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Abstract

Many interactive 3D applications involve capturing, 
representing and reproducing the appearance of real 
objects. The surface light field represents the appearance of 
a solid object under static lighting by sampling the radiance 
along rays parametrized by surface position and direction. 
An implementation can represent this data as high-
resolution surface geometry, coupled with multiple texture 
maps, each associated with a direction. The representation 
can be rendered by a multipass algorithm utilizing common 
graphics hardware. Through careful optimization, it is 
possible to achieve interactive frame rates using existing 
implementations of OpenGL. Surface light fields tend to 
produce higher resolution renderings than similar methods 
such as the lumigraph, and do not exhibit occlusion ghosts 
and other artifacts associated with the lumigraph at low 
sampling rates. Construction and optimization of surface 
light field data present a number of challenges.

1. Introduction

Many interactive 3D applications involve capturing and 
reproducing the appearance of real objects. Such 
applications might include virtual reality, games or 
visualization. Real objects, however, exhibit complex 
surface properties such as subsurface scattering and 
phosphorescence. A representation must be general enough 
to model such properties. In addition, it should provide a 
rendering algorithm capable of reproducing those 
properties from the representation at high resolutions.

Surface light field rendering is a novel image-based 
algorithm for rendering acquired solid objects under static 
lighting. The algorithm resolves high-resolution surface 
detail and reproduces surface radiance resulting from 
complex specular properties. This work presents and 
analyzes the surface light field rendering algorithm, 
investigating performance issues on typical graphics 
hardware and comparing with similar methods.

1.1 Related work

Ubiquitous interactive 3D rendering techniques generally 
involve rasterizing a model as a set of polygons, applying a 
simple shading model to simulate surface reflectance 
properties, and using texture maps to add detail. Most 
graphics-oriented workstations include hardware capable of 
accelerating these computations. Unfortunately, such 
techniques are often not able to reproduce the complex 
characteristics of real objects, often resulting in the 

“plastic” appearance associated with Phong shading. Sato, 
et al[10] describe a method by which the specular 
properties of a surface are estimated from a set of 
photographs, according to a specified reflection model. 
Walter, et al[13] describe a method for using a simple 
lighting model to approximate complex specular lobes by 
fabricating a set of virtual lights. Both these methods are 
limited by the reflection model implemented, particularly in 
a hardware-assisted rendering system.

Some more recent work has focused on techniques known 
collectively as image-based rendering. Image-based 
rendering algorithms involve manipulating acquired or 
precomputed images of a scene to reconstruct different 
views. Such techniques often do not require the 
considerable computational resources needed by traditional 
3D rendering; however, they tend to incur high storage 
costs for the image data.

Many image-based rendering techniques are based on the 
five-dimensional plenoptic function[1]— radiance as a 
function of 3D position and direction— which completely 
describes the appearance of a scene from any viewpoint. 
Levoy and Hanrahan[7] note that this representation can be 
reduced to four dimensions in empty space by observing 
that radiance remains constant along a nonoccluded ray. 
They parametrize the 4D space of rays according to grid 
points on two parallel planes, and describe an interactive 
algorithm for constructing images for arbitrary viewpoints. 
This light field rendering algorithm does not require any 
geometric information for the scene. Gortler, et al[4] 
describe an enhancement which makes use of coarse 
geometric information to increase the depth of field of 
rendered images. Surface light fields are similar to those 
methods, but involve a different parametrization of rays, 
attached to a surface manifold. Miller, et al[8] explore this 
parametrization, focusing on its implications for 
compression. They present an interactive rendering 
algorithm, but it is able to model surface detail only at the 
resolution of the surface tessellation.

The surface light field rendering algorithm is also similar to 
view-dependent texture mapping, in which multiple 
textures are weighted and composited to render novel 
views. Debevec, et al[3] and Pulli[9] use this technique to 
generate new images using previously acquired images. 
Previous work on view-dependent texture mapping has not 
systematically modeled surface properties such as 
specularity. Furthermore, the texture weighting based on 
direction is done at object resolution, which may not 
accurately reproduce small-scale behavior. The surface 
light field fully models arbitrary surface radiance and 



supports hardware-assistedper-pixel computation of 
direction-based texture weights.

1.2 A road map

The remainder of this paper is organized as follows. First, 
section 2 reviews the representation and the basic rendering 
algorithm, which were developed jointly with Daniel 
Wood. Section 3 describes an interactive OpenGL-based 
rendering implementation of the algorithm, presents a 
series of performance analyses, and describes optimizations 
done to improve the performance. Section 4 compares 
surface light field rendering with a closely related method, 
the lumigraph[4], and discusses the quality and accuracy of 
reproductions as a function of data set size. Section 5 
briefly outlines the context of the algorithm, including data 
collection and construction of a surface light field. Section 
6 closes with conclusions and discussion.

2. The algorithm

The surface light field is a very general representation 
capable of capturing arbitrary surface radiance behavior. 
The representation also suggests a rendering algorithm that 
may be run at interactive speeds using existing graphics 
hardware. This section details the representation and the 
basic rendering algorithm. A useful implementation of this 
algorithm requires a number of optimizations such as those 
described in section 3.

