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Abstract

We develop a new view-dependent level-of-detail algorifbntri-
angle meshes with subdivision connectivity. The algoritemmore
suitable for textured meshes of arbitrary topology thastég pro-
gressive mesh-based schemes. It begins with a wavelet geeom
sition of the mesh, and, per frame, finds a partial sum of vedsel
necessary for high-quality renderings from that frame&wgoint.
We present a new screen-space error metric that measutegesot
ometric and texture deviation. In addition, wavelets tieblitside
the view frustum or in backfacing areas are eliminated. Tge-a
rithm takes advantage of frame-to-frame coherence for orgat
performance, and supports geomorphs for smooth transitien
tween levels of detail.

1 Introduction

Complex graphical environments consisting of thousandsnibr
lions of polygons are becoming commonplace. These envieotsn
arise in computer-aided design applications, visuabiretof scien-
tific data sets, and 3D photography techniques such as leaef s
ning. Current hardware, however, is not capable of renderiany
of these large datasets at sufficiently high frame rate feractive
applications.

While scene complexity increases with the power of acqaisénd
modeling tools, the display resolution is growing slowlydaumill
someday reach a limit imposed by the needs of the human visual
system. As a result of this mismatch in complexity and resmiu
growth, practioners often find that many polygons are beerg r
dered, unnecessarily, to a single pixel. Further, manyguig are

not visible to the user because they lie outside the viewingtdim,

or they are back-facing, or they are occluded by other paiggtn

such cases, the scene can be rendered with far fewer polygtns

no appreciable effect on the final rendered image.

Many researchers have proposed methods for reducing the com
plexity of meshes (also known as mesh decimation) using such
schemes as re-triangulation [18], vertex removals [16feecbl-
lapses [9], and vertex clustering [15]. By constructing acep-
proximating meshes, an appropridéesel of detail (LOD) can be
selected based on the current viewpoint [6, 5, 3].

More recently, researchers have developed methods fomoent
ous transformations between levels of detail, the mostgbeet of
which is the progressive mesh method introduced by Hoppe [7]
Such transformations enable a more powerful form of LOD con-
struction that allow the mesh simplification to vaoyer the sur-
face of an object, selecting a coarse level of detail for invisite-
gions of an object, and finer detail for visible areas, patidy
along silhouettes. For instance, when rendering a fly-of/arter-
rain, these systems can finely tessellate regions close tweatinera
and coarsely tessellate areas far away from the camera sideut
its view frustum. Xia and Varshney [20] and Hoppe [8][10] de-
scribe view-dependent LOD frameworks built atop modifimasi of
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Figure 1 View-dependent refinement of a base mesh using a para-
metric error metric ensures that the simplified mesh (rigbt)only
approximates the high resolution geometry (left) but alsat sur-
face texture is not distorted.

Hoppe's progressive mesh representation. Luebke anddar[kg]

describe an alternate method based on a vertex clustermuifi

cation algorithm that can change the topology of the triamgésh,
though the progressive mesh framework tends to yield highak
ity renderings.

The progressive mesh approach does, however, have sonte shor
comings. First, the algorithm is intended to work on stat&sires
and, because it does not in general yield a smooth mapping@mo
the levels in the hierarchy, is not immediately suited tchsojgera-
tions as mesh editing, signal processing over surfacesaainaa-
tion. Second, texture-mapping is only supported when thiacel

is parameterized prior to simplification, a separate, cemgltep

in itself. Third, during rendering of texture-mapped saes, addi-
tional machinery is necessary to minimize texture disborfB]. Fi-
nally, during view-dependent refinement, coarsening djpersare
difficult to implement due to dependencies in the hierard®}.[

An attractive alternative to progressive meshes is to sguriea sur-
face in a multiresolution framework based on four-to-onedsui-
sions, such as the one described by Lounsbeal; [13]. Meshes of
this type have a restricted connectivity knownsabdivision con-
nectivity. These multiresolution meshes have been demonstrated
to admit powerful editing operations such as those destriiye
Zorin et al. [21]. Further, when starting with high resolution geom-
etry, Ecket al. [5] and Leeet al. [11] have demonstrated methods
for constructing the subdivision hierarchies while sirankously
building low-distortion parameterizations which can beetd to re-
spect prevalent geometric features during construction.

