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ABSTRACT

Cahe prefething is a memory lateny hiding tehnique that attempts to bring data to the ahes before the

ourrene of a miss. A entral aspet of all ahe prefething tehniques is their ability to detet and predit

partiular memory referene patterns. In this paper we will introdue and ompare how this is done for eah of

the spei� memory referene patterns that have been identi�ed. Beause most appliations ontain many di�erent

memory referene patterns, we will also disuss how prefething tehniques an be ombined into a mehanism to

deal with a larger number of memory referene patterns. Finally, we will disuss how appliable the urrently used

prefething tehniques are for a multimedia proessing system.
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1. INTRODUCTION

The gap between memory and proessor speed is a widely known phenomena to omputer arhitets. It exists not

beause we are unable to build memories fast enough to keep up with the proessor, but beause we annot make

suh memories big enough to hold the working-set of typial appliations. This is due to the inverse relationship

between the size and aess time of omputer memories [1℄.

The memory hierarhy of register �le, ahes, main memory, and disks exploits the fats that smaller memories

are faster and most appliations have spatial and temporal loality [1℄. Temporal loality is a ritial omponent,

beause if the memory aess pattern were randomly distributed, then most referenes would go to the larger, slower

memories and little would be gained from the fast memories. Temporal loality allows us to plae data in suh a way

that in many appliations the vast majority of the referenes go to the faster, yet smaller, memories. Data plaement

is a key omponent in ahieving this goal.

The intelligent movement of data to faster memories (loser to funtional units) is more important than data

movement to slower memories. When a funtional unit operates on some data that is not available in a fast memory,

then this operation must be delayed until the data has been transfered from a slow memory. If this happens frequently,



funtional units may beome underutilized due to the unavailability of data. In omparison. data that must be moved

to slower memories an usually be stored in a write bu�er and sheduled for write-bak at a later time without the

need to omplete to operation immediately.

Without ahe prefething, data is transfered from the lower level of the memory hierarhy to a register (RISC)

or funtional unit (CISC) by the use of an expliit memory instrution. The omputation of the memory address

and the sheduling of the memory instrution is limited by ontrol-ow and data-ow dependenies. Beause of this,

data may not be available to the funtional units when it is needed.

Cahe prefething is a mehanism to speulatively move data to higher levels in the ahe hierarhy in antiipation

of instrutions that require this data. Prefething an be performed on some arhitetures by issuing load instrutions

to a non-existent register, for example register zero in arhitetures where this register is hardwired to zero. In

this ase, prefething is ontrolled by the ompiler and is alled software prefething. Hardware prefething is

the alternative ase, where a hardware ontroller generates prefething requests from information it an obtain at

run-time (e.g., memory referene and ahe miss addresses). Generally, software prefethers use ompile-time and

pro�ling information while hardware prefethers use run-time information. Both have their advantages and both an

be very e�etive.

Cahe prefething redues the ahe miss rate beause it eliminates the demand fething of ahe lines in the

ahe hierarhy [1℄. It is also alled a lateny hiding tehnique beause it attempts to hide the long-lateny transfers

from lower levels to higher levels of the memory hierarhy behind periods of time during whih the proessor exeutes

instrutions.

The remainder of the paper is organized as follows. In Setion 2 we will disuss the metris used for evaluating

prefething tehniques. Setion 3 ompares the di�erent prefething tehniques, forming the main part of this paper.

Before onluding, we will disuss in Setion 4 how prefething applies to the domain of multimedia proessing.

2. METRICS

Prefething aims to redue the average memory lateny and thus derease the exeution time. Apart from exeution

time, a number of other metris have been used in disussing the e�etiveness of the various prefething tehniques.

In this setion, we will introdue and disuss these metris to de�ne a onsistent voabulary for the remainder of

the paper. We will assume a uniproessor environment for this paper, although ahe prefething an ertainly be

applied to multiproessors, too.

2.1. Coverage and Auray

Joseph and Grunwald [2℄ de�ne prefething overage as \the fration of miss referenes that are removed by prefeth-

ing" and auray as \the fration of prefethes that are useful." For our disussion, we will assume a useful prefeth

to ontain data that the proessor referenes at least one before it is replaed. The de�nition for overage is intuitive,

but as we will show, it is not the only de�nition used. First, we will need to de�ne some terminology though.
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One plae to store prefethed data is the L1 ahe [3{8℄. However, when the prefeth auray (and timeliness)

is not perfet, then storing prefethed data in the L1 ahe risks replaement of useful data with useless data. An

alternative approah stores prefethed data in a prefeth bu�er [9{12℄. On a hit in the prefeth bu�er, data is

transfered from prefeth bu�er to L1 ahe. If this never happens, a replaement sheme will remove the useless data

from the prefeth bu�er eventually. With good prefeth timing (see Setion 2.2), prefethed data is transfered soon

into the L1 ahe and thus a small prefeth bu�er is typially suÆient.

Let M

np

= m

1

;m

2

; :::;m

k

be the sequene of miss addresses exhibited by a partiular appliation running on an

arhiteture without prefeth mehanism. In an arhiteture with prefeth bu�ers, suh as the Markov prefether

by Joseph and Grunwald [9℄, some of the misses in M

np

will be servied by the prefeth bu�er and therefore appear

to be fully hidden to the proessor.

1

When removing the hidden L1 ahe misses from M

np

, we arrive at M

pb

, the

sequene of miss addresses of our appliation running on the arhiteture with prefething to a bu�er.

Let us onsider M

p

, the sequene of miss addresses with an arhiteture that prefethes diretly into the L1

ahe. It is now possible to prefeth useless data into the L1 ahe whih may, depending on assoiativity and

replaement sheme of the L1 ahe, introdue several new misses that were not present in M

np

. In fat, with a

pseudo-random replaement sheme, there may be little resemblane between M

p

and M

np

. To line them up and be

able to determine the misses that were removed and those that were added, we need to assoiate them with the atual

sequene of memory referene addresses (whih inludes ahe hits and ahe misses). This is a omputationally

expensive task beause the number of memory referenes an be quite large. Instead of storing the atual memory

referenes, the non-prefething and prefething simulation ould also be run in parallel. Usually for these prefething

tehniques, however, overage is instead de�ned only in terms of the prefething simulation, thereby avoiding the

need to orrelate misses from non-prefething and prefething simulations.

Before introduing the alternate de�nition of overage, we will need to de�ne some terms. Let m = m

late

+

m

early1

+m

early2

+m

nopf

be the total number of misses with its onstituents de�ned as follows:

m

late

: The number of L1 ahe misses for whih a prefeth request has already been issued, but the data has not

yet arrived at the ahe or bu�er. A redued miss time is assoiated with these misses.

m

early1

: The number of L1 ahe misses on data that was prefethed into the L1 ahe or bu�er, but replaed before

being used.

m

early2

: The number of L1 ahe misses on data that was replaed by a prefeth, but only ounted when the

prefethed data itself has not been aessed at the time of the ahe miss. These misses are aused by early

prefething and an only our when prefething diretly into the L1 ahe.

1

In pratie, the prefeth bu�er and L1 ahe are heked in parallel to ensure that an L1 miss and prefeth bu�er hit will be servied

just as fast as an L1 hit.
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m

nopf

: The number of all remaining L1 ahe misses. These are old misses and those replaement misses that are

not ounted by m

early1

and m

early2

.