2.1 The surface light field representation

The five-dimensional plenoptic function completely 
describes the appearance of a scene from any viewpoint. 
This function in its most basic form parameterizes by point 
in space and direction. In the following function, x, y and z 
represent a parametrization of 3-space, and θ and φ 
represent a direction parametrization.

L x y z rgb, , , ,θ φ( ) →

Given a surface surrounded by empty space, the plenoptic 
function can be reduced to four dimensions parametrized 
by surface position and direction (figure 2.1). Here, s and t 
define a parameterization of a surface.

L s t rgb, , ,θ φ( ) →

θ , φ

s , t
figure 2.1: The surface light field is parametrized by surface 

position and direction.

Equivalently, this can be represented as a function mapping 
direction, to functions mapping surface position to radiance 
(i.e. texture maps).

F G s t rgbθ φ, ,( ) → ( ) →

Consider a rendering algorithm for this representation 
involving raytracing. Given a pixel x in the image plane, 
cast a ray through x into the scene and find the intersection 
p with the surface. Let − = −( )r θ φ,  denote the direction of 
the ray. Then the color of the pixel is determined by the 
radiance leaving p in direction r. Thus, choose the texture 
map given by evaluating F r( ) , find the texture coordinates 
s = −( )s t,  of p, and read the color.

Formally, consider the camera projection function 
− = ( )r C x , mapping pixels in the image plane to ray cast 
directions. Furthermore, consider the surface 
parametrization function s c r= −( )T , , mapping the camera 
center of projection c and ray cast direction –r to texture 
coordinates on the surface geometry. We can then represent 
the rendering algorithm as follows:

rgb x F C x T C x( ) = − ( )( )[ ] ( )( )( )c,

In this paper, the notation A b[ ]( ) means to evaluate 
function A and apply the result, also a function, to b.

2.2 The discrete representation

Surface
geometry

Direction
mesh
(in red)

Directional
texture map

Basis function for
blue texture map

figure 2.2: Texture maps are associated with directions. 
Directions are arranged in a direction mesh, and each has a 

corresponding basis function.

In a real data set, F and G must be represented as a discrete 
set of samples, each associated with a basis function. 
Discretization of texture coordinates in G is nearly always 
done by choosing grid points and using bilinear 
interpolation as a reconstruction kernel. This reconstruction 
is common in texture implementations, and is therefore not 
discussed further. One natural and very general way to 
discretize direction space involves choosing an arbitrary set 
of direction samples, then triangulating them on the unit 



sphere using a method such as Delaunay triangulation. We 
call this tessellation of the sphere the direction mesh. This 
scheme also suggests a natural set of piecewise linear basis 
functions: center a hat function at each sample vertex, 
covering its neighborhood in the mesh. This representation 
is illustrated in figure 2.2.

Let ri  denote the ith sample direction, let Fi  denote the 
texture map associated with that direction, and let Bi  
denote the corresponding basis function. Then F may be 
reconstructed using the following formula:

F F Bi

i

ir r( ) = ( )∑

We may now modify our raytracing algorithm to work on a 
real discretized data set.

rgb x F B C x T C x

B C x F T C x

i

i

i

i

i

i

( ) = − ( )( )












( )( )( )

= − ( )( )[ ] ( )( )( )

∑

∑

c

c

,

,

In words, given our pixel x, we cast a ray and find the 
texture coordinates of the intersection p. We then iterate 
over all textures, look up the color, scale by Bi r( ), and 
accumulate.

2.3 A hardware-accelerated algorithm

Rendering algorithms based on ray tracing usually cannot 
be implemented at interactive speeds because of the 
necessary per-pixel computations. However, modern 
workstations typically include hardware designed to 
accelerate certain rendering processes such as rasterizing 
polygons, texture mapping and alpha compositing. Using 
OpenGL, a common graphics API, the surface light field 
rendering algorithm can be modified to take advantage of 
acceleration provided by existing graphics hardware.

To achieve high performance, we would like to utilize the 
hardware to perform the per-pixel texture weighting. This 
can be done by constructing ′Bi , where ′( ) = −( )B Bi ir r . 
Intuitively, since Bi  is a hat function supported by a 
triangle fan ′Bi  is the same hat function pointing in the 
opposite direction. Like Bi , its support consists of triangles 
from a tessellation of the unit sphere, which we call the 
reversed direction mesh. Our algorithm now looks like this:

rgb x B C x F T C xi

i

i( ) = ′ ( )( )[ ] ( )( )( )∑ c,

Consider a single texture map sample Fi  associated with 
basis function Bi . Note that the weight ′ ( )( )B C xi  is simply 
a hat function parametrized according to the camera 
projection C x( ) . Therefore, we can deposit this weight at 
each pixel by simply rendering ′Bi  directly into the alpha 
channel. Center the reversed direction mesh at the camera, 
which matches directions −ri  in the reversed basis function 

with ray directions C x( ) , and render the triangles 
supporting the basis function using Gouraud shading. 
Similarly, F T C xi[ ] ( )( )( )c,  is a straightforward rendering of 
the geometry with texture Fi . This suggests a two-stage 
algorithm: first, render the basis into the alpha channel, 
then render the textured geometry, weighted by alpha, and 
accumulate. An OpenGL implementation can perform this 
weighted accumulation using a blend function. Figure 2.3 
illustrates this process.

