
Interactive Rendering of Surface Light Fields

Daniel Azuma
University of Washington

20 May 1999

Abstract

Many interactive 3D applications involve capturing,
representing and reproducing the appearance of real
objects. The surface light field represents the appearance of
a solid object under static lighting by sampling the radiance
along rays parametrized by surface position and direction.
An implementation can represent this data as high-
resolution surface geometry, coupled with multiple texture
maps, each associated with a direction. The representation
can be rendered by a multipass algorithm utilizing common
graphics hardware. Through careful optimization, it is
possible to achieve interactive frame rates using existing
implementations of OpenGL. Surface light fields tend to
produce higher resolution renderings than similar methods
such as the lumigraph, and do not exhibit occlusion ghosts
and other artifacts associated with the lumigraph at low
sampling rates. Construction and optimization of surface
light field data present a number of challenges.

1. Introduction

Many interactive 3D applications involve capturing and
reproducing the appearance of real objects. Such
applications might include virtual reality, games or
visualization. Real objects, however, exhibit complex
surface properties such as subsurface scattering and
phosphorescence. A representation must be general enough
to model such properties. In addition, it should provide a
rendering algorithm capable of reproducing those
properties from the representation at high resolutions.

Surface light field rendering is a novel image-based
algorithm for rendering acquired solid objects under static
lighting. The algorithm resolves high-resolution surface
detail and reproduces surface radiance resulting from
complex specular properties. This work presents and
analyzes the surface light field rendering algorithm,
investigating performance issues on typical graphics
hardware and comparing with similar methods.

1.1 Related work

Ubiquitous interactive 3D rendering techniques generally
involve rasterizing a model as a set of polygons, applying a
simple shading model to simulate surface reflectance
properties, and using texture maps to add detail. Most
graphics-oriented workstations include hardware capable of
accelerating these computations. Unfortunately, such
techniques are often not able to reproduce the complex
characteristics of real objects, often resulting in the

“plastic” appearance associated with Phong shading. Sato,
et al[10] describe a method by which the specular
properties of a surface are estimated from a set of
photographs, according to a specified reflection model.
Walter, et al[13] describe a method for using a simple
lighting model to approximate complex specular lobes by
fabricating a set of virtual lights. Both these methods are
limited by the reflection model implemented, particularly in
a hardware-assisted rendering system.

Some more recent work has focused on techniques known
collectively as image-based rendering. Image-based
rendering algorithms involve manipulating acquired or
precomputed images of a scene to reconstruct different
views. Such techniques often do not require the
considerable computational resources needed by traditional
3D rendering; however, they tend to incur high storage
costs for the image data.

Many image-based rendering techniques are based on the
five-dimensional plenoptic function[1]— radiance as a
function of 3D position and direction— which completely
describes the appearance of a scene from any viewpoint.
Levoy and Hanrahan[7] note that this representation can be
reduced to four dimensions in empty space by observing
that radiance remains constant along a nonoccluded ray.
They parametrize the 4D space of rays according to grid
points on two parallel planes, and describe an interactive
algorithm for constructing images for arbitrary viewpoints.
This light field rendering algorithm does not require any
geometric information for the scene. Gortler, et al[4]
describe an enhancement which makes use of coarse
geometric information to increase the depth of field of
rendered images. Surface light fields are similar to those
methods, but involve a different parametrization of rays,
attached to a surface manifold. Miller, et al[8] explore this
parametrization, focusing on its implications for
compression. They present an interactive rendering
algorithm, but it is able to model surface detail only at the
resolution of the surface tessellation.

The surface light field rendering algorithm is also similar to
view-dependent texture mapping, in which multiple
textures are weighted and composited to render novel
views. Debevec, et al[3] and Pulli[9] use this technique to
generate new images using previously acquired images.
Previous work on view-dependent texture mapping has not
systematically modeled surface properties such as
specularity. Furthermore, the texture weighting based on
direction is done at object resolution, which may not
accurately reproduce small-scale behavior. The surface
light field fully models arbitrary surface radiance and

supports hardware-assistedper-pixel computation of
direction-based texture weights.

1.2 A road map

The remainder of this paper is organized as follows. First,
section 2 reviews the representation and the basic rendering
algorithm, which were developed jointly with Daniel
Wood. Section 3 describes an interactive OpenGL-based
rendering implementation of the algorithm, presents a
series of performance analyses, and describes optimizations
done to improve the performance. Section 4 compares
surface light field rendering with a closely related method,
the lumigraph[4], and discusses the quality and accuracy of
reproductions as a function of data set size. Section 5
briefly outlines the context of the algorithm, including data
collection and construction of a surface light field. Section
6 closes with conclusions and discussion.

2. The algorithm

The surface light field is a very general representation
capable of capturing arbitrary surface radiance behavior.
The representation also suggests a rendering algorithm that
may be run at interactive speeds using existing graphics
hardware. This section details the representation and the
basic rendering algorithm. A useful implementation of this
algorithm requires a number of optimizations such as those
described in section 3.

2.1 The surface light field representation

The five-dimensional plenoptic function completely
describes the appearance of a scene from any viewpoint.
This function in its most basic form parameterizes by point
in space and direction. In the following function, x, y and z
represent a parametrization of 3-space, and θ and φ
represent a direction parametrization.

L x y z rgb, , , ,θ φ() →

Given a surface surrounded by empty space, the plenoptic
function can be reduced to four dimensions parametrized
by surface position and direction (figure 2.1). Here, s and t
define a parameterization of a surface.

