
Ca
he Prefet
hing

Stefan G. Berg

Department of Computer S
ien
e & Engineering

University of Washington

Seattle, WA 98195-2350

Te
hni
al Report UW-CSE 02-02-04

ABSTRACT

Ca
he prefet
hing is a memory laten
y hiding te
hnique that attempts to bring data to the 
a
hes before the

o

urren
e of a miss. A 
entral aspe
t of all 
a
he prefet
hing te
hniques is their ability to dete
t and predi
t

parti
ular memory referen
e patterns. In this paper we will introdu
e and 
ompare how this is done for ea
h of

the spe
i�
 memory referen
e patterns that have been identi�ed. Be
ause most appli
ations 
ontain many di�erent

memory referen
e patterns, we will also dis
uss how prefet
hing te
hniques 
an be 
ombined into a me
hanism to

deal with a larger number of memory referen
e patterns. Finally, we will dis
uss how appli
able the 
urrently used

prefet
hing te
hniques are for a multimedia pro
essing system.
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1. INTRODUCTION

The gap between memory and pro
essor speed is a widely known phenomena to 
omputer ar
hite
ts. It exists not

be
ause we are unable to build memories fast enough to keep up with the pro
essor, but be
ause we 
annot make

su
h memories big enough to hold the working-set of typi
al appli
ations. This is due to the inverse relationship

between the size and a

ess time of 
omputer memories [1℄.

The memory hierar
hy of register �le, 
a
hes, main memory, and disks exploits the fa
ts that smaller memories

are faster and most appli
ations have spatial and temporal lo
ality [1℄. Temporal lo
ality is a 
riti
al 
omponent,

be
ause if the memory a

ess pattern were randomly distributed, then most referen
es would go to the larger, slower

memories and little would be gained from the fast memories. Temporal lo
ality allows us to pla
e data in su
h a way

that in many appli
ations the vast majority of the referen
es go to the faster, yet smaller, memories. Data pla
ement

is a key 
omponent in a
hieving this goal.

The intelligent movement of data to faster memories (
loser to fun
tional units) is more important than data

movement to slower memories. When a fun
tional unit operates on some data that is not available in a fast memory,

then this operation must be delayed until the data has been transfered from a slow memory. If this happens frequently,



fun
tional units may be
ome underutilized due to the unavailability of data. In 
omparison. data that must be moved

to slower memories 
an usually be stored in a write bu�er and s
heduled for write-ba
k at a later time without the

need to 
omplete to operation immediately.

Without 
a
he prefet
hing, data is transfered from the lower level of the memory hierar
hy to a register (RISC)

or fun
tional unit (CISC) by the use of an expli
it memory instru
tion. The 
omputation of the memory address

and the s
heduling of the memory instru
tion is limited by 
ontrol-
ow and data-
ow dependen
ies. Be
ause of this,

data may not be available to the fun
tional units when it is needed.

Ca
he prefet
hing is a me
hanism to spe
ulatively move data to higher levels in the 
a
he hierar
hy in anti
ipation

of instru
tions that require this data. Prefet
hing 
an be performed on some ar
hite
tures by issuing load instru
tions

to a non-existent register, for example register zero in ar
hite
tures where this register is hardwired to zero. In

this 
ase, prefet
hing is 
ontrolled by the 
ompiler and is 
alled software prefet
hing. Hardware prefet
hing is

the alternative 
ase, where a hardware 
ontroller generates prefet
hing requests from information it 
an obtain at

run-time (e.g., memory referen
e and 
a
he miss addresses). Generally, software prefet
hers use 
ompile-time and

pro�ling information while hardware prefet
hers use run-time information. Both have their advantages and both 
an

be very e�e
tive.

Ca
he prefet
hing redu
es the 
a
he miss rate be
ause it eliminates the demand fet
hing of 
a
he lines in the


a
he hierar
hy [1℄. It is also 
alled a laten
y hiding te
hnique be
ause it attempts to hide the long-laten
y transfers

from lower levels to higher levels of the memory hierar
hy behind periods of time during whi
h the pro
essor exe
utes

instru
tions.

The remainder of the paper is organized as follows. In Se
tion 2 we will dis
uss the metri
s used for evaluating

prefet
hing te
hniques. Se
tion 3 
ompares the di�erent prefet
hing te
hniques, forming the main part of this paper.

Before 
on
luding, we will dis
uss in Se
tion 4 how prefet
hing applies to the domain of multimedia pro
essing.

2. METRICS

Prefet
hing aims to redu
e the average memory laten
y and thus de
rease the exe
ution time. Apart from exe
ution

time, a number of other metri
s have been used in dis
ussing the e�e
tiveness of the various prefet
hing te
hniques.

In this se
tion, we will introdu
e and dis
uss these metri
s to de�ne a 
onsistent vo
abulary for the remainder of

the paper. We will assume a unipro
essor environment for this paper, although 
a
he prefet
hing 
an 
ertainly be

applied to multipro
essors, too.

2.1. Coverage and A

ura
y

Joseph and Grunwald [2℄ de�ne prefet
hing 
overage as \the fra
tion of miss referen
es that are removed by prefet
h-

ing" and a

ura
y as \the fra
tion of prefet
hes that are useful." For our dis
ussion, we will assume a useful prefet
h

to 
ontain data that the pro
essor referen
es at least on
e before it is repla
ed. The de�nition for 
overage is intuitive,

but as we will show, it is not the only de�nition used. First, we will need to de�ne some terminology though.
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One pla
e to store prefet
hed data is the L1 
a
he [3{8℄. However, when the prefet
h a

ura
y (and timeliness)

is not perfe
t, then storing prefet
hed data in the L1 
a
he risks repla
ement of useful data with useless data. An

alternative approa
h stores prefet
hed data in a prefet
h bu�er [9{12℄. On a hit in the prefet
h bu�er, data is

transfered from prefet
h bu�er to L1 
a
he. If this never happens, a repla
ement s
heme will remove the useless data

from the prefet
h bu�er eventually. With good prefet
h timing (see Se
tion 2.2), prefet
hed data is transfered soon

into the L1 
a
he and thus a small prefet
h bu�er is typi
ally suÆ
ient.

Let M

np

= m

1

;m

2

; :::;m

k

be the sequen
e of miss addresses exhibited by a parti
ular appli
ation running on an

ar
hite
ture without prefet
h me
hanism. In an ar
hite
ture with prefet
h bu�ers, su
h as the Markov prefet
her

by Joseph and Grunwald [9℄, some of the misses in M

np

will be servi
ed by the prefet
h bu�er and therefore appear

to be fully hidden to the pro
essor.

1

When removing the hidden L1 
a
he misses from M

np

, we arrive at M

pb

, the

sequen
e of miss addresses of our appli
ation running on the ar
hite
ture with prefet
hing to a bu�er.

Let us 
onsider M

p

, the sequen
e of miss addresses with an ar
hite
ture that prefet
hes dire
tly into the L1


a
he. It is now possible to prefet
h useless data into the L1 
a
he whi
h may, depending on asso
iativity and

repla
ement s
heme of the L1 
a
he, introdu
e several new misses that were not present in M

np

. In fa
t, with a

pseudo-random repla
ement s
heme, there may be little resemblan
e between M

p

and M

np

. To line them up and be

able to determine the misses that were removed and those that were added, we need to asso
iate them with the a
tual

sequen
e of memory referen
e addresses (whi
h in
ludes 
a
he hits and 
a
he misses). This is a 
omputationally

expensive task be
ause the number of memory referen
es 
an be quite large. Instead of storing the a
tual memory

referen
es, the non-prefet
hing and prefet
hing simulation 
ould also be run in parallel. Usually for these prefet
hing

te
hniques, however, 
overage is instead de�ned only in terms of the prefet
hing simulation, thereby avoiding the

need to 
orrelate misses from non-prefet
hing and prefet
hing simulations.

Before introdu
ing the alternate de�nition of 
overage, we will need to de�ne some terms. Let m = m

late

+

m

early1

+m

early2

+m

nopf

be the total number of misses with its 
onstituents de�ned as follows:

m

late

: The number of L1 
a
he misses for whi
h a prefet
h request has already been issued, but the data has not

yet arrived at the 
a
he or bu�er. A redu
ed miss time is asso
iated with these misses.

m

early1

: The number of L1 
a
he misses on data that was prefet
hed into the L1 
a
he or bu�er, but repla
ed before

being used.

m

early2

: The number of L1 
a
he misses on data that was repla
ed by a prefet
h, but only 
ounted when the

prefet
hed data itself has not been a

essed at the time of the 
a
he miss. These misses are 
aused by early

prefet
hing and 
an only o

ur when prefet
hing dire
tly into the L1 
a
he.

1

In pra
ti
e, the prefet
h bu�er and L1 
a
he are 
he
ked in parallel to ensure that an L1 miss and prefet
h bu�er hit will be servi
ed

just as fast as an L1 hit.
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m

nopf

: The number of all remaining L1 
a
he misses. These are 
old misses and those repla
ement misses that are

not 
ounted by m

early1

and m

early2

.

Let p = p

overhead

+ p

useless

+ p

early

+ p

late

+ p

hit

be the total number of prefet
h addresses generated by a prefet
h

algorithm. The number p 
onsists of these quantities:

p

overhead

: The number of prefet
h addresses that are found to be already in the L1 
a
he or bu�er and 
an therefore

be dis
arded. Mowry et al. label these prefet
hes as unne
essary [6℄. These are of parti
ular 
on
ern to software

prefet
hers be
ause issue slots are wasted.

p

useless

: The number of prefet
h addresses that are loaded into the L1 
a
he or bu�er and then fall into one of

these two 
lasses. 1) Throughout the program exe
ution the address is not referen
ed. The prefet
hed data

may eventually be repla
ed from the 
a
he or bu�er. 2) The prefet
hed data is never referen
ed, eventually

repla
ed, and then prefet
hed again. The subsequen
e prefet
h itself may also be useless or fall into some other


ategory.

p

early

= m

early1

: The number of prefet
h addresses that are loaded into the L1 
a
he or bu�er, then repla
ed, and

�nally missed on.

p

late

= m

late

: The number of prefet
h addresses that are referen
ed by the pro
essor before the data has been

stored in the 
a
he or a bu�er.

p

hit

: All other prefet
h addresses. These are exa
tly those that are prefet
hed into the L1 
a
he and subsequently

referen
ed with an L1 
a
he hit. Note that a prefet
h 
ounted as p

hit

may still be an early prefet
h in the sense

that it may have repla
ed some data that was referen
ed before the prefet
hed data was needed. This 
an only

happen when the 
a
he is at least two-way asso
iative. The resultant miss would be 
ounted by m

early2

.