figure 2.3: Textured geometry weighted by hat basis

A parametrization of a complete surface not homeomorphic 
to a disc typically requires a number of parameter domains, 
or texture regions. Iterating over all texture regions, we 
have the final algorithm:

Construct ′Bi  for all i.
foreach texture region

foreach direction i
Render ′Bi  into alpha channel
Render surface with texture map Fi

weighted by alpha, and accumulate
end foreach

end foreach

Even though this algorithm performs the correct weighting 
computation per pixel, it is potentially fast because all per-
pixel computations may be done in hardware. Note that 
Gouraud-shaded rendering (“smooth” shading) under 
OpenGL is not perspective-correct, so this does not give 
precisely the correct weight at every pixel. The remaining 
slight error could be corrected by using a 1D texture map 
instead of Gouraud shading; however, we have found that 
Gouraud shading is close enough to produce convincing 
results.

2.4 Summary

A surface light field is represented by a parametrized 
geometric surface coupled with a direction mesh. 
Associated with each vertex in the direction mesh is a 
texture map describing radiance leaving the surface in that 
direction. This representation can be rendered quickly using 
a multipass rendering algorithm. Each pass includes two 
stages: a rendering of the basis function into the alpha 
channel, followed by a rendering of the textured surface. 
Both rendering stages may take advantage of existing 
graphics hardware.



3. Performance optimizations
for interactive rendering

This section analyzes the performance of the algorithm 
described in section 2, and details some of the 
optimizations required to achieve interactive frame rates.

To perform this analysis, we constructed a surface light 
field of a small fish statuette with a detailed surface texture 
and interesting specular properties. Figure 5.2 shows a few 
photographs of the statuette. The construction process is 
outlined in section 5. The resulting surface light field 
includes a surface triangle mesh decomposed into 199 
parametrized texture regions. Associated with each texture 
region is a direction mesh of 66 directions approximately 
uniformly distributed over the sphere. In this data set, the 
direction mesh is the same for every texture region.

I implemented the rendering algorithm in C++ using 
OpenGL, with two user interfaces. The first is an 
interactive viewer; a screen shot appears in figure 6. The 
second version accepts a script— specifying viewpoints, 
camera settings and other commands— and was useful for 
establishing benchmarks. I tested the implementation on an 
SGI Indigo2 with a 250MHz R4400 processor and a 
Maximum Impact graphics board. A few additional tests 
were done on a 250MHz R10000 with an Infinite Reality 
engine. Some of the results obtained and optimizations 
described may be partially dependent on the characteristics 
of the specific OpenGL implementation.

In this section, I describe the three most important 
optimizations implemented. I implemented the first— 
culling rendering passes— in the initial versions of our 
surface light field viewer. The second and third— 
accelerating basis rendering and custom texture caching— I 
implemented later in response to performance data gathered 
during my profiling analysis.

3.1 Culling rendering passes

The first issue with the algorithm as described in section 2 
is the number of rendering passes, which is mn, where m  is 
the number of regions and n is the number of directions per 
region. For our test data set, this results in more than 
13,000 passes, which is clearly too large for an interactive 
algorithm. Fortunately, it turns out that most of these passes 
do not contribute to the final image, and it is possible to 
perform a fast analysis to cull them.

Given a camera pose and a piece of scene geometry, there 
will nearly always exist a nonempty set of directions S such 
that for any direction r ∈S , no radiance leaving the region 
geometry in direction r reaches the camera. Any direction i 
in the direction mesh that contributes solely to directions in 
S (that is, the support for its basis function Bi  is completely 
contained in S) does not need to be rendered. In such a 
case, the projection of ′Bi  onto the image plane does not 
intersect the projection of the geometry onto the image 
plane, resulting in the algorithm weighting all rendered 

pixels with zero alpha value. Figure 3.1 illustrates this case. 
To improve performance, it would be useful to detect this 
condition and skip the rendering pass altogether.

figure 3.1: If no rays in this direction reach the camera, the 
basis function does not intersect the region.

The rendering pass corresponding to a direction i 
contributes to the final image if and only if the generalized 
cone of directions spanned by ′Bi  intersects the generalized 
cone of directions spanned by the geometry, as seen from 
the camera. A plausible algorithm for detecting this 
condition might test every direction i and perform the 
polyhedron intersection computations, but this may be 
expensive for data sets with many direction samples.

figure 3.2: Reversed direction mesh and region geometry 
seen from the camera. Only vertices incident on traversed 

triangles are contributing directions.

A faster algorithm involves traversing the graph defined by 
the dual of the reversed direction mesh. First, consider any 
ray which intersects the geometry, and find the triangle in 
the reversed direction mesh hit by that ray. Call this the 
seed triangle. Next, traverse the graph, crossing an edge 
into an adjacent triangle if its extrusion into space— a 
planar fan— intersects the geometry. Given that the piece 
of geometry in question is contiguous, the contributing 
directions will be exactly the set of vertices incident on the 
triangles visited during this traversal (figure 3.2). This 
process is faster than testing every basis function support 
independently, because the geometric computations are 
simpler, and because a given piece of geometry will usually 
intersect only a few triangles, resulting in a short traversal. 
My implementation further accelerates this analysis by 
constructing a conservative bounding volume around the 
region geometry, thus simplifying the intersection tests.