Several researchers have demonstrated methods for dffiereter-
ing of these multiresolution meshes. Certdirl. [2] demonstrate
progressive refinement of meshes and texture maps indepgnde



though viewpoint is not taken into account. Zoeiral. [21] demon- To reduce the “popping” effect of switching between levdisie-

strate viewindependent level of detail. Woodkt al. [19] introduce tail, Hoppe [7] introduces geomorphs, a technique for singaon-
a framework for continuous, view-dependent LOD of subdivis terpolating between successive meshes in a progressive hies
connectivity meshes, but provide only sparse details dyaisa archy. Hoppe [8] notes that geomorphs can be used to smewth tr

sitions in a view-dependent level-of-detail framework amdiater

work [10] he first incorporatesun-time geomorphs in the context

of terrain fly-throughs. Geomorphs of vertex splits are heghdh

a straightforward manner. Geomorphs of edge collapsesevew

present greater difficulty, as “overlaps” or dependencas arise

e Aview-dependent refinement scheme with detail varying over and require a parent to be geomorphed at the same time addts ch
the surface of multiresolution subdivision-connectivityr- To avoid such difficulties, he requires the children to bengeo
faces. The scheme includes adaptive simplification based on Phed and collapsed before beginning the geomorph of thepare

In this paper, we describe in detail a method that fills the igap
this important area of geometric representation and moglelin
particular, our contributions are:

— Frustum culling 3 View-dependent LOD for
— Backface culling subdivision-connectivity meshes

— A screen space error metric with inherent texture distor-

tion reduction In this section, we describe a new algorithm for view-degend

level-of-detail of triangle meshes with subdivision coctie

e An improved metric for screen space error ity. Our method relies on multiresolution analysis of tgén
meshes [12, 17, 2], ensuring a smooth mapping between meshes
e Support of overlapping, coarsening, run-time geomorphs generated at different levels of detail. We describe a sespace

error metric that measures texture deviation as well as ga@m
deviation. Like the earlier work on progressive mesh sclxej8k

our algorithm operates incrementally, taking advantageroporal

coherence, and it supports geomorphs for smooth transitiea
tween meshes generated in different frames, includingamging

coarsening geomorphs.

The remainder of this paper is organized as follows. We bbygin
reviewing the technique of [8], which is most similar to olga
rithm. Next, we summarize the mathematical basis of mesh pa-
rameterization and multiresolution analysis and desdnibg this
analysis leads to a view-dependent algorithm. We then ptéke
qualitative and quantitative results of our implementatmd con-

clude with a discussion of future work. 3.1 Decoupling color from geometry

We define aolored meshto be a triangular mesk C R®, together
2 View-dependent LOD for progressive meshes with an RGB-valued functioM — Color.

Representing a colored mesh as a textured surface requpas a
rameterization oM. For acquired surfaces with arbitrary topology,
a parameterization is typically generated using a scheroe asi
those described in Ealt al. [5] or Leeet al. [11]. Those schemes
construct a homeomorphism (jarameterization)

A progressive mesh [7] is an ordered family of approximagion

a triangle mesh represented by a coarse base mesh and acgequen
of vertex split operations. The sequence is constructed by repeat-
edly applying the inverse operatiogtge collapse, starting with the
original, highest resolution, mesh. Consequently, stgnvith the
base mesh and applying the entire stream of vertex splitsdiero

will yield the original mesh. p K —=MCR’,

Xia and Varshney [20] and Hoppe [8] refined the progressiveime  where thebase complex K° is an abstract simplicial surface, con-
representation to support selective level of detail. ¢ediin the sisting of a relatively small number of faces. The compositi
mesh are organized into a forest of trees in which each taésa

vertex in the base mesh and the children of any given verteihar cres : K® -2 M — Color

vertices formed by applying the vertex split operation toAtcut

through the forest represents a possible refinement of tisé.nie transfers the color function to the base compiék whose faces

particular, the cut through the root vertices of the foregresents can then be viewed as texture domains [2]. Notice that weean t
the base mesh, and the cut through the leaf nodes reprebents t ture map the image of any mag,.o, : K° — R? approximating
original, highest resolution mesh. p, provided only that it is piecewise linear with respect toea r
finement of the triangulation d¢°. Furthermore, although we dis-
cuss only colored meshes, the extension to other surfape fies
(e.g., BRDF's, normals, transparency) is straightforward.