We 
an now de�ne the prefet
h 
overage like so:

Coverage

Joseph

=

p

hit

p

hit

+m

late

+m

early1

+m

early2

+m

nopf

For prefet
hing methods that utilize a prefet
h bu�er, this de�nition is exa
tly the same as the one by Joseph and

Grunwald sin
e p

hit

equals the miss referen
es removed by prefet
hing and the denominator of the equation equals

the number of misses of the base ar
hite
ture without prefet
hing.

2

For simulations of ar
hite
tures that prefet
h

into the L1 
a
he, this de�nition of 
overage is relatively easy to 
ompute be
ause it does not attempt to 
orrelate

parti
ular misses of a base ar
hite
ture to misses of the prefet
hing ar
hite
ture.

Mowry et al. use a di�erent de�nition of 
overage [5, 6℄:

2

Remember that m

early2

equals zero when prefet
hing into a bu�er.
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Coverage

Luk

=

p

hit

+m

late

+m

early1

p

hit

+m

late

+m

early1

+m

early2

+m

nopf

In this de�nition, m

early1

and m

late

misses are 
ounted as if they are a su

essful prefet
h. The idea is that

the addresses were 
omputed a

urately, but that the timing was wrong. There seems to be disagreement, whether


overage should be sensitive to the prefet
h timing or not. We also observed that a late miss is sometimes 
ounted

as a fra
tional miss, based on the fra
tion of its 
ompletion time relative to the full miss laten
y [7℄.

When prefet
hing into the L1 
a
he (i.e. no prefet
h bu�er), the equation for 
overage has one short
oming. The

misses in m

early2

are those misses that were introdu
ed as a side-e�e
t of prefet
hing. If this happens frequently,

then the denominator of the 
overage equation is in
reased and hen
e 
overage de
reases. Poor prefet
h timing and

poor prefet
h a

ura
y 
an therefore redu
e the numeri
al value of 
overage, even though 
overage 
ould be quite

good in the intuitive sense (i.e. the removal of misses only). We are not aware of any prefet
hing results that use a


overage de�nition whi
h ex
ludes the m

early2

misses.

Counting the quantities for m

early1

, m

early2

and p

useless


an add a signi�
ant amount of 
omplexity to the simu-

lation 
ode. For prefet
hing into the L1 
a
he (a similar te
hnique works for prefet
hing into a bu�er, although here

only m

early1

and p

useless

are ever non-zero), we must use a data stru
ture to remember, for ea
h 
a
he line, all the

prefet
hed 
a
he lines that were repla
ed there. The other quantities 
an be 
omputed with less overhead.

Finally, we 
an also give an equation for a

ura
y:

A

ura
y =

p

late

+ p

hit

p

overhead

+ p

useless

+ p

early

+ p

late

+ p

hit

Here, a late prefet
h is still 
ounted as useful. Coverage and a

ura
y are sometimes inversely related to ea
h

other. Typi
ally, 
overage 
an be improved by more aggressive spe
ulation on the prefet
hing addresses whi
h in

turn 
an redu
e a

ura
y. This is illustrated graphi
ally very ni
ely in Figure 5 of Joseph and Grunwald's paper [9℄.

2.2. Timeliness

The timeliness of prefet
hing requests is not a pre
isely de�ned numeri
 value. A perfe
tly timed prefet
hing request

will 
omplete shortly before the data is needed by an instru
tion. The perfe
t time for a prefet
h to issue is not an

instan
e in time, but a range in whi
h no negative e�e
ts are in
urred. This implies that we 
an have two other


ases, early and late prefet
hing.

An early prefet
h o

urs when prefet
hed data arrives long before it is needed. This 
an repla
e data that is

going to be referen
ed before the prefet
hed data. The pro
essor will in
ur a miss that will be 
ounted as part of

m

early2

. Furthermore, if the asso
iativity of the 
a
he is small, the prefet
hed data itself may be repla
ed before it

is referen
ed. A subsequent miss on the data would be 
ounted as m

early1

. Early prefet
hing 
an therefore in
rease

the number of 
a
he misses and also bus traÆ
.
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A late prefet
h o

urs when data has been prefet
hed, but it arrives after it is needed by the pro
essor. Late

prefet
hes do not fully hide a 
a
he miss, but they do provide some bene�t by redu
ing the 
a
he miss time. They

are 
ounted by m

late

.

To avoid the negative impa
t of early and late prefet
hing, some prefet
hing algorithms in
orporate methods for


ontrolling the time when a prefet
h request is issued. Good timing, however, is diÆ
ult to a
hieve.

2.3. Load Laten
y

The average load laten
y is used by Roth et al. [12℄ to show the bene�t of prefet
hing 
ompared to a base ar
hite
ture

without prefet
hing. It is similar to 
omparing miss rates, however, it properly measures the redu
ed miss laten
y of

late misses. It 
an also expose ex
essive prefet
hing within a parti
ular memory system. With ex
essive prefet
hing,

the bus bandwidth 
an be
ome a bottlene
k and miss laten
ies 
an in
rease. This requires a

urate modeling of the

memory bus. Ex
essive prefet
hing 
an slow down both 
a
he hits and 
a
he misses if a

ess to 
a
he tags is blo
ked

frequently by the prefet
h engine. Some prefet
h te
hniques will therefore only use the tag memories when they are

idle and will only issue prefet
hes when the memory bus is not used.

2.4. Bus Bandwidth

Prefet
hing in
reases the utilized bus bandwidth when a

ura
y is not perfe
t. Sin
e bus bandwidth is generally a

valuable resour
e that 
an limit performan
e, bus bandwidth in
reases due to prefet
hing are frequently measured [5,

7, 12℄.

Another aspe
t of bus bandwidth is that it is diÆ
ult to improve performan
e with prefet
hing for appli
ations

that already fully utilize a pro
essor's memory bandwidth. Prefet
hing only hides 
a
he misses, but does not eliminate

memory transfers. While reordering of memory a

esses 
an improve the available bandwidth (e.g., by exploiting

page mode a

esses or 
a
hes in lower levels of the hierar
hy), these e�e
ts have not been studied, let alone be

exploited, by 
a
he prefet
hing me
hanisms.

Bus bandwidth 
an therefore be used for 
omputing an upper-bound of performan
e improvement of a prefet
hing

te
hnique. Performan
e 
an only in
rease until memory bandwidth is fully utilized. An alternate upper-bound for

a
hievable performan
e improvement of prefet
hing is to assume a 0% 
a
he miss rate [7℄. Due to the fa
t that

prefet
hing does not redu
e bus bandwidth, the latter bound 
an be less a

urate (i.e. lower) when bus bandwidth

is 
lose to fully utilized. However, assuming a 0% 
a
he miss rate for 
omputing an upper-bound 
an provide a more

a

urate result when the fun
tional units are 
lose to fully utilized.

3. PREFETCHING TECHNIQUES

There are several di�erent prefet
hing te
hniques. As was already dis
ussed, some prefet
h into a L1 
a
he while

others prefet
h into separate bu�ers. Some prefet
hing te
hniques use the 
ompiler to insert prefet
h instru
tions into

the 
ode while others rely on hardware to issue prefet
h requests. Prefet
hing done by the 
ompiler, 
alled software
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prefet
hing, 
an use pro�ling or 
ode analysis to identify data to be prefet
hed. Hardware prefet
hing typi
ally uses

data 
a
he miss addresses to 
ompute the prefet
hing addresses, but some te
hniques also look at the instru
tion

addresses or other information to determine whi
h data to prefet
h.

The most important distinguishing fa
tor between prefet
hing te
hniques, however, is the memory referen
e

pattern that they are designed to re
ognize and prefet
h. We 
all the set of referen
e patterns that a prefet
hing

te
hnique was optimized for, the prefet
h domain. With the ex
eption of Markov prefet
hing, all the prefet
hing

te
hniques are designed to handle a very parti
ular memory referen
e pattern and are unable to prefet
h other

memory referen
e patterns.

The prefet
h domain is an important 
hara
teristi
 of a prefet
hing te
hnique be
ause data a

essed by a referen
e

pattern outside the prefet
h domain is not usually prefet
hed. This limits the a
hievable prefet
h 
overage. Further-

more, unsupported memory referen
e patterns 
an 
onfuse the prefet
h algorithm and redu
e prefet
h a

ura
y.

3.1. Memory referen
e patterns

Five elementary memory referen
e patterns have been identi�ed in the literature. Most 
a
he prefet
hers are designed

to prefet
h data from only some of these re
ognized memory referen
e patterns.

Stride-0: These are memory referen
es to isolated addresses that are not related to other addresses. For example,

lo
al and global variable a

esses, array referen
es using a 
onstant index, and 
ertain referen
es to members

of a stru
ture. Ca
hes are generally very e�e
tive for these memory referen
es. Few prefet
h te
hniques are

able to preload these memory referen
es to the 
a
hes be
ause their addresses are diÆ
ult to predi
t.

Stride-1: We 
all a memory referen
e pattern that a

esses stri
tly in
reasing or de
reasing, adja
ent memory

address lo
ations stride-1. Many array referen
es are stride-1. Early prefet
hing te
hniques, su
h as Jouppi's

prefet
h bu�ers [10℄, were designed to prefet
h data from this 
ategory of memory referen
es.

Stride-n: These are memory referen
e addresses that are stri
tly in
reasing or de
reasing and separated by a


onstant stride. It is a natural extension of the stride-1 referen
e pattern and has been exploited by numerous

prefet
hing te
hniques [6{8, 11, 13{15℄. The typi
al data stru
ture that is a

essed with a stride-n referen
e

pattern is the array.