L s t rgb, , ,θ φ() →

θ , φ

s , t
figure 2.1: The surface light field is parametrized by surface

position and direction.

Equivalently, this can be represented as a function mapping
direction, to functions mapping surface position to radiance
(i.e. texture maps).

F G s t rgbθ φ, ,() → () →

Consider a rendering algorithm for this representation
involving raytracing. Given a pixel x in the image plane,
cast a ray through x into the scene and find the intersection
p with the surface. Let − = −()r θ φ, denote the direction of
the ray. Then the color of the pixel is determined by the
radiance leaving p in direction r. Thus, choose the texture
map given by evaluating F r() , find the texture coordinates
s = −()s t, of p, and read the color.

Formally, consider the camera projection function
− = ()r C x , mapping pixels in the image plane to ray cast
directions. Furthermore, consider the surface
parametrization function s c r= −()T , , mapping the camera
center of projection c and ray cast direction –r to texture
coordinates on the surface geometry. We can then represent
the rendering algorithm as follows:

rgb x F C x T C x() = − ()()[] ()()()c,

In this paper, the notation A b[]() means to evaluate
function A and apply the result, also a function, to b.

2.2 The discrete representation

Surface
geometry

Direction
mesh
(in red)

Directional
texture map

Basis function for
blue texture map

figure 2.2: Texture maps are associated with directions.
Directions are arranged in a direction mesh, and each has a

corresponding basis function.

In a real data set, F and G must be represented as a discrete
set of samples, each associated with a basis function.
Discretization of texture coordinates in G is nearly always
done by choosing grid points and using bilinear
interpolation as a reconstruction kernel. This reconstruction
is common in texture implementations, and is therefore not
discussed further. One natural and very general way to
discretize direction space involves choosing an arbitrary set
of direction samples, then triangulating them on the unit

sphere using a method such as Delaunay triangulation. We
call this tessellation of the sphere the direction mesh. This
scheme also suggests a natural set of piecewise linear basis
functions: center a hat function at each sample vertex,
covering its neighborhood in the mesh. This representation
is illustrated in figure 2.2.

Let ri denote the ith sample direction, let Fi denote the
texture map associated with that direction, and let Bi
denote the corresponding basis function. Then F may be
reconstructed using the following formula:

F F Bi

i

ir r() = ()∑

We may now modify our raytracing algorithm to work on a
real discretized data set.

rgb x F B C x T C x

B C x F T C x

i

i

i

i

i

i

() = − ()()

()()()

= − ()()[] ()()()

∑

∑

c

c

,

,

In words, given our pixel x, we cast a ray and find the
texture coordinates of the intersection p. We then iterate
over all textures, look up the color, scale by Bi r(), and
accumulate.

2.3 A hardware-accelerated algorithm

Rendering algorithms based on ray tracing usually cannot
be implemented at interactive speeds because of the
necessary per-pixel computations. However, modern
workstations typically include hardware designed to
accelerate certain rendering processes such as rasterizing
polygons, texture mapping and alpha compositing. Using
OpenGL, a common graphics API, the surface light field
rendering algorithm can be modified to take advantage of
acceleration provided by existing graphics hardware.

To achieve high performance, we would like to utilize the
hardware to perform the per-pixel texture weighting. This
can be done by constructing ′Bi , where ′() = −()B Bi ir r .
Intuitively, since Bi is a hat function supported by a
triangle fan ′Bi is the same hat function pointing in the
opposite direction. Like Bi , its support consists of triangles
from a tessellation of the unit sphere, which we call the
reversed direction mesh. Our algorithm now looks like this:

rgb x B C x F T C xi

i

i() = ′ ()()[] ()()()∑ c,

Consider a single texture map sample Fi associated with
basis function Bi . Note that the weight ′ ()()B C xi is simply
a hat function parametrized according to the camera
projection C x() . Therefore, we can deposit this weight at
each pixel by simply rendering ′Bi directly into the alpha
channel. Center the reversed direction mesh at the camera,
which matches directions −ri in the reversed basis function

with ray directions C x() , and render the triangles
supporting the basis function using Gouraud shading.
Similarly, F T C xi[] ()()()c, is a straightforward rendering of
the geometry with texture Fi . This suggests a two-stage
algorithm: first, render the basis into the alpha channel,
then render the textured geometry, weighted by alpha, and
accumulate. An OpenGL implementation can perform this
weighted accumulation using a blend function. Figure 2.3
illustrates this process.

figure 2.3: Textured geometry weighted by hat basis

A parametrization of a complete surface not homeomorphic
to a disc typically requires a number of parameter domains,
or texture regions. Iterating over all texture regions, we
have the final algorithm:

Construct ′Bi for all i.
foreach texture region

foreach direction i
Render ′Bi into alpha channel
Render surface with texture map Fi

weighted by alpha, and accumulate
end foreach

end foreach

Even though this algorithm performs the correct weighting
computation per pixel, it is potentially fast because all per-
pixel computations may be done in hardware. Note that
Gouraud-shaded rendering (“smooth” shading) under
OpenGL is not perspective-correct, so this does not give
precisely the correct weight at every pixel. The remaining
slight error could be corrected by using a 1D texture map
instead of Gouraud shading; however, we have found that
Gouraud shading is close enough to produce convincing
results.

2.4 Summary

A surface light field is represented by a parametrized
geometric surface coupled with a direction mesh.
Associated with each vertex in the direction mesh is a
texture map describing radiance leaving the surface in that
direction. This representation can be rendered quickly using
a multipass rendering algorithm. Each pass includes two
stages: a rendering of the basis function into the alpha
channel, followed by a rendering of the textured surface.
Both rendering stages may take advantage of existing
graphics hardware.

