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Abstract
Dataflow analyses can have mutually beneficial interactions.
Previous efforts to exploit these interactions have either
(1) iteratively performed each individual analysis until no
further improvements are discovered or (2) developed “super-
analyses” that manually combine conceptually separate anal-
yses. We have devised a new approach that allows anal-
yses to be defined independently while still enabling them
to be combined automatically and profitably. Our approach
avoids the loss of precision associated with iterating indi-
vidual analyses and the implementation difficulties of man-
ually writing a super-analysis. The key to our approach
is a novel method of implicit communication between the
individual components of a super-analysis based on graph
transformations. In this paper, we precisely define our ap-
proach; we demonstrate that it is sound and it terminates;
finally we give experimental results showing that in practice
(1) our framework produces results at least as precise as iter-
ating the individual analyses while compiling at least 5 times
faster, and (2) our framework achieves the same precision as
a manually written super-analysis while incurring a compile-
time overhead of less than 20%.

1. INTRODUCTION
Dataflow analyses can interact in mutually beneficial ways,

with the solution to one analysis providing information that
improves the solution of another, and vice versa. A classic
example is constant propagation and unreachable code elim-
ination: performing constant propagation and folding may
replace branch predicates with constant boolean values, en-
abling more code to be identified as unreachable; conversely,
eliminating unreachable code can remove non-constant as-
signments to variables thus improving the precision of con-
stant propagation. Many other combinations of dataflow
analyses exhibit similar mutually beneficial interactions.

The possibility of mutually beneficial interactions between
analyses is one source of the ubiquitous phase ordering prob-
lem in optimizing compiler design. If two or more analyses
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are mutually beneficial, then any ordering of the analyses
in which each is run only once may yield sub-optimal re-
sults. The most common partial solution used today is
to selectively repeat analyses in carefully tuned sequences
that strive to enable “most” of the mutually beneficial in-
teractions without performing “too much” useless work. At
high optimization levels, some compilers even iteratively ap-
ply a sequence of analyses until none of the analysis results
change. Unfortunately, in the presence of loops, even this
iterative application of analyses can yield solutions that are
strictly worse than a combined super-analysis that simulta-
neously performs all the analyses. When analyzing a loop,
optimistic initial assumptions must be made simultaneously
for all mutually beneficial analyses to reach the best solu-
tion; performing the analyses separately in effect makes pes-
simistic assumptions about the solutions of all other analy-
ses, from which it is not possible to recover simply by iter-
ating the separate analyses.

By solving all problems simultaneously, super-analyses
avoid the phase ordering problem (there is only one phase).
However, all previous definitions of super-analyses have re-
quired designing and implementing special versions of the
analyses with explicit code to exploit the beneficial interac-
tions. For example, each of Wegman and Zadeck’s condi-
tional constant propagation algorithms [28, 29] is a special-
purpose monolithic super-analysis that simultaneously per-
forms constant propagation and unreachable code elimina-
tion. Click and Cooper [9] provide a lattice-theoretic ex-
planation of conditional constant propagation with special
flow functions defined over the composed domain. Pioli
and Hind [24] developed a monolithic analysis that com-
bines constant propagation and pointer analysis using spe-
cial combined flow functions. Chambers and Ungar manu-
ally combined class analysis, splitting, and inlining [7]. In
all these cases, the analyses had to be combined manually
in order for them to interact in mutually beneficial ways. In
fact, Cousot and Cousot discussed product domains in ab-
stract interpretation, and proved that special flow functions
need to be used in order for the combination to produce
results better than the analyses performed separately [11].
This is unfortunate, because it seems to demonstrate that
it is not possible to simultaneously write dataflow analy-
ses in a modular, reusable, replaceable fashion and achieve
the best solutions for analyses that have mutually beneficial
interactions.

We present an approach for defining dataflow analyses in
a modular way, while also allowing analyses to be automat-
ically combined and interact in mutually beneficial ways.



This is achieved by changing the way that optimizations are
specified. Traditionally, an optimization is defined in two
separate parts: (1) an analysis which produces dataflow in-
formation and (2) rules for transforming the program repre-
sentation once the analysis has been solved. Merging these
two specifications into one allows our framework to auto-
matically process analyses in novel ways, and in particular
it allows our framework to combine modular analyses prof-
itably. The two specifications are combined by extending the
definition of flow functions: whereas traditional flow func-
tions only return dataflow values, our flow functions can also
return a sub-graph with which to replace the current state-
ment. Such replacement graphs are used by our framework
in two ways:

• Replacement graphs are used to compute the dataflow
information at the program point after the current state-
ment. This is achieved by recursively analyzing the
replacement graph in place of the original statement:
the input edges of the replacement graph are initial-
ized with the dataflow values flowing into the original
statement, and then iterative dataflow analysis is per-
formed on the replacement graph. When this recursive
analysis reaches a fixed point, the values on the output
edges of the replacement graph are propagated to the
program point after the original statement. Once this
is done, the replacement graph can be thrown away; the
original statement remains unchanged. If the original
statement is analyzed again (with more conservative
inputs), the flow function can choose another (more
conservative) graph transformation, or no transforma-
tion at all. Thus, during analysis, graph replacements
are used as a convenient way of specifying what might
otherwise be a complicated flow function.

• Replacement graphs indicate what final transforma-
tions the analysis wants to do. Once a sound fixed
point has been reached, the last set of transformations
selected during analysis can be applied, yielding an op-
timized program.

Our new method for specifying optimizations imposes no
extra design effort, since the writer of an analysis needs to
specify graph transformations anyway to perform changes
to the intermediate representation. However, by changing
the way in which optimizations are specified, our framework
can automatically process analyses in novel ways:

• Because flow functions are allowed to return graph re-
placements, our framework can automatically simulate
transformations during analysis, and therefore reach a
better solution. For example, using simple and straight-
forward flow functions defined in our framework, an
analysis writer can achieve the same effect as Wegman
and Zadeck’s more complicated conditional constant
propagation algorithms [28, 29] (as will be shown in
section 2).

• Our way of defining flow functions allows modular anal-
yses to be automatically combined and achieve mutu-
ally beneficial interactions. When one component anal-
ysis of a super-analysis selects a transformation, our
framework recursively analyzes the replacement graph
using the super-analysis, not just the component anal-
ysis that selected the transformation. As a result, all
other analyses immediately see the transformation, and
can benefit from it. This key insight allows analyses

that are composed in our framework to implicitly com-
municate through graph transformations.

This method of communication through graph trans-
formations is natural because it is in fact the way that
analyses communicate when they are run in sequence:
one analysis makes changes to the program represen-
tation that later analyses observe. However, analyses
that are automatically composed into a super-analysis
cannot interact in this way if the transformations are
only considered after the super-analysis finishes. Our
method of automatically simulating transformations
during analysis allows individual components of a super-
analysis to communicate in the same natural and mod-
ular way that sequentially executed analyses do.

The key contributions of this paper can therefore be sum-
marized as follows:

• We introduce a new technique for implicit communi-
cation between component analyses based on graph
transformations. This allows analyses to be written
modularly, while still getting mutually beneficial re-
sults when they are composed. Section 2 outlines the
key ideas of our approach by showing how several op-
timizations can be defined in our framework.

• Using abstract interpretation [10], we formalize the use
of graph transformations as a method of communica-
tion between analyses that are combined together. In
particular, we show in sections 3 through 6 that our
combined super-analysis terminates, is sound if the in-
dividual analyses are sound, and under a certain mono-
tonicity condition is guaranteed to produce no worse
results than running arbitrarily iterated sequences of
the individual analyses.

• We have implemented our framework in the Vortex
compiler [13] and more recently in the Whirlwind com-
piler. Section 7 provides experimental results showing
that our framework can combine modular analyses au-
tomatically and profitably with low compile-time over-
head.

2. OVERVIEW OF OUR APPROACH
This section highlights the key ideas of our approach by

sketching how several optimizations can be defined in our
framework and explaining how they work on a few examples.
We first show how a single analysis and its transformations
can be combined into an integrated analysis, and then we
show how several integrated analyses can be automatically
combined into a single super-analysis.

2.1 Integrating Analysis and Transformation
Imagine that we have a compiler that uses a simple control

flow graph (CFG) intermediate representation. Flow func-
tions usually take as input the analysis information com-
puted at the program point before the statement being an-
alyzed and return the information to propagate to the pro-
gram point after the statement. The key novelty in our
framework is that flow functions also have the option of re-
turning a (possibly empty) sub-CFG with which to replace
the current statement. To express this in our examples, we
assume that flow functions return something akin to an ML
datatype with two constructors: the PROPAGATE con-
structor, which specifies some dataflow value to propagate,



and the REPLACE constructor, which specifies a replace-
ment graph for the current statement.

As an initial example, we define a constant propagation
and folding pass by giving a few of the key flow functions.
The information propagated by this analysis consists of maps,
denoted by σ, that associate variables in the program text
to either a constant, the symbol > (which indicates non-
constant), or the symbol ⊥ (which indicates no informa-
tion).1

The first flow function for constant propagation handles
statements that assign some constant k to some variable x:

Fconst−prop

�
x := k � σ = PROPAGATE (σ[x 7→ k])

This flow function says that to analyze statements of this
form, the analysis should simply propagate an updated ver-
sion of its input map that associates x with k (but is other-
wise unchanged). Next, consider the flow function for binary
arithmetic operations:

Fconst−prop

�
x := y op z � σ =

let t := σ[y] �op σ[z] in

if constant(t) then

REPLACE (
�
x := t � )

else

PROPAGATE (σ[x 7→ t])

This flow function first computes the new abstract value t

for x using the �op operator, which is the standard extension
of op to > and ⊥:

a �op b =

��� �� ⊥ if a = ⊥ ∨ b = ⊥

> if ¬(a = ⊥ ∨ b = ⊥) ∧ (a = > ∨ b = >)

a op b otherwise

If t is a constant, then the flow function performs constant
folding by replacing the current statement (x := y op z)
with a sub-CFG containing a single statement (x := t) that
assigns x the value computed by the constant folded op-
eration. If t is not constant (either > or ⊥) then the flow
function simply propagates its input map after updating the
binding for x.

Finally, we define a flow function for conditional branches:

Fconst−prop

�
if b then goto L1 else goto L2 end � σ =

if constant(σ[b]) then

if σ[b] = true then

REPLACE (
�
goto L1 � )

else

REPLACE (
�
goto L2 � )

else

PROPAGATE (σ)

This flow function either optimizes a constant conditional
branch by replacing it with a direct jump to the appropriate
target, or simply propagates its input map unchanged to
both targets if the branch condition is not constant.