Linked: In a linked memory referen
e pattern, the data pointed to by one address is used to 
ompute the subsequent

address. In C notation, this o

urs when the statement ptr = ptr->next; is exe
uted in a loop. The o�set

will be zero only if next is the �rst element of the stru
ture pointed to by ptr. Linked lists and tree data

stru
tures are a

essed with a linked memory referen
e pattern. A number of te
hniques have been proposed

to prefet
h linked memory referen
es [5, 12, 15, 16℄.

Irregular: Memory referen
e patterns that do not fall into one of the previous 
ategories are irregular. For example,

we 
onsider a triangular memory referen
e pattern (i.e., stride in
reases by a 
onstant on ea
h a

ess) as

7



irregular. Few prefet
hing methods are able to deal with irregular memory referen
e patterns. The notable

ex
eption is prefet
hing using Markov predi
tors [9℄ that 
an handle some referen
e patterns that fall into this


ategory.

Stride-0, stride-1, and stride-n have previously been de�ned by Baer and Chen [13℄. The linked 
ategory is

do
umented by Roth et al. [12℄. Luk and Mowry [5℄ refer to the data stru
tures that are a

essed by linked memory

referen
e patterns as re
ursive data stru
tures.

3.2. Prefet
hing within Loops

A 
ommon abstra
tion is to look at prefet
hing in the 
ontext of a loop su
h as the one shown in Figure 1. We will

refer to this loop as the work loop. The variable p 
an be an element of a linked data stru
ture in whi
h 
ase the

fun
tion next() would return p->next. Or p 
an be a pointer to an array and the fun
tion next() would return

p+1 or zero when the 
omputation is �nished. Let us assume that an element p 
an �t within a single 
a
he line.

while(p) {

work(p);

p = next(p);

}

Figure 1. An abstra
t view of a loop that iteratively pro
esses a data stru
ture with elements p.

A prefet
h algorithm should be able to bring p 
lose to the pro
essor before the fun
tion work() is 
alled on p as

indi
ated in Figure 2. Let us assume for this dis
ussion, that the prefet
h(next(p)) request 
ould also have been

issued by the hardware instead of by the software. For a hardware prefet
hing te
hnique, the prefet
h statement 
an

be thought of as representing when an a
tion is taken by the hardware.

while(p) {

prefet
h(next(p));

work(p);

p = next(p);

}

Figure 2. A loop with non-overlapping prefet
hing.

Let us now dis
uss several possibilities about the e�e
t of this prefet
hing statement in terms of the hardware


apabilities and the relative speed of the fun
tional units and memory.

3.2.1. Faster Memory

If the memory laten
y is less than the time it takes to 
omplete work(p), the memory laten
y 
an be fully hidden.

The pro
essor would never in
ur a 
a
he miss on p.
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3.2.2. Slower Memory without Overlap

Let us 
onsider what happens if the memory laten
y is larger than the time to 
omplete work(p). Now, the pro
essor

will in
ur a 
a
he miss on p with every iteration of the loop. The 
a
he miss, however, will have a redu
ed servi
e

time, be
ause the data is already in transit from a lower level of the memory hierar
hy.

If memory operations 
annot be overlapped or pipelined, then nothing 
an be done to further hide the memory

laten
y. While prefet
hing was able to redu
e the 
a
he miss laten
y somewhat, it 
annot fully hide it.

There are several reasons for why it may not possible to pipeline memory request. One may be that the hardware

is not able to pipeline memory requests. However, with the in
rease in instru
tion level parallelism (ILP) and

the in
reasing gap in memory and pro
essor performan
e, many modern pro
essor ar
hite
tures are not only able to

pipeline memory requests, but they 
an sometimes even issue multiple memory requests per 
y
le. Data dependen
es


an also make it impossible to pipeline memory requests. This is 
ommonly the 
ase for linked data stru
tures su
h

as a linked list where prefet
h(next(p)) 
annot be exe
uted until p = next(p) has 
ompleted. It is also possible

that the prefet
hing te
hnique itself is not able to look ahead a
ross more than one iteration and therefore would

not pipeline memory requests even when there are no data dependen
ies.

3.2.3. Slower Memory with Overlap

For array and linked data stru
tures, prefet
hing te
hniques exist to overlap memory requests. This 
an further hide

memory laten
y. Figure 3 shows the general approa
h when the memory laten
y is twi
e as long as the time to


omplete work(p).

while(p) {

prefet
h(next(next(p)));

work(p);

p = next(p);

}

Figure 3. A loop with overlapping prefet
hing.

For an array data stru
ture, next(next(p)) is equivalent to p+2. For linked data stru
tures, Luk and Mowry

have proposed te
hniques to obtain the address of p->next->next without �rst having to referen
e p->next [5℄. We

will dis
uss their te
hnique shortly. In both of these 
ase, the memory system must have at least two pipeline stages

or be able to handle two memory requests in parallel.

As memory laten
y 
ontinues to lag behind pro
essor speeds, it will be
ome in
reasingly important for memory

systems to handle multiple requests simultaneously and for prefet
hing methods to exploit this with te
hniques that

prefet
h data from several iterations ahead of the 
urrent iteration.
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3.3. Pure Prefet
hing Methods

Most prefet
hing methods are designed to exploit either one of the two non-zero strided or the linked memory

referen
e patterns, but generally not a 
ombination. We 
all su
h methods pure prefet
hing methods and will dis
uss

them in this se
tion. In the next se
tion we will introdu
e some of the hybrid prefet
hing methods that 
an be a


ombination of several pure prefet
hing methods.

3.3.1. Conse
utive prefet
hers

The prefet
h te
hniques targeting to 
over the stride-1 referen
e pattern are the 
onse
utive prefet
hers. This is the

oldest group of prefet
hing te
hniques be
ause their hardware 
omplexity is low enough to make it feasible [17℄.

Smith; Gindele An early te
hnique is one-blo
k-lookahead (OBL). With OBL, a prefet
h is always issued to the

next 
a
he line in the address spa
e and it is brought dire
tly into the L1 
a
he. A prefet
h 
an be triggered by a

memory referen
e (always prefet
h) or a 
a
he miss (prefet
h on miss) [17℄. Always prefet
h is a brute-for
e method

that prefet
hes the right data for stride-1 memory referen
es, but it will also generate a large number of overhead

prefet
h requests (p

overhead

). Overhead prefet
hes are undesirable be
ause a 
a
he tag lookup must be done before

they 
an be dis
arded. Prefet
h on miss avoids this overhead, but it 
an only prefet
h half of the stride-1 referen
e

pattern. Every other memory referen
e will result in a 
a
he miss, be
ause prefet
h on miss does not issue a prefet
h

following a prefet
h hit. A slight extension, OBL with tagged prefet
h, uses a tag bit per 
a
he line to issue a prefet
h

only on the �rst referen
e to a 
a
he line [18℄. OBL with tagged prefet
h has a 
overage similar to the always prefet
h

method, but generates far fewer overhead prefet
hes [17℄.

Jouppi Jouppi proposed to prefet
h into a separate prefet
h bu�er 
alled a stream bu�er [10℄. His te
hnique uses

OBL with prefet
h on miss, but instead of issuing a single prefet
h, 
onse
utive 
a
he lines are prefet
hed and stored

in the stream bu�er. The stream bu�er is organized like a queue that is �lled by prefet
hing requests and emptied

by 
a
he miss requests. The data are 
opied to the L1 
a
he on a 
a
he miss and also supplied to the pro
essor.

The stream bu�er is 
ushed and prefet
hing is restarted with a new address when the item popped from the stream

bu�er does not mat
h the next 
a
he miss. A single stream bu�er works well with an instru
tion 
a
he, but not so

well with a data 
a
he. The sequen
e of 
a
he misses generated by an L1 data 
a
he are rarely 
onse
utive for a

long period of time and will 
ause the stream bu�er to be restarted frequently. Jouppi found that the use of multiple

stream bu�ers, operating in parallel, works mu
h better with a data 
a
he.

Stream bu�ers had two major 
ontributions to prefet
hing. First, the use of a separate bu�er avoids the pollution

of the 
a
he with data that are never referen
ed (m

early2

= 0). Se
ond, even with the absen
e of non-blo
king 
a
hes

and out-of-order exe
ution, stream bu�ers overlap multiple prefet
hes from a single referen
e and are therefore able

to hide memory laten
y better (Se
tion 3.2.3) than other OBL te
hniques.
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3.3.2. Stride prefet
hers

Conse
utive prefet
hers are not able to eÆ
iently prefet
h for the stride-n memory referen
e pattern, espe
ially for

larger n. In addition, with the ex
eption for a �ltering te
hnique proposed by Pala
harla and Kessler [11℄, 
onse
utive

prefet
hers naively assume that all memory referen
es are 
onse
utive. These e�e
ts hurt the prefet
h a

ura
y of

the 
onse
utive prefet
hers. Generally, stride prefet
hers s
an the memory referen
es to �nd 
andidates for stride

prefet
hing. If no 
andidate is found, no prefet
hing will be initiated. This improves the prefet
hing a

ura
y of

stride prefet
hers relative to 
onse
utive prefet
hers. In a 
omparison of prefet
h a

ura
ies between a variety of

prefet
hing te
hniques, Joseph and Grunwald show this e�e
t ni
ely. Whereas the stride prefet
hers appear to have

almost perfe
t a

ura
y, the number of useless misses for the 
onse
utive prefet
hers typi
ally ex
eeds 10% of the

number of 
a
he misses [9℄.

Stride prefet
hers fall into two general 
ategories. One is a software prefet
hing te
hnique that uses a 
ompiler to

analyze array referen
es in the program loops and inserts prefet
h instru
tions as needed. The other uses a hardware


omponent that dete
ts when the repeated exe
ution of a parti
ular memory instru
tion issues stride-n memory

referen
es and uses this information to predi
t and prefet
h future referen
es.

Mowry, Lam, and Gupta Mowry et al. [6℄ have developed a software prefet
hing te
hnique for array referen
es

whose indi
es are aÆne (i.e., linear) fun
tions of loop indi
es. While su
h a memory referen
e pattern does not need

to �t a stride-n referen
e pattern, it typi
ally 
an be des
ribed by a small number of stride-n referen
e patterns. This

te
hnique requires hardware support in the form of a prefet
h instru
tion that works similar to a load instru
tion,

but the data referen
ed are not a
tually stored in a register. Prefet
h instru
tions are not allowed to 
ause ex
eptions

(e.g., a page fault). In the indis
riminate version, the 
ompiler will insert prefet
hes for every aÆne array referen
e.