Let p = p

overhead

+ p

useless

+ p

early

+ p

late

+ p

hit

be the total number of prefeth addresses generated by a prefeth

algorithm. The number p onsists of these quantities:

p

overhead

: The number of prefeth addresses that are found to be already in the L1 ahe or bu�er and an therefore

be disarded. Mowry et al. label these prefethes as unneessary [6℄. These are of partiular onern to software

prefethers beause issue slots are wasted.

p

useless

: The number of prefeth addresses that are loaded into the L1 ahe or bu�er and then fall into one of

these two lasses. 1) Throughout the program exeution the address is not referened. The prefethed data

may eventually be replaed from the ahe or bu�er. 2) The prefethed data is never referened, eventually

replaed, and then prefethed again. The subsequene prefeth itself may also be useless or fall into some other

ategory.

p

early

= m

early1

: The number of prefeth addresses that are loaded into the L1 ahe or bu�er, then replaed, and

�nally missed on.

p

late

= m

late

: The number of prefeth addresses that are referened by the proessor before the data has been

stored in the ahe or a bu�er.

p

hit

: All other prefeth addresses. These are exatly those that are prefethed into the L1 ahe and subsequently

referened with an L1 ahe hit. Note that a prefeth ounted as p

hit

may still be an early prefeth in the sense

that it may have replaed some data that was referened before the prefethed data was needed. This an only

happen when the ahe is at least two-way assoiative. The resultant miss would be ounted by m

early2

.

We an now de�ne the prefeth overage like so:

Coverage

Joseph

=

p

hit

p

hit

+m

late

+m

early1

+m

early2

+m

nopf

For prefething methods that utilize a prefeth bu�er, this de�nition is exatly the same as the one by Joseph and

Grunwald sine p

hit

equals the miss referenes removed by prefething and the denominator of the equation equals

the number of misses of the base arhiteture without prefething.

2

For simulations of arhitetures that prefeth

into the L1 ahe, this de�nition of overage is relatively easy to ompute beause it does not attempt to orrelate

partiular misses of a base arhiteture to misses of the prefething arhiteture.

Mowry et al. use a di�erent de�nition of overage [5, 6℄:

2

Remember that m

early2

equals zero when prefething into a bu�er.
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Coverage

Luk

=

p

hit

+m

late

+m

early1

p

hit

+m

late

+m

early1

+m

early2

+m

nopf

In this de�nition, m

early1

and m

late

misses are ounted as if they are a suessful prefeth. The idea is that

the addresses were omputed aurately, but that the timing was wrong. There seems to be disagreement, whether

overage should be sensitive to the prefeth timing or not. We also observed that a late miss is sometimes ounted

as a frational miss, based on the fration of its ompletion time relative to the full miss lateny [7℄.

When prefething into the L1 ahe (i.e. no prefeth bu�er), the equation for overage has one shortoming. The

misses in m

early2

are those misses that were introdued as a side-e�et of prefething. If this happens frequently,

then the denominator of the overage equation is inreased and hene overage dereases. Poor prefeth timing and

poor prefeth auray an therefore redue the numerial value of overage, even though overage ould be quite

good in the intuitive sense (i.e. the removal of misses only). We are not aware of any prefething results that use a

overage de�nition whih exludes the m

early2

misses.

Counting the quantities for m

early1

, m

early2

and p

useless

an add a signi�ant amount of omplexity to the simu-

lation ode. For prefething into the L1 ahe (a similar tehnique works for prefething into a bu�er, although here

only m

early1

and p

useless

are ever non-zero), we must use a data struture to remember, for eah ahe line, all the

prefethed ahe lines that were replaed there. The other quantities an be omputed with less overhead.

Finally, we an also give an equation for auray:

Auray =

p

late

+ p

hit

p

overhead

+ p

useless

+ p

early

+ p

late

+ p

hit

Here, a late prefeth is still ounted as useful. Coverage and auray are sometimes inversely related to eah

other. Typially, overage an be improved by more aggressive speulation on the prefething addresses whih in

turn an redue auray. This is illustrated graphially very niely in Figure 5 of Joseph and Grunwald's paper [9℄.

2.2. Timeliness

The timeliness of prefething requests is not a preisely de�ned numeri value. A perfetly timed prefething request

will omplete shortly before the data is needed by an instrution. The perfet time for a prefeth to issue is not an

instane in time, but a range in whih no negative e�ets are inurred. This implies that we an have two other

ases, early and late prefething.

An early prefeth ours when prefethed data arrives long before it is needed. This an replae data that is

going to be referened before the prefethed data. The proessor will inur a miss that will be ounted as part of

m

early2

. Furthermore, if the assoiativity of the ahe is small, the prefethed data itself may be replaed before it

is referened. A subsequent miss on the data would be ounted as m

early1

. Early prefething an therefore inrease

the number of ahe misses and also bus traÆ.
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A late prefeth ours when data has been prefethed, but it arrives after it is needed by the proessor. Late

prefethes do not fully hide a ahe miss, but they do provide some bene�t by reduing the ahe miss time. They

are ounted by m

late

.

To avoid the negative impat of early and late prefething, some prefething algorithms inorporate methods for

ontrolling the time when a prefeth request is issued. Good timing, however, is diÆult to ahieve.

2.3. Load Lateny

The average load lateny is used by Roth et al. [12℄ to show the bene�t of prefething ompared to a base arhiteture

without prefething. It is similar to omparing miss rates, however, it properly measures the redued miss lateny of

late misses. It an also expose exessive prefething within a partiular memory system. With exessive prefething,

the bus bandwidth an beome a bottlenek and miss latenies an inrease. This requires aurate modeling of the

memory bus. Exessive prefething an slow down both ahe hits and ahe misses if aess to ahe tags is bloked

frequently by the prefeth engine. Some prefeth tehniques will therefore only use the tag memories when they are

idle and will only issue prefethes when the memory bus is not used.

2.4. Bus Bandwidth

Prefething inreases the utilized bus bandwidth when auray is not perfet. Sine bus bandwidth is generally a

valuable resoure that an limit performane, bus bandwidth inreases due to prefething are frequently measured [5,

7, 12℄.

Another aspet of bus bandwidth is that it is diÆult to improve performane with prefething for appliations

that already fully utilize a proessor's memory bandwidth. Prefething only hides ahe misses, but does not eliminate

memory transfers. While reordering of memory aesses an improve the available bandwidth (e.g., by exploiting

page mode aesses or ahes in lower levels of the hierarhy), these e�ets have not been studied, let alone be

exploited, by ahe prefething mehanisms.

Bus bandwidth an therefore be used for omputing an upper-bound of performane improvement of a prefething

tehnique. Performane an only inrease until memory bandwidth is fully utilized. An alternate upper-bound for

ahievable performane improvement of prefething is to assume a 0% ahe miss rate [7℄. Due to the fat that

prefething does not redue bus bandwidth, the latter bound an be less aurate (i.e. lower) when bus bandwidth

is lose to fully utilized. However, assuming a 0% ahe miss rate for omputing an upper-bound an provide a more

aurate result when the funtional units are lose to fully utilized.