3. Performance optimizations
for interactive rendering

This section analyzes the performance of the algorithm
described in section 2, and details some of the
optimizations required to achieve interactive frame rates.

To perform this analysis, we constructed a surface light
field of a small fish statuette with a detailed surface texture
and interesting specular properties. Figure 5.2 shows a few
photographs of the statuette. The construction process is
outlined in section 5. The resulting surface light field
includes a surface triangle mesh decomposed into 199
parametrized texture regions. Associated with each texture
region is a direction mesh of 66 directions approximately
uniformly distributed over the sphere. In this data set, the
direction mesh is the same for every texture region.

I implemented the rendering algorithm in C++ using
OpenGL, with two user interfaces. The first is an
interactive viewer; a screen shot appears in figure 6. The
second version accepts a script— specifying viewpoints,
camera settings and other commands— and was useful for
establishing benchmarks. I tested the implementation on an
SGI Indigo2 with a 250MHz R4400 processor and a
Maximum Impact graphics board. A few additional tests
were done on a 250MHz R10000 with an Infinite Reality
engine. Some of the results obtained and optimizations
described may be partially dependent on the characteristics
of the specific OpenGL implementation.

In this section, I describe the three most important
optimizations implemented. I implemented the first—
culling rendering passes— in the initial versions of our
surface light field viewer. The second and third—
accelerating basis rendering and custom texture caching— I
implemented later in response to performance data gathered
during my profiling analysis.

3.1 Culling rendering passes

The first issue with the algorithm as described in section 2
is the number of rendering passes, which is mn, where m is
the number of regions and n is the number of directions per
region. For our test data set, this results in more than
13,000 passes, which is clearly too large for an interactive
algorithm. Fortunately, it turns out that most of these passes
do not contribute to the final image, and it is possible to
perform a fast analysis to cull them.

Given a camera pose and a piece of scene geometry, there
will nearly always exist a nonempty set of directions S such
that for any direction r ∈S , no radiance leaving the region
geometry in direction r reaches the camera. Any direction i
in the direction mesh that contributes solely to directions in
S (that is, the support for its basis function Bi is completely
contained in S) does not need to be rendered. In such a
case, the projection of ′Bi onto the image plane does not
intersect the projection of the geometry onto the image
plane, resulting in the algorithm weighting all rendered

pixels with zero alpha value. Figure 3.1 illustrates this case.
To improve performance, it would be useful to detect this
condition and skip the rendering pass altogether.

figure 3.1: If no rays in this direction reach the camera, the
basis function does not intersect the region.

The rendering pass corresponding to a direction i
contributes to the final image if and only if the generalized
cone of directions spanned by ′Bi intersects the generalized
cone of directions spanned by the geometry, as seen from
the camera. A plausible algorithm for detecting this
condition might test every direction i and perform the
polyhedron intersection computations, but this may be
expensive for data sets with many direction samples.

figure 3.2: Reversed direction mesh and region geometry
seen from the camera. Only vertices incident on traversed

triangles are contributing directions.

A faster algorithm involves traversing the graph defined by
the dual of the reversed direction mesh. First, consider any
ray which intersects the geometry, and find the triangle in
the reversed direction mesh hit by that ray. Call this the
seed triangle. Next, traverse the graph, crossing an edge
into an adjacent triangle if its extrusion into space— a
planar fan— intersects the geometry. Given that the piece
of geometry in question is contiguous, the contributing
directions will be exactly the set of vertices incident on the
triangles visited during this traversal (figure 3.2). This
process is faster than testing every basis function support
independently, because the geometric computations are
simpler, and because a given piece of geometry will usually
intersect only a few triangles, resulting in a short traversal.
My implementation further accelerates this analysis by
constructing a conservative bounding volume around the
region geometry, thus simplifying the intersection tests.

Finding the seed triangle itself can be implemented in log
time using a hierarchical search. However, in an interactive
viewer, two subsequent views of the geometry are likely to
be from similar camera poses; thus, they will likely have
the same or neighboring seed triangles. Therefore, my
implementation finds a seed triangle by beginning at the
previous seed and walking along the reversed direction
mesh. In practice, this algorithm gives better performance
than a full hierarchical search.

Another analysis can be performed to identify entire
regions that are completely back facing. All textures
associated with such regions can be ignored completely. A
region that is relatively flat will have a large, contiguous
cone of directions, called the blackout cone, from which the
geometry is completely back facing. More formally, given
the set of normals associated with the region geometry, the
blackout cone is the set of directions whose dot products
with every normal are negative. If all directions from the
geometry to the camera lie within the blackout cone, the
region is completely back facing and can be ignored. My
viewer computes a conservative, circular approximation of
the blackout cone in a preprocessing step. It is then
straightforward to decide whether to cull an entire region,
by reversing the blackout cone and testing whether the
region geometry falls entirely within the reversed cone.
Again, the implementation uses a conservative bounding
volume around the region geometry to simplify this test.

Together, these two analyses reduce the number of
rendering passes per frame from more than 13,000 to an
average of 600 for typical views of the fish data set.

3.2 Accelerating basis rendering

An analysis of the runtime performance of the algorithm at
this point revealed that the basis function rendering stage
was severely fill-limited. The support of the basis function
in a typical rendering pass covered much of the frame
buffer. In a 500x500 window, this resulted in more than
100,000 fill pixels per pass, for more than 500 passes,
totaling 50-100 million fill pixels per frame.