Software pipelining is used to 
arefully pla
e prefet
hes early enough so that the prefet
h 
ompletes just in time for

the array referen
e. The sele
tive version only inserts prefet
hes when the 
ompiler predi
ts that the array referen
e

instru
tion will 
ause a miss. It does so by 
onsidering the reuse of referen
es and the loop iteration 
ounts relative

to the 
a
he size. Loop splitting is used to insert prefet
hes into only those iterations where the 
ompiler determines

that misses are likely.

The importan
e of the sele
tive software prefet
hing te
hnique over the indis
riminate te
hnique is that it 
an

redu
e overhead prefet
hes (p

overhead

). Mowry et al. [6℄ observed that it redu
ed the average per
entage of overhead

prefet
hes from 79% to 29% with only a small loss in the prefet
h 
overage. Overhead prefet
hes are more 
ostly to

software prefet
hers, be
ause ea
h prefet
h o

upies an instru
tion slot and instru
tion bandwidth that 
ould have

been used for exe
uting something useful. In hardware prefet
hing, te
hniques the main 
ost of overhead prefet
hes is

an in
reased pressure on the 
a
he tag memory that 
an be over
ome with banking or multiporting the tag memory.

Fu, Patel, and Janssens The hardware stride prefet
hers use a hardware stru
ture as shown in Fig. 4 for �nding

stride-n memory referen
es. The simplest implementation of this s
heme was proposed by Fu et al. [14℄. They named
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the hardware stru
ture the stride predi
tion table (SPT). The SPT only uses a valid bit for state information and has

no Times and Stride entries. All memory referen
e instru
tions are looked up in the SPT and a new entry is 
reated

if none is found. If an entry is found, the di�eren
e in the Previous Memory Address and 
urrent memory address is

used as a stride predi
tor. The stride predi
tor added to the 
urrent memory address is used as a 
andidate prefet
h

address. Finally, the Previous Memory Address is updated with the 
urrent memory address.

Instruction
Address

Tag

Previous
Memory
Address

State
Indexed by
Instruction
Address

Times Stride

Figure 4. General form of the data stru
ture used in hardware stride prefet
hers to dete
t stride-n memory

referen
es.

A 
andidate prefet
h address will be issued as a prefet
h to the memory system 1) when the memory instru
tion


auses a miss, 2) when the memory instru
tion 
auses a hit, or 3) always. Generally, the prefet
h on miss has the same

problem as the prefet
h on miss OBL te
hnique. Only every other memory referen
e is prefet
hed. Furthermore,

the te
hniques mentioned so far will not issue a prefet
h more than one memory referen
e ahead and are therefore

unable to issue deeply pipelined memory requests (Se
tion 3.2).

Chen and Baer Chen and Baer [4℄ proposed a s
heme that adds two signi�
ant features. First, they store the last

known stride in the referen
e predi
tion table (RPT, another name for the SPT) and they use a two-bit state �eld

instead of a single valid bit. The state �eld 
ontains information about how stable the stride has been in the past

and a�e
ts the 
hoi
e of prefet
h addresses. Prefet
hes will not be issued when the strides between the last three

memory addresses of a memory referen
e instru
tion are di�erent. Their se
ond innovation is a lookahead program


ounter (LA-PC) that is updated ea
h 
y
le and uses a bran
h predi
tion table (BPT) to predi
t the dire
tion of

bran
hes. The LA-PC is designed to run ahead of the PC. Lookups in the referen
e predi
tion table (RPT) are

done by both the PC and LA-PC. RPT updates are 
ontrolled by lookups with the PC and prefet
hes are issued

from lookups with the LA-PC. An additional entry Times in the RPT (Fig. 4) stores the number of iterations the

LA-PC is ahead of the PC for a parti
ular memory referen
e instru
tion. A 
andidate prefet
h address is 
omputed

by adding the produ
t of Times and Stride to the Previous Memory Address.

The use of the added state information is designed to improve the prefet
h a

ura
y. The use of the LA-PC is

designed to better 
ontrol the prefet
h distan
e and should redu
e early and late prefet
hes. From the view of the

work loop (Se
tion 3.2), the LA-PC allows prefet
hes to be issued more than one loop iteration ahead of a memory

referen
e and 
onsequently 
an more aggressive pipeline memory referen
es. They found that the smallest number

of memory 
y
les per instru
tion (MCPI) o

urs when the distan
e of the LA-PC ahead of the PC is not allowed
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to grow mu
h beyond the number of 
y
les needed to a

ess the next level in the memory hierar
hy. Any larger

distan
e would in
rease the number of early prefet
hes.

Pinter and Yoaz As supers
alar pro
essors had be
ome the ar
hite
ture design of 
hoi
e for general-purpose

pro
essors in the 80s and 90s, a new 
hallenge was re
ognized for 
a
he prefet
hing. A supers
alar pro
essor 
an

exe
ute several instru
tions per 
y
le and issue possibly multiple memory requests per 
y
le. This in
reases pressure

on the 
a
he tags to determine if memory referen
es hit or miss in the 
a
he. Consequently, fewer idle 
y
les are

available for dis
arding overhead prefet
h requests and fewer prefet
hes 
an be issued without interfering with the

normal pro
essor exe
ution. Pinter and Yoaz [7℄ addressed this problem with their Tango ar
hite
ture by using a

�lter 
a
he that 
a
hes the last few a

esses to the tag memory. They also proposed a new LA-PC me
hanism that

is able to run ahead of the PC mu
h more rapidly and is able to �nd more memory referen
e instru
tions per 
y
le

than the s
heme used by Chen and Baer [4℄.

The new LA-PC, referred to as a pre-PC, is enabled by extending the bran
h target bu�er (BTB). Be
ause

the pre-PC advan
es from bran
h to bran
h, instead of from instru
tion to instru
tion as done by the LA-PC,

it 
an advan
e mu
h more rapidly. After having been advan
ed to the next bran
h, a spe
ially indexed referen
e

predi
tion table for supers
alar pro
essors (SRPT) is sear
hed asso
iatively with the pre-PC for all memory referen
e

instru
tions from the 
urrent bran
h to the next bran
h to determine prefet
h 
andidates. They simulated an SRPT

that returns up to two memory referen
e instru
tions per 
y
le. For ea
h memory referen
e instru
tion found, a

prefet
h is issued using the same state ma
hine logi
 introdu
ed by Chen and Baer [4℄. After all memory referen
es

found in the SRPT have been pro
essed, the pre-PC is advan
ed to the next bran
h. Just as done by Chen and Baer,

the distan
e between pre-PC and PC is limited to roughly the memory laten
y to avoid early prefet
hing. Apart

from early prefet
hing, predi
tions a
ross multiple bran
hes 
an also redu
e the prefet
h a

ura
y.

To allow bran
h-to-bran
h updates of the pre-PC, additional entries are needed in the BTB as shown in Fig. 5.

The key entries to allow updates of the pre-PC are the T-Entry and NT-Entry �elds. They 
ontain indi
es ba
k

into the BTB for the �rst bran
h on the taken and not-taken paths, respe
tively. Be
ause the BTB is also a

essed

by the regular PC for normal bran
h predi
tion, some �elds must be dual ported as shown in Fig. 5. In addition,

BTB repla
ements are more 
ostly, be
ause all BTB entries that point to the repla
ed BTB entry (via T-entry and

NT-entry �elds) must be updated. Pinter and Yoaz [7℄ solved this by performing a fully asso
iative sear
h on the

T-entry and NT-entry �elds on ea
h BTB repla
ement. Sin
e the update 
an be done lo
ally within ea
h BTB entry,

the time penalty is tolerable, although there is 
ertainly an in
reased hardware 
ost for full asso
iativity.

The SRPT is identi
al to that used by Chen and Baer with one additional requirement. Sin
e their goal is to be

able to use the pre-PC to �nd several memory referen
es in a single 
y
le, they implement a fully asso
iative sear
h

on the SRPT using the BTB index of the 
urrent pre-PC. Although su
h a fully asso
iative sear
h would return

potentially all memory referen
e instru
tions between the pre-PC and the previous bran
h, an index added to the
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Address
Prediction T−Entry NT−Entry T−Size NT−SizeTargetBranch−PC

(Tag)

Dual ported Can be searched associatively

Information

Figure 5. Bran
h target bu�er (BTB) used for advan
ing the pre-PC.

tag limits it to only two per 
y
le. The only reason for this limit is to redu
e the hardware 
ost of having to lookup

and issue a larger number of prefet
hes.

The se
ond key innovation of the Tango ar
hite
ture is its use of a �lter 
a
he. It is a FIFO queue that keeps the

address of the last six 
a
he lines that produ
ed a hit in the 
a
he. A prefet
h address that is found in this queue

is an overhead prefet
h and 
an be dis
arded without having to do a 
a
he tag lookup. The �lter 
a
he 
an 
ut the

number of 
a
he tag lookups from overhead prefet
hes in half.

3.3.3. Re
ursive prefet
hers

Re
ursive prefet
hers that prefet
h linked memory referen
es have two primary 
hallenges. First, like stride prefet
h-

ers, re
ursive prefet
hers must be able to dete
t the memory referen
e pattern to be prefet
hed. Se
ond, overlapped

prefet
hing is diÆ
ult due to the data dependen
es inherent in the linked memory referen
es.

The key te
hnique used in dete
ting a linked memory referen
e pattern 
an be found by looking at the C

statement p = p->next; whi
h is 
ommonly used for linked list traversals. When exe
uted on
e, p will be loaded

with an address. When exe
uted again, the previous address serves as the base address for loading the next address.

The important relationship is that the base address of one load was produ
ed by a load from the previous loop. This

is very di�erent in a strided memory referen
e pattern where the base address is 
omputed arithmeti
ally from a

base address that is 
onstant for all memory referen
es. All re
ursive prefet
hers look for these dependen
ies a
ross

di�erent load instru
tions to �nd the linked memory referen
e pattern. We will look at two hardware prefet
hing

methods �rst and a software prefet
hing approa
h afterward.

