ROWS_PER_STRIP 8 // Number of rows in each processing strip
 50 #else
 51 #define IHSIZE 8
 52 #define IVSIZE 32
 53 #define ROWS_PER_STRIP 8
 54 #endif
 55
 56 #define LOST_ROWS 5 //
 57 #define LOST_COLS 5 //
 58 #define STRIPS (IVSIZE / ROWS_PER_STRIP) // Number of processing strips
 59

UW-CSE-01-06-06 18

RaPiD-C Code: med_filt.rc

 1 ///
 2 //
 3 // Rapid Program for
 4 // Median Filter
 5 //
 6 // Kevin Rennie
 7 // 21 March 2000
 8 //
 9 // med_filt.rc
 10 //
 11 ///
 12
 13 #include "med_filt.h"
 14
 15 void med_filt_rapid(Word in[IVSIZE][IHSIZE], Word out[IVSIZE][IHSIZE])
 16
 17 /*
 18 void med_filt_rapid(Word in[IVSIZE][IHSIZE],
 19 Word outA[IVSIZE][IHSIZE], Word outB[IVSIZE][IHSIZE], Word
outC[IVSIZE][IHSIZE])
 20 */
 21 {
 22 StreamOut outStream; // Explicitly fill output stream
 23 Pipe inData(1); // Delayed Input pipe
 24 Pipe inDataBroad; // Broadcast Input data
 25 Pipe onePipe, twoPipe, threePipe; // Pipes for sorted list
 26 Pipe fourPipe, fivePipe; // Pipes for sorted list
 27 Pipe pixelPipe; // Pipe for the center pixel
 28 Pipe maxPipe, minPipe; // Pipe for min and max values
 29 Pipe outPipe; // Ouptut Pipe
 30
 31 Pipe one;
 32
 33 Bit gsiteBit;
 34 BitPipe gsite;
 35
 36 Pipe testPipeA, testPipeB, testPipeC;
 37
 38 Ram inCol1, inCol2, inCol3, inCol4;
 39
 40 // Comparison bits for insertion
 41 Bit CompOne[STAGES], CompTwo[STAGES], CompThree[STAGES];
 42 Bit CompFour[STAGES], CompFive[STAGES];
 43 Bit CompMax[STAGES], CompMin[STAGES];
 44 Bit correct[STAGES];
 45
 46 // Storage for sorting
 47 Word oneReg[STAGES], twoReg[STAGES], threeReg[STAGES];
 48 Word fourReg[STAGES], fiveReg[STAGES];
 49 Word tempReg[STAGES];
 50 Word pixelReg[STAGES];
 51 Word maxReg[STAGES], minReg[STAGES];
 52
 53 Event outReady, outWrite;
 54 Event outWrite0, outWrite1, outWrite2;
 55
 56 For c;
 57 For i, j, k;
 58 For io, jo, ko;
 59 For ioF, joF, koF;
 60 For ioM, joM, koM;
 61 For ioL, joL, koL;
 62 For isF, jsF, ksF;
 63 For isM, jsM, ksM;
 64 For isL, jsL, ksL;
 65 For is, js, ks;
 66 For q_cons, q_repeat, q_cols, q_rows;

UW-CSE-01-06-06 19

 67 For outWait;
 68
 69 Par {
 70
 71 thread:
 72 for (q_repeat=0; q_repeat<(IHSIZE*IVSIZE); q_repeat++) {
 73 for (q_cols=0; q_cols<IHSIZE; q_cols++) {
 74 for (q_rows=0; q_rows<ROWS_PER_STRIP-5; q_rows++) {
 75 Datapath {}
 76 }
 77 }
 78 }
 79
 80 thread:
 81 for (k=0; k<=(IVSIZE-ROWS_PER_STRIP); k+=(ROWS_PER_STRIP-4)) {
 82 for (j=0; j<(IHSIZE+5); j++) {
 83 for (i=0; i<ROWS_PER_STRIP; i++) {
 84 Datapath {
 85 if ((i==2) && (j==2)) {
 86 signal(outReady);
 87 }
 88 if (s==0) {
 89 inDataBroad = in[i+k][j];
 90 }
 91 if (s==1) { // (25) +idip (R/B) (RB1)
 92 // Initial site indicator
 93 //if (k.first) {
 94 if (i.first && j.first) {
 95 gsiteBit = !(VJOG^HJOG);
 96 }
 97 else if (!i.first) {
 98 gsiteBit = !gsiteBit;
 99 }
 100 gsite = gsiteBit;
 101 // Start delayed input pipe
 102 inData = inDataBroad;
 103
 104 // if (!gsite)
 105 onePipe = inData;
 106 }
 107 always if (s==2) { // (24)
 108 }
 109 always if (s==3) { // (23) -iinc (G & R/B)
 (G1, RB2)
 110 if (gsite) {
 111 onePipe = inData;
 112 }
 113 else {
 114 twoPipe = inData;
 115 }
 116 }
 117 always if (s==4) { // (22)
 118 }
 119 always if (s==5) { // (21) -idim (R/B) (RB3)
 120 if (!gsite) {
 121 threePipe = inData;
 122 }
 123 //if ((i.first && j.first) || (inCol1.address == (ROWS_PER_STRIP-
5))) {
 124 if (q_rows.first) {
 125 inCol1.address = 0;
 126 }
 127 tempReg[s] = inData;
 128 inData = inCol1;
 129 inCol1 = tempReg[s];
 130 inCol1.address++;
 131 }
 132 always if (s==6) { // (20)
 133 }
 134 always if (s==7) { // (19) +idipg (G) (G2)
 135 if (gsite) {