Finding the seed triangle itself can be implemented in log 
time using a hierarchical search. However, in an interactive 
viewer, two subsequent views of the geometry are likely to 
be from similar camera poses; thus, they will likely have 
the same or neighboring seed triangles. Therefore, my 
implementation finds a seed triangle by beginning at the 
previous seed and walking along the reversed direction 
mesh. In practice, this algorithm gives better performance 
than a full hierarchical search.

Another analysis can be performed to identify entire 
regions that are completely back facing. All textures 
associated with such regions can be ignored completely. A 
region that is relatively flat will have a large, contiguous 
cone of directions, called the blackout cone, from which the 
geometry is completely back facing. More formally, given 
the set of normals associated with the region geometry, the 
blackout cone is the set of directions whose dot products 
with every normal are negative. If all directions from the 
geometry to the camera lie within the blackout cone, the 
region is completely back facing and can be ignored. My 
viewer computes a conservative, circular approximation of 
the blackout cone in a preprocessing step. It is then 
straightforward to decide whether to cull an entire region, 
by reversing the blackout cone and testing whether the 
region geometry falls entirely within the reversed cone. 
Again, the implementation uses a conservative bounding 
volume around the region geometry to simplify this test.

Together, these two analyses reduce the number of 
rendering passes per frame from more than 13,000 to an 
average of 600 for typical views of the fish data set.

3.2 Accelerating basis rendering

An analysis of the runtime performance of the algorithm at 
this point revealed that the basis function rendering stage 
was severely fill-limited. The support of the basis function 
in a typical rendering pass covered much of the frame 
buffer. In a 500x500 window, this resulted in more than 
100,000 fill pixels per pass, for more than 500 passes, 
totaling 50-100 million fill pixels per frame.

To reduce the fill requirements, two optimizations were 
implemented. First, although the support for a basis 
function is a complete triangle fan, some of the individual 
triangles may not intersect the geometry. Those triangles 
need not be rasterized. This optimization reduces the 
number of basis triangles rasterized by about 3/4 on our 
data set. It actually does not require any additional analysis 
because the direction-culling analysis in section 3.1 already 
computes the set of important direction mesh triangles. 
Second, I clip triangles by setting the OpenGL view 
frustum to tightly contain a bounding volume around the 
region geometry. These optimizations together effectively 
doubled the overall frame rate (figure 3.3).

Overhead Basis Region Texture

0.97s

0.0s 0.5s 1.0s

0.43s

figure 3.3: Rendering profile for a single frame, before and 
after basis optimizations. “Overhead includes OpenGL state 

setup and culling of rendering passes. “Basis” includes 
rendering of basis functions into alpha. “Region” includes 

rendering region geometry. “Texture” includes loading 
texture images. Times for the various stages are 

approximately additive, but not completely due to some 
pipeline parallelism.

3.3 Custom texture cache management

As shown in figure 3.3, the next bottleneck is texture 
bandwidth. On average, the algorithm sends in excess of 3 
million texels of texture data per frame through the 
OpenGL pipeline1, the speed of which is limited by the 
throughput of the bus. Most graphics hardware includes 
some amount of high-speed texture memory used to cache 
texture data. An application typically wraps commonly-
used textures in texture objects, which the OpenGL 
implementation swaps in and out of cache. Unfortunately, 
this mechanism cannot be used as is by the surface light 
field rendering algorithm because the number of textures 
(>13,000) exceeds the number of texture objects that can be 
efficiently managed by most OpenGL implementations. In 
addition, the straightforward LRU cache management 
policy used in many OpenGL implementations may fail to 
work if the textures for an entire frame do not fit into 
texture memory. The behavior of the algorithm is such that 
textures are loaded only once per frame, in a well-defined 
order. If all the texture data cannot fit into texture memory 
at once, textures from the beginning of the algorithm will 
be overwritten before they can be used in the next frame. 
These textures will be reloaded into the cache, overwriting 
further textures, and the effect cascades through the entire 
algorithm, resulting in a zero cache hit ratio.

In order to effectively utilize texture memory, I 
implemented a custom texture cache manager. First, the 
manager allocates enough large texture objects to fill 
available texture memory. It uses this set of objects solely 
as a means of addressing the texture memory, subdividing 
them into equal-sized “slots” large enough to hold the 
largest individual texture, and uploading individual textures 
to the cache as needed using glTexSubImage2D calls. The 
custom texture manager uses a modified LRU cache policy 
in which, in a given frame, textures are cached only until 
texture memory has nearly overturned. This prevents later 
textures from overwriting earlier textures, reducing the 
likelihood of a cascading cache miss during the next frame.

1 It turns out that this value is rather inflated because the OpenGL 
1.0 implementation of glTexSubImage2DEXT required texture 
sizes to be powers of 2. OpenGL 1.1 implementations do not have 
this restriction, so their numbers would probably be smaller.



Using the texture memory on our Indigo2, the custom 
texture cache is large enough to hold approximately 10% of 
the texture data necessary for one frame. Assuming the best 
possible cache hit ratio, a speedup of at most 10% could be 
expected in the texture loading phase; and the observed 
speedup was correspondingly fairly small (figure 3.4). 
Preliminary tests on an Infinite Reality engine with a much 
larger texture memory show more dramatic speedups.