In all cases, when a REPLACE action is selected, the re-
placement graph is analyzed, and the result of the recursive
1Throughout the paper we use the abstract interpretation convention
that ⊥ represents no behaviors of the program and > represents all

possible behaviors. Thus, opposite to the dataflow analysis literature,
⊥ is the most optimistic information, and > is the most conservative

information.

analysis is propagated to the program point after the re-
placed statement. For example, when Fconst−prop returns
REPLACE (

�
x := t � ), the x := t statement is automati-

cally analyzed in place of the original statement, yielding a
map that associates x with the constant t. Although return-
ing PROPAGATE (σ[x → t]) in this case would produce
the same dataflow value, it would not specify the constant
folding transformation. As another example, if a constant
branch is replaced with a direct jump, the framework au-
tomatically analyzes the direct jump in place of the condi-
tional, and in doing so simulates the removal of the unreach-
able branch.2 While in the middle of an optimistic iterative
analysis of a statement in a loop, the REPLACE action is
only simulated, with the replacement graph recursively ana-
lyzed but otherwise unused. Only after the analysis reaches
a sound fixed point is the original CFG modified destruc-
tively.

Consider applying the integrated constant propagation
and folding optimization to the following simple program:3

x := 10;

while (...) {

if (x == 10) {

DoSomething();

} else {

DoSomethingElse();

x := x + 1;

}

}

y := x;

As it enters the while loop, the analysis makes the op-
timistic assumption that x contains the constant 10. As a
result, the flow function for the if statement chooses to re-
place the conditional by a jump to the true branch, implicitly
deleting the false branch as dead code. However, this trans-
formation is not actually applied yet, since further iteration
might invalidate the inputs to the flow function. Instead, the
transformation is only simulated, producing the information
that x holds the value 10 at the end of the while loop. This
matches the optimistic assumption made when entering the
loop, and therefore a fixed point is reached. The most re-
cently selected transformations can now be applied, which
results in the following optimized code:

x := 10;

while (...) {

DoSomething();

}

y := 10;

The conditional constant propagation algorithms of Weg-
man and Zadeck [28, 29] would produce the same optimized
code as above. However, their algorithm manually simulates
the effects of an optimization during analysis, whereas our
framework can do this work automatically.

Now consider what happens when the integrated analysis
is applied to a very similar program:
2Unreachable code elimination can either be built into the framework,

as in Vortex, or done by a modular pass composed with all other
analyses, as in Whirlwind. In this section, we assume the framework

provides unreachable code elimination because it makes the examples
easier to follow.
3For clarity, we use structured constructs such as if and while instead
of gotos. However, the underlying flow functions are still evaluated

over the nodes of the CFG.



x := 10;

while (...) {

if (x == 10) {

DoSomething();

x := x - 1;

} else {

DoSomethingElse();

x := x + 1;

}

}

y := x;

Again, as it enters the while loop, the analysis makes
the optimistic assumption that x contains the constant 10.
It also simulates the replacement of the if statement with
its true sub-statement. However, because of the decrement
of x, the analysis now associates x with 9 at the end of
the loop. When the join operations are applied at the loop
head to determine whether or not a fixed point has been
reached, the framework discovers that its initial assumption
was unsound, and it is forced to re-analyze the loop with
the more conservative assumption that x is > (10 t 9 = >).
The second time through the loop, the if statement does
not choose to do a transformation because x is not constant,
and thus in the end no optimizations are performed.

2.2 Combining Multiple Integrated Analyses and
Transformations

The next example illustrates how our approach allows
multiple modular analyses to communicate through graph
replacements when they are automatically combined into a
super-analysis. As a result of the communication through
graph replacements, the composed super-analysis is able to
exploit mutually beneficial interactions even though the in-
dividual analyses were written separately. We first define
two more optimizations, class analysis and inlining. For
class analysis (which maps each variable to the set of classes
of which values in the variable might be instances), we pro-
vide flow functions for new statements, message send state-
ments (virtual function calls), and instance-of tests. These
flow functions use two helper functions: subclasses, which
returns the subclasses of a given class, and method lookup,
which returns the function that results from doing a method
lookup on a given class and a message id.

Fclass−analysis

�
x := new C � σ=PROPAGATE (σ[x 7→ {C}])

Fclass−analysis

�
x := send y.ID(z1, . . . , zn) � σ =

let methods = �
c∈σ[y] method lookup(c, ID) in

if methods = {F} then

REPLACE (
�
x := F(y, z1, . . . , zn) � )

else

PROPAGATE (σ[x 7→ >])

Fclass−analysis

�
x := y instanceof C � σ =

if σ[y] ⊆ subclasses(C) then

REPLACE (
�
x := true � )

else if σ[y] ∩ subclasses(C) = ∅ then

REPLACE (
�
x := false � )

else

PROPAGATE (σ[x 7→ {Bool}])

The key flow function for the inlining optimization phase
is shown below, where should inline is an inlining heuristic

that determines if a particular function should be inlined,
and subst formals is used to substitute the formals and
the result in the body of the inlined function:4

Finlining

�
x := F(y1, . . . , yn) � σ =

if should inline(F ) then

let G = body(F ) in

let G′ = subst formals(G, x, y1, . . . , yn) in

REPLACE (
�
G′ � )

else

PROPAGATE (σ)

Now imagine that our framework is used to automatically
combine these three modularly defined analyses (constant
propagation, class analysis, and inlining) into a single super-
analysis. The information propagated by the super-analysis
is the tuple of the information propagated by the individual
analyses, and the flow function for a particular statement is
a combination of the flow functions of the individual analy-
ses. The combined flow function performs each of the indi-
vidual flow functions, accumulating the individual analysis
information to propagate. If any individual analysis selects
a transformation action, then that transformation action is
selected by the composed flow function, causing the whole
super-analysis to be applied to the replacement graph, in lieu
of the original statement. On the other hand, if all individual
analyses select propagation actions, then the overall action
of the composed flow function is propagation of the tuple
of the individual analysis informations. The separate indi-
vidual analyses interact through transformations: when one
analysis selects a transformation action, all the other analy-
ses are applied to the replacement graph, thereby benefitting
from the simplifications of the program representation even
if they cannot independently justify the optimization.

Consider applying this super-analysis to the following sam-
ple program, where C and D are unrelated subclasses of the
A class:

decl x:A;

x := new C;

while (...) {

S1: decl b: Bool;

b := x instanceof C;

S2: if (b) {

x := send x.foo();

} else {

x := new D;

}

S3: }

class A {

method foo():A { return new A; }

};

class C extends A {

method foo():A { return self; }

};

class D extends A {

};

The composed analysis function of the first assignment
statement selects a propagation action, as all the individ-
ual analysis functions select propagation actions. On the
first pass through the while loop, optimistic iterative anal-
ysis will compute at label S1 the 3-tuple of information
4Note that the inlining optimization is a pure transformation, and all

of its flow functions ignore the input dataflow value.



([x 7→ >], [x 7→ {C}],>).5 The composed analysis of the
instanceof statement will select the transformation action
replacing the computation with b := true, since class anal-
ysis elects to fold the instanceof test. However, the control
flow graph is not modified, since the information on entry to
the flow function is only tentative and may be invalidated
by later iterative approximation. Instead, the replacement
graph is analyzed recursively, yielding a combined propaga-
tion action that yields the tuple ([x 7→ >, b 7→ true], [x 7→
{C}, b 7→ {Bool}],>) at label S2. Analysis proceeds to the
if statement, where the constant propagation flow func-
tion selects a transformation action replacing the conditional
branch with a direct jump to the true sub-statement (im-
plicitly deleting the false sub-statement as dead code). As
a result, analysis now proceeds to the true sub-statement,
where the flow function for class analysis selects a transfor-
mation action replacing the message send with a direct pro-
cedure call to the C::foo procedure. This replacement sub-
statement is analyzed, at which time the call is replaced with
inlined code, yielding the statement x := x. Recursive anal-
ysis of this statement doesn’t spawn any additional transfor-
mation actions, finally propagating dataflow information to
label S3 of ([x 7→ >, b 7→ true], [x 7→ {C}, b 7→ {Bool}],>).
After dropping the bindings for out of scope variables (b), it-
erative analysis detects that a fixed point has been reached,
at which point the most recently selected transformations
are applied, yielding the following optimized code (a later
dead-assignment elimination phase could clean up this code
further):

decl x:A;

x := new C;

while (...) {

S1: decl b: Bool;

b := true;

S2: x := x;

S3: }

This optimized version is sound; it has the same behavior
as the original code. But no single optimization phase alone,
nor arbitrarily iterated sequences of separate optimization
phases, could have produced this code. Class analysis is the
only optimization that can fold the instanceof test, but it
requires constant propagation to fold the if statement and
thereby delete the other assignment to x, and it requires
inlining to expose the implementation of the foo method to
the (intraprocedural) class analysis. If the analyses were run
separately, no optimizations at all could be performed.

2.3 Uses in Practice
Our framework has been implemented in the Vortex com-

piler, which uses a standard CFG representation, and more
recently in the Whirlwind compiler, which uses a dataflow
graph (DFG) representation augmented with control-edges.
Both implementations support forward and backward data-
flow analyses, although the analyses that are composed into
a super-analysis must all have the same directionality. The
Vortex framework has been used to define a number of inter-
esting analyses and optimizations, including constant propa-
gation and folding, symbolic assertion propagation and fold-
ing, copy propagation, common sub-expression elimination
5Recall that inlining is a pure transformation, and does not propagate

any meaningful dataflow information. We therefore arbitrarily choose
> as the third element of the tuple to denote the inlining dataflow

information.

(CSE), must-point-to analysis, redundant load and store
elimination, dead assignment elimination, dead store elim-
ination, class analysis, splitting [7], and inlining. However,
some optimizations over the CFG, such as loop-invariant
code motion and instruction scheduling, do not currently
benefit from the special features of our framework because
their optimizations cannot be expressed as local graph trans-
formations. We are currently looking at ways of relaxing
the locality of graph replacements, as is explained in sec-
tion 8. Nevertheless, even with the local graph replace-
ment restriction, compiler writers are no worse off using
our framework for implementing such analyses than they
would be using any other extant dataflow analysis frame-
work: our framework supports writing a pure analysis pass
(i.e., one that makes no transformations) that can be fol-
lowed by a separate transformation pass, and in fact this is
how loop-invariant code motion has been implemented using
our framework in the Vortex compiler.

3. PRELIMINARIES
Now that we have outlined the key ideas of our approach,

we proceed to the formalization. In this section we define
basic notation and the abstract intermediate representation
that we assume throughout the rest of the paper. Section 4
reviews the well-know definition of a single analysis followed
by transformations, and serves as a foundation for the for-
malization of the novel parts of our framework in sections 5
and 6.

3.1 Notation
If A is a set, then A∗ is the set �

i≥0 Ai, where Ak =

{(a1, . . . , ak)|ai ∈ A}. We denote the ith projection of a

tuple x = (x1, . . . , xk) by x[i] � xi. Given a function f :

A → B, we extend f to work over tuples by defining
−→
f :

A∗ → B∗ as
−→
f ((x1, . . . , xk)) � (f(x1), . . . , f(xk)). We also

extend f to work over maps by defining �f : (O → A) →

(O → B) as �f(m) � λo.f(m(o)).
We extend a binary relation R ⊆ 2D×D over D to tuples

by defining the
−→
R relation by:

−→
R ((x1, . . . , xk), (y1, . . . , yk))

iff R(x1, y1) ∧ . . . ∧ R(xk, yk). Finally, we extend a binary

relation R ⊆ 2D×D to maps by defining the �R relation as:

�R(m1, m2) iff for all elements o in the domain of both m1

and m2, it is the case that R(m1(o), m2(o)). To make the
equations clearer, we drop the tilde and arrow annotations
on binary relations when they are clear from context.