UW-CSE-01-06-06 20

 136 twoPipe = inData;
 137 }
 138 }
 139 always if (s==8) { // (18)
 140 }
 141 always if (s==9) { // (17) -idimp (G) (G3)
 142 if (gsite) {
 143 threePipe = inData;
 144 }
 145 }
 146 always if (s==10) { // (16)
 (Have G3, RB3) Shared
 147 // Sort one, two and three
 148
 149 // oneReg = max(1P, 2P); twoReg = min(1P,2P)
 150 if (onePipe > twoPipe) {
 151 oneReg[s] = onePipe;
 152 twoReg[s] = twoPipe;
 153 }
 154 else {
 155 oneReg[s] = twoPipe;
 156 twoReg[s] = onePipe;
 157 }
 158
 159 // oneReg = max(3P,max(1P,2P)); threeReg = min(3P, max(1P,2P));
 160 if (oneReg[s] > threePipe) { // 1R is max
 161 threeReg[s] = threePipe;
 162 }
 163 else {
 164 threeReg[s] = oneReg[s];
 165 oneReg[s] = threePipe; // 3P is max
 166 }
 167
 168 // twoReg = max(min(1P,2P), min(3P,max(1P,2P))); threeReg =
min(min(1P,2P), min(3P,max(1P,2P)))
 169 if (twoReg[s] < threeReg[s]) { // 2R is min, switch
 170 tempReg[s] = twoReg[s];
 171 twoReg[s] = threeReg[s];
 172 threeReg[s] = tempReg[s];
 173 }
 174 // 1R > 2R > 3R
 175 onePipe = oneReg[s];
 176 twoPipe = twoReg[s];
 177 threePipe = threeReg[s];
 178
 179 // End of column buffer
 180 //if ((i.first && j.first) || (inCol2.address == (ROWS_PER_STRIP-
5))) {
 181 if (q_rows.first) {
 182 inCol2.address = 0;
 183 }
 184 tempReg[s] = inData;
 185 inData = inCol2;
 186 inCol2 = tempReg[s];
 187 inCol2.address++;
 188 }
 189 always if (s==11) { // (15) +ijmp (G & R/B)
 (G4, RB4) Shared
 190 CompOne = inData > onePipe;
 191 CompTwo = inData > twoPipe;
 192 CompThree = inData > threePipe;
 193
 194 if (CompOne) { // (In, One, Two, Three)
 195 fourPipe = threePipe;
 196 threePipe = twoPipe;
 197 twoPipe = onePipe;
 198 onePipe = inData;
 199 }
 200 else if (CompTwo) { // (One, In, Two, Three)
 201 fourPipe = threePipe;
 202 threePipe = twoPipe;

UW-CSE-01-06-06 21

 203 twoPipe = inData;
 204 }
 205 else if (CompThree) { // (One, Two, In, Three)
 206 fourPipe = threePipe;
 207 threePipe = inData;
 208 }
 209 else { // (One, Two, Three, In)
 210 fourPipe = inData;
 211 }
 212 }
 213 always if (s==12) { // (14)
 214 }
 215 always if (s==13) { // (13) iptr (G & R/B)
 216 pixelPipe = inData;
 217 }
 218 always if (s==14) { // (12)
 219 }
 220 always if (s==15) { // (11) -ijmp (G & R/B)
 (G5, RB5) Shared
 221 CompOne = inData > onePipe;
 222 CompTwo = inData > twoPipe;
 223 CompThree = inData > threePipe;
 224 CompFour = inData > fourPipe;
 225
 226 if (CompOne) { // (In, One, Two, Three, Four)
 227 fivePipe = fourPipe;
 228 fourPipe = threePipe;
 229 threePipe = twoPipe;
 230 twoPipe = onePipe;
 231 onePipe = inData;
 232 }
 233 else if (CompTwo) { // (One, In, Two, Three, Four)
 234 fivePipe = fourPipe;
 235 fourPipe = threePipe;
 236 threePipe = twoPipe;
 237 twoPipe = inData;
 238 }
 239 else if (CompThree) { // (One, Two, In, Three, Four)
 240 fivePipe = fourPipe;
 241 fourPipe = threePipe;
 242 threePipe = inData;
 243 }
 244 else if (CompFour) { // (One, Two, Three, In, Four)
 245 fivePipe = fourPipe;
 246 fourPipe = inData;
 247 }
 248 else { // (One, Two, Three, Four, In)
 249 fivePipe = inData;
 250 }
 251
 252 // Buffer at end of column
 253 //if ((i.first && j.first) || (inCol3.address == (ROWS_PER_STRIP-
5))) {
 254 if (q_rows.first) {
 255 inCol3.address = 0;
 256 }
 257 tempReg[s] = inData;
 258 inData = inCol3;
 259 inCol3 = tempReg[s];
 260 inCol3.address++;
 261 }
 262 always if (s==16) { // (10)
 263 }
 264 always if (s==17) { // (9) +idimp (G)
 (G6)
 265 if (gsite) {
 266 CompOne = inData > onePipe;
 267 CompTwo = inData > twoPipe;
 268 CompThree = inData > threePipe;
 269 CompFour = inData > fourPipe;
 270 CompFive = inData > fivePipe;