250MHz R4400 / Maximum Impact

250MHz R10000 / InfiniteReality 2

238 ms

228 ms

0.0 s 0.1 s 0.2 s

45 ms

15 ms

custom caching

no caching

custom caching

no caching

figure 3.4: Effect of custom texture cache management

3.3 Final results

A naive implementation of the algorithm presented in 
section 2 was never done, but I estimate it may require on 
the order of several minutes to render each frame. An 
implementation including an analysis to cull rendering 
passes demonstrated a frame rate of about 1.0fps for our 
standard data set on the Indigo2. Informal tests on an 
Infinite Reality engine suggested performance slightly 
better than 2.0fps. Through subsequent optimizations, 
including the second and third ones described above, I was 
able to improve those frame rates to 2.5fps on the Indigo2, 
and 5.7fps on the Infinite Reality engine. Additional 
analysis indicates that it should still be possible to further 
improve these numbers, particularly on the IR.

4. Surface light fields
vs. the lumigraph

The lumigraph[4] is a similar image-based method for 
representing the appearance of an acquired real scene. 
Whereas the surface light field parametrizes rays according 
to surface position and direction, the lumigraph’s 
parametrization is geometry-independent. Instead, two 
parallel planes are defined near the surface, and rays are 
parametrized by their points of intersection with the two 
planes: s t,( ) and u v,( ). The lumigraph representation also 
supports an interactive rendering algorithm able to utilize 
current graphics hardware.

This section compares surface light field rendering with the 
lumigraph, focusing on tradeoffs between image quality, 
accuracy and data size. I will argue that the parametrization 
employed by the surface light field is the natural 
parametrization for surface appearance, and that the 
lumigraph’s parametrization results in poorer image quality 
for a given-sized data set. Furthermore, I will demonstrate 
that the clean division between position and direction in the 
surface light field allows those dimensions to be simplified 

independently, resulting in well-understood degradation, 
whereas the lumigraph exhibits several second-order effects 
that further limit simplification opportunities. Although it is 
an important issue, I do not discuss rendering performance 
because it is not an inherent property of the method, but 
depends also on details of the implementation and hardware 
characteristics.

4.1. Comparison overview

The surface light field used for comparisons was the same 
data set used for performance analysis, including 199 
regions, each with 66 uniformly-distributed directions, and 
texture sizes chosen to provide roughly even coverage of 
the surface. The complete data set includes 33,235,488 
texels (rays). The storage required by the surface geometry 
is negligible compared to texture data storage.

I implemented a simple lumigraph resampler and 
constructed several lumigraphs from the same input data 
used for the surface light field. Ideally, the lumigraph 
should be the same size, the same resolution “quota,” as the 
surface light field in order to compare results generated by 
the two methods. However, the surface light field data set 
covers all faces of an object, whereas a single light field 
“slab” represented by a lumigraph represents only one of 
the six cardinal directions. In addition, due to eccentricities 
of the current surface light field implementation 
(specifically, texture regions currently overlap), it turns out 
that the surface light field includes a 3x redundancy. 
Because a smaller redundancy may end up as part of the 
surface light field representation in the future, I chose a 
conservative estimate of 2x to compensate for this factor. 
Therefore, the final lumigraph quota was determined by 
reducing by a factor of 12 to 2,769,624 texels.

I generated test lumigraphs using a ray tracing algorithm as 
follows. Given st and uv planes, and s t u v, , ,( )  coordinates, 
cast a ray and find the intersection of the ray with the object 
geometry. Given this point of intersection, locate the 
camera that sees the point of intersection from a direction 
nearest to the direction of the ray. Find the color from the 
corresponding pixel in the camera image. Note that this 
resampling does not attempt any interpolation. Better 
methods can certainly be implemented, and indeed, Gortler, 
in the original lumigraph paper, describes a novel algorithm 
for reconstructing multidimensional functions from 
scattered data[4]. I chose my resampling method because 
the cameras densely populate the sphere of directions, and 
because it matches the currently implemented method for 
resampling surface light fields (see section 5).

4.2. A natural parametrization

The surface light field parametrizes the space of rays by 
surface position and direction. This could be considered the 
natural parametrization of the light field leaving a solid 
surface because it directly corresponds to the physical 
dimensions of the function: surface texture and radiance 
function. The parametrizations along these dimensions can 



be tuned according to the behavior of the surface. In 
particular, for most surfaces, the interesting directional 
behavior as defined by the BRDF tends to be distributed 
more or less evenly across the space of directions, 
suggesting that a uniform distribution of rays in direction 
space may be most preferable. If, however, a piece of 
surface has the property that specular lobes tend to point in 
the same direction (perhaps because the surface is flat), it 
may make more sense to adjust the parametrization to 
provide better resolution in that direction. The arbitrary 
direction mesh provides support for both cases.

The Lumigraph parametrizes the space of rays using pairs 
of grid points on two parallel planes. This parametrization 
serves three purposes. First, it leads to a reasonably 
efficient interactive rendering algorithm that can be 
implemented with the assistance of existing graphics 
hardware. Second, it does not require knowledge of the 
geometry, although the system can use such information, if 
available, to improve the quality of renderings. Surface 
light fields inherently require geometry information. Third, 
the lumigraph parametrization provides for some 
simplification and compression opportunities due to the 
lower frequency often exhibited in the st dimensions. 
Surface light fields provide arguably better opportunities, 
as described in section 4.3.