3. PREFETCHING TECHNIQUES

There are several di�erent prefething tehniques. As was already disussed, some prefeth into a L1 ahe while

others prefeth into separate bu�ers. Some prefething tehniques use the ompiler to insert prefeth instrutions into

the ode while others rely on hardware to issue prefeth requests. Prefething done by the ompiler, alled software
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prefething, an use pro�ling or ode analysis to identify data to be prefethed. Hardware prefething typially uses

data ahe miss addresses to ompute the prefething addresses, but some tehniques also look at the instrution

addresses or other information to determine whih data to prefeth.

The most important distinguishing fator between prefething tehniques, however, is the memory referene

pattern that they are designed to reognize and prefeth. We all the set of referene patterns that a prefething

tehnique was optimized for, the prefeth domain. With the exeption of Markov prefething, all the prefething

tehniques are designed to handle a very partiular memory referene pattern and are unable to prefeth other

memory referene patterns.

The prefeth domain is an important harateristi of a prefething tehnique beause data aessed by a referene

pattern outside the prefeth domain is not usually prefethed. This limits the ahievable prefeth overage. Further-

more, unsupported memory referene patterns an onfuse the prefeth algorithm and redue prefeth auray.

3.1. Memory referene patterns

Five elementary memory referene patterns have been identi�ed in the literature. Most ahe prefethers are designed

to prefeth data from only some of these reognized memory referene patterns.

Stride-0: These are memory referenes to isolated addresses that are not related to other addresses. For example,

loal and global variable aesses, array referenes using a onstant index, and ertain referenes to members

of a struture. Cahes are generally very e�etive for these memory referenes. Few prefeth tehniques are

able to preload these memory referenes to the ahes beause their addresses are diÆult to predit.

Stride-1: We all a memory referene pattern that aesses stritly inreasing or dereasing, adjaent memory

address loations stride-1. Many array referenes are stride-1. Early prefething tehniques, suh as Jouppi's

prefeth bu�ers [10℄, were designed to prefeth data from this ategory of memory referenes.

Stride-n: These are memory referene addresses that are stritly inreasing or dereasing and separated by a

onstant stride. It is a natural extension of the stride-1 referene pattern and has been exploited by numerous

prefething tehniques [6{8, 11, 13{15℄. The typial data struture that is aessed with a stride-n referene

pattern is the array.

Linked: In a linked memory referene pattern, the data pointed to by one address is used to ompute the subsequent

address. In C notation, this ours when the statement ptr = ptr->next; is exeuted in a loop. The o�set

will be zero only if next is the �rst element of the struture pointed to by ptr. Linked lists and tree data

strutures are aessed with a linked memory referene pattern. A number of tehniques have been proposed

to prefeth linked memory referenes [5, 12, 15, 16℄.

Irregular: Memory referene patterns that do not fall into one of the previous ategories are irregular. For example,

we onsider a triangular memory referene pattern (i.e., stride inreases by a onstant on eah aess) as
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irregular. Few prefething methods are able to deal with irregular memory referene patterns. The notable

exeption is prefething using Markov preditors [9℄ that an handle some referene patterns that fall into this

ategory.

Stride-0, stride-1, and stride-n have previously been de�ned by Baer and Chen [13℄. The linked ategory is

doumented by Roth et al. [12℄. Luk and Mowry [5℄ refer to the data strutures that are aessed by linked memory

referene patterns as reursive data strutures.

3.2. Prefething within Loops

A ommon abstration is to look at prefething in the ontext of a loop suh as the one shown in Figure 1. We will

refer to this loop as the work loop. The variable p an be an element of a linked data struture in whih ase the

funtion next() would return p->next. Or p an be a pointer to an array and the funtion next() would return

p+1 or zero when the omputation is �nished. Let us assume that an element p an �t within a single ahe line.

while(p) {

work(p);

p = next(p);

}

Figure 1. An abstrat view of a loop that iteratively proesses a data struture with elements p.

A prefeth algorithm should be able to bring p lose to the proessor before the funtion work() is alled on p as

indiated in Figure 2. Let us assume for this disussion, that the prefeth(next(p)) request ould also have been

issued by the hardware instead of by the software. For a hardware prefething tehnique, the prefeth statement an

be thought of as representing when an ation is taken by the hardware.

while(p) {

prefeth(next(p));

work(p);

p = next(p);

}

Figure 2. A loop with non-overlapping prefething.

Let us now disuss several possibilities about the e�et of this prefething statement in terms of the hardware

apabilities and the relative speed of the funtional units and memory.

3.2.1. Faster Memory

If the memory lateny is less than the time it takes to omplete work(p), the memory lateny an be fully hidden.

The proessor would never inur a ahe miss on p.
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3.2.2. Slower Memory without Overlap

Let us onsider what happens if the memory lateny is larger than the time to omplete work(p). Now, the proessor

will inur a ahe miss on p with every iteration of the loop. The ahe miss, however, will have a redued servie

time, beause the data is already in transit from a lower level of the memory hierarhy.

If memory operations annot be overlapped or pipelined, then nothing an be done to further hide the memory

lateny. While prefething was able to redue the ahe miss lateny somewhat, it annot fully hide it.

There are several reasons for why it may not possible to pipeline memory request. One may be that the hardware

is not able to pipeline memory requests. However, with the inrease in instrution level parallelism (ILP) and

the inreasing gap in memory and proessor performane, many modern proessor arhitetures are not only able to

pipeline memory requests, but they an sometimes even issue multiple memory requests per yle. Data dependenes

an also make it impossible to pipeline memory requests. This is ommonly the ase for linked data strutures suh

as a linked list where prefeth(next(p)) annot be exeuted until p = next(p) has ompleted. It is also possible

that the prefething tehnique itself is not able to look ahead aross more than one iteration and therefore would

not pipeline memory requests even when there are no data dependenies.

3.2.3. Slower Memory with Overlap

For array and linked data strutures, prefething tehniques exist to overlap memory requests. This an further hide

memory lateny. Figure 3 shows the general approah when the memory lateny is twie as long as the time to

omplete work(p).

while(p) {

prefeth(next(next(p)));

work(p);

p = next(p);

}

Figure 3. A loop with overlapping prefething.

For an array data struture, next(next(p)) is equivalent to p+2. For linked data strutures, Luk and Mowry

have proposed tehniques to obtain the address of p->next->next without �rst having to referene p->next [5℄. We

will disuss their tehnique shortly. In both of these ase, the memory system must have at least two pipeline stages

or be able to handle two memory requests in parallel.

As memory lateny ontinues to lag behind proessor speeds, it will beome inreasingly important for memory

systems to handle multiple requests simultaneously and for prefething methods to exploit this with tehniques that

prefeth data from several iterations ahead of the urrent iteration.
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3.3. Pure Prefething Methods

Most prefething methods are designed to exploit either one of the two non-zero strided or the linked memory

referene patterns, but generally not a ombination. We all suh methods pure prefething methods and will disuss

them in this setion. In the next setion we will introdue some of the hybrid prefething methods that an be a

ombination of several pure prefething methods.

3.3.1. Conseutive prefethers

The prefeth tehniques targeting to over the stride-1 referene pattern are the onseutive prefethers. This is the

oldest group of prefething tehniques beause their hardware omplexity is low enough to make it feasible [17℄.