Hoppe’s view-dependent, LOD algorithm operates increalnt
from frame to frame. The mesh in each frame is representetisis a
of active vertices along a cut through the forest. Prior talezing a
frame from a new viewpoint, the active list of vertices isvaesed,
and a refinement function is evaluated to query whether each v
texin the list should be split or its parent edge collapsesedl on  Qur construction of the approximatigs,,, is based on multires-
the new viewpoint. This process moves the cut up or down, and olution analysis. LeK! denote the triangulation d¢¢° obtained by
the mesh is incrementally modified by performing the cores applyingj four-to-one subdivisions of each facekt. Notice that
ing vertex split and edge collapse operations. Finallytiolified the vertices oK/ consist of the vertices df/~* together with addi-

mesh is rendered. tional vertices located at the midpoints of the edge&/of-. These

3.2 Multiresolution Analysis

The refinement function selects a desired refinement statever- vertices are calleddge vertices at levelj. The vertices oK' are
tex based on three view-dependent criteria. First, aretireafiesh  arranged in the following hierarchyf’ denotes a vertex d and
that lie completely outside the view frustum are coarseSetond, Ve denotes the edge vertex at leyekentered on the edgeof KI™~.

areas of the mesh that face away from the viewer are alsoaruats ~ Points ofM are indicated with bold faces, = p(\).
Finally, a screen-space error bound is enforced.



For each integgrwe let

p K —R®
be the unique piecewise linear map with respect to the tulation
K! such thath(v) = p(v) for each vertew of K!. Because the

sequence’ converges unlformly t@, the sequence of increasingly
fine meshest = p)(K% c R® converges to (see Figure 2).
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Figure 2 To generate successive levels of detail, apply four-to-one
subdivisions and perturb the new vertices to their final tomss.

The mapp? is the coarsest level approximation pf For each

integerj > 0, we V|eWpJ as a perturbation of its predecesgdr 2.

More formally, p! has the expansion
i =

pl=p! Tty L,
e

where the summation is over the edgebezZej denotes the piece-
wise linear “hat function” that assumes the value 1 at theeedy-
tex i, and the value O at every other vertext@f(Figure 3).

1)

Repeated application of (1) yields thezy wavelet expansion [2]

p=p°+d Y &9,

j=1 ecEdgeski—1)

Other wavelet bases, such as the k-disk wavelets [17], are mo
nearly orthogonal; however, for the purposes of a view-ddpat
level-of-detail scheme, orthogonality is less importamart the
speed offered by the simplicity of the lazy wavelet expamsids
rendering speed is dependent on the number of triangles éx-an
pansion and not the number of wavelets, the simple triatigulaf

a lazy wavelet is desirable.

In practice, we truncate the infinite sum at ledgivhered is chosen
so that the errofp — p”| is below a user-specified threshold. In
otgler words we assume that= p? and, consequently, thad =
M~.

3.3 Adaptation criteria

Our goal is the following: at each framiewe wish to find an ap-
proximation p, to p that generates a convincing image given the
viewpoint parameters. We call the process of compujnghe
adaptation stage. In addition, we need an efficient method of ren-
dering the resulting mesh, a process we calténdering stage. We
describe those two stages in more detail in the next two stibss.