4.2.1. Uniformity of parametrization

The fundamental weakness of the parametrization scheme 
used by the lumigraph, as well as the similar light field 
rendering work by Levoy, et al, is that it is neither 
physically-based nor well-suited to be adjusted according 
to surface properties. One property that exposes this 
weakness is direction nonuniformity. If the natural 
parametrization of the light field describing the appearance 
of a solid object is by surface position and direction, the 
two-plane parametrization is non-ideal because it does not 
uniformly map to direction space.

ST-plane

UV-plane
P(u,v)

figure 4.1: If P is on the surface, the st plane provides a 
parametrization of direction.

For example, consider a surface point lying at a point u v,( ) 
on the uv plane. Then consider a regularly-sampled st plane 
as shown in figure 4.1. This sampling corresponds to the 
direction sampling that is denser at grazing angles than at 
perpendicular angles (figure 4.2). Thus, if resolving the 
directional appearance of an object requires a certain 
minimum angular resolution in direction space, the st and 
uv parametrizations must be chosen such that they provide 

at least this resolution in the sparsest region of directions, 
near the perpendicular. Because of the nonuniformity in the 
parametrization, this leads to an excessive directional 
resolution at grazing angles. Attempting to sample the st 
grid non-uniformly to compensate may improve matters, 
but will not eliminate the problem because each individual 
(u,v) will want a different optimal st sampling.

figure 4.2: A regular grid sampling of the st plane maps to a 
nonuniform sampling of direction space.

Related is the problem of extending the two-plane 
parametrization to cover all directions and all faces of an 
object. Both Levoy and Gortler propose providing a pair of 
planes to cover each cardinal direction, six in all. This 
causes additional nonuniformities, especially near and 
across the boundaries. In addition, a large number of rays 
may not intersect the geometry, thus being wasted. Again, 
surface light fields do not suffer from these issues.

Because of these parametrization nonuniformities, 
lumigraphs require a greater texel quota to achieve the 
same effective resolution as surface light fields. 
Alternately, a lumigraph utilizing the same number of 
texels as a surface light field will not achieve the same 
reproduction quality. Figure 4.6 demonstrates this result. 
Image A shows a closeup of a surface light field rendering 
of the fish model. Image B shows a lumigraph of matching 
texel quota, with the st resolution chosen to match the 
surface light field’s direction resolution. uv resolution is 
238x238; st is 7x7. (Note that this results in 49 direction 
samples for somewhat less than a hemisphere, compared 
with the surface light field’s 66 direction samples for the 
entire sphere.) This does not leave sufficient uv resolution 
to resolve the detail shown by the surface light field. Image 
C shows a 416x416 uv, 4x4 st lumigraph. uv detail is closer 
to that demonstrated by the surface light field, but st is now 
so sparse that highlights are visibly distorted.

4.2.2. Viewing inside the convex hull

Indeed, even though the lumigraph requires a higher texel 
quota to achieve the same effective resolution, it still does 
not represent as much data as a surface light field. 
Specifically, it places a constraint on camera positions for 
which the function gives well-defined results. This 
constraint is illustrated in figure 4.3. If the surface is not 
convex, then there will exist rays that exit the surface from 



two different points. The lumigraph must choose one 
surface from which to represent the radiance; typically, this 
is the closer surface (A). Unfortunately, this implies that a 
camera positioned between the two surfaces will not get 
correct data from the occluded surface (B).
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figure 4.3: Attempting to view inside convex hull.

A surface light field, on the other hand, can correctly 
represent the light leaving surface region B and produce a 
correct reconstruction. Of course, due to A’s occlusion, it 
may not have been possible to actually capture in a 
photograph the appropriate radiance leaving surface region 
B in the desired direction. However, because the 
representation is tightly integrated with the surface 
geometry, it is possible to detect this condition and use a 
hole filling algorithm to fill the missing data using data 
gathered from other views of the surface patch, such as C. 
Our system for resampling surface light fields from 
photographs includes such an algorithm. Because we can 
perform this step offline during the construction process, it 
does not affect the interactive rendering speed.

4.3. Distributing the resolution quota

A key issue in both systems is deciding how to split the 
resolution “quota” between the different dimensions of the 
parametrization. Surface light fields, by parametrizing the 
physically based and orthogonal dimensions of texture 
coordinate and world-space direction, allow an application 
to decide this distribution according to physical properties 
of the object, such as surface detail and shininess. Objects 
with detailed surface texture would require high resolution 
across the surface manifold dimensions. Insufficient 
resolution results in blurring of surface detail (figure 4.7). 
Objects with complex specular properties and sharp 
highlights would require high resolution in direction space. 
Along these dimensions, insufficient resolution results in 
poor reproduction of the radiance function, which results in 
effects such as dulling and “sloshing” of sharp specular 
highlights (figure 4.8). These properties are independent; 
thus the two resolutions can be scaled independently.