3.2 Intermediate Representation
We assume that programs are represented by directed

multigraphs with nodes representing computations that pro-
duce values on their output edges on the basis of the values
consumed from their input edges. The exact type of nodes,
edges, values, and the relative sparseness/denseness of a par-
ticular program representation are orthogonal to the main
ideas of this paper. Therefore we suppress them by using an
abstract intermediate representation (IR) in which compu-
tations are represented by graphs. For example, if the com-
piler uses a CFG representation, then nodes are program
statements, and edges are control-flow edges. If instead the
compiler uses a DFG representation, then nodes are primi-
tive computations, and edges are dataflow edges.

A graph in our IR is a tuple g = (N, E, In, Out, InEdges,

OutEdges) where N ⊆ Nodes is a set of nodes (with Nodes



being a predefined infinite set), E ⊆ Edges is a set of edges
(with Edges being a predefined infinite set), In : N → E∗

specifies the input edges for a node, Out : N → E∗ spec-
ifies the output edges for a node, InEdges ∈ E∗ specifies
the input edges of the graph, and OutEdges ∈ E∗ specifies
the output edges of the graph. Each node n in N repre-
sents a primitive computation mapping input edges In(n)
to output edges Out(n), while a graph analogously repre-
sents a computation from input edges InEdges to output
edges OutEdges. When necessary, we use subscripts to ex-
tract the components of a graph. For example, if g is a
graph, then its nodes are Ng, its edges are Eg, and so on.

Note that our definition of the intermediate representation
uses ordered tuples to represent input and output edges,
because unordered sets would not be sufficient to capture
some useful representations. For example, the two control-
flow output edges of a branch node in a CFG are ordered:
one leads to the true computation, and the other leads to
the false computation. Similarly, the two dataflow inputs
to the “minus” node in a DFG are ordered.

4. A SINGLE ANALYSIS FOLLOWED BY
TRANSFORMATIONS

This section reviews the well-known lattice-theoretic for-
mulation of dataflow analysis frameworks using abstract in-
terpretation [10]. It shows how we use this formulation to
define analyses and transformations over the abstract IR de-
fined in the previous section, and provides the foundation for
describing our approach in sections 5 and 6.

4.1 Definition
An analysis is a tuple A = (D,t,u,v,>,⊥, α, F ) where

(D,t,u,v,>,⊥) is a complete lattice, α : Dc → D is the
abstraction function, and F : Node × D∗ → D∗ is the flow
function for nodes. The elements of D, the domain of the
analysis, are dataflow facts about edges in the IR (which
would correspond to program points in a CFG represen-
tation). The flow function F provides the interpretation of
nodes: given a node and a tuple of input dataflow values, one
per incoming edge to the node, F produces a tuple of out-
put dataflow values, one per outgoing edge from the node.
Dc is the domain of a distinguished analysis, the concrete
analysis C = (Dc,tc,uc,vc,>c,⊥c, id, Fc), which specifies
the concrete semantics of the program. For example, one
can define C over a CFG representation using a collecting
semantics, with the elements of Dc being sets of concrete
stores. Alternatively, for a DFG representation that com-
putes over integer values, the elements of Dc could be sets
of integers. C is fixed throughout the paper, and we assume
that Fc and α are continuous.

The solution of an analysis A over a domain D is provided
by the function SA : Graph × D∗ → (Edges → D). Given
a graph g and a tuple of abstract values for the input edges
of g, SA returns the final abstract value for each edge in g.
This is done by initializing all edges in g to bottom, and
then applying the flow functions of A until a fixed point
is reached. A detailed definition of SA can be found in
appendix A.6

An Analysis followed by Transformations, or an AT-

6Although the concrete solution function SC is usually not com-

putable, the mathematical definition of SC is still perfectly valid.
Our framework does not evaluate SC ; we only use SC to formalize the

soundness of analyses.

analysis for short, is a pair (A, R) where A = (D,t,u,v,

>,⊥, α, F ) is an analysis, and R : Node×D∗ → Graph∪{ε}
is a local replacement function. The local replacement func-
tion R specifies how a node should be transformed after the
analysis has been solved. Given a node n and a tuple of
elements of D representing the final dataflow analysis solu-
tion for the input edges of n, R either returns a graph with
which to replace n, or ε to indicate that no transformation
should be applied to this node. To be syntactically valid, a
replacement graph must have the same number of input and
output edges as the node it replaces, and its nodes and edges
must be unique (so that splicing a replacement graph into
the enclosing graph does not cause conflicts). We denote by
RFD the set of all replacement functions over the domain
D, or in other words RFD = Node × D∗ → Graph ∪ {ε}.

After analysis completes, the intermediate representation
is transformed in a separate pass by a transformation func-
tion T : RFD × Graph × (Edges → D) → Graph. Given a
replacement function R, a graph g, and the final dataflow
analysis solution, T replaces each node in g with the graph
returned by R for that node, thus producing a new graph.
A detailed definition of T can be found in appendix B. The
effect of an analysis followed by transformations is therefore
summarized as follows: given an analysis A over domain D,
a replacement function R, an initial graph g, and abstract
values ι ∈ D∗ for the input edges of g, the final graph that
(A, R) produces is T (R, g, SA(g, ι)).

4.2 Soundness
We want the graph produced by (A, R) to have the same

concrete semantics as the original graph. This if formalized
in the following definition of soundness of (A, R):

Def 1. Let (A, R) be an AT-analysis with A = (Da,t,u,v,

>,⊥, α, Fa). Let (g, ιc, ιa) ∈ Graph × D∗
c × D∗

a such that
−→α (ιc) v ιa and let r = T (R, g, SA(g, ιa)). We say that
(A, R) is sound iff:

−−−−−→
SC(r, ιc)(OutEdgesr) =

−−−−−→
SC(g, ιc)(OutEdgesg)

We define here two conditions that together are sufficient
to show that an AT-analysis is sound. First, the analysis A
in (A, R) must be locally sound according to the following
definition:

Def 2. We say that an analysis A = (Da,t,u,v,>,⊥,

α, Fa) is locally sound iff it satisfies the following local sound-
ness property:

∀(n, cs, ds) ∈ Node × D
∗
c × D

∗
a.

−→α (cs) v ds ⇒ −→α (Fc(n, cs)) v Fa(n, ds)
(1)

If A is locally sound, then it is possible to show that A
is sound, meaning that its solution correctly approximates
the solution of the concrete analysis C. This is formalized
by the following definition and theorem, the latter of which
is proved in appendix D.

Def 3. We say that an analysis A = (Da,t,u,v,>,⊥,

α, Fa) is sound iff:

∀(g, ιc, ιa) ∈ Graph × D
∗
c × D

∗
a.

−→α (ιc) v ιa ⇒ �α(SC(g, ιc)) v SA(g, ιa)

Theorem 1. If an analysis A is locally sound then A is
sound.



Property (1) is sufficient for proving Theorem 1. Moreover
it is weaker than the local consistency property of Cousot
and Cousot (property 6.5 in [10]), which is:

∀(n, cs, ds) ∈ Node × D
∗
c × D

∗
a.

−→α (Fc(n, cs)) v Fa(n,−→α (cs))

Indeed, the above property and the monotonicity of Fa im-
ply property (1). We use the weaker condition (1) because
in this way our formalization of soundness does not depend
on the monotonicity of Fa. As shown in sections 5 and 6, the
flow function Fa is usually generated by our framework and
reasoning about its monotonicity requires additional effort
on the part of the analysis writer. By decoupling our sound-
ness result from the monotonicity of Fa, we can guarantee
soundness even if Fa has not been shown to be monotonic.7

Second, R must produce graph replacements that are
semantics-preserving. This is formalized by requiring that
the replacement function R be locally sound according to
the following definition:

Def 4. We say that a replacement function R in (A, R)
is locally sound iff it satisfies the following local soundness
property, where A = (Da,t,u,v,>,⊥, α, Fa):

∀(n, ds, g) ∈ Node × D
∗
a × Graph.

R(n, ds) = g ⇒

[∀cs ∈ D
∗
c .−→α (cs) v ds ⇒

Fc(n, cs) =
−−−−−→
SC(g, cs)(OutEdgesg)]

(2)

Property (2) requires that if R decides to replace a node n

with a graph g on the basis of some analysis result ds, then
for all possible input tuples of concrete values consistent
with ds, it must be the case that n and g compute exactly
the same output tuple of concrete values. It is not required
that n and g produce the same output for all possible inputs,
just those consistent with ds. For example, if A determines
that some input edge e to n will always have a value between
1 and 100 then n and g are not required to produce the same
output for any input in which e is assigned a value outside
of this range.

We say that (A, R) is locally sound iff both A and R are
locally sound. If (A, R) is locally sound, then it is possible to
show that (A, R) is sound according to definition 1, which
means that the final graph produced by (A, R) has the same
concrete behavior as the original graph. This is stated in the
following theorem, which is proved in appendix D.

Theorem 2. If an AT-analysis (A, R) is locally sound, then
(A, R) is sound.

4.3 Termination
If the lattice has finite height, then the termination of

an analysis A = (D,t,u,v,>,⊥, α, F ) is guaranteed from
within SA, even if F is not monotonic: as iteration proceeds,
SA forces the dataflow values to monotonically increase by
joining the next solution with the current solution at each
step. If the lattice has infinite height, then the flow function
for loop header nodes can include widening operators [10] to
guarantee termination.

We chose to enforce termination from within SA, instead
of requiring F to be monotonic, for the same reason we chose

7Termination in the face of a non-monotonic flow function is discussed

in section 4.3.

the weaker soundness condition (1): flow functions are gen-
erated by our framework, and proving that they are mono-
tonic requires additional effort on the part of the analysis
writer. By having termination and soundness be decoupled
from the monotonicity of F , we allow analysis designers the
option of not proving that F is monotonic. The drawback of
not having F be monotonic is that the fixed point computed
by SA is not necessarily a least fixed point anymore. As a
result, the solution returned by SA is not guaranteed to be
the most precise one.

5. INTEGRATING ANALYSIS AND
TRANSFORMATION

Now that we have defined a single analysis followed by
some transformations, we proceed to formalizing how our
framework integrates an analysis with its transformations.

5.1 Definition
An Integrated Analysis is a tuple IA = (D,t,u,v,

>,⊥, α, FR) where (D,t,u,v,>,⊥) is a complete lattice,
α : Dc → D is the abstraction function, and FR : Node ×
D∗ → D∗∪Graph is a flow-replacement function. The flow-
replacement function FR takes a node and a tuple of input
abstract values, one per incoming edge to the node, and re-
turns either a tuple of output abstract values, one per out-
going edge from the node, or a graph with which to replace
the node.