We may now restate the problem in terms of the lazy wavelet ex-

pansion. At each framg we wish to find a small subsék of the
index set

S={(ej) : ec EdgesK'™"), j < J}

Figure 3 Adding a lazy wavelet. Top left: the base domain. Top
right: domain after one subdivision, showing a hat functiotevel

1. Bottom left: the coarsest geometric mesh. Bottom rigte:rhesh
with added correction term.

such that

p=p’+ > Ly

(e)eUr

Our criteria for including an indexe(j) in U; consists of three tests:
(i) aview-frustumtest, which excludes indices for which the support
of ¢»d is outside the view frustum, (ii) dack-facing test, which
excludes indices for which the image of the support of theehev
is back-facing, and (iii) acreen-error test that ensures small screen
error in regions of high curvature or and along silhouetidsere
high geometric detail is needed. Tests (i) and (ii) are padentical

to those of Hoppe [8], with the exception that the areas ofrthsh
tested correspond to the support of our hat functions retreer
the neighborhood of vertices and their descendants; tgstifiers
more substantially from the corresponding test descrilydddppe.
Our test (i) will implicitly measure not just geometricrer but
the deviation of surface propertiesd., texture distortion), and we
employ a tighter bounding volume to measure screen spaae err

3.3.1 View-frustum test

To test that the support q? does not lie completely outside the
view frustum, we pre-compute the raditisof the smallest sphere,
centered around the poist € M that bounds the-image of the
support ofz/;e. We include the indexg(j) if any part of the sphere
lies within the view frustum.

Notice that an indexg(j) satisfies the view-frustum test (and is in-
cluded) if its support contains the support of a finer levevelet

¥, and ¢, k) satisfies the test.

3.3.2 Back-facing test

To determine if the image of the support of a wavelet is badirg,
we pre-compute the Gauss map (field of unit normalsiyobver
the support of each wavelet and find a bounding cone of normals
centered around the normalltb at each pointi,. We include &, j)

in Uy if the vector fromv, to the viewpoint makes an angle of less
thanm /2 with some vector in the cone.

Notice, again, that an index,() is front-facing (and included in

Uy) if its support contains the support of a finer level Wavq}é‘t,
and ¢, k) is front-facing.



3.3.3 Screen-error test

We want to approximate the mapsufficiently well that the error
between the original mgp and the approximatiop, at timet, pro-
jected into screen space, is bounded by a user-specifiee. vaiur
test is based on thgarametric error, p — p,. The parametric error
does not measure the difference between a point on the apyaiex
geometry and the closest point on the true geometry. Ingteseh-
sures the difference between a point on the approximatidrifzn

corresponding point on the true geometry. Therefore it accounts for

the deviation of surface features like texture.

To pre-compute the parametric error, we have to make an gssum

tion about the sdt).. Suppose that (k) is in U; and that the support

of @ka is contained in the support @ﬁg Then we also include its
“ancestor” €,j) in Ux.

We also will order our tests, so that we will not telstk) unless we
have already included all of its ancestors. With these aptians
in place, we can pre-compute the parametric error thattseegoim

excluding €,j) from U;. At a pointp in K° the errorEparam(p) is

given by

)

The errorE resulting from excludings,j) is the union of the para-
metric errors for allp in the support OfIZJ\ej. Because botlp and
pl~* are piecewise linear df’, this set is contained in the convex
hull of the set{ Eparam(v) } wherev ranges over the vertices Kf in
the support of@e'. We use this set for following computation of a
bounding box around the erré&x

Eparam(P) = p(P) — p(P) = p(®) — '~ (p).

To accelerate this test, we boukcby a normal-aligned spheroid,
and test the size of the spheroid’s projection onto screacesprhe
spheroid is determined by the normalNbat \i, the length of its
normal-aligned radiugl, and the lengthpl, or its radius in the di-
rection orthogonal to the normal. (Figure 4(b)).

Hoppe [8] uses as a bounding volume a sphere attached to two aJ} = (aJe)Z Bij = (bie)z - (aJe)Z K = 47° cof (£> .

normal-aligned cones (Figure 4(a)). Most of the geometeidat
tion is likely to be normal to the surfaces; hence, the noratighed
cones allow the volume to enclose longer error vectors wWiaiep-
ing a relatively small screen-space footprint. We could gota the
optimal major axis but that would require extra storage if ave
already storing normal information. The shape is alsoyfaheap
to project into screen space. A spheroid generally provédéghter
bounding volume around error vectors than Hoppe’s shapeexo
ample, consider the simple case of a single error vectoratayi
15 degrees from the normal. As shown in Figure 4 the Hoppe-sty
bounding shape can be considerably larger than the sphedoid
experiments (Section 4) demonstrate a smaller but consiate
vantage for the spheroid.