To reduce the fill requirements, two optimizations were
implemented. First, although the support for a basis
function is a complete triangle fan, some of the individual
triangles may not intersect the geometry. Those triangles
need not be rasterized. This optimization reduces the
number of basis triangles rasterized by about 3/4 on our
data set. It actually does not require any additional analysis
because the direction-culling analysis in section 3.1 already
computes the set of important direction mesh triangles.
Second, I clip triangles by setting the OpenGL view
frustum to tightly contain a bounding volume around the
region geometry. These optimizations together effectively
doubled the overall frame rate (figure 3.3).

Overhead Basis Region Texture

0.97s

0.0s 0.5s 1.0s

0.43s

figure 3.3: Rendering profile for a single frame, before and
after basis optimizations. “Overhead includes OpenGL state

setup and culling of rendering passes. “Basis” includes
rendering of basis functions into alpha. “Region” includes

rendering region geometry. “Texture” includes loading
texture images. Times for the various stages are

approximately additive, but not completely due to some
pipeline parallelism.

3.3 Custom texture cache management

As shown in figure 3.3, the next bottleneck is texture
bandwidth. On average, the algorithm sends in excess of 3
million texels of texture data per frame through the
OpenGL pipeline1, the speed of which is limited by the
throughput of the bus. Most graphics hardware includes
some amount of high-speed texture memory used to cache
texture data. An application typically wraps commonly-
used textures in texture objects, which the OpenGL
implementation swaps in and out of cache. Unfortunately,
this mechanism cannot be used as is by the surface light
field rendering algorithm because the number of textures
(>13,000) exceeds the number of texture objects that can be
efficiently managed by most OpenGL implementations. In
addition, the straightforward LRU cache management
policy used in many OpenGL implementations may fail to
work if the textures for an entire frame do not fit into
texture memory. The behavior of the algorithm is such that
textures are loaded only once per frame, in a well-defined
order. If all the texture data cannot fit into texture memory
at once, textures from the beginning of the algorithm will
be overwritten before they can be used in the next frame.
These textures will be reloaded into the cache, overwriting
further textures, and the effect cascades through the entire
algorithm, resulting in a zero cache hit ratio.

In order to effectively utilize texture memory, I
implemented a custom texture cache manager. First, the
manager allocates enough large texture objects to fill
available texture memory. It uses this set of objects solely
as a means of addressing the texture memory, subdividing
them into equal-sized “slots” large enough to hold the
largest individual texture, and uploading individual textures
to the cache as needed using glTexSubImage2D calls. The
custom texture manager uses a modified LRU cache policy
in which, in a given frame, textures are cached only until
texture memory has nearly overturned. This prevents later
textures from overwriting earlier textures, reducing the
likelihood of a cascading cache miss during the next frame.

1 It turns out that this value is rather inflated because the OpenGL
1.0 implementation of glTexSubImage2DEXT required texture
sizes to be powers of 2. OpenGL 1.1 implementations do not have
this restriction, so their numbers would probably be smaller.

Using the texture memory on our Indigo2, the custom
texture cache is large enough to hold approximately 10% of
the texture data necessary for one frame. Assuming the best
possible cache hit ratio, a speedup of at most 10% could be
expected in the texture loading phase; and the observed
speedup was correspondingly fairly small (figure 3.4).
Preliminary tests on an Infinite Reality engine with a much
larger texture memory show more dramatic speedups.

250MHz R4400 / Maximum Impact

250MHz R10000 / InfiniteReality 2

238 ms

228 ms

0.0 s 0.1 s 0.2 s

45 ms

15 ms

custom caching

no caching

custom caching

no caching

figure 3.4: Effect of custom texture cache management

3.3 Final results

A naive implementation of the algorithm presented in
section 2 was never done, but I estimate it may require on
the order of several minutes to render each frame. An
implementation including an analysis to cull rendering
passes demonstrated a frame rate of about 1.0fps for our
standard data set on the Indigo2. Informal tests on an
Infinite Reality engine suggested performance slightly
better than 2.0fps. Through subsequent optimizations,
including the second and third ones described above, I was
able to improve those frame rates to 2.5fps on the Indigo2,
and 5.7fps on the Infinite Reality engine. Additional
analysis indicates that it should still be possible to further
improve these numbers, particularly on the IR.

4. Surface light fields
vs. the lumigraph

The lumigraph[4] is a similar image-based method for
representing the appearance of an acquired real scene.
Whereas the surface light field parametrizes rays according
to surface position and direction, the lumigraph’s
parametrization is geometry-independent. Instead, two
parallel planes are defined near the surface, and rays are
parametrized by their points of intersection with the two
planes: s t,() and u v,(). The lumigraph representation also
supports an interactive rendering algorithm able to utilize
current graphics hardware.

This section compares surface light field rendering with the
lumigraph, focusing on tradeoffs between image quality,
accuracy and data size. I will argue that the parametrization
employed by the surface light field is the natural
parametrization for surface appearance, and that the
lumigraph’s parametrization results in poorer image quality
for a given-sized data set. Furthermore, I will demonstrate
that the clean division between position and direction in the
surface light field allows those dimensions to be simplified

independently, resulting in well-understood degradation,
whereas the lumigraph exhibits several second-order effects
that further limit simplification opportunities. Although it is
an important issue, I do not discuss rendering performance
because it is not an inherent property of the method, but
depends also on details of the implementation and hardware
characteristics.