The lumigraph does not provide as clear a separation. 
Sloan, et al[11] examine the issue of division of resolution 
and propose a distribution of 256x256 on the uv plane and 
32x32 on the st plane as giving “good results.” Gortler, et 
al note that because the uv plane is expected to lie near to 
the surface of the object, uv can be thought of as an 
approximation to surface texture coordinates, and st can be 

thought of as an approximation to a direction 
parametrization. This suggests that the uv and st 
discretization in the lumigraph might also be scaled 
independently according to the surface texture and radiance 
function properties of the surface. Based on this idea, Sloan 
proposes subsampling st as a method of compressing 
lumigraphs and accelerating their rendering. Unfortunately, 
the correspondence between uv and st, and surface and 
direction, is only approximate. I now demonstrate several 
second-order effects, which further constrain the relative uv 
and st resolutions that produce convincing results. Surface 
light fields do not exhibit these effects.

4.3.1. Occlusion artifacts

Sparse resolution in st leads to artifacts in rendered images 
due to occlusions. This occurs when, given a pixel being 
rendered, some of the rays being interpolated are passing 
through occluding geometry and are therefore giving false 
data. Figure 4.4 illustrates this case. Consider a lumigraph 
rendering algorithm based on raytracing. After depth 
correction, the actual view ray, ray A, is approximated by 
interpolating rays B and C. However, note that ray C is 
occluded by geometry not hit by the original ray, and 
therefore gives incorrect data. More precisely, occlusions 
introduce discontinuities in the light field along the st 
dimensions. These discontinuities are not modeled well by 
the piecewise linear reconstruction of the lumigraph 
function if st is not densely sampled. Figure 4.9 illustrates 
the artifacts that can be generated by this phenomenon. It 
may be possible to correct this condition by storing depth 
with each ray and testing against the depth correction factor 
for the current ray. However, an accurate implementation 
of this correction may require sacrificing interactive speed. 
Surface light fields are not subject to this effect because 
rays are explicitly associated with points on the geometry.
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geometry

st-plane

uv-plane

ray A ray Bray C

figure 4.4: Occlusion artifacts in a lumigraph.

4.3.2. Effect of depth errors

A large difference in the st and uv resolutions of a 
lumigraph leads to an increased sensitivity to errors in the 
depth correction step. To review, Levoy, et al[7] prefilter 
their light fields prior to rendering in order to eliminate 
aliasing caused by undersampling in the st and uv planes. 
This has the effect of reducing the apparent depth of field 
in rendered images. To sidestep this issue, Gortler, et al 
introduce a depth correction step into the lumigraph 
rendering algorithm. This allows them to choose rays that 



originate from the same point on the geometry, effectively 
eliminating blurring across the surface.

An interactive rendering algorithm for a lumigraph, 
however, typically requires a simplified version of the 
geometry. This introduces small errors in depth 
computation, which may be further exacerbated by the 
approximations necessary for fast depth computation used 
by Gortler, et al. Such imperfections in depth correction 
may reintroduce small aliasing artifacts, such as double 
images on a small scale. Figure 4.5 illustrates the geometry 
of the situation. A simple analysis by similar triangles 
reveals that the amount of possible offset of rendered 
pixels, in uv pixels, is directly proportional to the ratio 
between the st and uv grid spacings, as well as proportional 
to the ratio between the depth error and the actual depth.
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where d is the actual depth, e is the error in depth, p is the 
distance between the two planes, s is the distance between 
adjacent st  grid points, and u is the distance between 
adjacent uv grid points.
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figure 4.5: The effect of simplified geometry.

In practice, because the ratio e/d is generally small, this 
effect is not very noticeable until there is a very large 
difference in the uv and st  resolutions. Figure 4.10 
demonstrates such a case. The geometry has been 
simplified to 199 triangles (from the original model of 
about 130,000 triangles) for the purposes of depth 
correction, and the uv and st  resolutions are 416x416 and 
4x4, respectively. Note the presence of double images of 
some of the scales on the fish’s side. Although this is an 
extreme distribution of resolution between uv and st, it does 
represent a further constraint imposed on how sparse the 
sampling of st can be made. In particular, to construct a 
lumigraph with high-resolution texture (uv) data, it may be 
necessary to increase st resolution also.

Surface light fields are not subject to this type of constraint. 
Many surface simplification schemes include facilities for 
preserving some approximation of the surface 
parametrization. Textures mapped onto simplified 
geometry may be distorted, but will not exhibit these types 
of ghosting artifacts, regardless of the simplification level 
or the relative density of the st and θφ resolutions.

4.5. Conclusions

Although similar in their functions, lumigraphs and surface 
light fields exhibit some key differences related to their 
respective parametrizations. The parametrization of the 4D 
function employed by the surface light field can be made 
more uniform, according to the natural dimensions of 
position and direction, than can the parametrization 
employed by the lumigraph, leading to more efficient 
utilization of a potentially limited data set size. 
Furthermore, the surface light field provides a cleaner 
separation between the different dimensions of the 
parametrization. This allows those resolutions to be scaled 
independently according to the properties of the object to 
be reproduced and desired quality of the reproduction. By 
contrast, manipulating the parametrization employed by the 
lumigraph may expose additional artifacts.

The primary benefit of the lumigraph’s parametrization is 
that it is basically geometry-independent. This may be 
useful for representing and rendering data sets with 
indefinite, unacquirable or exceedingly complex geometry. 
However, when geometry is available, surface light fields 
offer significant advantages.