UW-CSE-01-06-06 22

 271
 272 // Calculate Max
 273 if (CompOne) {
 274 maxPipe = inData;
 275 }
 276 else {
 277 maxPipe = onePipe;
 278 }
 279
 280 // Calculate Min
 281 if (CompFive) {
 282 minPipe = fivePipe;
 283 }
 284 else {
 285 minPipe = inData;
 286 }
 287
 288 // Sort
 289 if (CompOne) { // (X, One, Two, Three, Four)
 290 fivePipe = fourPipe;
 291 fourPipe = threePipe;
 292 threePipe = twoPipe;
 293 twoPipe = onePipe;
 294 }
 295 else if (CompTwo) { // (X, In, Two, Three, Four)
 296 fivePipe = fourPipe;
 297 fourPipe = threePipe;
 298 threePipe = twoPipe;
 299 twoPipe = inData;
 300 }
 301 else if (CompThree) { // (X, Two, In, Three, Four)
 302 fivePipe = fourPipe;
 303 fourPipe = threePipe;
 304 threePipe = inData;
 305 }
 306 else if (CompFour) { // (X, Two, Three, In, Four)
 307 fivePipe = fourPipe;
 308 fourPipe = inData;
 309 }
 310 else if (CompFive) { // (X, Two, Three, Four, In)
 311 fivePipe = inData;
 312 }
 313 else { // (X, Two, Three, Four, Five)
 314 }
 315 }
 316 }
 317 always if (s==18) { // (8)
 318 }
 319 always if (s==19) { // (7) -idipg (G)
 (G7)
 320 if (gsite) {
 321 CompMax = inData > maxPipe;
 322 CompTwo = inData > twoPipe;
 323 CompThree = inData > threePipe;
 324 CompFour = inData > fourPipe;
 325 CompFive = inData > fivePipe;
 326 CompMin = inData > minPipe;
 327
 328 // Calculate Max
 329 if (CompMax) {
 330 maxPipe = inData;
 331 }
 332
 333 // Calculate Min
 334 if (!CompMin) {
 335 minPipe = inData;
 336 }
 337
 338 // Sort
 339 if (CompTwo) { // (X, X, Two, Three, Four)
 340 fivePipe = fourPipe;

UW-CSE-01-06-06 23

 341 fourPipe = threePipe;
 342 threePipe = twoPipe;
 343 }
 344 else if (CompThree) { // (X, X, In, Three, Four)
 345 fivePipe = fourPipe;
 346 fourPipe = threePipe;
 347 threePipe = inData;
 348 }
 349 else if (CompFour) { // (X, X, Three, In, Four)
 350 fivePipe = fourPipe;
 351 fourPipe = inData;
 352 }
 353 else if (CompFive) { // (X, X, Three, Four, In)
 354 fivePipe = inData;
 355 }
 356 else { // (X, X, Three, Four, Five)
 357 }
 358 }
 359 }
 360 always if (s==20) { // (6)
 361 //if ((i.first && j.first) || (inCol4.address == (ROWS_PER_STRIP-
5))) {
 362 if (q_rows.first) {
 363 inCol4.address = 0;
 364 }
 365 tempReg[s] = inData;
 366 inData = inCol4;
 367 inCol4 = tempReg[s];
 368 inCol4.address++;
 369 }
 370 always if (s==21) { // (5) +idim (R/B)
 (RB6)
 371 if (!gsite) {
 372 CompOne = inData > onePipe;
 373 CompTwo = inData > twoPipe;
 374 CompThree = inData > threePipe;
 375 CompFour = inData > fourPipe;
 376 CompFive = inData > fivePipe;
 377
 378 // Calculate Max
 379 if (CompOne) {
 380 maxPipe = inData;
 381 }
 382 else {
 383 maxPipe = onePipe;
 384 }
 385
 386 // Calculate Min
 387 if (CompFive) {
 388 minPipe = fivePipe;
 389 }
 390 else {
 391 minPipe = inData;
 392 }
 393
 394 // Sort
 395 if (CompOne) { // (X, One, Two, Three, Four)
 396 fivePipe = fourPipe;
 397 fourPipe = threePipe;
 398 threePipe = twoPipe;
 399 twoPipe = onePipe;
 400 }
 401 else if (CompTwo) { // (X, In, Two, Three, Four)
 402 fivePipe = fourPipe;
 403 fourPipe = threePipe;
 404 threePipe = twoPipe;
 405 twoPipe = inData;
 406 }
 407 else if (CompThree) { // (X, Two, In, Three, Four)
 408 fivePipe = fourPipe;
 409 fourPipe = threePipe;