Mehrotra and Harrison The linked list dete
tion s
heme proposed by Mehrotra and Harrison [15℄ is the simplest

in design. They extended the referen
e predi
tion table, su
h as the one used by Chen and Baer [4℄, by two more

�elds as shown in Fig. 6. The linear stride �eld is the traditional �eld for dete
ting a stride-n referen
e pattern. The

Indire
t Stride and Previous Data Loaded �elds are added for dete
ting linked memory referen
es. The only linked

memory referen
es that 
an be dete
ted by this te
hnique are those generated by self-referential updates, su
h as in
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the C statement p = p->next;. The Previous Data Loaded �eld holds the a
tual memory 
ontents loaded by the

previous exe
ution of the load instru
tion. During ea
h 
y
le, the Indire
t Stride value is updated with the di�eren
e

between the Previous Data Loaded value and the memory address of the 
urrent exe
ution of the load instru
tion.

In our C statement example, this will equate to the 
onstant o�set of the next �eld within the stru
ture pointed to

by p. A linked memory referen
e pattern is dete
ted when the indire
t stride �eld is found to be 
onstant between

multiple exe
utions of the load instru
tion.

Instruction
Address

Tag

Previous
Memory
Address

Indexed by
Instruction
Address

Previous
Data

Loaded Stride

Linear Indirect

Stride
State

Figure 6. Referen
e predi
tion table for dete
ting stride-n and linked memory referen
e patterns.

Roth, Moshovos, and Sohi Although simple and easily implemented, the method by Mehrotra and Harrison [15℄

has the disadvantage of only 
onsidering self-referential memory instru
tions. Roth et al. [12℄ proposed a di�erent

s
heme that is able to dete
t linked memory referen
es when the produ
er of the base address is not the same as

the 
onsumer of the base address, an example of whi
h is shown in Fig. 7. It takes two separate hardware tables

to a

omplish this. Figure 8 shows these two tables. The values loaded by memory instru
tions are 
a
hed in the

potential produ
er window (PPW) as possible 
andidates for memory instru
tions that load (produ
e) a base address.

Also, for ea
h memory instru
tion a lookup is done on the PPW indexing it with the base address of the 
urrent

load. If a mat
h is found, the PC of the 
urrent memory instru
tion is 
onsidered to be the 
onsumer and the PC

of the memory instru
tion of the mat
hing PPW entry is 
onsidered the produ
er. The produ
er and 
onsumer PCs

are stored in the 
orrelation table (CT) together with a template of the 
onsumer memory instru
tion (Fig. 8). The

template is ne
essary for generating 
andidate prefet
h addresses. For typi
al memory instru
tions, the template

would only in
lude the o�set of the memory instru
tion.

3

while(p) {

p = q->next;

q = p->next;

}

Figure 7. An example 
ontrol stru
ture for RDS traversals.

Prefet
hing addresses are generated from the information stored in the CT. When the PC of a load instru
tion

hits in the CT, it is known to have been a produ
er in the past. The template information from the CT and the

3

The o�set of the memory instru
tion is equal to the o�set of the next �eld within the stru
ture pointed to by p.

15



Indexed by

Loaded
Value

Memory

Address
InstructionMemory

Address
InstructionInstruction

Address

Producer Producer Consumer

Inst. Addr.

Indexed by
Producer

Consumer
Instruction
Template

Potential Producer Window Correlation Table

Address

Figure 8. Potential Produ
er Window (PPW) and Correlation Table (CT) used for dete
ting linked memory

referen
es.

data returned from the 
urrent load instru
tion produ
e a memory address that is used as a prefet
h address. If the

predi
tion is 
orre
t, the 
onsumer re
orded in the CT will load this prefet
h address at some point in the future.

La
king any timing information, the prefet
h address is immediately entered into a prefet
h requests queue (PRQ)

and issued to the memory system during an idle 
y
le. As in Jouppi's stream bu�ers [10℄, prefet
hed data are stored

in a bu�er, whi
h redu
es the penalty of early prefet
hing.

Prefet
hed data may themselves be produ
ers and 
ould therefore also be looked up in the CT to generate

additional prefet
hes. Roth et al. [12℄, however, did not perform su
h additional prefet
hes be
ause it in
reases the

risk of early prefet
hes. They also argued that there may be little bene�t to prefet
h further ahead. To understand

this, we need to 
onsider the whole loop en
ompassing the memory instru
tion that generates the prefet
hes. If the

memory laten
y is less than the time to exe
ute one iteration of this loop, then the memory laten
y 
an be fully

hidden and there is no bene�t of prefet
hing ahead further. If the memory laten
y is longer than the time to exe
ute

one iteration, then memory instru
tion and prefet
h will 
omplete at the same time and it makes no di�eren
e whi
h

of the two triggers the subsequent prefet
h. Another way to look at this is that it is impossible to overlap prefet
hes

due to the data dependen
ies. This pla
es a limit on how many prefet
hes 
an be hidden (Se
tion 3.2.2).

They noted that their argument against generating these additional prefet
hes ignores 
ases that may not �t the

simple loop model. For example, not all loops may be of equal length, whi
h 
an make it bene�
ial to prefet
h ahead

to e�e
tively borrow time from one loop to use in a later loop.

Luk and Mowry Essentially, the same approa
h for �nding linked memory referen
es 
an be taken by a software

prefet
her. However, sin
e addresses are not known at 
ompile time, the 
ompiler instead looks at the data types.

Linked memory referen
es require that one data type stru
ture 
ontains an element that points to some other (or

the same) data type stru
ture. The re
ursive prefet
her, a software prefet
her, proposed by Luk and Mowry [5℄ 
alls

these data types, re
ursive data stru
tures (RDS). Their software prefet
her re
ognizes re
ursive data stru
tures and

also a set of 
ontrol stru
tures that traverse an RDS. Figure 1 is one example of su
h a 
ontrol stru
ture. Here p must

be an RDS and the fun
tion next() 
an be both a fun
tion or an expli
it dereferen
e su
h as p->next. Their s
heme


an dete
t 
ompli
ated 
ontrol stru
tures. For example, it 
an dete
t RDS traversals within re
ursive fun
tion 
alls
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and allow multiple re
ursive 
alls sites as they are needed in tree traversals. In addition, their algorithm 
an dete
t

traversals through re
ursive data stru
tures of varying types as shown in Fig. 7.

Dete
ting 
ontrol stru
tures of RDS traversals is 
omparable to �nding produ
ers of base addresses in the s
heme

proposed by Roth et al. [12℄. Either s
heme appears to have 
ertain 
ases of �nding base address produ
ers that the

other may not be able to dete
t. For example, Fig. 9 shows a 
ontrol stru
ture supported by the software prefet
her.

The hardware s
heme will not dete
t the dependen
e between produ
er and 
onsumer if the addition of the base

address with the o�set of the next �eld in p is not embedded in the memory load. That is, the 
onsumer instru
tion

template 
annot be spe
i�ed and no 
orrelation between produ
er and 
onsumer 
ould be found. Furthermore, the

size of the PPW is limited and dependen
ies that are far apart may not be dete
ted. The hardware s
heme is also

more likely to provider false mat
hes when a 
orrelation between produ
er and 
onsumer o

urs by 
han
e without

an a
tual relationship existing between the two. On the other hand, the hardware s
heme may be able to dete
t


ertain base address produ
ers that the software s
heme misses be
ause of a programming style that does not mat
h

any 
ontrol stru
tures for RDS traversals re
ognized by the 
ompiler optimization stage in the software s
heme.

while(p) {

p = f(p);

}

Figure 9. Another example 
ontrol stru
ture for an RDS traversal.

As soon as the base address is 
omputed, a prefet
h instru
tion 
an be inserted for the next element. This is shown

on a tree traversal example in Fig. 10. Luk and Mowry [5℄ 
all this greedy prefet
h s
heduling, and it is fun
tionally

very similar to the hardware prefet
her proposed by Roth et al. [12℄. The primary di�eren
e is in the dete
tion

of base address produ
ers as previously dis
ussed and in the pla
ement of prefet
h 
alls. Whereas the hardware

prefet
her will issue prefet
hes almost instantaneously, the software prefet
her will usually issue the prefet
h at the

top of the next loop iteration or fun
tion 
all as done in Fig. 10. The remaining di�eren
es are those that generally

separate hardware and software prefet
hing s
hemes. The hardware s
hemes have a higher hardware 
ost and the

software s
hemes have the additional instru
tion overhead. Also, the te
hnique by Roth et al. [12℄ prefet
hes into

a bu�er whereas Luk and Mowry's s
heme [5℄ prefet
hes dire
tly into the L1 
a
he. This should make the software

s
heme more vulnerable to early prefet
hing, a parti
ular 
on
ern with greedy prefet
h s
heduling, due to the la
k

of prefet
h timing 
ontrol.

Although fun
tionally similar, Luk and Mowry [5℄ motivate their greedy prefet
h s
heduling from a di�erent

perspe
tive than Roth et al. [12℄. A diÆ
ulty for re
ursive prefet
hers is the dependen
ies between su

essive

prefet
hes that make it impossible to overlap prefet
hes, thus limiting the amount that memory laten
ies 
an be

hidden. As mentioned in Se
tion 3.2.3, in order to overlap prefet
hes, p->next->next must be 
omputed without

having to load the intermediate elements of the data stru
ture. While this appears impossible, Luk and Mowry

introdu
ed three software prefet
hing me
hanisms that support this with varying degrees of su

ess. The �rst one is
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f(treeNode *t) { f(treeNode*t) {

treeNode *q; treeNode *q;

prefet
h(t->left);

prefet
h(t->right);

if( test(t->data)) if( test(t->data))

q = t->left; q = t->left;

else else

q = t->right; q = t->right;

if( q!= NULL ) if( q!= NULL )

f(q); f(q);

} }

Figure 10. The left side shows the 
ode before and the right side after insertion of prefet
h 
alls.

the greedy prefet
h s
heduling.

Greedy prefet
hing 
annot overlap memory referen
es for linked list traversals. However, for tree traversals, there


an be some overlap. In parti
ular, in a k-ary tree, up to k prefet
hes 
an be issued in parallel as illustrated by

Fig. 10, assuming that all pointers are lo
ated in one 
a
he line. Contrary to the argument by Roth et al., therefore,

Luk and Mowry found 
onditions under whi
h it 
an be bene�
ial to let prefet
hed data themselves initiate further

prefet
hes.