An integrated analysis is an analysis which has been com-
bined with its transformations. The flow replacement func-
tion can now return graph transformations that are taken
into account during the fixed point computation, and used
after the fixed point has been reached to make permanent
transformations to the graph. The flow functions defined
in section 2 were in fact flow-replacement functions. The
PROPAGATE datatype constructor corresponds to FR

returning an element of D∗, whereas the REPLACE con-
structor corresponds to FR returning an element of Graph.

The meaning of an integrated analysis is defined in terms
of an associated AT-analysis, for which the behavior has
already been defined in section 4.1. Given an integrated
analysis IA = (D,t,u,v,>,⊥, α, FR), we define the asso-
ciated AT-analysis ATIA as (A, R), with A = (D,t,u,v,

>,⊥, α, F ), where F and R are derived from FR as follows:

F (n, ds) =

�
FR(n, ds) if FR(n, ds) ∈ D∗

SolveSubGraphF (FR(n, ds), ds) otherwise

SolveSubGraphF (g, ds) =
−−−−−−→
SA(g, ds)(OutEdgesg)

R(n, ds) =

�
ε if FR(n, ds) ∈ D∗

SolveSubGraphR(FR(n, ds), ds) otherwise

SolveSubGraphR(g, ds) = T (R, g, SA(g, ds))

The definition of F above shows how transformations are
taken into account while the analysis is running. If FR

returns a tuple of dataflow values, then that tuple is imme-
diately returned. If, on the other hand, FR chooses to do
a transformation, the replacement graph is recursively ana-
lyzed and the dataflow values computed for the output edges
of the graph are returned. The next time the same node gets
analyzed, FR can choose another graph transformation, or
possibly no transformation at all. Transformations are only



committed after the analysis has reached a final sound so-
lution, as specified by the definition of R. If at the final
dataflow solution, FR returns a tuple of dataflow values,
then R returns ε, indicating that the analysis has chosen not
to do a transformation. If, on the other hand, FR chooses a
replacement graph, then R returns this replacement graph
after transformations have been applied to it recursively. Al-
though the definition of R above reanalyzes recursive graph
replacements, an efficient implementation, such as the ones
in Vortex and Whirlwind, can cache the solution of the last
replacement graph computed by FR for each node, so that
the transformation pass need not recompute them.

5.2 Soundness
An integrated analysis IA is sound if the associated AT-

analysis ATIA is sound. We define here conditions that
are sufficient to show that ATIA is sound, and therefore
that IA is sound. Intuitively, we want the flow-replacement
function FR to satisfy condition (1) when it returns a tuple
of dataflow values, and condition (2) when it returns a re-
placement graph. Formally, this amounts to having IA be
locally sound according to the following definition:

Def 5. We say that an integrated analysis IA = (D,t,u,

v,>,⊥, α, FR) is locally sound iff it satisfies the following
two local soundness properties:

∀(n, cs, ds) ∈ Node × D
∗
c × D

∗
.

FR(n, ds) ∈ D
∗ ⇒

[−→α (cs) v ds ⇒ −→α (Fc(n, cs)) v FR(n, ds)]

(3)

∀(n, ds, g) ∈ Node × D
∗ × Graph.

FR(n, ds) = g ⇒

[∀cs ∈ D
∗
c .−→α (cs) v ds ⇒

Fc(n, cs) =
−−−−−→
SC(g, cs)(OutEdgesg)]

(4)

Note that the first property is the same as (1) with Fa re-
placed by FR, except for the additional antecedent
FR(n, ds) ∈ D∗, and the second property is the same as (2),
with R replaced by FR.

Theorem 3. If an integrated analysis IA is locally sound,
then the associated AT-analysis ATIA is sound, and there-
fore IA is sound.

Proving Theorem 3 involves showing that if FR satisfies
properties (3) and (4), then F and R as defined in section 5.1
satisfy properties (1) and (2) respectively. A proof is given
in appendix D.

5.3 Termination
As in the case of an AT-analysis, the function SA forces

the solution to monotonically increase as iteration proceeds,
even if the flow function F is not monotonic. If the designer
of the analysis puts in the effort to prove that F is mono-
tonic, then SA computes the least fixed point. Otherwise,
the result computed by SA is not necessarily a least fixed
point, but it is nevertheless sound as long as properties (3)
and (4) hold.

However, having the solution monotonically increase is no
longer sufficient to ensure termination: it is now possible for
the flow functions to choose graph replacements that cause
infinite recursion of nested graph analysis. For example, an

inlining optimization could choose to inline a recursive func-
tion indefinitely. To ensure termination, we require that the
user’s graph replacements do not trigger such endless recur-
sive transformations. Graph replacements either obviously
simplify the program (such as deleting a node or replacing
a complex node with several simpler ones), and thus cannot
cause unbounded recursive graph replacements, or there are
standard ways of avoiding endless recursive graph transfor-
mations (for instance, by marking selected nodes in the re-
placement graph as non-replaceable). Our framework does
not enforce an arbitrary fixed bound on recursive graph re-
placements. Instead, we feel that individual dataflow analy-
ses will have their own most appropriate solution, which can
be explicitly implemented in the flow-replacement function.
This non-termination issue with our framework is already
present in any system that iteratively applies analyses and
transformations. Such systems have either imposed some
fixed bound on the number of iterations, or, as we do, re-
quire the analyses to avoid endless transformations.

6. COMBINING MULTIPLE ANALYSES
In this section, we define how our framework automati-

cally combines several modular analyses, while still allowing
mutually beneficial interactions.

6.1 Definition
The Composition of k Integrated Analyses, or a Composed

Analysis for short, is a tuple CA = (IA1, IA2, . . . , IAk),
where each IAi is an integrated analysis (Di,ti,ui,vi,

>i,⊥i, αi, FRi).
Here again, we define the meaning of a composed analysis

in terms of an associated AT-analysis. Given a composed
analysis CA = (IA1, IA2, . . . , IAk), we define the associ-
ated AT-analysis ATCA as (A, R), where A = (D,t,u,v,

>,⊥, α, F ). We first define the lattice (D,t,u,v,>,⊥) of
the composed analysis, then we define the composed abstrac-
tion function α, the composed flow function F and finally
the composed replacement function R.

Composed lattice. The lattice (D,t,u,v,>,⊥) of the
composed analysis is the product of the individual lattices,
namely:

• D � D1 × D2 × . . . × Dk

• t is defined by (a1, . . . , ak) t (b1, . . . , bk) � (a1 t1

b1, . . . , ak tk bk)

• u is defined similarly to t

• v is defined by (a1, . . . , ak) v (b1, . . . , bk) � a1 v1

b1 ∧ . . . ∧ ak vk bk

• > � (>1,>2, . . . ,>k) and ⊥ � (⊥1,⊥2, . . . ,⊥k)

Composed abstraction function. The abstraction func-
tion α : Dc → D is defined by α(c) � (α1(c), . . . , αk(c)).

Composed flow function. Before defining F , we must
first introduce two helper functions, c2s and s2c. The first
function, c2s (which stands for “composed to single”), is
used to extract the dataflow values of an individual analysis
from the dataflow values of the composed analysis. Given an
integer i, and an n-tuple of k-tuples, c2s returns an n-tuple
whose elements are the ith entries of each k-tuple. Formally:

c2s(i, (x1, . . . , xn)) � (x1[i], . . . , xn[i])

For example, if ds ∈ D∗ is a tuple of input values to a node
in the composed analysis, then c2s(i, ds) is the tuple of input
values to that node for the ith component analysis.



The second function, s2c (which stands for “single to com-
posed”) has the exact opposite role as c2s: it combines the
dataflow values of individual analyses to form the dataflow
values of the composed analysis. Formally, it is defined by

s2c(x1, . . . , xk) � ((x1[1], . . . , xk[1]), . . . , (x1[n], . . . , xk[n]))

where each xi is an n-tuple. For example, if x1, . . . , xk are
n-tuples, each one being the result of a single analysis for the
n output edges of a given node, then s2c(x1, . . . , xk) is the
output tuple of the composed analysis for that node. Also,
note that c2s(i, s2c(x1, . . . , xk)) = xi.

We are now ready to give the definition of F :

F (n, ds) = s2c(res1, . . . , resk)

where for each i ∈ [1..k]:

resi = lresi uiui
g∈gsi

c2s(i, SolveSubGraphF (g, ds))

lresi =

�
fresi if fresi ∈ D∗

i

c2s(i, SolveSubGraphF (fresi, ds)) otherwise

fresi = FRi(n, c2s(i, ds))

gsi = Graph ∩ �
j∈[1..k]∧j 6=i

{fresj}

and

SolveSubGraphF (g, ds) =
−−−−−−→
SA(g, ds)(OutEdgesg)

The above definition looks daunting but it is in fact quite
simple. To compute the result resi of the ith analysis, the
composed flow function first determines what the ith analy-
sis would do in isolation by evaluating FRi and storing the
result in fresi. The next step is to determine the dataflow
value lresi that results from the selected action. lresi is ei-
ther fresi if fresi is a tuple of dataflow values, or the result
of a recursive analysis if fresi is a replacement graph. Fi-
nally, the expression for resi takes into account not only the
action of the ith analysis, through the lresi term, but also
the actions of other analyses, through the second term. This
second term of resi computes the result of the ith analysis
on all graph replacements (gsi) selected by other analyses.
Because graph replacements are required to be sound with
respect to the concrete semantics, they are sound to apply
for any analysis, not just the one that selected them. This
means that the result produced by the ith analysis on any
graph replacement is sound given the current dataflow ap-
proximation. Doing a meet of these recursive results, each of
which is sound, provides the most optimistic inference that
can be soundly drawn.

This last term in the definition of resi is important for
two reasons. First, it allows analyses to communicate im-
plicitly through graph replacements. If one analysis makes
a transformation, then the chosen graph replacement will
immediately be seen by other analyses. Second, it ensures
the precision result which we cover in section 6.4. Because
all potential graph replacements are recursively analyzed,
and the returned value is the most optimistic inference that
can be drawn from these recursive results, we are guaran-
teed to get results which are at least as good as any inter-
leaving of the individual analyses. Although analyzing all

potential graph replacements is theoretically required to en-
sure this precision result, an implementation could choose
to recursively analyze only a subset of the potential graph
replacements. The Vortex and Whirlwind implementations
in fact only analyze those graph replacements selected by
the PICK function defined below.