UW-CSE-01-06-06 24

 410 threePipe = inData;
 411 }
 412 else if (CompFour) { // (X, Two, Three, In, Four)
 413 fivePipe = fourPipe;
 414 fourPipe = inData;
 415 }
 416 else if (CompFive) { // (X, Two, Three, Four, In)
 417 fivePipe = inData;
 418 }
 419 else { // (X, Two, Three, Four, Five)
 420 }
 421 }
 422 }
 423 always if (s==22) { // (4)
 424 }
 425 always if (s==23) { // (3) -iinc (G & R/B)
 (G8, RB7)
 426 if (gsite) {
 427 CompMax = inData > maxPipe;
 428 CompThree = inData > threePipe;
 429 CompFour = inData > fourPipe;
 430 CompFive = inData > fivePipe;
 431 CompMin = inData > minPipe;
 432
 433 // Calculate maximum
 434 if (CompMax) {
 435 maxPipe = inData;
 436 }
 437
 438 // Calculate minimum
 439 if (!CompMin) {
 440 minPipe = inData;
 441 }
 442
 443 // Sort
 444 if (CompThree) { // (X, X, X, Three, Four)
 445 fivePipe = fourPipe;
 446 fourPipe = threePipe;
 447 }
 448 else if (CompFour) { // (X, X, X, inData, Four)
 449 fivePipe = fourPipe;
 450 fourPipe = inData;
 451 }
 452 else if (CompFive) { // (X, X, X, Four, InData)
 453 fivePipe = inData;
 454 }
 455 else { // (X, X, X, Four, Five)
 456 }
 457 }
 458 else { // RB7
 459 CompMax = inData > maxPipe;
 460 CompTwo = inData > twoPipe;
 461 CompThree = inData > threePipe;
 462 CompFour = inData > fourPipe;
 463 CompFive = inData > fivePipe;
 464 CompMin = inData > minPipe;
 465
 466 // Calculate Max
 467 if (CompMax) {
 468 maxPipe = inData;
 469 }
 470
 471 // Calculate Min
 472 if (!CompMin) {
 473 minPipe = inData;
 474 }
 475
 476 if (CompTwo) { // (X, X, Two, Three, Four)
 477 fivePipe = fourPipe;
 478 fourPipe = threePipe;
 479 threePipe = twoPipe;

UW-CSE-01-06-06 25

 480 }
 481 else if (CompThree) { // (X, X, In, Three, Four)
 482 fivePipe = fourPipe;
 483 fourPipe = threePipe;
 484 threePipe = inData;
 485 }
 486 else if (CompFour) { // (X, X, Three, In, Four)
 487 fivePipe = fourPipe;
 488 fourPipe = inData;
 489 }
 490 else if (CompFive) { // (X, X, Three, Four, In)
 491 fivePipe = inData;
 492 }
 493 else { // (X, X, Three, Four, Five)
 494 }
 495 }
 496 }
 497 if (s==24) { // (2)
 498 }
 499 always if (s==25) { // (1) -idip (G & R/B)
 (RB8)
 500 if (!gsite) {
 501 CompMax = inData > maxPipe;
 502 CompThree = inData > threePipe;
 503 CompFour = inData > fourPipe;
 504 CompFive = inData > fivePipe;
 505 CompMin = inData > minPipe;
 506
 507 // Calculate maximum
 508 if (CompMax) {
 509 maxPipe = inData;
 510 }
 511
 512 // Calculate minimum
 513 if (!CompMin) {
 514 minPipe = inData;
 515 }
 516
 517 // Sort
 518 if (CompThree) { // (X, X, X, Three, Four)
 519 fivePipe = fourPipe;
 520 fourPipe = threePipe;
 521 }
 522 else if (CompFour) { // (X, X, X, inData, Four)
 523 fivePipe = fourPipe;
 524 fourPipe = inData;
 525 }
 526 else if (CompFive) { // (X, X, X, Four, InData)
 527 fivePipe = inData;
 528 }
 529 else { // (X, X, X, Four, Five)
 530 }
 531 }
 532 }
 533 always if (s==(STAGES-2)) {
 534 CompMax = pixelPipe > maxPipe;
 535 CompMin = pixelPipe < minPipe;
 536 if (CompMax || CompMin) {
 537 outPipe = (fivePipe + fourPipe) >> 1;
 538 }
 539 else {
 540 outPipe = pixelPipe;
 541 }
 542 }
 543 } // Datapath
 544 } // i
 545 } // j
 546 } // k
 547
 548 // Datapath output thread
 549 thread:

UW-CSE-01-06-06 26

 550 for (ko=0; ko<=(IVSIZE-ROWS_PER_STRIP); ko+=(ROWS_PER_STRIP-4)) {
 551 wait(outReady);
 552 for (jo=0; jo<IHSIZE; jo++) {
 553 for (io=0; io<ROWS_PER_STRIP; io++) {
 554 Datapath {
 555 if (s==STAGES-1) {
 556 if ((io>=2) && (io<(ROWS_PER_STRIP-2))) {
 557 if (jo<2 || jo>=(IHSIZE-2)) {
 558 outStream = pixelPipe;
 559 }
 560 else {
 561 outStream = outPipe;
 562 }
 563 }
 564 else if (((io<2) && ko.first) ||
 565 ((io>=(ROWS_PER_STRIP-2)) && ko.last)) {
 566 outStream = pixelPipe;
 567 }
 568 }
 569 }
 570 }
 571 }
 572 }
 573
 574 // Output Stream thread
 575 thread:
 576 // First Swath (ignore bottom two rows of swath)
 577 wait(outReady);
 578 for (jsF=0; jsF<IHSIZE; jsF++) {
 579 for (isF=0; isF<ROWS_PER_STRIP-2; isF++) {
 580 Datapath {
 581 if (s==STAGES-1) {
 582 out[isF][jsF] = outStream;
 583 }
 584 }
 585 }
 586 Datapath {}
 587 Datapath {}
 588 }
 589
 590 // Middle Swaths (ignore top and bottom two rows of swath)
 591 for (ksM=(ROWS_PER_STRIP-4); ksM<(IVSIZE-ROWS_PER_STRIP);
ksM+=(ROWS_PER_STRIP-4)) {
 592 wait(outReady);
 593 for (jsM=0; jsM<IHSIZE; jsM++) {
 594 Datapath {}
 595 Datapath {}
 596 for (isM=2; isM<(ROWS_PER_STRIP-2); isM++) {
 597 Datapath {
 598 if (s==STAGES-1) {
 599 out[ksM+isM][jsM] = outStream;
 600 }
 601 }
 602 }
 603 Datapath {}
 604 Datapath {}
 605 }
 606 }
 607
 608 // Last Swath (ignore top two rows of swath)
 609 wait(outReady);
 610 for (jsL=0; jsL<IHSIZE; jsL++) {
 611 Datapath {}
 612 Datapath {}
 613 for (isL=2; isL<ROWS_PER_STRIP; isL++) {
 614 Datapath {
 615 if (s==STAGES-1) {
 616 out[isL+(IVSIZE-ROWS_PER_STRIP)][jsL] = outStream;
 617 }
 618 }
 619 }

UW-CSE-01-06-06 27

 620 }
 621 } // Par
 622 } // med_filt_rapid
 623

UW-CSE-01-06-06 28

Driver Program: med_filtTest.cc

 1 ///
 2 //
 3 // Driver Program for
 4 // Median Filter
 5 //
 6 // Kevin Rennie
 7 // 21 March 2000
 8 //
 9 // med_filtTest.cc
 10 //
 11 ///
 12
 13 #include <assert.h>
 14 #include <stdio.h>
 15 #include <iostream.h>
 16 #include <fstream.h>
 17 #include <iomanip.h>
 18 #include <math.h>
 19 #include <stdlib.h>
 20 #include <malloc.h>
 21 #include "med_filt.h"
 22
 23 // Data structures implementation of med_filt
 24 typedef unsigned char byte;
 25 typedef byte boolean;
 26 typedef struct {
 27 int *s;
 28 int *i;
 29 int *j;
 30 } DEFMAP;
 31 typedef struct {
 32 short int *sm;
 33 short int *us;
 34 } VTMP;
 35
 36 extern void med_filt_rapid(Word in[IVSIZE][IHSIZE], Word out[IVSIZE][IHSIZE]);
 37 /*
 38 extern void med_filt_rapid(Word in[IVSIZE][IHSIZE],
 39 Word outA[IVSIZE][IHSIZE], Word outB[IVSIZE][IHSIZE], Word
outC[IVSIZE][IHSIZE]);
 40 */
 41
 42 //
 43 //
 44 // Test Utility Functions
 45 //
 46 //
 47
 48 // prints a single matrix (ie. R, G, or B)
 49 void print_matrix(Word img[IVSIZE][IHSIZE]) {
 50 int i, j;
 51
 52 for (i = 0; i < IVSIZE; i++) {
 53 for (j = 0; j < IHSIZE; j++) {
 54 printf("%4d ", img[i][j]);
 55 }
 56 printf("\n");
 57 }
 58 }
 59
 60
 61 void print_data(Word A[IVSIZE][IHSIZE], Word B[IVSIZE][IHSIZE], Word
C[IVSIZE][IHSIZE])
 62 {
 63 printf("\nA:\n");
 64 print_matrix(A);
 65 printf("\nB:\n");
 66 print_matrix(B);