4.1. Comparison overview

The surface light field used for comparisons was the same
data set used for performance analysis, including 199
regions, each with 66 uniformly-distributed directions, and
texture sizes chosen to provide roughly even coverage of
the surface. The complete data set includes 33,235,488
texels (rays). The storage required by the surface geometry
is negligible compared to texture data storage.

I implemented a simple lumigraph resampler and
constructed several lumigraphs from the same input data
used for the surface light field. Ideally, the lumigraph
should be the same size, the same resolution “quota,” as the
surface light field in order to compare results generated by
the two methods. However, the surface light field data set
covers all faces of an object, whereas a single light field
“slab” represented by a lumigraph represents only one of
the six cardinal directions. In addition, due to eccentricities
of the current surface light field implementation
(specifically, texture regions currently overlap), it turns out
that the surface light field includes a 3x redundancy.
Because a smaller redundancy may end up as part of the
surface light field representation in the future, I chose a
conservative estimate of 2x to compensate for this factor.
Therefore, the final lumigraph quota was determined by
reducing by a factor of 12 to 2,769,624 texels.

I generated test lumigraphs using a ray tracing algorithm as
follows. Given st and uv planes, and s t u v, , ,() coordinates,
cast a ray and find the intersection of the ray with the object
geometry. Given this point of intersection, locate the
camera that sees the point of intersection from a direction
nearest to the direction of the ray. Find the color from the
corresponding pixel in the camera image. Note that this
resampling does not attempt any interpolation. Better
methods can certainly be implemented, and indeed, Gortler,
in the original lumigraph paper, describes a novel algorithm
for reconstructing multidimensional functions from
scattered data[4]. I chose my resampling method because
the cameras densely populate the sphere of directions, and
because it matches the currently implemented method for
resampling surface light fields (see section 5).

4.2. A natural parametrization

The surface light field parametrizes the space of rays by
surface position and direction. This could be considered the
natural parametrization of the light field leaving a solid
surface because it directly corresponds to the physical
dimensions of the function: surface texture and radiance
function. The parametrizations along these dimensions can

be tuned according to the behavior of the surface. In
particular, for most surfaces, the interesting directional
behavior as defined by the BRDF tends to be distributed
more or less evenly across the space of directions,
suggesting that a uniform distribution of rays in direction
space may be most preferable. If, however, a piece of
surface has the property that specular lobes tend to point in
the same direction (perhaps because the surface is flat), it
may make more sense to adjust the parametrization to
provide better resolution in that direction. The arbitrary
direction mesh provides support for both cases.

The Lumigraph parametrizes the space of rays using pairs
of grid points on two parallel planes. This parametrization
serves three purposes. First, it leads to a reasonably
efficient interactive rendering algorithm that can be
implemented with the assistance of existing graphics
hardware. Second, it does not require knowledge of the
geometry, although the system can use such information, if
available, to improve the quality of renderings. Surface
light fields inherently require geometry information. Third,
the lumigraph parametrization provides for some
simplification and compression opportunities due to the
lower frequency often exhibited in the st dimensions.
Surface light fields provide arguably better opportunities,
as described in section 4.3.

4.2.1. Uniformity of parametrization

The fundamental weakness of the parametrization scheme
used by the lumigraph, as well as the similar light field
rendering work by Levoy, et al, is that it is neither
physically-based nor well-suited to be adjusted according
to surface properties. One property that exposes this
weakness is direction nonuniformity. If the natural
parametrization of the light field describing the appearance
of a solid object is by surface position and direction, the
two-plane parametrization is non-ideal because it does not
uniformly map to direction space.

ST-plane

UV-plane
P(u,v)

figure 4.1: If P is on the surface, the st plane provides a
parametrization of direction.

For example, consider a surface point lying at a point u v,()
on the uv plane. Then consider a regularly-sampled st plane
as shown in figure 4.1. This sampling corresponds to the
direction sampling that is denser at grazing angles than at
perpendicular angles (figure 4.2). Thus, if resolving the
directional appearance of an object requires a certain
minimum angular resolution in direction space, the st and
uv parametrizations must be chosen such that they provide

at least this resolution in the sparsest region of directions,
near the perpendicular. Because of the nonuniformity in the
parametrization, this leads to an excessive directional
resolution at grazing angles. Attempting to sample the st
grid non-uniformly to compensate may improve matters,
but will not eliminate the problem because each individual
(u,v) will want a different optimal st sampling.

figure 4.2: A regular grid sampling of the st plane maps to a
nonuniform sampling of direction space.

Related is the problem of extending the two-plane
parametrization to cover all directions and all faces of an
object. Both Levoy and Gortler propose providing a pair of
planes to cover each cardinal direction, six in all. This
causes additional nonuniformities, especially near and
across the boundaries. In addition, a large number of rays
may not intersect the geometry, thus being wasted. Again,
surface light fields do not suffer from these issues.

Because of these parametrization nonuniformities,
lumigraphs require a greater texel quota to achieve the
same effective resolution as surface light fields.
Alternately, a lumigraph utilizing the same number of
texels as a surface light field will not achieve the same
reproduction quality. Figure 4.6 demonstrates this result.
Image A shows a closeup of a surface light field rendering
of the fish model. Image B shows a lumigraph of matching
texel quota, with the st resolution chosen to match the
surface light field’s direction resolution. uv resolution is
238x238; st is 7x7. (Note that this results in 49 direction
samples for somewhat less than a hemisphere, compared
with the surface light field’s 66 direction samples for the
entire sphere.) This does not leave sufficient uv resolution
to resolve the detail shown by the surface light field. Image
C shows a 416x416 uv, 4x4 st lumigraph. uv detail is closer
to that demonstrated by the surface light field, but st is now
so sparse that highlights are visibly distorted.