We define thescreen space error to be radius of the smallest circle
containing the projection of the bounding spheroid onto/ibeing
screen, measured as a fraction of the size 2@ of the view-

port, wherep is the field-of-view angle. We want the screen space

error to be less than a user-specifisatieen-space tolerance 7. We
ensure this by including the indeg () if the diameter of the screen-
space projection of the bounding spheroid is greater than 2

Our computation o#l, andbl; for a particular wavelejl?ij is similar
to the computation in [8]. Given the sEtof error vectors, we first
determine the ratio using the expression

i max(e- )
P — @)

b max|le x|
a€EE

@)

>

(b)

Figure 4 Bounding shapes constructed around a single error vector
e, pointing 15 degrees from the unit nornfal (a) Hoppe [8]. (b)
Spheroid.

wherefl is the unit normal at the verte,. We then scale the
spheroid so it bounds the vectorskn

To test an indexd, j) for inclusion inU;, we compare the diameter
of the screen-space projection to the screen-space tokerdore
precisely, given the center of projectiop at timet, the screen-
space tolerance (as a fraction of viewport size), and the field-of-
view anglep, we include &, j) and all of its ancestors id; if either

ol —alf+ A (h—a) 7)) > klv—allt @)

(bie)2 >k |IVh — q? 5

where

2

The quantitiese) and 3 are pre-computed per wavelet, ands
computed once per frame. With suitable combining of common
subexpressions, the computation of expressions (4) amddgjres
one more floating-point multiply than the computation of tue-
responding expression for Hoppe’s bounding shape. Theadem
of those expressions is in Appendix A.

For some applications, such as bump mapping or surface light

fields, geometric or texture distortion in the interior of alject’s
image is often less noticeable than low-resolution sillit@se19].
Therefore, it is sometimes desirable to use a lower toleraear
the silhouettes than in the interiors. We test whether a lgaueay
contribute to the silhouette by examining the cone of nosme
pre-computed for the back-facing test, and determiningspans
directions that are both front- and back-facing [14]. Anyvelet
that may contribute to the silhouette is tested against thre strin-
gent silhouette tolerance; others are tested againstthsiengent
interior tolerance.

3.4 Incremental adaptation

Because the s&can be very large, an exhaustive searcB, @val-

uating the inclusion criterion for each member, is not fielasin-

stead, we exploit the hierarchical structure of waveletsrg@mnize
the setSinto an acyclic, directedependency graph G and use an
incremental adaptation algorithm.

To give a formal definition o6, define an elemeni ¢ 1,€') € Sto

be achild of (j, €) € Sif the support ofz];\ej,+1 is completely contained



in the support oszej. In this case we say thazAtej is the parent of

@*1. The setS, together with the parent-child relation forms the
directed graplG (see Figure 5). Vertices @ may have zero, one,

or two parents, and up to six children. Observe tliak)(is the

descendent ofg(j) at a coarser level if and only if the support of

qpf is contained in the support dfe

Kl

(e 1)

//\\ //\\ //\

(f 2)

level 1 wavelets:

level 2 wavelets:

Figure 5 Wavelet parents and children. Waveddtop left) at level
1is a parent of waveldt (top right) at level 2. Bottom: a portion of
the dependency grapb.

Recall that in formulating our screen-error test, we maded$-
sumption that every ancestor of an elementUpfis also an ele-
ment of Us, we call this assumption thelosure condition. As il-

lustrated in Figure 3.4(alJ; is completely determined by the (gen-

erally smaller) subseE; C U; of all vertices ofK” that are either
terminal vertices of5 or have a child not contained ld.. We call
C: thecut set of U.