Figure 11 dupli
ates a �gure from Luk and Mowry's paper, whi
h shows the sequential ordering of prefet
hes on

a binary tree using greedy prefet
hing. The nodes in bold are those 
overed by greedy prefet
hing and result in a

prefet
h hit as long as they are not evi
ted from the 
a
he due to early prefet
hing or 
on
i
ts. Nodes 6, 10, 12, and

14 resulted in 
a
he misses. However, if the prefet
h of node 3 
auses the prefet
hes of nodes 6 and 7, then node 6

would not be missed subsequently. This e�e
t would be diÆ
ult to a
hieve in Luk and Mowry's greedy prefet
her

be
ause initiating prefet
hes from other prefet
hes 
annot be done with their software prefet
her. However, it 
ould

be possible with the prefet
hed proposed by Roth et al.

14
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131211
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Figure 11. Ordering of prefet
hes in greedy prefet
hing using a pre-order traversal of a binary tree. Bold tree nodes

are those that are prefet
hed and should result in a prefet
h hit. All other nodes will be missed on.

18



A remaining question is how to prevent an explosion of prefet
hes that 
an o

ur due to the fanout present in

a tree. Some me
hanism is needed to prevent prefet
hes to be issued beyond a 
ertain depth. There 
an also be

problems with early prefet
hing. For example, node 3 in Fig. 11 would be prefet
hed almost at the beginning of the

tree traversal, but it would not be referen
ed until about half-way through the tree traversal (assuming pre-order

traversal). If the prefet
h bu�er is small, 
han
es may be high that node 3 will be repla
ed before it is referen
ed.

With a la
k of better timing 
ontrol over prefet
hes and the possibility of prefet
hing data that are never ref-

eren
ed, Luk and Mowry found greedy prefet
hing to have a relatively bad prefet
hing a

ura
y. Coverage was

generally good, ex
ept with appli
ations where a larger number of the misses were 
aused by s
alar and array ref-

eren
es. The poor 
overage was an important reason for why roughly one half of the appli
ations had only about a

2% redu
tion in exe
ution time. The other half had redu
tions in exe
ution time from 4% to 45%.

Luk and Mowry proposed two additional prefet
hing te
hniques that are targeted at improving the prefet
hing

a

ura
y over greedy prefet
hing. The �rst is history-pointer prefet
hing that keeps tra
k of the traversal ordering

of an RDS and stores this information with the RDS by adding to it a new pointer. For ea
h node in the RDS,

the history pointer provides the value of p->next->next->next assuming a history depth of three and a linear

traversal of a linked list. It takes a full traversal of the RDS for all history pointers to be initialized. If the traversal

ordering does not 
hange during subsequent traversals, then a prefet
h on the history pointer will e�e
tively break

the dependen
e 
hain and make it possible to prefet
h p->next->next->next without having to visit intermediate

nodes. History pointers 
an be updated on subsequent traversals to a

ommodate slight 
hanges to the traversal

ordering. Drasti
ally di�erent traversal orderings will 
ause the wrong data to be prefet
hed most of the time. With

a depth of three, up to three prefet
hes 
an be pipelined. The 
ost of this approa
h is the time and spa
e required

to maintain the history pointers.

Luk and Mowry only tested the performan
e of history-pointer prefet
hing on an appli
ation that did not 
hange

its tree traversal over the 
ourse of the program exe
ution. Their 
ompiler te
hnique is 
urrently not automated

and must be applied by hand. Under these 
onditions, history-prefet
hing performs signi�
antly better than greedy

prefet
hing. Coverage and a

ura
y improved, but there are still a signi�
ant number of overhead prefet
hes be
ause

data are indis
riminately prefet
hed. The lo
ality analysis of the strided software prefet
her developed by Mowry et

al. [6℄ 
annot as su
h be applied to the re
ursive data stru
ture, making sele
tive prefet
hing diÆ
ult.

The �nal te
hnique is data-linearization prefet
hing. Luk and Mowry demonstrated its potential, but did not seem

to have an automated 
ompiler optimization for this te
hnique. The te
hnique 
annot be applied to all appli
ations.

The basi
 idea is to map the re
ursive data stru
tures in the same sequen
e to memory, in whi
h it will be traversed.

This redu
es the problem to prefet
hing a sequentially a

essed array. There is no solution o�ered for how to handle

di�erent traversal orders. Luk and Mowry optimized the appli
ation to the dominant traversal order. They do not

dis
uss how to handle a

esses to the RDS that are not in a simple forward-traversal order. Compared to greedy

prefet
hing, data-linearization prefet
hing has a lower 
overage on both appli
ations that were tested. This is be
ause
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only the dominant traversal order is optimized. Overhead prefet
hes are, however, removed and exe
ution time is

improved over greedy prefet
hing.

3.3.4. Markov prefet
her

The Markov prefet
her remembers past sequen
es of 
a
he misses [9℄. When it �nds a miss that mat
hes a miss

in a remembered sequen
e, it will issue prefet
hes for the subsequent misses in the sequen
e. This gives Markov

prefet
hing the ability to prefet
h any sequen
e of memory referen
es as long as it has been observed on
e. However,

it also means that the Markov prefet
her 
annot deal well with dynami
 memory referen
e patterns as they 
an

appear in programming languages that frequently allo
ate and deallo
ate memory (e.g., Java, C++, S
heme).

Joseph and Grunwald [9℄ implemented a hardware prefet
her that approximates a Markov model. The main data

stru
ture is a state transition table (STAB) indexed by a miss address that stores a number of prefet
h address

predi
tors (1, 2, 4, and 8 are modeled). This data stru
ture is large. They evaluated their prefet
her with a 1-Mbyte

STAB with a 2-Mbyte L2 
a
he. They 
ompared their performan
e to an ar
hite
ture without prefet
hing, but with

a 4-Mbyte L2 
a
he instead.

During program exe
ution, a history of the past n miss addresses is maintained. When a new miss is en
ountered,

two a
tions take pla
e. First, the oldest miss address in the history list (n misses in the past) is used to index the

STAB and the 
urrent miss is stored there as a new prefet
h address predi
tor. Entries in the STAB are repla
ed

using an LRU s
heme. The parameter n 
an be used to adjust the prefet
h distan
e, and it represents the maximum

overlap of prefet
hes that 
an be a
hieved. Se
ond, the 
urrent miss address is also looked up in the STAB. All

prefet
h address predi
tors found in this table entry are sent to the prefet
h request queue. Ea
h prefet
h address

predi
tor has a di�erent priority based on its position in the STAB. Lower priority requests may be dis
arded from

the prefet
h request queue if it be
omes full. The Markov prefet
her uses a prefet
h bu�er to store re
ent prefet
hes.

When an L1 
a
he miss hits in the prefet
h bu�er, the data will be 
opied to the L1 
a
he, but will not be removed

from the prefet
h bu�er. Instead, the data in the prefet
h bu�er are moved to its head. The prefet
h bu�er is

managed like a FIFO and prefet
hed data arriving from the L2 
a
he will repla
e the least re
ently used entry.

Keeping data that are transferred to the L1 
a
he in the prefet
h bu�er should have an e�e
t similar to a vi
tim


a
he [10℄. If the data are evi
ted soon from the L1 
a
he, they 
an be repeatedly restored from the prefet
h bu�er.

Unfortunately, no evaluation was done to show if this is more e�e
tive than Jouppi's organization, where data that

are 
opied to the L1 
a
he are also removed from the stream bu�er.

The number of prefet
h address predi
tors modeled greatly a�e
ts 
overage and a

ura
y. A

ura
y be
omes

worse qui
kly as the number of prefet
h address predi
tors is in
reased, whereas 
overage in
reases steadily. The


overage of the Markov prefet
her obtained on their ben
hmark appli
ations was about 50% when using two or four

prefet
h address predi
tors.

Perfe
t 
overage is diÆ
ult to a
hieve with the Markov prefet
her be
ause a sequen
e of misses must be seen �rst

before it 
an be predi
ted. This is a disadvantage that most 
onse
utive, strided, and re
ursive prefet
hers do not
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have.

3.4. Hybrid Prefet
hing Methods

Amdahl's law [1℄ tells us two limitations of 
a
he prefet
hing. First, appli
ation speedup is limited by the portion of

exe
ution time 
aused by 
a
he miss stalls. Moreover, for pure prefet
hing methods, only those 
a
he misses that are


overed by the prefet
h domain 
an be hidden. This further limits potential speedup. Clearly, the �rst limitation is

not a limitation really, but the reality of why prefet
hing has be
ome a performan
e improving te
hnique in the �rst

pla
e. The se
ond limitation, however, 
learly limits all pure prefet
hing te
hniques. It would be quite unsettling for

a pro
essor ar
hite
t to have to 
hoose between a stride prefet
her or re
ursive prefet
her, knowing very well that

what really is needed is both designs.

For example, a stride prefet
her will not be able to prefet
h misses 
aused by linked memory referen
e patterns,

unless the linked data stru
ture is laid out sequentially in memory, in order of the memory a

esses. What is needed

are te
hniques that are e�e
tive for all 
a
he misses or methods for 
ombining pure prefet
hing te
hniques. The

Markov prefet
her is an example of the �rst 
lass, but be
ause Markov prefet
hers must learn, they are generally

less e�e
tive at prefet
hing strided and linked memory referen
e patterns than the other pure prefet
hing te
hniques.

We 
all the se
ond 
lass the hybrid prefet
hers. In this se
tion we will give examples of and des
ribe te
hniques for

building hybrid prefet
hers.

3.4.1. Instru
tion Prefet
hers

Instru
tion miss rates are traditional thought of as less important to pro
essor performan
e than data miss rates.

Re
ent resear
h by Maynard et al., however, shows that they may be just as important or maybe even more important

than data referen
es [19℄. While memory referen
es of instru
tions 
an be treated just as data referen
es from a

prefet
hing perspe
tive, they exhibit a more predi
table a

ess pattern that 
an be exploited. Fortunately, many L1


a
hes are separated between data and instru
tions making it easier to in
orporate di�erent prefet
h te
hniques for

data and instru
tions.