Smith; Gindele An early tehnique is one-blok-lookahead (OBL). With OBL, a prefeth is always issued to the

next ahe line in the address spae and it is brought diretly into the L1 ahe. A prefeth an be triggered by a

memory referene (always prefeth) or a ahe miss (prefeth on miss) [17℄. Always prefeth is a brute-fore method

that prefethes the right data for stride-1 memory referenes, but it will also generate a large number of overhead

prefeth requests (p

overhead

). Overhead prefethes are undesirable beause a ahe tag lookup must be done before

they an be disarded. Prefeth on miss avoids this overhead, but it an only prefeth half of the stride-1 referene

pattern. Every other memory referene will result in a ahe miss, beause prefeth on miss does not issue a prefeth

following a prefeth hit. A slight extension, OBL with tagged prefeth, uses a tag bit per ahe line to issue a prefeth

only on the �rst referene to a ahe line [18℄. OBL with tagged prefeth has a overage similar to the always prefeth

method, but generates far fewer overhead prefethes [17℄.

Jouppi Jouppi proposed to prefeth into a separate prefeth bu�er alled a stream bu�er [10℄. His tehnique uses

OBL with prefeth on miss, but instead of issuing a single prefeth, onseutive ahe lines are prefethed and stored

in the stream bu�er. The stream bu�er is organized like a queue that is �lled by prefething requests and emptied

by ahe miss requests. The data are opied to the L1 ahe on a ahe miss and also supplied to the proessor.

The stream bu�er is ushed and prefething is restarted with a new address when the item popped from the stream

bu�er does not math the next ahe miss. A single stream bu�er works well with an instrution ahe, but not so

well with a data ahe. The sequene of ahe misses generated by an L1 data ahe are rarely onseutive for a

long period of time and will ause the stream bu�er to be restarted frequently. Jouppi found that the use of multiple

stream bu�ers, operating in parallel, works muh better with a data ahe.

Stream bu�ers had two major ontributions to prefething. First, the use of a separate bu�er avoids the pollution

of the ahe with data that are never referened (m

early2

= 0). Seond, even with the absene of non-bloking ahes

and out-of-order exeution, stream bu�ers overlap multiple prefethes from a single referene and are therefore able

to hide memory lateny better (Setion 3.2.3) than other OBL tehniques.

10



3.3.2. Stride prefethers

Conseutive prefethers are not able to eÆiently prefeth for the stride-n memory referene pattern, espeially for

larger n. In addition, with the exeption for a �ltering tehnique proposed by Palaharla and Kessler [11℄, onseutive

prefethers naively assume that all memory referenes are onseutive. These e�ets hurt the prefeth auray of

the onseutive prefethers. Generally, stride prefethers san the memory referenes to �nd andidates for stride

prefething. If no andidate is found, no prefething will be initiated. This improves the prefething auray of

stride prefethers relative to onseutive prefethers. In a omparison of prefeth auraies between a variety of

prefething tehniques, Joseph and Grunwald show this e�et niely. Whereas the stride prefethers appear to have

almost perfet auray, the number of useless misses for the onseutive prefethers typially exeeds 10% of the

number of ahe misses [9℄.

Stride prefethers fall into two general ategories. One is a software prefething tehnique that uses a ompiler to

analyze array referenes in the program loops and inserts prefeth instrutions as needed. The other uses a hardware

omponent that detets when the repeated exeution of a partiular memory instrution issues stride-n memory

referenes and uses this information to predit and prefeth future referenes.

Mowry, Lam, and Gupta Mowry et al. [6℄ have developed a software prefething tehnique for array referenes

whose indies are aÆne (i.e., linear) funtions of loop indies. While suh a memory referene pattern does not need

to �t a stride-n referene pattern, it typially an be desribed by a small number of stride-n referene patterns. This

tehnique requires hardware support in the form of a prefeth instrution that works similar to a load instrution,

but the data referened are not atually stored in a register. Prefeth instrutions are not allowed to ause exeptions

(e.g., a page fault). In the indisriminate version, the ompiler will insert prefethes for every aÆne array referene.

Software pipelining is used to arefully plae prefethes early enough so that the prefeth ompletes just in time for

the array referene. The seletive version only inserts prefethes when the ompiler predits that the array referene

instrution will ause a miss. It does so by onsidering the reuse of referenes and the loop iteration ounts relative

to the ahe size. Loop splitting is used to insert prefethes into only those iterations where the ompiler determines

that misses are likely.

The importane of the seletive software prefething tehnique over the indisriminate tehnique is that it an

redue overhead prefethes (p

overhead

). Mowry et al. [6℄ observed that it redued the average perentage of overhead

prefethes from 79% to 29% with only a small loss in the prefeth overage. Overhead prefethes are more ostly to

software prefethers, beause eah prefeth oupies an instrution slot and instrution bandwidth that ould have

been used for exeuting something useful. In hardware prefething, tehniques the main ost of overhead prefethes is

an inreased pressure on the ahe tag memory that an be overome with banking or multiporting the tag memory.

Fu, Patel, and Janssens The hardware stride prefethers use a hardware struture as shown in Fig. 4 for �nding

stride-n memory referenes. The simplest implementation of this sheme was proposed by Fu et al. [14℄. They named
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the hardware struture the stride predition table (SPT). The SPT only uses a valid bit for state information and has

no Times and Stride entries. All memory referene instrutions are looked up in the SPT and a new entry is reated

if none is found. If an entry is found, the di�erene in the Previous Memory Address and urrent memory address is

used as a stride preditor. The stride preditor added to the urrent memory address is used as a andidate prefeth

address. Finally, the Previous Memory Address is updated with the urrent memory address.

Instruction
Address

Tag

Previous
Memory
Address

State
Indexed by
Instruction
Address

Times Stride

Figure 4. General form of the data struture used in hardware stride prefethers to detet stride-n memory

referenes.

A andidate prefeth address will be issued as a prefeth to the memory system 1) when the memory instrution

auses a miss, 2) when the memory instrution auses a hit, or 3) always. Generally, the prefeth on miss has the same

problem as the prefeth on miss OBL tehnique. Only every other memory referene is prefethed. Furthermore,

the tehniques mentioned so far will not issue a prefeth more than one memory referene ahead and are therefore

unable to issue deeply pipelined memory requests (Setion 3.2).

Chen and Baer Chen and Baer [4℄ proposed a sheme that adds two signi�ant features. First, they store the last

known stride in the referene predition table (RPT, another name for the SPT) and they use a two-bit state �eld

instead of a single valid bit. The state �eld ontains information about how stable the stride has been in the past

and a�ets the hoie of prefeth addresses. Prefethes will not be issued when the strides between the last three

memory addresses of a memory referene instrution are di�erent. Their seond innovation is a lookahead program

ounter (LA-PC) that is updated eah yle and uses a branh predition table (BPT) to predit the diretion of

branhes. The LA-PC is designed to run ahead of the PC. Lookups in the referene predition table (RPT) are

done by both the PC and LA-PC. RPT updates are ontrolled by lookups with the PC and prefethes are issued

from lookups with the LA-PC. An additional entry Times in the RPT (Fig. 4) stores the number of iterations the

LA-PC is ahead of the PC for a partiular memory referene instrution. A andidate prefeth address is omputed

by adding the produt of Times and Stride to the Previous Memory Address.