UW-CSE-01-06-06 29

 67 printf("\nC:\n");
 68 print_matrix(C);
 69 }
 70
 71 void print_vector(short int *img)
 72 {
 73 int i,j,k;
 74 int iptr = 0;
 75 int increment = 1;
 76
 77 for (i = 0; i < IVSIZE; i++) {
 78 for (j = 0; j < IHSIZE; j++) {
 79 printf("%4d ", img[iptr]);
 80 iptr += increment;
 81 }
 82 printf("\n");
 83 }
 84 }
 85
 86 void test_data(Word out[IVSIZE][IHSIZE], short int *test_vector) {
 87 int i,j;
 88 int iptr = 0;
 89 int print_errors = 1;
 90 int print_difference = 1;
 91 int correct = TRUE;
 92 int increment = 1;
 93
 94 Word Diff[IVSIZE][IHSIZE];
 95
 96 printf("\n\nTesting results...");
 97 if (print_errors)
 98 printf("\n\nErrors:");
 99 for (i=0; i<IVSIZE; i++) {
 100 for (j=0; j<IHSIZE; j++) {
 101 Diff[i][j] = out[i][j] - test_vector[iptr];
 102 if (Diff[i][j] != 0) {
 103 if (print_errors)
 104 printf("\nError occured at row %d, col %d, test = %d, rapid = %d",
 105 i, j, test_vector[iptr], out[i][j]);
 106 correct = FALSE;
 107 }
 108 iptr+=increment;
 109 }
 110 }
 111
 112 if (correct == FALSE) {
 113 if (print_difference) {
 114 printf("\n\nHere's the diffrence between Rapid and testbench:\n\n");
 115 print_matrix(Diff);
 116 }
 117 printf("\n\n----> Verification Failed! <-----\n\n");
 118 }
 119 else
 120 printf("\n\n----> Verification Succeeded! (woohoo) <-----\n\n");
 121 }
 122
 123 short int *med_filt(short int *img, int rank, int ihsize, int ivsize)
 124 {
 125 //FILE *fout;
 126 register int i, j, x, y, p, iptr, optr, ijmp, idim, idip, iinc, ohsize, ovsize;
 127 register int cptr, idimg, idipg, xhold;
 128 int hpix, cpix, scy_shift, med_shift, sev_shift;
 129 short int hival, loval, pixval, tmp, *tz, *rep;
 130 short int by00, by01, by02, by03, by04, by05, by06, by07;
 131 short int by10, by11, by12, by13, by14, by15, by16, by17;
 132 short int by20, by21, by22, by23, by24, by25, by26, by27;
 133 short int by30, by31, by32, by33, by34, by35, by36, by37;
 134 short int by40, by41, by42, by43, by44, by45, by46, by47;
 135 short int by50, by51, by52, by53, by54, by55, by56, by57;
 136 short int by60, by61, by62, by63, by64, by65, by66, by67;
 137 short int by70, by71, by72, by73, by74, by75, by76, by77;

UW-CSE-01-06-06 30

 138 short int by81;
 139 short int by90;
 140 short int def_thresh_used, severity;
 141 char c, filestring[80];
 142 char whoami[64] = "RaPiDTest"; // Added for RaPiD driver program
 143 DEFMAP map;
 144 boolean chuckit = FALSE;
 145
 146 ohsize = ihsize - 4;
 147 ovsize = ivsize - 4;
 148
 149 map.s = (int *)malloc(sizeof(int)*(DEF_MAXDEFS+1));
 150 map.i = (int *)malloc(sizeof(int)*(DEF_MAXDEFS+1));
 151 map.j = (int *)malloc(sizeof(int)*(DEF_MAXDEFS+1));
 152 rep = (short int *)malloc(sizeof(short int)*ihsize*ivsize*COLORS);
 153 if(DEF_REPORT)
 154 for(i=0; i<ihsize*ivsize*COLORS; i++)
 155 rep[i] = 0;
 156
 157 def_thresh_used = (DEF_THRESH << (DE_B3 - DE_B4));
 158 scy_shift = DE_B0 - DE_B1;
 159 med_shift = DE_B0 - DE_B2;
 160 sev_shift = DE_B0 - DE_B3;
 161 /* scy_shift = 0; */
 162
 163 tz = (short int *)malloc(sizeof(short int)*ihsize*ivsize);
 164 /* copy in image to tmp to ease coding */
 165 for(i=0; i<ihsize*ivsize; i++)
 166 tz[i] = img[i];
 167 ijmp = ihsize << 1;
 168 iinc = 2;
 169 idim = ijmp - iinc;
 170 idip = ijmp + iinc;
 171 idimg = idim >> 1;
 172 idipg = idip >> 1;
 173 iptr = idip;
 174 cptr = COLORS * idip;
 175 for(p=0; p<DEF_MAXDEFS+1; p++) map.s[p] = -(p+50);
 176 optr = 0;
 177 /* scythe filter detect, correct if requested */
 178 for(i=0; i<ovsize; i++) {
 179 for(j=0; j<ohsize; j++) {
 180 /* original or recursive neighbourhood assignments, centre included, tighter
on green checkers */
 181 pixval = img[iptr];
 182 if(((i & 1) ^ VJOG) == ((j & 1) ^ HJOG)) {
 183 hpix = sev_shift;
 184 cpix = GRN;
 185 by00 = DEF_ORIGIN ? img[iptr - idipg] : tz[iptr - idipg];
 186 by01 = DEF_ORIGIN ? img[iptr - ijmp] : tz[iptr - ijmp];
 187 by02 = DEF_ORIGIN ? img[iptr - idimg] : tz[iptr - idimg];
 188 by03 = DEF_ORIGIN ? img[iptr - iinc] : tz[iptr - iinc];
 189 by04 = img[iptr + iinc];
 190 by05 = img[iptr + idimg];
 191 by06 = img[iptr + ijmp];
 192 by07 = img[iptr + idipg];
 193 }
 194 else {
 195 hpix = sev_shift + 1;
 196 cpix = ((i & 1) ^ VJOG) ? BLU : RED;
 197 by00 = DEF_ORIGIN ? img[iptr - idip] : tz[iptr - idip];
 198 by01 = DEF_ORIGIN ? img[iptr - ijmp] : tz[iptr - ijmp];
 199 by02 = DEF_ORIGIN ? img[iptr - idim] : tz[iptr - idim];
 200 by03 = DEF_ORIGIN ? img[iptr - iinc] : tz[iptr - iinc];
 201 by04 = img[iptr + iinc];
 202 by05 = img[iptr + idim];
 203 by06 = img[iptr + ijmp];
 204 by07 = img[iptr + idip];
 205 }
 206 /* batcher-banyan sort on 8-ring pels */
 207 if((by00 >> scy_shift) > (by01 >> scy_shift)) { by10 = by00; by11 = by01; }