Instru
tions are generally fet
hed from memory using a stride-1 memory a

ess pattern. A 
onse
utive prefet
her

would work very well. The trouble o

urs, however, at bran
hes, where the instru
tion sequen
e may 
ontinue

at a di�erent lo
ation. Luk and Mowry introdu
ed a ni
e example of a hybrid prefet
her that is designed to

prefet
h instru
tions 
onse
utively, but also handles bran
hes well [20℄. Their 
ooperative prefet
her uses two separate

prefet
hers.

The �rst prefet
her is a next-N-line hardware prefet
her [17℄ whi
h is similar to OBL, but instead of fet
hing the

next 
a
he line, it fet
hes the next N 
a
he lines (N being typi
ally in the range of 2 to 8). The next-N-line prefet
her

may issue useless prefet
hes when it 
rosses bran
h points. To avoid useless prefet
hes, Luk and Mowry designed a

prefet
h �lter in the L2 
a
he that re
ognizes when prefet
hed 
a
he lines are not being referen
ed. The prefet
h

�lter will stop prefet
hing at those 
a
he lines in future a

esses.
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The se
ond prefet
her is a software prefet
her. The 
ompiler will insert prefet
h instru
tions ahead of bran
h

points if they are not 
overed by next-N-line prefet
hing and if they are estimated to 
ause 
a
he misses [21℄.

Luk and Mowry 
ompare their hybrid te
hnique to next-N-line prefet
hing on its own and Markov prefet
hing.

Next-N-line prefet
hing performs well on sequential instru
tion sequen
es, whereas Markov prefet
hing 
an handle

sequential sequen
es and bran
h points well. Markov prefet
hing, however, must learn a sequen
e before it 
an

prefet
h it. On the ben
hmark appli
ations, 
ooperative prefet
hing generally redu
es the exe
ution time by about

10%. The better of next-N-line prefet
hing and Markov prefet
hing improve exe
ution time by only about 5%.

3.4.2. Data Prefet
hers

Mehrotra and Harrison 
ame up with an idea of extending the stride predi
tion table to also be able to dete
t linked

referen
es [22℄. We dis
ussed their prefet
her in Se
tion 3.3.3. While the linked memory referen
e dete
tion s
heme

is not as general as those proposed by Roth et al. and Luk et al., it is simple and integrates stride-n and linked

prefet
hing with little overhead. Unfortunately there are not enough results available to evaluate the e�e
tiveness of

their te
hnique [15℄.

Joseph and Grunwald introdu
e a more general approa
h of 
reating hybrid prefet
hers [2℄. The idea is to use

multiple unmodi�ed pure hardware prefet
hers. They de�ne two modes of operation, serial and parallel. In parallel

operation, all prefet
hers get a

ess to the system resour
es and issue prefet
hes independently from the other

prefet
hers. The only modi�
ation made is to prevent prefet
hers from issuing identi
al prefet
hes to the memory

system. In serial operation, the most a

urate prefet
her is allowed to issue a prefet
h �rst. If it 
annot issue

a prefet
h, then the next a

urate prefet
her is queried. Prefet
her a

ura
y is determined stati
ally and Joseph

and Grunwald 
onsider stride prefet
hers to be most a

urate, then Markov prefet
hers, and �nally 
onse
utive

prefet
hers.

It appears that a little more work is needed to e�e
tively use a serial hybrid prefet
her. First, all pure prefet
hers

should be able to have a

ess to all memory referen
es and 
a
he misses (and any other information they need) to be

able to build their database 
ontents. Joseph and Grunwald do not des
ribe if they use this te
hnique or perhaps some

other method. Furthermore, it must be 
learly de�ned what it means that a prefet
her is able to issue a prefet
h.

For a stride prefet
her this 
an be if there is a hit in the SPT or RPT with the state indi
ating that a stride-n

referen
e pattern was found. For a re
ursive prefet
her, �nding an a
tual base address produ
er 
an 
onstitute that

it is able to make a prefet
h. For Markov prefet
hing a hit in the STAB gives little 
ertainty about the a

ura
y of

the prefet
h address predi
tors. When used in 
onjun
tion with a hybrid prefet
hing s
heme, it may be bene�
ial

to use only the most likely prefet
h address predi
tor(s) instead of all of them. Finally, 
onse
utive prefet
hers, will

always 
laim to have a prefet
h address. Clearly there is a problem if multiple su
h prefet
hing te
hniques are put in

series (only the �rst would ever issue a prefet
h). In addition, with the use of a stride prefet
her, there is 
ertainly

some question about the bene�t of a 
onse
utive prefet
her.
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Joseph and Grunwald found a remarkable improvement in prefet
h 
overage when using parallel and serial hybrid

prefet
hers 
ompared to stride, Markov, and 
onse
utive prefet
hers on their own. Unfortunately, the parallel

prefet
her is also highly ina

urate. This is perhaps not su
h a surprising result. The serial prefet
her had mixed

results with prefet
h a

ura
ies ranging from nearly as bad as the parallel prefet
her to better prefet
h a

ura
ies

than Markov and 
onse
utive prefet
hers alone.

4. MULTIMEDIA PROCESSING

Multimedia appli
ations have be
ome an important workload on modern personal 
omputers and various embedded

appli
ations. To give some examples, multimedia appli
ations fall into 
ategories su
h as graphi
al user environments,

modern television and 
ommuni
ation systems, 
omputer games, and medi
al visualization and diagnosis systems.

We will restri
t our dis
ussion mostly to the image pro
essing domain, be
ause it is an area the author of this paper

is more familiar with and be
ause other work in this area tends to fo
us on image pro
essing, too. Many basi
 image

pro
essing operations, su
h as 
onvolution �lters and dis
rete 
osine transformations, are also widely used in other

areas of multimedia pro
essing (e.g., audio pro
essing), therefore, our dis
ussion may apply equally well to those

areas, too.

We will look at two basi
 
lasses of multimedia ar
hite
tures, the general purpose pro
essors with multimedia

extensions and the dedi
ated mediapro
essors. While there are also hardwired ar
hite
tures that 
an perform a

parti
ular multimedia pro
essing task, these systems are not programmable and 
ontain spe
ial purpose memory

systems.

General purpose pro
essors with multimedia extensions and dedi
ated mediapro
essors both make use of the

multimedia fun
tional unit. Two basi
 
hara
teristi
s of multimedia pro
essing has 
reated the need for a new

fun
tional unit. First, multimedia pro
essing 
ontains a large amount of data-level parallelism. For example, in

pixel-wise image addition, in theory, all pixels-pairs of the two sour
e images 
ould be added in parallel to 
reate the

destination image. Se
ond, for many multimedia appli
ations, a pre
ision of 8 or 16 bits is suÆ
ient. The multimedia

fun
tional unit exploits the parallelism by bundling multiple data elements into a wide ma
hine word and operating

on the data elements in parallel in the style of single instru
tion, single data (SIMD) pro
essing. Lee refers to this

type of ar
hite
ture as the mi
roSIMD ar
hite
ture and argues that it is the most 
ost-e�e
tive parallel ar
hite
ture


hoi
e for multimedia pro
essing [23℄.

While multimedia fun
tional units appear very e�e
tive, there is less 
on�den
e in the memory system. Generally,

the memory system remains un
hanged when a general purpose pro
essor is extended for multimedia pro
essing.

Mediapro
essors take a somewhat di�erent approa
h that we will des
ribe later. First we will motivate why 
a
hes,

a key 
omponent in the memory system of a general purpose pro
essor, are not a perfe
t mat
h for multimedia

pro
essing. Taking the image addition fun
tion as an example, we �nd that the memory a

ess pattern has no

temporal lo
ality, but an abundan
e of spatial lo
ality. Little temporal lo
ality is quite 
ommon in multimedia

fun
tions be
ause the input data is often needed for only a brief period of time. This implies that during the
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program exe
ution, a large amount of data is loaded into the 
a
he. While a 
a
he exploits the spatial lo
ality quite

well, �lling it with multimedia data that will never be referen
ed again, does not make eÆ
ient use of the 
a
he

spa
e. In addition, other useful data, su
h as lo
al variables and 
onstant data, might be evi
ted from the 
a
he by

the multimedia data.

4.1. General Purpose Pro
essors with Multimedia Extensions

Most high-performan
e general purpose pro
essors are extended for multimedia pro
essing or plans to do so have

been announ
ed (e.g., 3DNow! [24℄, AltiVe
 [25℄, MAX-2 [26℄, MMX [27℄, VIS [28℄). Extending a general purpose

pro
essor for multimedia pro
essing means that one or more multimedia fun
tional units have been added to the

pro
essor. The multimedia fun
tional units may operate on the general purpose registers, 
oating point registers,

or their own set of multimedia registers. The memory hierar
hy generally remains un
hanged. Multimedia data is

loaded to the pro
essor with memory referen
e instru
tions and it passes through the same memory hierar
hy as all

other memory referen
es.

E�e
tive use of multimedia fun
tion units is diÆ
ult be
ause 
urrent 
ompilers for general purpose pro
essors do

not automati
ally use multimedia fun
tion units. The programmer 
an rewrite the program to 
all spe
ial assembly

libraries that utilize the multimedia fun
tion units. For best performan
e improvements, however, parts of the

program must be rewritten in assembly to make expli
it use of the multimedia instru
tions [29℄.

A study by Ranganathan et al. showed that many 
ommon image and video pro
essing kernels exhibit 
a
he

miss stall times equal to over half of the exe
ution time on general purpose pro
essors enhan
ed with multimedia

extensions [30℄. Ca
he prefet
hing designed to hide those 
a
he misses, 
an therefore provide quite signi�
ant

improvements in exe
ution time.