The use of the added state information is designed to improve the prefeth auray. The use of the LA-PC is

designed to better ontrol the prefeth distane and should redue early and late prefethes. From the view of the

work loop (Setion 3.2), the LA-PC allows prefethes to be issued more than one loop iteration ahead of a memory

referene and onsequently an more aggressive pipeline memory referenes. They found that the smallest number

of memory yles per instrution (MCPI) ours when the distane of the LA-PC ahead of the PC is not allowed
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to grow muh beyond the number of yles needed to aess the next level in the memory hierarhy. Any larger

distane would inrease the number of early prefethes.

Pinter and Yoaz As supersalar proessors had beome the arhiteture design of hoie for general-purpose

proessors in the 80s and 90s, a new hallenge was reognized for ahe prefething. A supersalar proessor an

exeute several instrutions per yle and issue possibly multiple memory requests per yle. This inreases pressure

on the ahe tags to determine if memory referenes hit or miss in the ahe. Consequently, fewer idle yles are

available for disarding overhead prefeth requests and fewer prefethes an be issued without interfering with the

normal proessor exeution. Pinter and Yoaz [7℄ addressed this problem with their Tango arhiteture by using a

�lter ahe that ahes the last few aesses to the tag memory. They also proposed a new LA-PC mehanism that

is able to run ahead of the PC muh more rapidly and is able to �nd more memory referene instrutions per yle

than the sheme used by Chen and Baer [4℄.

The new LA-PC, referred to as a pre-PC, is enabled by extending the branh target bu�er (BTB). Beause

the pre-PC advanes from branh to branh, instead of from instrution to instrution as done by the LA-PC,

it an advane muh more rapidly. After having been advaned to the next branh, a speially indexed referene

predition table for supersalar proessors (SRPT) is searhed assoiatively with the pre-PC for all memory referene

instrutions from the urrent branh to the next branh to determine prefeth andidates. They simulated an SRPT

that returns up to two memory referene instrutions per yle. For eah memory referene instrution found, a

prefeth is issued using the same state mahine logi introdued by Chen and Baer [4℄. After all memory referenes

found in the SRPT have been proessed, the pre-PC is advaned to the next branh. Just as done by Chen and Baer,

the distane between pre-PC and PC is limited to roughly the memory lateny to avoid early prefething. Apart

from early prefething, preditions aross multiple branhes an also redue the prefeth auray.

To allow branh-to-branh updates of the pre-PC, additional entries are needed in the BTB as shown in Fig. 5.

The key entries to allow updates of the pre-PC are the T-Entry and NT-Entry �elds. They ontain indies bak

into the BTB for the �rst branh on the taken and not-taken paths, respetively. Beause the BTB is also aessed

by the regular PC for normal branh predition, some �elds must be dual ported as shown in Fig. 5. In addition,

BTB replaements are more ostly, beause all BTB entries that point to the replaed BTB entry (via T-entry and

NT-entry �elds) must be updated. Pinter and Yoaz [7℄ solved this by performing a fully assoiative searh on the

T-entry and NT-entry �elds on eah BTB replaement. Sine the update an be done loally within eah BTB entry,

the time penalty is tolerable, although there is ertainly an inreased hardware ost for full assoiativity.

The SRPT is idential to that used by Chen and Baer with one additional requirement. Sine their goal is to be

able to use the pre-PC to �nd several memory referenes in a single yle, they implement a fully assoiative searh

on the SRPT using the BTB index of the urrent pre-PC. Although suh a fully assoiative searh would return

potentially all memory referene instrutions between the pre-PC and the previous branh, an index added to the
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Address
Prediction T−Entry NT−Entry T−Size NT−SizeTargetBranch−PC

(Tag)

Dual ported Can be searched associatively

Information

Figure 5. Branh target bu�er (BTB) used for advaning the pre-PC.

tag limits it to only two per yle. The only reason for this limit is to redue the hardware ost of having to lookup

and issue a larger number of prefethes.

The seond key innovation of the Tango arhiteture is its use of a �lter ahe. It is a FIFO queue that keeps the

address of the last six ahe lines that produed a hit in the ahe. A prefeth address that is found in this queue

is an overhead prefeth and an be disarded without having to do a ahe tag lookup. The �lter ahe an ut the

number of ahe tag lookups from overhead prefethes in half.

3.3.3. Reursive prefethers

Reursive prefethers that prefeth linked memory referenes have two primary hallenges. First, like stride prefeth-

ers, reursive prefethers must be able to detet the memory referene pattern to be prefethed. Seond, overlapped

prefething is diÆult due to the data dependenes inherent in the linked memory referenes.

The key tehnique used in deteting a linked memory referene pattern an be found by looking at the C

statement p = p->next; whih is ommonly used for linked list traversals. When exeuted one, p will be loaded

with an address. When exeuted again, the previous address serves as the base address for loading the next address.

The important relationship is that the base address of one load was produed by a load from the previous loop. This

is very di�erent in a strided memory referene pattern where the base address is omputed arithmetially from a

base address that is onstant for all memory referenes. All reursive prefethers look for these dependenies aross

di�erent load instrutions to �nd the linked memory referene pattern. We will look at two hardware prefething

methods �rst and a software prefething approah afterward.

Mehrotra and Harrison The linked list detetion sheme proposed by Mehrotra and Harrison [15℄ is the simplest

in design. They extended the referene predition table, suh as the one used by Chen and Baer [4℄, by two more

�elds as shown in Fig. 6. The linear stride �eld is the traditional �eld for deteting a stride-n referene pattern. The

Indiret Stride and Previous Data Loaded �elds are added for deteting linked memory referenes. The only linked

memory referenes that an be deteted by this tehnique are those generated by self-referential updates, suh as in
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the C statement p = p->next;. The Previous Data Loaded �eld holds the atual memory ontents loaded by the

previous exeution of the load instrution. During eah yle, the Indiret Stride value is updated with the di�erene

between the Previous Data Loaded value and the memory address of the urrent exeution of the load instrution.

In our C statement example, this will equate to the onstant o�set of the next �eld within the struture pointed to

by p. A linked memory referene pattern is deteted when the indiret stride �eld is found to be onstant between

multiple exeutions of the load instrution.

Instruction
Address

Tag

Previous
Memory
Address

Indexed by
Instruction
Address

Previous
Data

Loaded Stride

Linear Indirect

Stride
State

Figure 6. Referene predition table for deteting stride-n and linked memory referene patterns.

Roth, Moshovos, and Sohi Although simple and easily implemented, the method by Mehrotra and Harrison [15℄

has the disadvantage of only onsidering self-referential memory instrutions. Roth et al. [12℄ proposed a di�erent

sheme that is able to detet linked memory referenes when the produer of the base address is not the same as

the onsumer of the base address, an example of whih is shown in Fig. 7. It takes two separate hardware tables

to aomplish this. Figure 8 shows these two tables. The values loaded by memory instrutions are ahed in the

potential produer window (PPW) as possible andidates for memory instrutions that load (produe) a base address.