UW-CSE-01-06-06 31

 208 else
{ by10 = by01; by11 = by00; }
 209 if((by02 >> scy_shift) < (by03 >> scy_shift)) { by12 = by02; by13 = by03; }
 210 else
{ by12 = by03; by13 = by02; }
 211 if((by04 >> scy_shift) > (by05 >> scy_shift)) { by14 = by04; by15 = by05; }
 212 else
{ by14 = by05; by15 = by04; }
 213 if((by06 >> scy_shift) < (by07 >> scy_shift)) { by16 = by06; by17 = by07; }
 214 else
{ by16 = by07; by17 = by06; }
 215 if((by10 >> scy_shift) > (by12 >> scy_shift)) { by20 = by10; by21 = by12; }
 216 else
{ by20 = by12; by21 = by10; }
 217 if((by11 >> scy_shift) > (by13 >> scy_shift)) { by22 = by11; by23 = by13; }
 218 else
{ by22 = by13; by23 = by11; }
 219 if((by14 >> scy_shift) < (by16 >> scy_shift)) { by24 = by14; by25 = by16; }
 220 else
{ by24 = by16; by25 = by14; }
 221 if((by15 >> scy_shift) < (by17 >> scy_shift)) { by26 = by15; by27 = by17; }
 222 else
{ by26 = by17; by27 = by15; }
 223 if((by20 >> scy_shift) > (by22 >> scy_shift)) { by30 = by20; by31 = by22; }
 224 else
{ by30 = by22; by31 = by20; }
 225 if((by21 >> scy_shift) > (by23 >> scy_shift)) { by32 = by21; by33 = by23; }
 226 else
{ by32 = by23; by33 = by21; }
 227 if((by24 >> scy_shift) < (by26 >> scy_shift)) { by34 = by24; by35 = by26; }
 228 else
{ by34 = by26; by35 = by24; }
 229 if((by25 >> scy_shift) < (by27 >> scy_shift)) { by36 = by25; by37 = by27; }
 230 else
{ by36 = by27; by37 = by25; }
 231 if((by30 >> scy_shift) > (by34 >> scy_shift)) { by40 = by30; by41 = by34; }
 232 else
{ by40 = by34; by41 = by30; }
 233 if((by31 >> scy_shift) > (by35 >> scy_shift)) { by42 = by31; by43 = by35; }
 234 else
{ by42 = by35; by43 = by31; }
 235 if((by32 >> scy_shift) > (by36 >> scy_shift)) { by44 = by32; by45 = by36; }
 236 else
{ by44 = by36; by45 = by32; }
 237 if((by33 >> scy_shift) > (by37 >> scy_shift)) { by46 = by33; by47 = by37; }
 238 else
{ by46 = by37; by47 = by33; }
 239 if((by40 >> scy_shift) > (by44 >> scy_shift)) { by50 = by40; by51 = by44; }
 240 else
{ by50 = by44; by51 = by40; }
 241 if((by42 >> scy_shift) > (by46 >> scy_shift)) { by52 = by42; by53 = by46; }
 242 else
{ by52 = by46; by53 = by42; }
 243 if((by41 >> scy_shift) > (by45 >> scy_shift)) { by54 = by41; by55 = by45; }
 244 else
{ by54 = by45; by55 = by41; }
 245 if((by43 >> scy_shift) > (by47 >> scy_shift)) { by56 = by43; by57 = by47; }
 246 else
{ by56 = by47; by57 = by43; }
 247 if((by50 >> scy_shift) > (by52 >> scy_shift)) { by60 = by50; by61 = by52; }
 248 else
{ by60 = by52; by61 = by50; }
 249 if((by51 >> scy_shift) > (by53 >> scy_shift)) { by62 = by51; by63 = by53; }
 250 else
{ by62 = by53; by63 = by51; }
 251 if((by54 >> scy_shift) > (by56 >> scy_shift)) { by64 = by54; by65 = by56; }
 252 else
{ by64 = by56; by65 = by54; }
 253 if((by55 >> scy_shift) > (by57 >> scy_shift)) { by66 = by55; by67 = by57; }
 254 else
{ by66 = by57; by67 = by55; }