4.2.2. Viewing inside the convex hull

Indeed, even though the lumigraph requires a higher texel
quota to achieve the same effective resolution, it still does
not represent as much data as a surface light field.
Specifically, it places a constraint on camera positions for
which the function gives well-defined results. This
constraint is illustrated in figure 4.3. If the surface is not
convex, then there will exist rays that exit the surface from

two different points. The lumigraph must choose one
surface from which to represent the radiance; typically, this
is the closer surface (A). Unfortunately, this implies that a
camera positioned between the two surfaces will not get
correct data from the occluded surface (B).

s
u

rf
a

c
e

 A

s
u

rf
a
c
e
 B

uvst

viewpoint C
figure 4.3: Attempting to view inside convex hull.

A surface light field, on the other hand, can correctly
represent the light leaving surface region B and produce a
correct reconstruction. Of course, due to A’s occlusion, it
may not have been possible to actually capture in a
photograph the appropriate radiance leaving surface region
B in the desired direction. However, because the
representation is tightly integrated with the surface
geometry, it is possible to detect this condition and use a
hole filling algorithm to fill the missing data using data
gathered from other views of the surface patch, such as C.
Our system for resampling surface light fields from
photographs includes such an algorithm. Because we can
perform this step offline during the construction process, it
does not affect the interactive rendering speed.

4.3. Distributing the resolution quota

A key issue in both systems is deciding how to split the
resolution “quota” between the different dimensions of the
parametrization. Surface light fields, by parametrizing the
physically based and orthogonal dimensions of texture
coordinate and world-space direction, allow an application
to decide this distribution according to physical properties
of the object, such as surface detail and shininess. Objects
with detailed surface texture would require high resolution
across the surface manifold dimensions. Insufficient
resolution results in blurring of surface detail (figure 4.7).
Objects with complex specular properties and sharp
highlights would require high resolution in direction space.
Along these dimensions, insufficient resolution results in
poor reproduction of the radiance function, which results in
effects such as dulling and “sloshing” of sharp specular
highlights (figure 4.8). These properties are independent;
thus the two resolutions can be scaled independently.

The lumigraph does not provide as clear a separation.
Sloan, et al[11] examine the issue of division of resolution
and propose a distribution of 256x256 on the uv plane and
32x32 on the st plane as giving “good results.” Gortler, et
al note that because the uv plane is expected to lie near to
the surface of the object, uv can be thought of as an
approximation to surface texture coordinates, and st can be

thought of as an approximation to a direction
parametrization. This suggests that the uv and st
discretization in the lumigraph might also be scaled
independently according to the surface texture and radiance
function properties of the surface. Based on this idea, Sloan
proposes subsampling st as a method of compressing
lumigraphs and accelerating their rendering. Unfortunately,
the correspondence between uv and st, and surface and
direction, is only approximate. I now demonstrate several
second-order effects, which further constrain the relative uv
and st resolutions that produce convincing results. Surface
light fields do not exhibit these effects.

4.3.1. Occlusion artifacts

Sparse resolution in st leads to artifacts in rendered images
due to occlusions. This occurs when, given a pixel being
rendered, some of the rays being interpolated are passing
through occluding geometry and are therefore giving false
data. Figure 4.4 illustrates this case. Consider a lumigraph
rendering algorithm based on raytracing. After depth
correction, the actual view ray, ray A, is approximated by
interpolating rays B and C. However, note that ray C is
occluded by geometry not hit by the original ray, and
therefore gives incorrect data. More precisely, occlusions
introduce discontinuities in the light field along the st
dimensions. These discontinuities are not modeled well by
the piecewise linear reconstruction of the lumigraph
function if st is not densely sampled. Figure 4.9 illustrates
the artifacts that can be generated by this phenomenon. It
may be possible to correct this condition by storing depth
with each ray and testing against the depth correction factor
for the current ray. However, an accurate implementation
of this correction may require sacrificing interactive speed.
Surface light fields are not subject to this effect because
rays are explicitly associated with points on the geometry.

object
geometry

st-plane

uv-plane

ray A ray Bray C

figure 4.4: Occlusion artifacts in a lumigraph.

4.3.2. Effect of depth errors

A large difference in the st and uv resolutions of a
lumigraph leads to an increased sensitivity to errors in the
depth correction step. To review, Levoy, et al[7] prefilter
their light fields prior to rendering in order to eliminate
aliasing caused by undersampling in the st and uv planes.
This has the effect of reducing the apparent depth of field
in rendered images. To sidestep this issue, Gortler, et al
introduce a depth correction step into the lumigraph
rendering algorithm. This allows them to choose rays that

originate from the same point on the geometry, effectively
eliminating blurring across the surface.

An interactive rendering algorithm for a lumigraph,
however, typically requires a simplified version of the
geometry. This introduces small errors in depth
computation, which may be further exacerbated by the
approximations necessary for fast depth computation used
by Gortler, et al. Such imperfections in depth correction
may reintroduce small aliasing artifacts, such as double
images on a small scale. Figure 4.5 illustrates the geometry
of the situation. A simple analysis by similar triangles
reveals that the amount of possible offset of rendered
pixels, in uv pixels, is directly proportional to the ratio
between the st and uv grid spacings, as well as proportional
to the ratio between the depth error and the actual depth.

error
pes

d d e u
=

+()

where d is the actual depth, e is the error in depth, p is the
distance between the two planes, s is the distance between
adjacent st grid points, and u is the distance between
adjacent uv grid points.

st-plane

uv-plane

object
geometry

simplified
geometry

view
ray

ray
used

correct ray

uv
blurring

e

p
d

s

u

figure 4.5: The effect of simplified geometry.