Also, for eah memory instrution a lookup is done on the PPW indexing it with the base address of the urrent

load. If a math is found, the PC of the urrent memory instrution is onsidered to be the onsumer and the PC

of the memory instrution of the mathing PPW entry is onsidered the produer. The produer and onsumer PCs

are stored in the orrelation table (CT) together with a template of the onsumer memory instrution (Fig. 8). The

template is neessary for generating andidate prefeth addresses. For typial memory instrutions, the template

would only inlude the o�set of the memory instrution.

3

while(p) {

p = q->next;

q = p->next;

}

Figure 7. An example ontrol struture for RDS traversals.

Prefething addresses are generated from the information stored in the CT. When the PC of a load instrution

hits in the CT, it is known to have been a produer in the past. The template information from the CT and the

3

The o�set of the memory instrution is equal to the o�set of the next �eld within the struture pointed to by p.
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Indexed by
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InstructionMemory

Address
InstructionInstruction

Address
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Inst. Addr.

Indexed by
Producer

Consumer
Instruction
Template

Potential Producer Window Correlation Table

Address

Figure 8. Potential Produer Window (PPW) and Correlation Table (CT) used for deteting linked memory

referenes.

data returned from the urrent load instrution produe a memory address that is used as a prefeth address. If the

predition is orret, the onsumer reorded in the CT will load this prefeth address at some point in the future.

Laking any timing information, the prefeth address is immediately entered into a prefeth requests queue (PRQ)

and issued to the memory system during an idle yle. As in Jouppi's stream bu�ers [10℄, prefethed data are stored

in a bu�er, whih redues the penalty of early prefething.

Prefethed data may themselves be produers and ould therefore also be looked up in the CT to generate

additional prefethes. Roth et al. [12℄, however, did not perform suh additional prefethes beause it inreases the

risk of early prefethes. They also argued that there may be little bene�t to prefeth further ahead. To understand

this, we need to onsider the whole loop enompassing the memory instrution that generates the prefethes. If the

memory lateny is less than the time to exeute one iteration of this loop, then the memory lateny an be fully

hidden and there is no bene�t of prefething ahead further. If the memory lateny is longer than the time to exeute

one iteration, then memory instrution and prefeth will omplete at the same time and it makes no di�erene whih

of the two triggers the subsequent prefeth. Another way to look at this is that it is impossible to overlap prefethes

due to the data dependenies. This plaes a limit on how many prefethes an be hidden (Setion 3.2.2).

They noted that their argument against generating these additional prefethes ignores ases that may not �t the

simple loop model. For example, not all loops may be of equal length, whih an make it bene�ial to prefeth ahead

to e�etively borrow time from one loop to use in a later loop.

Luk and Mowry Essentially, the same approah for �nding linked memory referenes an be taken by a software

prefether. However, sine addresses are not known at ompile time, the ompiler instead looks at the data types.

Linked memory referenes require that one data type struture ontains an element that points to some other (or

the same) data type struture. The reursive prefether, a software prefether, proposed by Luk and Mowry [5℄ alls

these data types, reursive data strutures (RDS). Their software prefether reognizes reursive data strutures and

also a set of ontrol strutures that traverse an RDS. Figure 1 is one example of suh a ontrol struture. Here p must

be an RDS and the funtion next() an be both a funtion or an expliit dereferene suh as p->next. Their sheme

an detet ompliated ontrol strutures. For example, it an detet RDS traversals within reursive funtion alls
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and allow multiple reursive alls sites as they are needed in tree traversals. In addition, their algorithm an detet

traversals through reursive data strutures of varying types as shown in Fig. 7.

Deteting ontrol strutures of RDS traversals is omparable to �nding produers of base addresses in the sheme

proposed by Roth et al. [12℄. Either sheme appears to have ertain ases of �nding base address produers that the

other may not be able to detet. For example, Fig. 9 shows a ontrol struture supported by the software prefether.

The hardware sheme will not detet the dependene between produer and onsumer if the addition of the base

address with the o�set of the next �eld in p is not embedded in the memory load. That is, the onsumer instrution

template annot be spei�ed and no orrelation between produer and onsumer ould be found. Furthermore, the

size of the PPW is limited and dependenies that are far apart may not be deteted. The hardware sheme is also

more likely to provider false mathes when a orrelation between produer and onsumer ours by hane without

an atual relationship existing between the two. On the other hand, the hardware sheme may be able to detet

ertain base address produers that the software sheme misses beause of a programming style that does not math

any ontrol strutures for RDS traversals reognized by the ompiler optimization stage in the software sheme.

while(p) {

p = f(p);

}

Figure 9. Another example ontrol struture for an RDS traversal.

As soon as the base address is omputed, a prefeth instrution an be inserted for the next element. This is shown

on a tree traversal example in Fig. 10. Luk and Mowry [5℄ all this greedy prefeth sheduling, and it is funtionally

very similar to the hardware prefether proposed by Roth et al. [12℄. The primary di�erene is in the detetion

of base address produers as previously disussed and in the plaement of prefeth alls. Whereas the hardware

prefether will issue prefethes almost instantaneously, the software prefether will usually issue the prefeth at the

top of the next loop iteration or funtion all as done in Fig. 10. The remaining di�erenes are those that generally

separate hardware and software prefething shemes. The hardware shemes have a higher hardware ost and the

software shemes have the additional instrution overhead. Also, the tehnique by Roth et al. [12℄ prefethes into

a bu�er whereas Luk and Mowry's sheme [5℄ prefethes diretly into the L1 ahe. This should make the software

sheme more vulnerable to early prefething, a partiular onern with greedy prefeth sheduling, due to the lak

of prefeth timing ontrol.

Although funtionally similar, Luk and Mowry [5℄ motivate their greedy prefeth sheduling from a di�erent

perspetive than Roth et al. [12℄. A diÆulty for reursive prefethers is the dependenies between suessive

prefethes that make it impossible to overlap prefethes, thus limiting the amount that memory latenies an be

hidden. As mentioned in Setion 3.2.3, in order to overlap prefethes, p->next->next must be omputed without

having to load the intermediate elements of the data struture. While this appears impossible, Luk and Mowry

introdued three software prefething mehanisms that support this with varying degrees of suess. The �rst one is
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f(treeNode *t) { f(treeNode*t) {

treeNode *q; treeNode *q;

prefeth(t->left);

prefeth(t->right);

if( test(t->data)) if( test(t->data))

q = t->left; q = t->left;

else else

q = t->right; q = t->right;

if( q!= NULL ) if( q!= NULL )

f(q); f(q);

} }

Figure 10. The left side shows the ode before and the right side after insertion of prefeth alls.

the greedy prefeth sheduling.

Greedy prefething annot overlap memory referenes for linked list traversals. However, for tree traversals, there

an be some overlap. In partiular, in a k-ary tree, up to k prefethes an be issued in parallel as illustrated by

Fig. 10, assuming that all pointers are loated in one ahe line. Contrary to the argument by Roth et al., therefore,

Luk and Mowry found onditions under whih it an be bene�ial to let prefethed data themselves initiate further

prefethes.