Composed replacement function. The definition of
R relies on a cost function PICK : 2Graph → Graph ∪ {ε}
to select which graph replacement to apply if more than one
analysis selects a transformation. Although the composed
flow function recursively analyses all graph replacements,
only one of these graphs can actually be applied once the
analysis has reached fixed point. The PICK function is
used to make this decision: given a set of graphs, PICK

selects at most one of them to apply, which means that if
PICK(gs) = g, then either g = ε, or g ∈ gs. R can now be
defined as follows:

R(n, ds) =

�
ε if PICK(gs) = ε

SolveSubGraphR(PICK(gs), ds) otherwise

where gs = Graph ∩ �
j∈[1..k]{FRj(n, c2s(j, ds))}

SolveSubGraphR(g, ds) = T (R, g, SA(g, ds))

This definition of R is very similar to the one for an inte-
grated analysis from section 5.1, except that here the PICK

function selects which graph to apply from the set (gs) of all
potential replacement graphs. If PICK selects no transfor-
mation, then R does the same. If, however, PICK chooses a
replacement graph, then this replacement graph is returned
after transformations have been applied to it recursively.

6.2 Soundness
A composed analysis CA is sound if the associated AT-

analysis ATCA is sound. We say that a composed analy-
sis CA = (IA1, IA2, . . . , IAk) is locally sound if each in-
tegrated analysis IAi is locally sound (according to defini-
tion 5).

Theorem 4. If a composed analysis CA is locally sound,
then the associated AT-analysis ATCA is sound, and there-
fore CA is sound.

Theorem 4 says that if each integrated analysis has been
shown to be sound (by showing that each one is locally
sound), then the composed analysis is sound. Proving The-
orem 4 involves showing that if each FRi satisfies properties
(3) and (4), then F and R as defined in section 6.1 satisfy
properties (1) and (2) respectively. A proof is given in ap-
pendix D.

6.3 Termination
Termination is handled in a similar way to the case of

integrated analyses from section 5.3. The only difference
is that the analysis designer must now show that the com-
posed analysis does not cause endless recursive graph re-
placements. Even if each integrated analysis by itself does
not cause infinite recursive analysis, the interaction between
two analyses can. For example, two analyses can oscillate
back and forth, the first one optimizing a statement that
the second one reverts back to the original form. However,
as long as the lattice has finite height, our framework does
guarantee that non-termination will never be caused by in-
finite traversal of the lattice.



6.4 Precision of Composed Analyses
The soundness result from section 6.2 guarantees that the

information computed by the composed analysis correctly
approximates the actual behavior of the program. It does
not however say anything about the precision of the com-
puted information. After all, if the composed flow function
always returned >, it would still be sound (and in fact mono-
tonic). In this section we show that in addition to being
sound, the composed analysis is at least as precise as any
iterated sequence of the individual analyses.

Consider running a set of analyses in sequence without re-
peating any analysis. This sequence generates for each edge
in the original graph one dataflow value per analysis.8 The
composition of these analyses also computes one dataflow
value per analysis per edge, except that the method for com-
puting the dataflow values is different. Our precision result
states that if the composed flow function is monotonic, then
for any edge, the dataflow values computed by the composed
analysis are at least as precise (in a lattice theoretic sense)
as the dataflow values computed by the analyses running in
sequence. This guarantees that the composition cannot do
worse than running the analyses in sequence. In practice,
however, the composition often does better, and an example
of this was shown in section 2.2. Once the precision result
for analyses without iteration is proved, it is easy to gen-
eralize it for arbitrarily iterated sequences of analyses. We
refer the reader to appendix C for a formal statement of the
precision Theorem, and to appendix D for a proof and its
extension to arbitrarily iterated sequences of analyses.

In order to guarantee the precision result, the analysis
writer must show that the composed flow function is mono-
tonic. Even if each integrated analysis in the composition is
monotonic in isolation, interaction through graph replace-
ments can lead to a non-monotonic composed flow func-
tion. In particular, the graph replacement that one analy-
sis chooses may produce non-monotonic results for another
analysis. One can prove that the composed flow function is
monotonic by establishing a partial order on all the possi-
ble replacement graphs for a given node, and showing that
smaller inputs to an integrated analysis produce smaller
sub-graphs, and that smaller sub-graphs lead to smaller
computed values when the combined analysis is recursively
solved. This is usually not difficult because for any one given
node, there are only a few types of replacement graphs. For
example, in the case of virtual function calls, there is only
one replacement graph (the one that changes the virtual call
to a static call), and in the case of assignment statements,
there are only a handful of replacement graphs (such as the
empty sub-graph, the sub-graph generated by constant fold-
ing, and the sub-graph generated by CSE).

7. EXPERIMENTAL RESULTS
In this section we provide experimental results showing

that our approach for communication between analyses is
useful in practice. We have collected performance numbers
for the Vortex compiler [13] using several Cecil [5] bench-
marks. The individual analyses under consideration are:

8Edges are never removed by the transformation function T . When

a node is replaced by an empty subgraph, the adjacent edges are
disconnected from the node, but remain in the graph. As a result

edges in the original graph are guaranteed to exist, even by the time
the last analysis runs, although they may be completely disconnected

by then.

benchmark monolithic comp- modular- modular-
(num lines9) posed iterated once

queens 1.00 1.02 1.25 13.14
(50) 1.00 1.17 6.17 0.84

life 1.00 1.00 1.09 7.39
(80) 1.00 1.17 5.72 0.83

msort 1.00 0.99 1.01 6.28
(110) 1.00 1.11 6.04 0.20

fft 1.00 1.00 0.98 3.00
(150) 1.00 1.00 6.06 0.71

richards 1.00 1.00 1.07 13.66
(400) 1.00 1.18 6.52 1.03

deltablue 1.00 1.03 0.94 12.89
(650) 1.00 1.20 6.54 0.66

instr-sched 1.00 1.00 1.01 3.78
(2,400) 1.00 1.18 5.80 1.02

typechecker 1.00 1.01 1.01 5.30
(20,000) 1.00 1.18 6.55 0.94

new-tc 1.00 1.05 1.03 4.57
(23,500) 1.00 1.17 6.09 1.16

compiler 1.00 1.02 1.00 4.05
(50,000) 1.00 1.15 7.46 1.22

Figure 1: Performance numbers for the Vortex compiler.
For each benchmark, the first row of numbers shows the
runtime of the generated code, and the second row shows
compile-time, all normalized to the monolithic configura-
tion.

class analysis [7], splitting [7], inlining, constant propagation
and folding, common sub-expression elimination, removal of
redundant loads and stores, and symbolic assertion propa-
gation.

We used four different configurations of the compiler:
• The monolithic configuration uses a manually writ-

ten monolithic analysis that incorporates all the op-
timizations of the individual analyses. This analysis
was written before our framework was implemented,
and it acts as the “gold standard” against which other
configurations are measured.

• The composed configuration automatically composes
the analyses using our framework.

• The modular-iterated configuration runs the analyses
in sequence, iterating until no more transformations
are performed.

• The modular-once configuration runs the analyses in
sequence once.

Figure 1 shows for each benchmark the runtime of the gen-
erated code (the first row of numbers for the benchmark),
and the runtime of the compiler (the second row of num-
bers for the benchmark), all normalized to the monolithic
configuration. Due to run-to-run variations, differences of a
few percent are not significant. Smaller numbers are better
since they indicate faster runtime.

The important facts to note are the following:

• The modular-once configuration generates code that
runs 3-13 times slower than the monolithic configu-

9The number of lines of code is approximate and does not include

11,000 lines of library code that gets compiled with the benchmarks.



ration. This indicates that the analyses exhibit non-
trivial mutually beneficial interactions in these bench-
marks. The key interaction here is between inlining
and class analysis. Merging these two analyses leads
to more precise class analysis information, and this is
crucial for optimizing a pure object-oriented language
like Cecil, since it allows inlining of message sends in
critical loops.

• The iterated configuration generates code that runs
nearly as fast as the monolithic version, but slows down
compile-time by at least a factor of 5.

• The composed configuration (which uses our frame-
work) generates code that runs as fast as the mono-
lithic version, while incurring a compile-time cost of
less than 20%. This shows that our technique for com-
munication through graph transformations can cap-
ture (with low compile-time overhead) the cases needed
in practice to exploit mutually beneficial interactions.

8. EXTENSIONS TO THE BASE FRAMEWORK
This section describes two extensions to the base frame-

work: snooping and tunneling values. Other extensions are
described in another technical report [6], including the in-
terprocedural aspect of our framework.

8.1 Snooping
In addition to supporting communication via graph trans-

formations, our framework also supports communication via
what we call snooping. Snooping allows the flow function of
one analysis to look at the dataflow values being produced
by other analyses running in parallel with the first. Snoop-
ing is used in our framework to allow analyses that make no
transformations (which we call pure analyses) to commu-
nicate information to other analyses. Pointer analysis, for
example, can be framed as a pure analysis, on which other
optimizations can snoop. Snooping does not however make
communication through graph replacements less useful: al-
though snooping is used to communicate from pure analy-
ses to other analyses, graph transformations are still used
to communicate in the other direction, from other analyses
to pure analyses. For instance, pointer analysis can produce
better results when it is composed with other analyses such
as constant propagation and inlining, because it will be ex-
posed to the simplifying graph transformations of the other
analyses.

Snooping violates the strict modularity of individual anal-
yses presented so far, because the snooping analysis is aware
of the possibility of being combined with other analyses,
and knows how to interpret the information they are com-
puting. However, the snooping analysis need not always be
combined with the analyses on which it snoops, because de-
fault implementations of any missing analyses that simply
set all snooped-on edges to > can be provided automatically
by the framework, causing the snooping analysis to behave
conservatively. The ability to reuse the snooping analysis in
other analysis combinations is not hindered.

8.2 Tunneling Values
In our current framework, the replacement graph for a

node can only read values from the input edges of the node.
As an additional feature, we could allow a replacement graph
to specify that the values for some of its input edges are read

from edges in the surrounding graph. These values would
“tunnel” from edges in the surrounding graph to the input
edges of the replacement graph. Tunneling values would
therefore allow replacement graphs to read values not only
from the input edges of the replaced node, but also from
arbitrary edges in the enclosing graph.

Tunneling values are a way of relaxing the locality restric-
tion of graph replacements. Although they do not provide
the full flexibility of replacing edges and nodes anywhere in
the surrounding graph, we believe they can make certain
code-motion optimizations easy to express. For example,
moving a statement in a program dependence graph [16] in-
volves changing its dependence region, which can be done
by changing the parent pointer of the statement node. This
might be achieved with tunneling values by replacing the
statement with a node that is connected (through a tunnel-
ing value connection) to the right dependence region.

9. RELATED WORK
A number of analysis frameworks have been developed for

making intra- and interprocedural analyses easier to write
and reason about, including Sharlit [26], SPARE [27],
FIAT [17], McCAT [19], System-Z [33], PAG [2], the k-tuple
dataflow analysis framework [22], and Dwyer and Clarke’s
system [15]. However, none of these systems address in-
tegrating transformations with analyses, nor automatically
combining analyses profitably.

Nelson and Oppen [23] describe how under certain condi-
tions satisfiability programs for several theories can be com-
bined into a satisfiability program for the combined theory.
Click and Cooper [9] define formally the circumstances in
which two dataflow analyses should be integrated to reach
better fixed points than repeated sequences of the two anal-
yses run separately. Cousot and Cousot [11] also point out
that such interactions can arise. However, in all these cases,
the composition needs to be done manually by defining spe-
cial flow functions over the combined dataflow information.