Observe that the set of indices satisfying the view-frustesh also
satisfy the closure condition. Suppose that the suppoftbfis

contained in the support Qba, and that K, b) satisfied the view-
frustum test. Then the bounding sphere centered attersects
the view-frustum. Because the bounding sphere assocnatﬁdt
is contained in the bounding sphere assomated;atp@ a) also
satisfies the view-frustum test. A similar argument, basedhe
cone of normal, shows that the set of indices satisfying kb
facing test is closed.

This suggests an incremental algorithm for computihg Begin
with the cut definindJ;—1. FindU; by traversing the cu€:_1, mov-
ing it up or down according to the three adaptation testsfertew
parameters. A wavelet is a candidate for additiobt@nly if both

its parents are it;, and a wavelet is a candidate for removal from

U; only if none of its children are ikJ;. In our implementation, we
begin by settindJo to be the empty set—that ip, = p

@) (b)

level 1 wavelets:
level 2 wavelets:

level J wavelets:

Figure 6 Left: The cutC; (solid line) through the grapl® sepa-

rates wavelets it; (dark) from those not itJ; (light). Right: The

adaptation stage moves the cut according to the view paeasnet

the next frame. Wavelets added and removed (shown with atide
dot) are geomorphed.

In the worst case, the above algorithm tests every wavel& in
However, for an interactive application, the viewpoint itgly
does not change much from frame to frame. Consequéddilyy
U;—1, implying that very few wavelets need to be tested per frame.

3.5 Runtime construction of the geomorph

To alleviate the “popping” effect that can accompany a ftars
between meshes at different levels of detail, Hoppe [7] psep
smoothly interpolating between the two meshes, a procesallse
geomorphing. In [10] he demonstrates geomorphs constructed at
runtime in a progressive mesh-based, view-dependent L@mDe¥
work. Our framework, based on the lazy wavelet decompasitio
also supports geomorphs. To smoothly add or subtract aatimme

termiqzej between framet andt,, we scale it according to the
expressions:

—b §e ¥ or §e o, (6)

respectively. We implement geomorphing by simulating acfet
concurrent processes, each managing one running geoniouph.

ing each pass through the algorithm, all currently runnieg-g
morphs are advanced. When a geomorph is completed, its “pro-
cess” is removed from the set.

During the adaptation algorithm, as the cut moves up and down
wavelets are added to and removed from thdkéFigure 3.4(b)).
When a wavelet is added to the set, a new process is created to
smoothly add the wavelet to the geometry via a geomorph; sim-
ilarly, when a wavelet is removed, a new process is created to
smoothly remove the wavelet.

Note that, since wavelets can be added and removed indeginde

of each other, geomorphs can overlap in both space and tirag; t

is, a wavelet and some of its descendants may be geomorphing s
multaneously. It is also possible for a wavelet to be in thdsiof

a geomorph when it is added or removed. For example, a wavelet
may be added ttJ;, causing a geomorph to start, and then it may
be removed before the geomorph has completed. In such a case,
the removal geomorph will start at the current state of thueol
geomorph.

Deciding the proper length and speed of geomorph advandemen
is still an open problem. In our implementation, every geggho
lasts a user-specified number of frames. We have found tlmat ge
morphs that last approximately a second give good resultaay

be possible to obtain better results by causing the geomergth

to depend on the magnitude of the coefficient of the wavelietgbe
introduced.

The proper geomorph length may also depend on the type of mo-
tion being applied to the viewpoint. If the viewpoint is staary
or nearly stationary relative to the object, popping will tgtice-
able; thus, geomorphs should proceed relatively slowly Vikual
effect of changes in the level of detail will be less notideakhen
the object is being moved or rotated rapidly relative to thesver,
and faster geomorphs will be possible. Our current impldeatem
includes a crude correction for object motion, scaling gexquh
speed linearly with the rotation and translation speed efvilew-
point, using user-specified constants. A more principlgut@gch
should understand the perceptual properties of geomomteni
dem with object motion

In other cases, geomorphs are not necessary at all. If a @dsel
added or removed on the basis of the view frustum or backdaci
criteria, the effect of a geomorph will not be visible [10].eW§et
the geomorph length to zero in those cases.
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Figure 7 RemovingT-vertices. Left: coarse mesh. Center: mesh after addingvav@lets (T-vertices are circled). Right: T-vertices défiated.