5. Some context

This work is part of a larger project investigating methods 
of capturing, representing and reproducing the appearance 
of real objects. This section gives a brief overview of the 
larger project, including the process of constructing a 
surface light field, and lists some of the research areas 
involved.

5.1. Data acquisition

We currently gather raw data in the form of high-resolution 
geometry and a dense set of photographs. We compute 
geometry from range images obtained using a Cyberware 
Model 15 laser range scanner. In-house software is used to 
register separate range images, and a vrip[2] is used to 
reconstruct the surface as a triangle mesh (figure 5.1). 
Photographs can be obtained through a variety of means. 
Our current datasets include photographs taken using the 
Stanford spherical gantry, a camera mounted on a 
programmable gantry arm. Using this system, we capture a 
large number of video-resolution images with known 
relative pose (figure 5.2).

To generate a surface light field, we must register the 
image set to the geometry. Currently, we use in-house 



software relying on user-supplied correspondences; 
however we are also investigating automatic methods. In 
future work, we also hope to explore the harder problem of 
dealing with a set of non-interregistered images from a 
hand-held camera. (Gortler uses a registration pattern for 
this purpose.) We also plan to investigate methods of 
reconstructing plausible data from a smaller set of 
photographs.

We generate the surface light field data set by projecting 
photo images onto the surface. Currently, it is assumed that 
the set of photos is large; therefore, for a particular 
direction, we select the “nearest” photo rather than 
interpolating. During this step, we fill holes in the data due 
to occlusions and other effects using an algorithm based on 
Gaussian smoothing[12].

5.2. Regionification and
direction simplification

We decompose the geometry into texture regions and 
parametrize using a modified version of MAPS[6]. Instead 
of a hierarchy of simplification levels, our algorithm 
proceeds greedily from fine to coarse, similar to the 
progressive mesh simplification[5]. This is because we 
would like texture regions to exhibit certain properties: 
specifically, regions should be small and “flat.” Flatness 
improves performance by increasing the effectiveness of 
the region culling optimization described in section 3.1. It 
also may improve the direction simplification process 
described next.

A current active area of research is construction of an 
optimal set of direction samples for the direction mesh. In 
the data set used in current tests, every texture region uses 
the same direction mesh, and furthermore, the direction 
mesh is roughly uniform over direction space. However, it 
is conceivable that a different tessellation may provide 
higher quality results for a given number of directions. In 
particular, if a piece of surface has a largely diffuse texture 
with a single sharp specular highlight pointing in a single 
direction, it would be useful to concentrate direction 
samples in the direction of the specular highlight. We are 
investigating methods of optimizing the direction mesh 
through mesh simplification algorithms.

6. Conclusions and discussion

Surface light fields hold significant promise for 
reproducing the appearance of real objects. We have 
demonstrated its effectiveness with a real object with 
complex surface characteristics.

This project offers two main contributions to the study of 
surface light fields. First, I have demonstrated a practical 
implementation of a surface light field rendering algorithm 
capable of frame rates reasonable for interactive 
applications. My current implementation achieves 2.5 
frames per second on a three-year-old workstation, and 

close to 6 frames per second on a high-end server. Second, 
I have elucidated the behavior of the representation in the 
face of simplification, and shown that a similar 
representation, the lumigraph, does not fare as well.

I have optimized the current implementation and studied its 
behavior on two SGI systems. However, with the recent 
rise of PCs, it would also be useful to understand the 
algorithm’s behavior on PC graphics hardware and 
optimize accordingly. The current implementation is 
designed to be cross-platform, so this process should not be 
difficult.

Considerable work remains to be done in developing robust 
processes for constructing, compressing and analyzing 
surface light fields. Some of these directions are mentioned 
in the section 5. In addition, although surface light fields 
are designed for generality, able to represent arbitrary 
surface radiance, an interesting area of future work might 
be to explicitly model information about surface BRDF and 
positions of light sources to improve efficiency of the 
representation. This might also lead to representations 
capable of handling nonstatic lighting and additional 
applications.
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Image B:
Lumigraph, 238x238 UV, 7x7 ST
Insufficient surface detail resolution

Image A:
Surface light field

Image C:
Lumigraph, 416x416 UV, 4x4 ST
Insufficient directional resolution.

Figure 4.6:
With similar-sized data sets, the surface
light field gives better-quality images



Figure 4.7: Low texture resolution results in blurring. Texels in the second surface light field are
subsampled 4:1.

Figure 4.8: Low direction resolution can result in “sloshing” of highlights due to the coarse piecewise-
linear approximation. Two renderings of the same surface light field with 66 uniformly-distributed directions.



Figure 4.9: Two nearby views of a lumigraph, showing the appearance of an occlusion artifact.
Lumigraph 334x334 uv, 5x5 st

3184 geometry triangles.
Minimal ghosting due to bad geometry.

199 geometry triangles.
Minor but noticeable ghosting due to bad geometry.

Figure 4.10: Inexact depth artifacts (Lumigraph 416x416 uv, 4x4 st)



Figure 5.1:

Figure 5.2:

Cyberware Model 15 laser range scanner Object geometry (130,000 triangles)

Stanford Spherical Gantry 680 input photographs



Figure 6: slfview, the interactive surface light field viewer