Whitfield and Soffa [31, 32] have developed a framework
for examining the interactions between different optimiza-
tions. By analyzing the pre- and post-conditions of opti-
mizations, their framework can determine if one optimiza-
tion helps or hinders another optimization. This informa-
tion can then be used to select an order in which to run the
optimizations. However, they do not provide a method for
exploiting mutually beneficial transformations: when cyclic
interactions are found between optimizations, a linear or-
der is still chosen, based on experimental results or on the
perceived importance of the optimizations.

Assmann [3, 4] has developed a technique for uniformly
specifying analyses and transformations using graph rewrite
rules which trigger based on pattern matching. An analy-
sis is defined by rewrite rules that add edges to the graph,
thus creating a relation which encodes the analysis results.
Transformations are then specified using rewrite rules that
trigger on patterns which can include edges added by the
analysis, thus allowing transformations based on the analy-
sis results. Assmann’s work, however, is not motivated by
the phase ordering problem. In fact, he argues that his sys-
tem works better when the analyses are written individually
and run in sequence, instead of having a large graph rewrite
system that composes multiple analyses, because it becomes
hard to reason about the termination of such large rewrite
systems. His formalization of graph rewrite systems is also



mainly concerned with termination, and he does not provide
soundness or precision results, as we do. Finally, Assmann’s
framework cannot handle arbitrary abstract interpretations,
whereas our framework can. On the other hand, his formu-
lation does allow a richer set of transformations, because
edges and nodes can be arbitrarily replaced. Clients of our
framework would simply sequence analyses and transforma-
tions if non-local graph replacements are needed, as in all
other frameworks, including Assmann’s.

There is also a large body of literature on advanced and
efficient program representations [16, 12, 8, 14, 21, 30, 1,
18, 20, 25]. The definition of our framework is independent
of the specific program representation used, and thus our
work should be applicable to a wide range of graph-based
intermediate representations. In fact, our current Whirl-
wind implementation works over both control flow graphs
and dataflow graphs.

10. CONCLUSION
We have presented a framework that allows modular anal-

yses to be automatically composed and achieve mutually
beneficial interactions through graph transformations. We
have shown that the composed analysis terminates, is sound
if the individual analyses are sound, and under a certain
monotonicity condition is guaranteed to produce no worse
results than running arbitrarily iterated sequences of the in-
dividual analyses (but often produces better results).

Our framework has been implemented and used success-
fully in the Vortex compiler, and more recently in the Whirl-
wind compiler. Our approach allowed us to regain modular-
ity while still maintaining the benefits of mutually benefi-
cial interactions. Manually simulating transformations while
the analysis is running is tedious and error-prone. Man-
ually composing analyses profitably is even harder. Using
our framework, we were able to design, debug, and reason
about analyses separately, while combining them profitably
with little additional effort than the design of the individual
parts.
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APPENDIX
A. DEFINITION OF THE SOLUTION FUNC-

TION S
Given an analysis A = (D,t,u,v,>,⊥, α, F ), a graph g

and a tuple of dataflow values ι ∈ D∗ for the input edges of
g, SA(g, ι) is defined as follows.

First, we define the interpretation function Int : Eg ×
(Eg → D) → D as in Cousot and Cousot [10]: given an

edge e and the current dataflow solution m, Int computes
the dataflow value for e at the next iteration. Int is defined
as:

Int(e, m) =

�
ι[k] if ∃k.e = InEdgesg[k]

F (n,−→m(Ing(n)))[k] where e = Outg(n)[k]

The global flow function FG : (Eg → D) → (Eg → D)
takes a map representing the current dataflow solution, and
computes the dataflow solution at the next iteration. FG is
defined as:

FG(m) = λe.Int(e,m)

The global ascending flow function FGA is the same as
FG, except that it joins the result of the next iteration with
the current solution before returning. This ensures that the
solution monotonically increases as iteration proceeds, even
if F is not monotonic. FGA is defined as:

FGA(m) = FG(m) �t m

Finally, the result of SA is a fixed point of FGA (the least
fixed point if F is monotonic):

SA(g, ι) =

∞�

n=0

FGA
n( �⊥)

where �⊥ � λe.⊥, FGA0 = λx.x and FGAk = FGA ◦
FGAk−1 for k > 0.

B. DEFINITION OF THE TRANSFORMATION
FUNCTION T

Given a replacement function R, a graph g and some anal-
ysis results m, T (R, g, m) is defined as follows. First, we
introduce the update function Update : Graph × Node ×
Graph → Graph, which is used to replace a single node in a
graph. Given an original graph old, a node n and a replace-
ment graph repl for this node, Update returns the result of
replacing the node n with repl in old. Update is defined as
follows:

Update(old, node, repl) = (Nnew , Enew, Innew, Outnew ,

InEdgesnew, OutEdgesnew)

where

Nnew = (Nold − {n}) ∪ Nrepl

Enew = (Eold ∪ Erepl)−

(Elmts(InEdgesrepl) ∪ Elmts(OutEdgesrepl))

with Elmts(tuple) = {d|∃i.tuple[i] = d}

InEdgesnew = InEdgesold

OutEdgesnew = OutEdgesold

Innew(s) =

�
Inold(s) if s ∈ Nold − {n}
−−−−→
ReplIn(Inrepl(s)) if s ∈ Nrepl

Outnew(s) =

�
Outold(s) if s ∈ Nold − {n}
−−−−−→
ReplOut(Outrepl(s)) if s ∈ Nrepl



and

ReplIn(e) =

�
Inold(n)[k] if ∃k.e = InEdgesrepl[k]

e otherwise

ReplOut(e) =

�
Outold(n)[k] if ∃k.e = OutEdgesrepl[k]

e otherwise

We now define Updateε, a simple extension to Update that
works correctly if the replacement graph is ε:

Updateε(g, n, r) =

�
g if r = ε

Update(g,n, r) otherwise

The graph returned by T (R, g,m) is then simply the it-
erated application of Updateε on all the nodes of g. Thus,
T (R, g, m) is defined by:

T (R, g, m) = IT (R,g,m, Ng)

where IT (which stands for IteratedT ) is:

IT (R, g,m, N) =

�
IT (R, gnew, m, N − {n}) if ∃n ∈ N

g if N = ∅

with

gnew = Updateε(g, n, R(n,−→m(Ing(n))))

C. FORMAL STATEMENT OF THE PRECISION
RESULT

In this section we give a formal description of the preci-
sion result. Suppose CA = (IA1, . . . , IAk) is a composed
analysis, with its associated AT-analysis ATCA = (A, R).
Suppose further that each integrated analysis IAi has an
associated AT-analysis AT i = (Ai, Ri). Finally, let us fix
the original input graph as gin, and the abstract combined
input as ι ∈ D, so that the input to analysis i is ιi = c2s(i, ι).

Our goal is to compare the dataflow values computed by
the composed analysis with the dataflow values computed
by the integrated analyses running in sequence. The infor-
mation computed by the composed analysis is simple: it is
SA(gin, ι).

Determining what dataflow values result from running the
integrated analyses one after another is more complicated.
We first start by defining for each analysis a transfer function
that takes an input graph, and returns the final graph the
analysis computes:

tranferAi
(g) = T (Ri, g, SAi

(g, ιi))

We now need to determine what intermediate graphs result
from running the analyses one after another. In particular,
let gi be the graph that the ith analysis runs on, as defined
below:

g1 = gin

gi = tranferAi
(gi−1) for 1 < i ≤ k

The solution to the ith analysis in the sequence is denoted
by soli, where:

soli = SAi
(gi, ιi)

Finally, we define the sequential solution SeqSol : Edgesg →
D, which returns the dataflow values computed for a given

edge assuming the analyses were run in sequence:

SeqSol(e) = (sol1(e), . . . , solk(e))

Theorem 5 (Precision). If the flow function F of the
associated analysis A is monotonic, then:

SA(gin, ι) v SeqSol

D. PROOFS

D.1 Proof of Theorem 1
Let A = (Da,ta,ua,va,>a,⊥a, α, Fa) be an analysis

that is locally sound. Let (g, ιc, ιa) ∈ Graph × D∗
c × D∗

a

such that −→α (ιc) va ιa. Also, suppose that FGc and FGa

are the global flow functions in the definitions (from ap-
pendix A) of SC and SA respectively, and similarly for the
global ascending flow functions FGAa and FGAc. We need
to show that:

�α � ∞�

n=0

FGA
n
c ( �⊥c) � va

∞�

n=0

FGA
n
a( �⊥a)

To do this, we show �α(FGAn
c ( �⊥c)) va FGAn

a( �⊥a), and
then the continuity of α implies the above equation. We
first establish a few facts.

• Since Fc is continuous, it is monotonic, and therefore

FGn
c ( �⊥c) is an ascending chain. Thus, we get:

∀n ≥ 0.FG
n
c ( �⊥c) = FGA

n
c ( �⊥c) (5)

• Let Mc = Edgesg → Dc, and Ma = Edgesg → Da.
Since A is locally sound, it satisfies property (1), which
combined with −→α (ιc) va ιa can be used to get:

∀(mc, ma) ∈ Mc × Ma.

�α(mc) va ma ⇒ �α(FGc(mc)) va FGa(ma)
(6)

• Since FGAa(m) = FGa(m) ta m, we have:

∀m ∈ Ma.FGa(m) va FGAa(m) (7)

Now we can show �α(FGAn
c ( �⊥c)) va FGAn

a( �⊥a). We do
this by induction on n.

Base case. When n = 0, FGA0
c( �⊥c) = �⊥c, and FGA0

a( �⊥a) =�⊥a. Since �α( �⊥c) = �⊥a, we then get �α(FGA0
c( �⊥c)) va

FGA0
a( �⊥a)

Inductive case. Assume �α(FGAk
c ( �⊥c)) va FGAk

a( �⊥a)

for some k ≥ 0. We need to show �α(FGAk+1
c ( �⊥c)) va

FGAk+1
a ( �⊥a). The proof is as follows:

�α(FGAk
c ( �⊥c)) va FGAk

a( �⊥a)

⇔ �α(FGk
c ( �⊥c)) va FGAk

a( �⊥a) using (5)

⇔ �α(FGc(FGk
c ( �⊥c))) va FGa(FGAk

a( �⊥a)) using (6)

⇔ �α(FGc(FGk
c ( �⊥c))) va FGAa(FGAk

a( �⊥a)) using (7)

⇔ �α(FGk+1
c ( �⊥c)) va FGAk+1

a ( �⊥a)

⇔ �α(FGAk+1
c ( �⊥c)) va FGAk+1

a ( �⊥a) using (5)�



D.2 Proof of Theorem 2
Let A = (Da,t,u,v,>,⊥, α, Fa) be an analysis and R

be a replacement function such that (A, R) is locally sound.
Let (g, ιc, ιa) ∈ Graph × D∗

c × D∗
a such that −→α (ιc) v ιa

and let r = T (R, g, SA(g, ιa)). Let ma = SA(g, ιa), and let
mc = SC(g, ιc). We need to show:

−−−−−→
SC(r, ιc)(OutEdgesr) = −→mc(OutEdgesg)

First, note that because Fc is continuous, it is monotonic,
and therefore the solution function SC computes the least
fixed point. Therefore, mc is the least fixed point of C over
g.