4.2. Mediapro
essors

Dedi
ated mediapro
essors are usually organized as VLIW pro
essors [31℄. Compared to a supers
alar design, this

redu
es the hardware 
omplexity be
ause instru
tion s
heduling is shifted from the hardware to the 
ompiler. Re-

du
ed hardware 
omplexity translates to redu
ed 
ost and power 
onsumption. Redu
ed 
ost and power 
onsumption

is important for mediapro
essors be
ause they are predominantly targeted at the embedded market instead of the

personal 
omputer market. In addition, mediapro
essors with over twenty fun
tional units are not un
ommon [31℄,

making s
heduling a parti
ularly 
omplex task. While mediapro
essors also 
ontain traditional integer fun
tion units,

they usually 
ontain a larger per
entage of multimedia fun
tion units than multimedia-extended general purpose pro-


essors. Mediapro
essors also typi
ally support multiple memory operations per 
y
le and, despite their low 
ost,

have relatively large on-
hip memories.

Some mediapro
essors use the same memory hierar
hy that 
an be found on general purpose pro
essors, although

typi
ally they 
an a�ord only a single 
a
he level. Other mediapro
essors repla
e the 
a
hes with addressable on-
hip

memories. The most important distinguishing fa
tor, however, is the addition of a dire
t memory a

ess (DMA)

24



engine that 
an be used for s
heduling data transfers in parallel with 
omputation. A double bu�ered transfer pattern

is a 
ommon form to program the DMA engines [32℄. Here, the next blo
k of the data input is transfered to one

bu�er in the on-
hip memory, while the 
urrent blo
k, stored in a se
ond bu�er, 
an be used for the 
omputation.

When pro
essing of the 
urrent blo
k is 
ompleted, the bu�ers are swit
hed. This te
hnique for overlapping memory

transfers and 
omputation is very e�e
tive for hiding memory laten
y and eÆ
iently using the on-
hip memory area.

Double bu�ering 
an also be used by mediapro
essors that have multi-way asso
iative on-
hip 
a
hes. A spe
ial

hardware feature allows repla
ements to be disabled for a se
tion of a 
a
he set. The programmer maps the bu�ers

to these areas of the 
a
he and programs the DMA engine to transfer data dire
tly into the 
a
he. The remaining


a
he area 
ontinues to be available for 
a
hing of lo
al variables and other data.

So far, we have given an argument for why 
a
he prefet
hing is unne
essary in mediapro
essors. The use of

DMA engines already is very e�e
tive in hiding memory laten
y. The problem of DMA engines is programmability.

Programming DMA engines is quite 
hallenging, be
ause the programmer must write programs for both the 
om-

putation and the data-
ow and properly syn
hronize them. Moreover, su
h appli
ations are not at all portable to

other mediapro
essors and neither are trained programmers for one mediapro
essors easily moved to a proje
t using

a di�erent mediapro
essor. This makes it diÆ
ult for 
ompanies to develop produ
ts using mediapro
essors. There-

fore, instead of performan
e improvements, 
a
he prefet
hing for mediapro
essors promises to redu
e programming


omplexity by making it unne
essary to write a data-
ow program.

Ca
he prefet
hing on multimedia extended general purpose pro
essors and mediapro
essors has the primary


hallenge of properly dete
ting and e�e
tively prefet
hing the memory referen
e patterns exhibited by multimedia

appli
ations. This requirement is no di�erent than what 
a
he prefet
hing is expe
ted to do on general purpose

pro
essors. A se
ondary fo
us is the e�e
tive utilization of the available on-
hip memory area that is more 
hallenging

due to the low temporal lo
ality in some multimedia appli
ations.

4.3. Data Prefet
hing

The �rst observation is that re
ursive prefet
hers do not seem well suited for a typi
al multimedia memory referen
e

pattern. An important memory referen
e pattern in multimedia pro
essing is that generated by lookup tables.

Lookup tables are used, for example, in generalized warping where the position of ea
h pixel in an image is 
hanged

based on the result of a table lookup of the pixel's 
oordinates. Lookup tables are also popular for 
omputing

trans
endental fun
tions. While table lookups do have memory referen
e pairs that fall into the produ
er and


onsumer 
ategory of the re
ursive prefet
hers, there are no 
hains of produ
ers and 
onsumers. Also the number of

produ
ers and 
onsumers is larger and their separation short. Overall, this makes prefet
hing hard to apply. While it

may of 
ourse be possible that a linked list or tree data stru
ture exists in some form in a multimedia appli
ation, we

are not aware of any appli
ation group where su
h a

esses 
ould be 
ategorized as a dominant multimedia referen
e

pattern.
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The large o�-
hip memory requirements of a Markov prefet
her make it probably infeasible for today's mediapro-


essors where 
ost is a 
riti
al fa
tor. However, memory size may be less of an issue for mediapro
essors of the future.

We are not aware of any studies that have evaluated a Markov prefet
her on typi
al multimedia appli
ations. When

table lookups are involved the sequen
e of misses should be quite random and may not be e�e
tively prefet
hed by a

Markov prefet
her. On the other hand, data-
ow in multimedia appli
ations is otherwise typi
ally quite stati
 whi
h

may also translate into a repeated sequen
e of 
a
he misses over the 
ourse of the program exe
ution. In su
h 
ases

Markov prefet
hing 
ould be quite e�e
tive.

The only prefet
hers that have been evaluated in the 
ontext of multimedia appli
ations are the 
onse
utive and

stride prefet
hers. Zu
ker et al. evaluate the e�e
tiveness of several prefet
hing te
hniques on MPEG en
oding and

de
oding appli
ations running on a general purpose pro
essor [33℄. They found that a stream bu�er 
ould remove

on the order of 50% of the 
a
he misses. A stride prefet
her was able to remove around 80% of the misses for 
a
he

sizes larger than 16 kbyte, however, with smaller 
a
he sizes the stride prefet
her was no better than the 
onse
utive

prefet
her. The problem they observed is that useless prefet
hes were removing too mu
h useful data from the 
a
he.

When they modi�ed the stride prefet
her to use a prefet
h bu�er, this problem went away. Zu
ker et al. proposed

to use a prefet
h bu�er to dire
tly supply data to the fun
tional units, without also 
opying it to the L1 
a
he. This

was supposed to over
ome the 
a
he polluting e�e
t that 
an be observed in multimedia appli
ations. The number

of 
a
he misses removed did not 
hange mu
h 
ompared to the regular stride prefet
her. Unfortunately, their results

do not show 
omparisons in exe
ution time and quantitative results of the prefet
h a

ura
y to judge other possible

e�e
ts of not 
opying prefet
hed data to the L1 
a
he.

Ranganathan et al. [30℄ evaluate the use of the software prefet
hing te
hnique proposed by Mowry et al [6℄,

although they insert prefet
hing instru
tions by hand and perform their own analysis for when to insert them. Here

the simulation environment is a multimedia enhan
ed general purpose pro
essor. They found redu
tions in exe
ution

time on image pro
essing appli
ations of 50% in many 
ases, eliminating most of the 
a
he miss stall times. On

the other hand, JPEG and MPEG 
oding appli
ations showed only little bene�t be
ause for these appli
ations only

a small 
omponent of exe
ution time was spent waiting on L1 
a
he misses. This illustrates a short
oming of the

study by Zu
ker et al. [33℄ who only model the memory laten
y, but not the instru
tion exe
ution. In 
omparison,

Ranganathan et al. model an out-of-order pro
essor whi
h shows that for these appli
ations memory laten
y does

not yet impa
t performan
e severely.

5. CONCLUSIONS AND FUTURE WORK

To improve performan
e from prefet
hing in a broad 
lass of appli
ations, a hybrid prefet
hing s
heme must be

employed. We have reviewed some prefet
hing te
hniques with a 
lever design that 
ombine within one prefet
hing

te
hnique the ability to prefet
h a wide variety of memory referen
e patterns. We also reviewed the te
hnique by

Joseph and Grunwald that des
ribes in a general way how to 
ombine two di�erent hybrid prefet
hing te
hniques.

Most promising here appears the serial prefet
hing method, where prefet
hers are pla
ed in series with the most
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a

urate �rst. An interesting question to answer is how well a stride prefet
her and re
ursive prefet
her would

perform together and furthermore what kind of 
a
he misses would remain. Perhaps some other simple memory

referen
e pattern emerges that 
ould be exploited by yet another pure prefet
her. Important, too, are the e�e
tive

hardware (or software) integration of multiple prefet
h methods of whi
h Mehrotra and Harrison's prefet
her is a

ni
e example (although their performan
e impa
t is unproven).

Apart from the hybrid prefet
hers, the performan
e of the pure prefet
hing te
hniques remains important be
ause

their performan
e dire
tly a�e
ts the performan
e of the hybrid prefet
hers. The stride prefet
hers are most mature

with a

urate s
hemes to dete
t stride-n referen
e patters and sophisti
ated te
hniques to a

urately time prefet
hes.

Linked prefet
hers are fairly a

urate, too, although there is a la
k of good prefet
h timing, making the prefet
h

bu�er a popular 
hoi
e. In parti
ular, the inability to overlap prefet
hes may limit how far 
a
he misses 
an be

hidden on supers
alar pro
essors. We illustrated that there is a potential for the prefet
her by Roth et al. to be

more e�e
tive with tree data stru
tures than their 
urrent design permits.

Additional prefet
h te
hniques may still be ne
essary to 
over memory referen
e patterns that do not fall into

the stride-n and linked 
ategory. Here, the Markov prefet
her may �ll in, although its hardware 
ost makes it an

expensive 
hoi
e and its slow rea
tion time and diÆ
ulty with dynami
 memory a

ess patterns may limit it. Also

important to evaluate at this point is if the point of diminishing return has not already been rea
hed. If 50% of

exe
ution time is due to 
a
he miss stalls and 90% of this penalty has been hidden with stride and linked prefet
hers,

then additional improvements in exe
ution time are very hard to a
hieve.

Finally, prefet
hing on mediapro
essors 
ompetes with the 
urrent pra
ti
e of writing data-
ow programs for

DMA engines and may be an important feature for redu
ing programmer 
omplexity. Either method 
an improve

performan
e signi�
antly, however, prefet
hing is 
urrently not explored well on mediapro
essors. The most promising

prefet
hing te
hnique for multimedia appli
ations is the stride prefet
her. More work is needed in evaluating how

well these work on multimedia appli
ations, though. Little temporal lo
ality in multimedia appli
ations may make

it bene�
ial to develop prefet
hing te
hniques that 
an isolate prefet
hed multimedia data into a separate on-
hip

memory region to prevent 
a
he pollution.
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