3.6 Rendering

The rendering stage of the algorithm must take the mesh geukr
for a framet, and output a series of triangle specifications to pass to
the graphics pipeline. The medh = p,(K°) is determined by the
current subset);, plus the state of running geomorphs. Our algo-
rithm iterates over the triangles M. For each triangle considered,

it checks whether the triangle should be subdivided to stipghe
current approximation. If so, the algorithm recursivelynsiders
each triangle formed by performing a four-to-one subdbrisof

the triangle. Otherwise, the triangle is drawn with vertesigons

set according t@,.

Because constructing will typically require non-uniform subdi-
vision, “T-vertices” will often be present (Figure 7). Suesrtices
will only appear along the edges forming the boundary of tige s
port of a wavelet; thus the actual position of the vertex Wl at
the midpoint of its edge. But slight cracks may still appeae tb
roundoff errors. We eliminate those cracks using a recersian-
gle cutting algorithm. Before drawing a triangle, we testteadge
to see if the triangle across the edge is subdivided. If s@uéhe
triangle in half by adding a vertex at the midpoint of the eduel
recursively test each half.

4 Results

We tested our algorithm using three models: a synthetic mode
of a sphere generated by five recursive four-to-one subdings

of the octahedron, an acquired model of a small fish statug, an
an acquired model of a small elephant statue. The objects wer
scanned using a laser range scanner, and were construeted tr
gle mesh models using the volumetric method of [4]. We then pa
rameterized the surfaces using the MAPS algorithm destiilye
Leeet al. [11]. The parameterization was then used to generate
subdivision connectivity remeshings of each model. Theiak
remeshed uniformly by applying four recursive subdivisioifhe
elephant remesh used a higher error tolerance, and was/gldatli
three times.

To evaluate the performance of our algorithm, we recorded th
movements in an interactive viewing session with each ofhihee
test meshes. In each case, the session included rotatingetteat

a distance in which the entire mesh lay in the view port, feéd

by zooming in for a closeup view. We then reproduced eacligess
under a variety of settings, recording the number of triasdh the
resulting mesh, the number of waveletddpand the time taken to
render each frame. The results are illustrated in FiguresdB9a

Figure 8 shows performance using a synthetic sphere of &ik@&f
generated using five uniform 4-1 subdivisions of an octatredr
The screen-space error tolerance was set such that theaetha
silhouette matched the error in the full model. The integaor

test. Figure 8(b) shows the “wall clock” time taken to rendach
frame, in milliseconds, both for the full model and for theapted
model. The fraction of the LOD rendering time used for thephiala
tion algorithm is shown as “overhead.” Times were recordedm
SGI 02 with a 175 MHz MIPS R10000 with the standard graphics
hardware.

Figure 8(c) and (d) show results for an acquired model, a fathe.
The base mesh of 199 triangles was subdivided four timesfioah
model consisting of 50,944 triangles. Figure 8(c) shows famunt,
and Figure 8(d) shows rendering times on the SGI O2.

Figure 9 demonstrates the effect of using a spheroid bogretiape
versus the shape proposed by [8]. Face counts and rendes time
improve noticeably when viewing at a distance. During dipse
however, the view frustum test takes on greater importamme the
screen space error test; consequently, the difference ¢ ness
pronounced.

Figure 10 demonstrates the level-of-detail algorithm ithioec The
fully tessellated sphere of 8192 triangles is decimated3® {ri-
angles by specifying a silhouette error tolerance of 0.®Ipiand
an interior tolerance of 3.5 pixels. In (c), we see the sanagiad
sphere mesh and the original view frustum from a viewpoiovab
the original, demonstrating the effect of the three diffiéreests.
Regions facing away from the camera or outside the viewdmst
are significantly coarsened, and a strip of small triangdedearly
visible along the silhouette of the mesh.