Figure 11 dupliates a �gure from Luk and Mowry's paper, whih shows the sequential ordering of prefethes on

a binary tree using greedy prefething. The nodes in bold are those overed by greedy prefething and result in a

prefeth hit as long as they are not evited from the ahe due to early prefething or onits. Nodes 6, 10, 12, and

14 resulted in ahe misses. However, if the prefeth of node 3 auses the prefethes of nodes 6 and 7, then node 6

would not be missed subsequently. This e�et would be diÆult to ahieve in Luk and Mowry's greedy prefether

beause initiating prefethes from other prefethes annot be done with their software prefether. However, it ould

be possible with the prefethed proposed by Roth et al.
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Figure 11. Ordering of prefethes in greedy prefething using a pre-order traversal of a binary tree. Bold tree nodes

are those that are prefethed and should result in a prefeth hit. All other nodes will be missed on.
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A remaining question is how to prevent an explosion of prefethes that an our due to the fanout present in

a tree. Some mehanism is needed to prevent prefethes to be issued beyond a ertain depth. There an also be

problems with early prefething. For example, node 3 in Fig. 11 would be prefethed almost at the beginning of the

tree traversal, but it would not be referened until about half-way through the tree traversal (assuming pre-order

traversal). If the prefeth bu�er is small, hanes may be high that node 3 will be replaed before it is referened.

With a lak of better timing ontrol over prefethes and the possibility of prefething data that are never ref-

erened, Luk and Mowry found greedy prefething to have a relatively bad prefething auray. Coverage was

generally good, exept with appliations where a larger number of the misses were aused by salar and array ref-

erenes. The poor overage was an important reason for why roughly one half of the appliations had only about a

2% redution in exeution time. The other half had redutions in exeution time from 4% to 45%.

Luk and Mowry proposed two additional prefething tehniques that are targeted at improving the prefething

auray over greedy prefething. The �rst is history-pointer prefething that keeps trak of the traversal ordering

of an RDS and stores this information with the RDS by adding to it a new pointer. For eah node in the RDS,

the history pointer provides the value of p->next->next->next assuming a history depth of three and a linear

traversal of a linked list. It takes a full traversal of the RDS for all history pointers to be initialized. If the traversal

ordering does not hange during subsequent traversals, then a prefeth on the history pointer will e�etively break

the dependene hain and make it possible to prefeth p->next->next->next without having to visit intermediate

nodes. History pointers an be updated on subsequent traversals to aommodate slight hanges to the traversal

ordering. Drastially di�erent traversal orderings will ause the wrong data to be prefethed most of the time. With

a depth of three, up to three prefethes an be pipelined. The ost of this approah is the time and spae required

to maintain the history pointers.

Luk and Mowry only tested the performane of history-pointer prefething on an appliation that did not hange

its tree traversal over the ourse of the program exeution. Their ompiler tehnique is urrently not automated

and must be applied by hand. Under these onditions, history-prefething performs signi�antly better than greedy

prefething. Coverage and auray improved, but there are still a signi�ant number of overhead prefethes beause

data are indisriminately prefethed. The loality analysis of the strided software prefether developed by Mowry et

al. [6℄ annot as suh be applied to the reursive data struture, making seletive prefething diÆult.

The �nal tehnique is data-linearization prefething. Luk and Mowry demonstrated its potential, but did not seem

to have an automated ompiler optimization for this tehnique. The tehnique annot be applied to all appliations.

The basi idea is to map the reursive data strutures in the same sequene to memory, in whih it will be traversed.

This redues the problem to prefething a sequentially aessed array. There is no solution o�ered for how to handle

di�erent traversal orders. Luk and Mowry optimized the appliation to the dominant traversal order. They do not

disuss how to handle aesses to the RDS that are not in a simple forward-traversal order. Compared to greedy

prefething, data-linearization prefething has a lower overage on both appliations that were tested. This is beause
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only the dominant traversal order is optimized. Overhead prefethes are, however, removed and exeution time is

improved over greedy prefething.

3.3.4. Markov prefether

The Markov prefether remembers past sequenes of ahe misses [9℄. When it �nds a miss that mathes a miss

in a remembered sequene, it will issue prefethes for the subsequent misses in the sequene. This gives Markov

prefething the ability to prefeth any sequene of memory referenes as long as it has been observed one. However,

it also means that the Markov prefether annot deal well with dynami memory referene patterns as they an

appear in programming languages that frequently alloate and dealloate memory (e.g., Java, C++, Sheme).

Joseph and Grunwald [9℄ implemented a hardware prefether that approximates a Markov model. The main data

struture is a state transition table (STAB) indexed by a miss address that stores a number of prefeth address

preditors (1, 2, 4, and 8 are modeled). This data struture is large. They evaluated their prefether with a 1-Mbyte

STAB with a 2-Mbyte L2 ahe. They ompared their performane to an arhiteture without prefething, but with

a 4-Mbyte L2 ahe instead.

During program exeution, a history of the past n miss addresses is maintained. When a new miss is enountered,

two ations take plae. First, the oldest miss address in the history list (n misses in the past) is used to index the

STAB and the urrent miss is stored there as a new prefeth address preditor. Entries in the STAB are replaed

using an LRU sheme. The parameter n an be used to adjust the prefeth distane, and it represents the maximum

overlap of prefethes that an be ahieved. Seond, the urrent miss address is also looked up in the STAB. All

prefeth address preditors found in this table entry are sent to the prefeth request queue. Eah prefeth address

preditor has a di�erent priority based on its position in the STAB. Lower priority requests may be disarded from

the prefeth request queue if it beomes full. The Markov prefether uses a prefeth bu�er to store reent prefethes.

When an L1 ahe miss hits in the prefeth bu�er, the data will be opied to the L1 ahe, but will not be removed

from the prefeth bu�er. Instead, the data in the prefeth bu�er are moved to its head. The prefeth bu�er is

managed like a FIFO and prefethed data arriving from the L2 ahe will replae the least reently used entry.

Keeping data that are transferred to the L1 ahe in the prefeth bu�er should have an e�et similar to a vitim

ahe [10℄. If the data are evited soon from the L1 ahe, they an be repeatedly restored from the prefeth bu�er.

Unfortunately, no evaluation was done to show if this is more e�etive than Jouppi's organization, where data that

are opied to the L1 ahe are also removed from the stream bu�er.

The number of prefeth address preditors modeled greatly a�ets overage and auray. Auray beomes

worse quikly as the number of prefeth address preditors is inreased, whereas overage inreases steadily. The

overage of the Markov prefether obtained on their benhmark appliations was about 50% when using two or four

prefeth address preditors.

Perfet overage is diÆult to ahieve with the Markov prefether beause a sequene of misses must be seen �rst

before it an be predited. This is a disadvantage that most onseutive, strided, and reursive prefethers do not
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have.

3.4. Hybrid Prefething Methods

Amdahl's law [1℄ tells us two limitations of ahe prefething. First, appliation speedup is limited by the portion of

exeution time aused by ahe miss stalls. Moreover, for pure prefething methods, only those ahe misses that are

overed by the prefeth domain an be hidden. This further limits potential speedup. Clearly, the �rst limitation is

not a limitation really, but the reality of why prefething has beome a performane improving tehnique in the �rst

plae. The seond limitation, however, learly limits all pure prefething tehniques. It would be quite unsettling for

a proessor arhitet to have to hoose between a stride prefether or reursive prefether, knowing very well that

what really is needed is both designs.