Let gn = R(n,−→ma(Ing(n))). Let Nrepl be the set of nodes

that are replaced with a graph: Nrepl � {n|gn ∈ Graph}.
For any node n ∈ Nrepl, let mn be the concrete solution

of the replacement graph for n, in other words ∀n ∈ Nrepl

we define mn � SC(gn,−→mc(Ing(n))). mn is the least fixed
point of C over gn.

We now merge the solution mc with the concrete solution
for each replaced node in g:

mr(e) =

�
mc(e) if e ∈ Eg

mn(e) if ∃n ∈ Nrepl.e ∈ Egn

Note that −→mc(OutEdgesg) = −→mr(OutEdgesr). All we
need to show now is that:

mr =
−−−−−→
SC(r, ιc)(OutEdgesr)

or in other words that mr is the least fixed point of C over
r.

From Theorem 1, we have:

�α(mc) v ma

⇒ ∀n ∈ Nrepl.
−→α (−→mc(Ing(n))) v −→ma(Ing(n))

⇒ ∀n ∈ Nrepl.Fc(n,−→mc(Ing(n))) = −→mn(OutEdgesgn
)

(since R is locally sound)

⇒ ∀n ∈ Nrepl.
−→mc(Outg(n)) = −→mn(OutEdgesgn

)

(since mc is a fixed point)

This means that for any node n ∈ Nrepl, mc and mn agree
at the output edges. In addition, by the definition of mn,
mc and mn agree at the input edges.

The dataflow equations for r are made up of equations
for nodes not in Nrepl and equations for nodes in gn, for all
n ∈ Nrepl. Because mc and mn agree at the boundaries,
merging mc and mn into mr produces a fixed point. Thus,
mr is a fixed point of C over r. precise

Suppose that mr is not the least fixed point. Let mleast

be the least fixed point of C over r that is not equal to mr.
Thus mleast < mr (where a < b � (a v b∧a 6= b)). Let e be
an edge such that mleast(e) < mr(e). There are two cases:

Case 1: ∃n ∈ Nrepl.e ∈ Egn
. Then by restricting the

map mr to only the edges of gn, we get a fixed point of C
over gn which is smaller than the mn fixed point. But this
contradicts the fact that mn is the least fixed point of C over
gn.

Case 2: e ∈ Eg. Let mg least be the map mleast re-
stricted to the edges of g. For any node n ∈ Nrepl, we

define ln � SC(gn,
−−−−−−→
mg least(Ing(n))). ln is the least fixed

point of C over gn where the inputs of gn have been fixed to
−−−−−−→
mg least(Ing(n)).

For any node n ∈ Nrepl, mleast must agree with ln on the
edges of gn since otherwise either mleast or ln would not be
a least fixed point. Restricting this to the output edges of
gn, and since mleast and mg least agree on the output edges

of gn, we get that
−→
ln (OutEdgesgn

) = −−−−−→mg least(Outg(n)).
Now, we know mleast < mr. By restricting mleast and mr

to the edges of g, and since mr and mc agree on the edges
of g, we get mg least < mc. Therefore:

mg least v mc

⇒ �α(mg least) v �α(mc) (α monotonic)

⇒ �α(mg least) v ma (since �α(mc) v ma)

⇒ ∀n ∈ Nrepl.
−→α (−−−−−→mg least(Ing(n))) v −→ma(Ing(n))

⇒ ∀n ∈ Nrepl.Fc(n,−−−−−→mg least(Ing(n))) =
−→
ln (OutEdgesgn

)

(since R is locally sound)

⇒ ∀n ∈ Nrepl.Fc(n,−−−−−→mg least(Ing(n))) = −−−−−→mg least(Outg(n))

(since
−→
ln (OutEdgesgn

) = −−−−−→mg least(Outg(n)))

This means that mg least is a fixed point of C over g. Since
mg least < mc, this contradicts the fact that mc is the least
fixed point of C over g.

�
D.3 Proof of Theorem 3

Proving Theorem 3 involves showing that if FR satisfies
properties (3) and (4), then F and R as defined in section 5.1
satisfy properties (1) and (2) respectively.10 The proof is by
induction on the graph nesting structure. We give an intu-
itive description of what this means, and then we proceed
with the proof.

Since we are not interested in proving soundness when the
algorithm does not terminate, we assume there is no infinite
nesting of graph replacements. This means that at some
point in the recursion, there is a graph whose nodes do not
request graph replacements. These nodes are the base case
of the induction, and correspond in the definitions of F and
R to the condition FR(n, ds) ∈ D∗. The inductive case is
the one where a node does choose a graph transformation.
The inductive hypothesis is that the property of interest
holds for nodes in the replacement graph, and our goal is to
prove that the property holds for the current node.

Proof that F satisfies property (1)
Base case. We are in the first case of the definition of

F , the one where FR(n, ds) ∈ D∗. We therefore have
F (n, ds) = FR(n, ds), and then property (3) immediately
implies (1).

Inductive case. We are in the second case of the definition
of F , the one where FR(n, ds) ∈ Graph. The induction hy-
pothesis is that property (1) holds for nodes in the recursive
graph g = FR(n, ds), and we want to prove that property
(1) holds at the current node n. To do this, we assume
−→α (cs) v ds, and show −→α (Fc(n, cs)) v F (n, ds).

Since −→α (cs) v ds, we have from property (4):

Fc(n, cs) =
−−−−−→
SC(g, cs)(OutEdgesg) (8)

By the induction hypothesis, F satisfies property (1) in g.
Since in addition −→α (cs) v ds, we can then use Theorem 1

10Throughout this subsection, F and R will always refer to the defi-

nitions from section 5.1.



(with ιc = cs and ιa = ds) to get:

�α(SC(g, cs)) v SA(g, ds)

⇔ −→α (
−−−−−→
SC(g, cs)(OutEdgesg)) v

−−−−−−→
SA(g, ds)(OutEdgesg)

⇔ −→α (
−−−−−→
SC(g, cs)(OutEdgesg)) v F (n, ds) (using def of F )

⇔ −→α (Fc(n, cs)) v F (n, ds) (using (8)) �
Proof that R satisfies property (2)

Base case. We are in the first case of the definition of
R, the one where FR(n, ds) ∈ D∗. We therefore have
R(n, ds) = ε, and then property (2) holds trivially because
the antecedent R(n, ds) = g is false.

Inductive case. We are in the second case of the definition
of R, the one where FR(n, ds) ∈ Graph. The induction
hypothesis is that property (2) holds in the recursive graph
g = FR(n, ds), and we want to prove that property (2) holds
at the current node n. To do this, we assume −→α (cs) v ds, we
let r = T (R, g, SA(g, ds), which implies that r = R(n, ds),

and we want to show that Fc(n, cs) =
−−−−−→
SC(r, cs)(OutEdgesr).

Note that the g in (2) has been replaced here with r since it is
r which equals R(n, ds). g in our case stands for FR(n, ds).

As in the previous proof, equation (8) holds because of
property (4) combined with −→α (cs) v ds.

By the inductive hypothesis, R satisfies property (2) for
the nodes in g. In addition, we have already shown that F

satisfies property (1), and we also know that −→α (cs) v ds.
We can therefore use Theorem 2 (with ιc = cs and ιa = ds)
to get:

−−−−−→
SC(r, cs)(OutEdgesr) =

−−−−−→
SC(g, cs)(OutEdgesg)

Combined with (8), this gives the required result:

Fc(n, cs) =
−−−−−→
SC(r, cs)(OutEdgesr) �

D.4 Proof of Theorem 4
Proving Theorem 4 involves showing that if each FRi sat-

isfies properties (3) and (4), then F and R as defined in
section 6.1 satisfy properties (1) and (2) respectively.11

Again, the proof is by induction on the graph nesting
structure. The base case is the one where all analyses choose
to propagate dataflow information, instead of doing a graph
transformation. The inductive case is the one where at least
one analysis selects a transformation. The inductive hy-
pothesis is that the property of interest holds in all selected
replacement graphs, and our goal is to show that the prop-
erty holds at the current node.

Proof that F satisfies property (1)
Base case. We are in the case where no graph replace-

ments are chosen, which means that ∀i.fresi ∈ D∗
i and

∀i.gsi = ∅. As a result, resi = FRi(n, c2s(i, ds)), and then
property (3) for each one of the FRi together imply property
(1).

Inductive case. This is the case where at least one anal-
ysis selects a transformation. The inductive hypothesis is
that F satisfies property (1) for nodes in any replacement
graph g = FRi(n, ds), and we need to show that F sat-
isfies property (1) at the current node n. To do this, we

11Throughout this subsection, F and R will always refer to the defi-

nitions from section 6.1.

assume −→α (cs) v ds, and show −→α (Fc(n, cs)) v F (n, ds), or
∀i.−→αi(Fc(n, cs)) vi resi. We also let gs be the set of all
possible graph replacements, in other words gs = Graph ∩

�
j∈[1..k]{FRj(n, c2s(j, ds))}.
The proof proceeds with 3 claims that we prove individ-

ually, and which are then used together to arrive at the
required result.

Claim :

∀g ∈ gs.Fc(n, cs) =
−−−−−→
SC(g, cs)(OutEdgesg) (9)

Proof : Let g ∈ gs be the graph returned by an analysis,
say the ith analysis, so that g = FRi(n, c2s(i, ds)).

Since −→α (cs) v ds, we have −→αi(cs) vi c2s(i, ds). Also,
since the integrated analyses are all sound, FRi satisfies
property (4), which can then be used to get:

Fc(n, cs) =
−−−−−→
SC(g, cs)(OutEdgesg) �

Claim :

∀i.∀g ∈ gs.
−→αi(Fc(n, cs)) vi c2s(i, SolveSubGraphF (g, ds))

(10)

Proof : Let g ∈ gs. By the induction hypothesis, F satis-
fies property (1) in g. Since −→α (cs) v ds, we can then use
Theorem 1 (with ιc = cs and ιa = ds) to get:

�α(SC(g, cs)) v SA(g, ds)

⇔ −→α (
−−−−−→
SC(g, cs)(OutEdgesg)) v

−−−−−−→
SA(g, ds)(OutEdgesg)

⇔ −→α (Fc(n, cs)) v
−−−−−−→
SA(g, ds)(OutEdgesg)

(using (9))

⇔ −→α (Fc(n, cs)) v SolveSubGraphF (g, ds)

(using def of F )

⇔ −→αi(Fc(n, cs)) vi c2s(i, SolveSubGraphF (g, ds))

(projecting onto ith analysis) �

Claim :

∀i.−→αi(Fc(n, cs)) vi lresi (11)

Proof : There are two cases in the definition of lresi, one
where fresi ∈ D∗

i , and one where fresi ∈ Graph. If fresi ∈
D∗

i , then lresi = FRi(n, c2s(i, ds)). Furthermore, we have
−→αi(cs) vi c2s(i, ds) because of −→α (cs) v ds and then prop-
erty (3) of FRi implies −→αi(Fc(n, cs)) vi lresi. If fresi ∈
Graph then lresi = c2s(i, SolveSubGraphf (fresi, ds)). Claim
(10) then implies −→αi(Fc(n, cs)) vi lresi.