Figure 11 shows a scanned elephant model rendered usintivadap
refinement (using surface light field rendering [19] insteédim-
ple texture mapping). There are no signs of texture distordnd
regions outside of the view frustum are highly simplifiedyutie 12
compares an adaptively refined mesh with coarse and finermmifo
subdivision. The fish base mesh contains 199 triangles,dap-a
tive mesh contains 3943 triangles (using a silhouettedals of 2
pixels and an interior tolerance of 10 pixels), and the thiees
subdivided model contains 12,736 faces. Figures 12 (d)arid)
(f) show the same three meshes with texture applied. Notetiba
polygonal silhouettes are clearly noticeable in the coarsdel al-
though the interior appears plausible. The adapted modktten
finely tessellated model appear nearly indistinguishabite wex-
ture applied.

5 Summary and future work

We have presented a theoretical framework and a practical im
plementation of view-dependent level-of-detail for tgeameshes
with subdivision connectivity, based on a lazy wavelet gsial
Meshes with this restricted connectivity can be readilyegated
from surfaces of arbitrary topology using existing surfaegam-
eterization algorithms. We implement the same basic cépebi

was set higher by a factor of 7. Figure 8(a) shows the number of provided with existing progressive mesh-based schemejdin

faces generated by the adaptation algorithm over time, acealp
with the total number of faces in the full model. Note that thee
count drops off at the end when the camera moves in for a clpse-
allowing much of the model to be simplified due to the view funs

ing several view-dependent tests, incremental adaptationrun-
time generation of geomorphs augmented with more geomugphi
features and better bounds on screen-space error. Our anexho
tends the practicality of view-dependent LOD to subdiviston-



nectivity meshes. It also is the first demonstration of agapiew-
dependent LOD for textured meshes of arbitrary topology.

There are several areas for future work. Some features o83
not implemented in our system: runtime generation of tri@ng
strips and regulation of the screen-space error toleranc®intain

a constant frame rate. The restricted connectivity of oushmae
may make highly efficient generation of triangle strips jlass

Additionally, this work should be extended to interact waith
other common applications of subdivision connectivity hess in-
cluding multiresolution mesh editing and animation. Theelef
detail appropriate for a particular viewpoint includesdlkhe de-
tail necessary to directly edit the mesh rendered from tieatpoint
in a reasonable manner, analogous to multiresolutionipaift].
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A Derivation of error

We want the screen projection of the parametric error to $&tlean
7. This criterion can be written

Vjéfl]t
‘E"a’am(p)x Me—al ‘

E ~
max  Ean(p) 2cot(%)

7
pesupp( D¢ )
with g: the camera center, and for @llin the support oszej, pro-

vided that both the support @Eg is small and the parametric error
is small relative to the distance to the camera. Or, formally

PR -G Ve—G
lp(P) — | Ve — g

@)

is small.

The projection into the viewing plane of the bounding eilokis
an ellipse. A messy, but straight forward (in Mathematicajnpu-
tation shows that the formulas for squared lengths of theéreajor
and semiminor axes are

A’ (Me — i — Bb%) — (87 — %) (A - (Vi — )
) ) ) : ; 2)2

and
b2
Ve —af” - b — (" =17 (A-

() ) 2
Ne*ch‘

respectively.

For (4 — q) large relative to the error, we may assume orthographic
projection, in which case, these formulas reduce to thevidtig:

M — qf” — (@ — b)) (A (v — )’
—

|VJe — G

and
bj 2
Vi — af”
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Figure 8 (a) Face count for sphere model (left) (b) Rendering timesfatere model (right). (c) Face count for fish model. (top-l&f)

Rendering times for fish model on SGI. (top-right).
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Figure 10 From left to right: (a) Full sphere model (8192 faces). (bppttd sphere (732 faces). (c) Adapted sphere and view finustitown

from alternate viewpoint.



Figure 11 From left to right: adaptive refinement of elephant modetiesad with flat-shaded triangles, adaptive refinement rexddasing
surface light fields [19], and the adaptive refinement shaemfalternate viewpoint.
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Figure 12 From left to right, top to bottom: (a) Coarse geometry (19%8. (b) Adapted geometry (3943 faces). (c) Fine geomafy/86
faces). (d) Coarse textured geometry. (e) Adapted texigeednetry. (f) Fine textured geometry.