UW-CSE-01-06-06 32

 255
 256 /* variable-rank scythe filter */
 257 switch(rank) {
 258 case 1: hival = by60; loval = by67; break;
 259 case 2: hival = by61; loval = by66; break;
 260 case 3: hival = by62; loval = by65; break;
 261 default: hival = by63; loval = by64;
 262 }
 263 if((pixval >> scy_shift) > (hival >> scy_shift)) {
 264 tz[iptr] = (by63+by64) >> 1;
 265 printf("\ntest: Sorted pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d,
%2d, %2d",pixval,by60,by61,by62,by63,by64,by65,by66,by67);
 266 printf("\ntest: Original pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d,
%2d, %2d\n",pixval,by00,by01,by02,by03,by04,by05,by06,by07);
 267 //tz[iptr] = hival;
 268 }
 269 else if((pixval >> scy_shift) < (loval >> scy_shift)) {
 270 tz[iptr] = (by63+by64) >> 1;
 271 printf("\ntest: Sorted pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d,
%2d, %2d",pixval,by60,by61,by62,by63,by64,by65,by66,by67);
 272 printf("\ntest: Original pixval %2d, list: %2d, %2d, %2d, %2d, %2d, %2d,
%2d, %2d\n",pixval,by00,by01,by02,by03,by04,by05,by06,by07);
 273 //tz[iptr] = loval;
 274 }
 275 else
 276 tz[iptr] = pixval;
 277 severity = abs(tz[iptr] - pixval) >> hpix;
 278 if(DEF_SCYTHE)
 279 rep[COLORS * iptr + cpix] = abs(tz[iptr] - pixval) >> hpix;
 280 /* insert in map if appropriate */
 281 if(severity < def_thresh_used) severity = 0;
 282 p = DEF_MAXDEFS;
 283 while((--p) >= 0) {
 284 if(map.s[p] < severity) {
 285 map.s[p+1] = map.s[p];
 286 map.i[p+1] = map.i[p];
 287 map.j[p+1] = map.j[p];
 288 map.s[p] = severity;
 289 map.i[p] = i + 2;
 290 map.j[p] = j + 2;
 291 }
 292 else {
 293 break;
 294 }
 295 }
 296 if(!DEF_SCYTHE)
 297 tz[iptr] = pixval;
 298 ++iptr;
 299 cptr += COLORS;
 300 ++optr;
 301 }
 302 cptr += 4 * COLORS;
 303 iptr+=4;
 304 }
 305
 306 free(rep);
 307 free(map.s); free(map.i); free(map.j);
 308 return(tz);
 309
 310 }
 311
 312 //
 313 //
 314 // Main Function
 315 //
 316 //
 317
 318 int main() {
 319 int i, j, k;
 320 int iptr, tmp;
 321

UW-CSE-01-06-06 33

 322 int data_seq = 1;
 323 int data_rand = 2;
 324 int data_type = data_rand;
 325 int correct = TRUE;
 326
 327 srandom(22);
 328
 329 Word in[IVSIZE][IHSIZE]; // Input matrix
 330 Word in_v[IVSIZE*IHSIZE]; // Input vector
 331 Word out[IVSIZE][IHSIZE]; // Output matrix
 332 Word out_v[IVSIZE*IHSIZE]; // Output vector
 333 Word cons_vec[CONSTANTS]; // Constants for matrix calculation
 334 Word outA[IVSIZE][IHSIZE]; // Output matrix
 335 Word outB[IVSIZE][IHSIZE]; // Output matrix
 336 Word outC[IVSIZE][IHSIZE]; // Output matrix
 337
 338 int scy_shift, med_shift, sev_shift;
 339
 340 short int *ip, *de; // testbench matrices, ip input to med_filt,
de output from med_filt
 341
 342 ip = (short int *)malloc(sizeof(short int)*IHSIZE*IVSIZE);
 343
 344 // Generate input data
 345 for (j = 0; j < IHSIZE; j++) {
 346 for (i = 0; i < IVSIZE; i++) {
 347 if (data_type == data_seq) {
 348 tmp = j*IVSIZE + i; // column major order
 349 in[i][j] = tmp;
 350 }
 351 else if (data_type == data_rand) {
 352 in[i][j] = RAND(63) + 1;
 353 }
 354 }
 355 }
 356
 357 // Generate input vector from input matrix
 358 iptr = 0;
 359 for (i = 0; i < IVSIZE; i++) {
 360 for (j = 0; j < IHSIZE; j++) {
 361 ip[iptr++] = in[i][j];
 362 }
 363 }
 364
 365 for (i = 0; i < IHSIZE*IVSIZE; i++) {
 366 in_v[i] = ip[i];
 367 }
 368
 369 /*
 370 // Build constant vector
 371 printf("\nConstants:\n ");
 372 for (i=0; i<CONSTANTS; i++) {
 373 printf("%d = %d, ", i, cons_vec[i]);
 374 }
 375 printf("\n");
 376 */
 377
 378 // Defect Correction
 379 de = med_filt(ip, 1, IHSIZE, IVSIZE);
 380
 381 // Rapid Calculation
 382 printf("\nInput Data:\n===========\n");
 383 print_matrix(in);
 384 med_filt_rapid(in, out);
 385 //med_filt_rapid(in, outA, outB, outC);
 386 printf("\nOutput Data:\n============\n");
 387 print_matrix(out);
 388
 389 printf("\n\nMed_Filt Data:\n============\n");
 390 print_vector(de);
 391

UW-CSE-01-06-06 34

 392 /*
 393 printf("\n");
 394 iptr = 0;
 395 for (i = 0; i < IVSIZE; i++) {
 396 for (j = 0; j < IHSIZE; j++) {
 397 if ((in[i][j] != de[iptr]) || ((outB[i][j] != de[iptr]) && (outB[i][j]>0)))
 398 printf("\n(%2d,%2d) - in: %2d, rpd: %2d, test: %2d, max: %2d, min:
%2d",i,j,in[i][j],outB[i][j],de[iptr],outA[i][j],outC[i][j]);
 399 iptr++;
 400 }
 401 }
 402 */
 403
 404 // Compare rapid computation and testbench
 405 test_data(out, de);
 406
 407
 408 free(ip);
 409 return 0;
 410 }

UW-CSE-01-06-06 35