In practice, because the ratio e/d is generally small, this
effect is not very noticeable until there is a very large
difference in the uv and st resolutions. Figure 4.10
demonstrates such a case. The geometry has been
simplified to 199 triangles (from the original model of
about 130,000 triangles) for the purposes of depth
correction, and the uv and st resolutions are 416x416 and
4x4, respectively. Note the presence of double images of
some of the scales on the fish’s side. Although this is an
extreme distribution of resolution between uv and st, it does
represent a further constraint imposed on how sparse the
sampling of st can be made. In particular, to construct a
lumigraph with high-resolution texture (uv) data, it may be
necessary to increase st resolution also.

Surface light fields are not subject to this type of constraint.
Many surface simplification schemes include facilities for
preserving some approximation of the surface
parametrization. Textures mapped onto simplified
geometry may be distorted, but will not exhibit these types
of ghosting artifacts, regardless of the simplification level
or the relative density of the st and θφ resolutions.

4.5. Conclusions

Although similar in their functions, lumigraphs and surface
light fields exhibit some key differences related to their
respective parametrizations. The parametrization of the 4D
function employed by the surface light field can be made
more uniform, according to the natural dimensions of
position and direction, than can the parametrization
employed by the lumigraph, leading to more efficient
utilization of a potentially limited data set size.
Furthermore, the surface light field provides a cleaner
separation between the different dimensions of the
parametrization. This allows those resolutions to be scaled
independently according to the properties of the object to
be reproduced and desired quality of the reproduction. By
contrast, manipulating the parametrization employed by the
lumigraph may expose additional artifacts.

The primary benefit of the lumigraph’s parametrization is
that it is basically geometry-independent. This may be
useful for representing and rendering data sets with
indefinite, unacquirable or exceedingly complex geometry.
However, when geometry is available, surface light fields
offer significant advantages.

5. Some context

This work is part of a larger project investigating methods
of capturing, representing and reproducing the appearance
of real objects. This section gives a brief overview of the
larger project, including the process of constructing a
surface light field, and lists some of the research areas
involved.

5.1. Data acquisition

We currently gather raw data in the form of high-resolution
geometry and a dense set of photographs. We compute
geometry from range images obtained using a Cyberware
Model 15 laser range scanner. In-house software is used to
register separate range images, and a vrip[2] is used to
reconstruct the surface as a triangle mesh (figure 5.1).
Photographs can be obtained through a variety of means.
Our current datasets include photographs taken using the
Stanford spherical gantry, a camera mounted on a
programmable gantry arm. Using this system, we capture a
large number of video-resolution images with known
relative pose (figure 5.2).

To generate a surface light field, we must register the
image set to the geometry. Currently, we use in-house

software relying on user-supplied correspondences;
however we are also investigating automatic methods. In
future work, we also hope to explore the harder problem of
dealing with a set of non-interregistered images from a
hand-held camera. (Gortler uses a registration pattern for
this purpose.) We also plan to investigate methods of
reconstructing plausible data from a smaller set of
photographs.

We generate the surface light field data set by projecting
photo images onto the surface. Currently, it is assumed that
the set of photos is large; therefore, for a particular
direction, we select the “nearest” photo rather than
interpolating. During this step, we fill holes in the data due
to occlusions and other effects using an algorithm based on
Gaussian smoothing[12].

5.2. Regionification and
direction simplification

We decompose the geometry into texture regions and
parametrize using a modified version of MAPS[6]. Instead
of a hierarchy of simplification levels, our algorithm
proceeds greedily from fine to coarse, similar to the
progressive mesh simplification[5]. This is because we
would like texture regions to exhibit certain properties:
specifically, regions should be small and “flat.” Flatness
improves performance by increasing the effectiveness of
the region culling optimization described in section 3.1. It
also may improve the direction simplification process
described next.

A current active area of research is construction of an
optimal set of direction samples for the direction mesh. In
the data set used in current tests, every texture region uses
the same direction mesh, and furthermore, the direction
mesh is roughly uniform over direction space. However, it
is conceivable that a different tessellation may provide
higher quality results for a given number of directions. In
particular, if a piece of surface has a largely diffuse texture
with a single sharp specular highlight pointing in a single
direction, it would be useful to concentrate direction
samples in the direction of the specular highlight. We are
investigating methods of optimizing the direction mesh
through mesh simplification algorithms.

6. Conclusions and discussion

Surface light fields hold significant promise for
reproducing the appearance of real objects. We have
demonstrated its effectiveness with a real object with
complex surface characteristics.

This project offers two main contributions to the study of
surface light fields. First, I have demonstrated a practical
implementation of a surface light field rendering algorithm
capable of frame rates reasonable for interactive
applications. My current implementation achieves 2.5
frames per second on a three-year-old workstation, and

close to 6 frames per second on a high-end server. Second,
I have elucidated the behavior of the representation in the
face of simplification, and shown that a similar
representation, the lumigraph, does not fare as well.

I have optimized the current implementation and studied its
behavior on two SGI systems. However, with the recent
rise of PCs, it would also be useful to understand the
algorithm’s behavior on PC graphics hardware and
optimize accordingly. The current implementation is
designed to be cross-platform, so this process should not be
difficult.