�

Now we are ready to prove ∀i.−→αi(Fc(n, cs)) vi resi. For
the ith analysis, from property (10) and the fact that gsi ⊆
gs we have, for any candidate replacement graph g ∈ gsi:

−→αi(Fc(n, cs)) vi c2s(i, SolveSubGraphF (g, ds))

and from property (11), we have:

−→αi(Fc(n, cs)) vi lresi



Since x v a ∧ x v b implies x v a u b, we get:

−→αi(Fc(n, cs)) vi lresiuiui
g∈gsi

c2s(i, SolveSubGraphF (g, ds))

or −→αi(Fc(n, cs)) vi resi, which is what we wanted to show.
�

Proof that R satisfies property (2)
Base case. We are in the first case of the definition of R,

the one where PICK(gs) = ε. We therefore have R(n, ds) =
ε, and then property (2) holds trivially because the an-
tecedent R(n, ds) = g is false.

Inductive case. We are in the second case of the definition
of R, the one where PICK(gs) ∈ Graph. The induction
hypothesis is that property (2) holds for all graphs in gs, and
in particular, that it holds for g = PICK(gs). We now want
to prove that property (2) holds at the current node n. To
do this, we assume −→α (cs) v ds, we let r = T (R, g, SA(g, ds),
which implies that r = R(n, ds), and we want to show that

Fc(n, cs) =
−−−−−→
SC(r, cs)(OutEdgesr). Note that the g in (2) has

been replaced here with r since it is r which equals R(n, ds).
g in our case stands for PICK(gs).

From property (9), we have that:

Fc(n, cs) =
−−−−−→
SC(g, cs)(OutEdgesg) (12)

By the inductive hypothesis, R satisfies property (2) for the
nodes in g. In addition, we have already shown that F

satisfies property (1), and we also know that −→α (cs) v ds.
We can therefore use Theorem 2 (with ιc = cs and ιa = ds)
to get:

−−−−−→
SC(r, cs)(OutEdgesr) =

−−−−−→
SC(g, cs)(OutEdgesg)

Combined with (12), this gives the required result:

Fc(n, cs) =
−−−−−→
SC(r, cs)(OutEdgesr) �

D.5 Proof of Theorem 5
In this section we give a proof of Theorem 5, and we ex-

tend the precision result to arbitrary iterated sequences of
analyses.

Before doing this, we first need to establish a lemma. Note
that in this lemma, and throughout the section, we use F1 v
F2 to mean ∀(n, ds) ∈ Node × D∗.F1(n, ds) v F2(n, ds).

Lemma 1. Let A1 = (D,t,u,v,>,⊥, α, F1) and A2 =
(D,t,u,v,>,⊥, α, F2) be two analyses over the same lat-
tice, but with different flow functions. Let g ∈ Graph be a
graph, and let ι ∈ D∗ be dataflow values for the input edges
of g. If either F1 or F2 is monotonic, and F1 v F2, then
S(A1, g, ι) �v S(A2, g, ι).

Proof : If F1 or F2 is monotonic, it is easy to show that
F1 v F2 implies ∀(n, d1, d2) ∈ Node × D∗ × D∗.d1 v d2 ⇒
F1(n, d1) v F2(n, d2). We can then show by induction on i,

that ∀i.FGAi
1( �⊥) �v FGAi

2( �⊥), which implies
� ∞

n=0 FGAn
1 ( �⊥) �v � ∞

n=0 FGAn
2 ( �⊥) (See the definition of

the solver function in appendix A for details concerning
FGA)

�

D.5.1 Proof of the Precision Result
Our technique for proving Theorem 5 is to define a new

kind of composition, called sequential composition. Sequen-
tial composition combines analyses together in such a way
that the result ends up being the same as if the analyses were
run in sequence. We then proceed to prove that, given the
same input, the composed flow function F produces better
results than the sequential composed flow function FSeq,
or in other words that F v FSeq. Assuming the composed
flow function F is monotonic, we can then use Lemma 1 to
conclude that the composed analysis computes no worse re-
sults than the sequential composed analysis. We proceed by
first defining the sequential composition, and then proving
that F v FSeq.

Given k integrated analyses (IA1, . . . , IAk), where IAi =
(Di,ti,ui,vi,>i,⊥i, αi, FRi), we define the sequential com-
position as an AT-analysis ASeq = (D,t,u,v,>,⊥, α, FSeq),
where the lattice (D,t,u,v,>,⊥), and α are the same as in
regular composition, and FSeq is defined as FSeq(n, ds) =
FSeq1(n, ds), where for 1 ≤ t ≤ k, FSeqt(n, ds) is defined
as:

FSeqt(n, ds) = s2c(rseq1, . . . , rseqk)

where:

fresi = FRi(n, c2s(i, ds))

m = smallest number in [t..k] such that fresm ∈ Graph

or k + 1 if ∀i ∈ [t..k].fresi ∈ D∗
i

rseqi =

��� �� (>i, . . . ,>i) if i < t

fresi if t ≤ i < m

c2s(i, SolveSubGraphFSeq(fresm, ds)) if i ≥ m

SolveSubGraphFSeq(g, ds) =
−−−−−−−−−−→
SASeqm

(g, ds)(OutEdgesg)

ASeqm = (D,t,u,v,>,⊥, α, FSeqm)

Proof that F v FSeq

We prove F v FSeq by showing ∀t.F v FSeqt, which is
done by induction on t. The base case is when t = k, and the
inductive case is when t < k. The inductive hypothesis is
that, given t, F v FSeqi holds for all i such that t < i ≤ k,
and we need to show that F v FSeqt. In both the base case
and the inductive case, we use another induction, this time
on the graph nesting structure. We refer to the induction
on the graph nesting structure as the inner induction, and
to the induction on t as the outer induction.

Outer Base Case. This is the case where t = k. We need
to show that F v FSeqk, which involves fixing the input
ds to F and FSeqk and then showing ∀i.resi vi rseqi. We
do this by induction on the graph nesting structure of the
FSeqk computation:

• Inner Base Case. In this case no graph replacements
are chosen, so fresk ∈ D∗

k.

– for i < k, rseqi = (>i, . . . ,>i), so trivially resi vi

rseqi.

– for i = k:

resi = fresk ui . . .

rseqi = fresk

By the definition of greatest lower bound, we then
have resi vi rseqi.



• Inner Inductive Case. In this case, one of the analyses
does choose a graph replacement. The only analysis
that can choose a graph replacement is the kth analysis,
so that fresk ∈ Graph and m = k. Let g = fresk. The
inductive hypothesis is that F v FSeqk for the nodes in
g, and we need to prove that F v FSeqk for the current
node n, which again involves showing ∀i.resi vi rseqi:

– for i < k, rseqi = (>i, . . . ,>i), so trivially resi vi

rseqi.

– for i = k:

resi = c2s(i, SolveSubGraphF (g, ds)) ui . . .

rseqi = c2s(i, SolveSubGraphFSeq(g, ds))

which implies:

resi vi c2s(i, SolveSubGraphF (g, ds)) (13)

Using the induction hypothesis (F v FSeqk in g),
and we can use Lemma 1 to get:

SA(g, ds) v SASeqm
(g, ds)

⇔
−−−−−−→
SA(g, ds)(OutEdgesg) v

−−−−−−−−−−→
SASeqm

(g, ds)(OutEdgesg)

⇔ SolveSubGraphF (g, ds) v

SolveSubGraphFSeq(g, ds)

⇔ c2s(i, SolveSubGraphF (g, ds)) vi

c2s(i, SolveSubGraphFSeq(g, ds))

⇔ c2s(i, SolveSubGraphF (g, ds)) vi rseqi

⇔ resi vi rseqi (Using (13) and transitivity)

Outer Inductive Case. Assume F v FSeqi holds for
t < i ≤ k. We call this the outer induction hypothesis (as op-
posed to the inner induction hypothesis, which we will soon
see). We need to show F v FSeqt. We do this by induction
on the graph nesting structure of the FSeqt computation.

• Inner Base Case. In this case, no graph replacements
are chosen, so that ∀i.fresi ∈ D∗

i .

– for i < t, rseqi = (>i, . . . ,>i), so trivially resi vi

rseqi.

– for i ≥ t:

resi = fresi ui . . .

rseqi = fresi

By the definition of greatest lower bound, we then
have resi vi rseqi.

• Inner Inductive case. In this case, one of the analyses
does choose a graph replacement. Let g = fresm be
the graph replacement that is chosen by FSeqt. The
induction hypothesis is that F v FSeqt holds for the
nodes in g, and we call this the inner induction hypoth-
esis. We now need to show that F v FSeqt holds at
the current node n. There are two cases.

case 1: m > t

– for i < t, rseqi = (>i, . . . ,>i), so trivially resi vi

rseqi.

– for i ≥ t and fresi ∈ D∗
i :

resi = fresi ui . . .

rseqi = fresi

By the definition of greatest lower bound, we then
have resi vi rseqi.

– for i ≥ t and fresi ∈ Graph:

resi = c2s(i, SolveSubGraphF (g, ds)) ui . . .

rseqi = c2s(i, SolveSubGraphFSeq(g, ds))

We now use the exact same reasoning as in the In-
ner Inductive Case of the Outer Base Case when
i = k, except that we use the outer inductive hy-
pothesis to justify the use of Lemma 1.

case 2: m = t

– for i < t, rseqi = (>i, . . . ,>i), so trivially resi vi

rseqi.

– for i ≥ t:

resi = c2s(i, SolveSubGraphF (g, ds)) ui . . .

rseqi = c2s(i, SolveSubGraphFSeq(g, ds))

We now use the exact same reasoning as in the In-
ner Inductive Case of the Outer Base Case when
i = k, except that we use the inner inductive hy-
pothesis to justify the use of Lemma 1. �

D.5.2 Extension of the Precision Result
In this subsection, we show how to extend the precision

result to arbitrary iterated sequences of analyses. Consider
a set of integrated analyses A = {IA1, . . . , IAk}, and an or-
der (S1, . . . , Sn) to run these analyses in, where each Si is an
analysis in A, and each analysis in A occurs at least once in
the sequence. From Theorem 5, we know that the composi-
tion of (S1, . . . , Sn) produces no worse results than running
S1 through Sn in sequence. But because the composed flow
function is not affected by the order of analyses, or the pres-
ence of repeated analyses, the composition of (S1, . . . , Sn) is
in fact the same as the composition of (IA1, . . . , IAk). This
therefore implies that the composition of a set of analyses
computes no worse information than any iterated sequence
of the individual analyses.