Considerable work remains to be done in developing robust
processes for constructing, compressing and analyzing
surface light fields. Some of these directions are mentioned
in the section 5. In addition, although surface light fields
are designed for generality, able to represent arbitrary
surface radiance, an interesting area of future work might
be to explicitly model information about surface BRDF and
positions of light sources to improve efficiency of the
representation. This might also lead to representations
capable of handling nonstatic lighting and additional
applications.

7. Acknowledgments

I would like to thank my adviser, Brian Curless, for his
support and good humor, Daniel Wood for many
suggestions concerning the rendering algorithm and for
putting up with my constant OpenGL-related complaints,
Jonathan Shade for sharing his considerable knowledge of
graphics hardware and for stealing time on Stanford’s
Infinite Reality, and to Stanford University for use of their
computing and camera gantry facilities. Further thanks go
to Tom Duchamp and Werner Stuetzle for their theoretical
insight, Steve Gortler for his lumigraph code (although
most of it wasn’t used), and Fred Pighin for commenting on
an early version of this paper, and for putting up with my
constant “Star Wars” music. Finally, I would like to thank
Jesus Christ, my Lord and Savior, without whom I’d have
far larger problems than our out-of-date compilers. This
work was funded by an Osberg Fellowship.

References

[1] E.H. Adelson and J.R. Bergen. “The Plenoptic Function and
the Elements of Early Vision” In Computation Models of
Visual Processing. MIT Press, 1991.

[2] Brian Curless and Marc Levoy. “A Volumetric Method for
Building Complex Models from Range Images” In
SIGGRAPH 96 Conference Proceedings. pages 303-312.
ACM SIGGRAPH, Addison-Wesley, August, 1996.

[3] Paul E. Debevec, Camillo J. Taylor and Jitendra Malik.
“Modeling and Rendering Architecture from Photographs: A
hybrid geometry- and image-based approach” In
SIGGRAPH 96 Conference Proceedings. pages 11-20.
ACM SIGGRAPH, Addison-Wesley, August, 1996.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski and
Michael Cohen. “The Lumigraph” In SIGGRAPH 96
Conference Proceedings. pages 43-54. ACM SIGGRAPH,
Addison-Wesley, August, 1996.

[5] Hughes Hoppe. “Progressive Meshes.” In SIGGRAPH 96
Conference Proceedings. pages 99-108. ACM SIGGRAPH,
Addison-Wesley, August, 1996.

[6] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence
Cowsar and David Dobkin. “MAPS: Multiresolution
adaptive parametrization of surfaces” In SIGGRAPH 98
Conference Proceedings. pages 95-104. ACM SIGGRAPH,
Addison-Wesley, July, 1998.

[7] Marc Levoy and Pat Hanrahan. “Light Field Rendering” In
SIGGRAPH 96 Conference Proceedings. pages 31-42.
ACM SIGGRAPH, Addison-Wesley, August, 1996.

[8] Gavin Miller, Steven Rubin and Dulce Poncelen. “Lazy
decompression of surface light fields for precomputed global
illumination” In Eurographics Rendering Workshop. 1998.

[9] Kari Pulli. Surface Reconstruction and Display from Range
and Color Data. Ph.D. dissertation. University of
Washington. 1997.

[10] Yoichi Sato, Mark D. Wheeler and Katsushi Ikeuchi.
“Object Shape and Reflectance Modeling from
Observation.” In SIGGRAPH 97 Conference Proceedings.
pages 379-387 ACM SIGGRAPH, Addison-Wesley,
August, 1997.

[11] Peter-Pike Sloan, Michael F. Cohen and Steven J. Gortler.
“Time Critical Lumigraph Rendering” In 1997 Symposium
on Interactive 3D Graphics. 1997.

[12] Gabriel Taubin. “A signal processing approach to fair
surface design.” In SIGGRAPH 95 Conference Proceedings.
pages 351-358. ACM SIGGRAPH, Addison-Wesley,
August, 1995.

[13] Bruce Walter, Gün Alppay, Eric P. F. Lafortune, Sebastian
Fernandez and Donald P. Greenberg. “Fitting virtual lights
for non-diffuse walkthroughs” In SIGGRAPH 97 Conference
Proceedings. pages 49-56. ACM SIGGRAPH, Addison-
Wesley, August, 1997.

Image B:
Lumigraph, 238x238 UV, 7x7 ST
Insufficient surface detail resolution

Image A:
Surface light field

Image C:
Lumigraph, 416x416 UV, 4x4 ST
Insufficient directional resolution.

Figure 4.6:
With similar-sized data sets, the surface
light field gives better-quality images

Figure 4.7: Low texture resolution results in blurring. Texels in the second surface light field are
subsampled 4:1.

Figure 4.8: Low direction resolution can result in “sloshing” of highlights due to the coarse piecewise-
linear approximation. Two renderings of the same surface light field with 66 uniformly-distributed directions.

Figure 4.9: Two nearby views of a lumigraph, showing the appearance of an occlusion artifact.
Lumigraph 334x334 uv, 5x5 st

3184 geometry triangles.
Minimal ghosting due to bad geometry.

199 geometry triangles.
Minor but noticeable ghosting due to bad geometry.

Figure 4.10: Inexact depth artifacts (Lumigraph 416x416 uv, 4x4 st)

Figure 5.1:

Figure 5.2:

Cyberware Model 15 laser range scanner Object geometry (130,000 triangles)

Stanford Spherical Gantry 680 input photographs

Figure 6: slfview, the interactive surface light field viewer