For example, a stride prefether will not be able to prefeth misses aused by linked memory referene patterns,

unless the linked data struture is laid out sequentially in memory, in order of the memory aesses. What is needed

are tehniques that are e�etive for all ahe misses or methods for ombining pure prefething tehniques. The

Markov prefether is an example of the �rst lass, but beause Markov prefethers must learn, they are generally

less e�etive at prefething strided and linked memory referene patterns than the other pure prefething tehniques.

We all the seond lass the hybrid prefethers. In this setion we will give examples of and desribe tehniques for

building hybrid prefethers.

3.4.1. Instrution Prefethers

Instrution miss rates are traditional thought of as less important to proessor performane than data miss rates.

Reent researh by Maynard et al., however, shows that they may be just as important or maybe even more important

than data referenes [19℄. While memory referenes of instrutions an be treated just as data referenes from a

prefething perspetive, they exhibit a more preditable aess pattern that an be exploited. Fortunately, many L1

ahes are separated between data and instrutions making it easier to inorporate di�erent prefeth tehniques for

data and instrutions.

Instrutions are generally fethed from memory using a stride-1 memory aess pattern. A onseutive prefether

would work very well. The trouble ours, however, at branhes, where the instrution sequene may ontinue

at a di�erent loation. Luk and Mowry introdued a nie example of a hybrid prefether that is designed to

prefeth instrutions onseutively, but also handles branhes well [20℄. Their ooperative prefether uses two separate

prefethers.

The �rst prefether is a next-N-line hardware prefether [17℄ whih is similar to OBL, but instead of fething the

next ahe line, it fethes the next N ahe lines (N being typially in the range of 2 to 8). The next-N-line prefether

may issue useless prefethes when it rosses branh points. To avoid useless prefethes, Luk and Mowry designed a

prefeth �lter in the L2 ahe that reognizes when prefethed ahe lines are not being referened. The prefeth

�lter will stop prefething at those ahe lines in future aesses.

21



The seond prefether is a software prefether. The ompiler will insert prefeth instrutions ahead of branh

points if they are not overed by next-N-line prefething and if they are estimated to ause ahe misses [21℄.

Luk and Mowry ompare their hybrid tehnique to next-N-line prefething on its own and Markov prefething.

Next-N-line prefething performs well on sequential instrution sequenes, whereas Markov prefething an handle

sequential sequenes and branh points well. Markov prefething, however, must learn a sequene before it an

prefeth it. On the benhmark appliations, ooperative prefething generally redues the exeution time by about

10%. The better of next-N-line prefething and Markov prefething improve exeution time by only about 5%.

3.4.2. Data Prefethers

Mehrotra and Harrison ame up with an idea of extending the stride predition table to also be able to detet linked

referenes [22℄. We disussed their prefether in Setion 3.3.3. While the linked memory referene detetion sheme

is not as general as those proposed by Roth et al. and Luk et al., it is simple and integrates stride-n and linked

prefething with little overhead. Unfortunately there are not enough results available to evaluate the e�etiveness of

their tehnique [15℄.

Joseph and Grunwald introdue a more general approah of reating hybrid prefethers [2℄. The idea is to use

multiple unmodi�ed pure hardware prefethers. They de�ne two modes of operation, serial and parallel. In parallel

operation, all prefethers get aess to the system resoures and issue prefethes independently from the other

prefethers. The only modi�ation made is to prevent prefethers from issuing idential prefethes to the memory

system. In serial operation, the most aurate prefether is allowed to issue a prefeth �rst. If it annot issue

a prefeth, then the next aurate prefether is queried. Prefether auray is determined statially and Joseph

and Grunwald onsider stride prefethers to be most aurate, then Markov prefethers, and �nally onseutive

prefethers.

It appears that a little more work is needed to e�etively use a serial hybrid prefether. First, all pure prefethers

should be able to have aess to all memory referenes and ahe misses (and any other information they need) to be

able to build their database ontents. Joseph and Grunwald do not desribe if they use this tehnique or perhaps some

other method. Furthermore, it must be learly de�ned what it means that a prefether is able to issue a prefeth.

For a stride prefether this an be if there is a hit in the SPT or RPT with the state indiating that a stride-n

referene pattern was found. For a reursive prefether, �nding an atual base address produer an onstitute that

it is able to make a prefeth. For Markov prefething a hit in the STAB gives little ertainty about the auray of

the prefeth address preditors. When used in onjuntion with a hybrid prefething sheme, it may be bene�ial

to use only the most likely prefeth address preditor(s) instead of all of them. Finally, onseutive prefethers, will

always laim to have a prefeth address. Clearly there is a problem if multiple suh prefething tehniques are put in

series (only the �rst would ever issue a prefeth). In addition, with the use of a stride prefether, there is ertainly

some question about the bene�t of a onseutive prefether.
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Joseph and Grunwald found a remarkable improvement in prefeth overage when using parallel and serial hybrid

prefethers ompared to stride, Markov, and onseutive prefethers on their own. Unfortunately, the parallel

prefether is also highly inaurate. This is perhaps not suh a surprising result. The serial prefether had mixed

results with prefeth auraies ranging from nearly as bad as the parallel prefether to better prefeth auraies

than Markov and onseutive prefethers alone.

4. MULTIMEDIA PROCESSING

Multimedia appliations have beome an important workload on modern personal omputers and various embedded

appliations. To give some examples, multimedia appliations fall into ategories suh as graphial user environments,

modern television and ommuniation systems, omputer games, and medial visualization and diagnosis systems.

We will restrit our disussion mostly to the image proessing domain, beause it is an area the author of this paper

is more familiar with and beause other work in this area tends to fous on image proessing, too. Many basi image

proessing operations, suh as onvolution �lters and disrete osine transformations, are also widely used in other

areas of multimedia proessing (e.g., audio proessing), therefore, our disussion may apply equally well to those

areas, too.

We will look at two basi lasses of multimedia arhitetures, the general purpose proessors with multimedia

extensions and the dediated mediaproessors. While there are also hardwired arhitetures that an perform a

partiular multimedia proessing task, these systems are not programmable and ontain speial purpose memory

systems.

General purpose proessors with multimedia extensions and dediated mediaproessors both make use of the

multimedia funtional unit. Two basi harateristis of multimedia proessing has reated the need for a new

funtional unit. First, multimedia proessing ontains a large amount of data-level parallelism. For example, in

pixel-wise image addition, in theory, all pixels-pairs of the two soure images ould be added in parallel to reate the

destination image. Seond, for many multimedia appliations, a preision of 8 or 16 bits is suÆient. The multimedia

funtional unit exploits the parallelism by bundling multiple data elements into a wide mahine word and operating

on the data elements in parallel in the style of single instrution, single data (SIMD) proessing. Lee refers to this

type of arhiteture as the miroSIMD arhiteture and argues that it is the most ost-e�etive parallel arhiteture

hoie for multimedia proessing [23℄.

While multimedia funtional units appear very e�etive, there is less on�dene in the memory system. Generally,

the memory system remains unhanged when a general purpose proessor is extended for multimedia proessing.

Mediaproessors take a somewhat di�erent approah that we will desribe later. First we will motivate why ahes,

a key omponent in the memory system of a general purpose proessor, are not a perfet math for multimedia

proessing. Taking the image addition funtion as an example, we �nd that the memory aess pattern has no

temporal loality, but an abundane of spatial loality. Little temporal loality is quite ommon in multimedia

funtions beause the input data is often needed for only a brief period of time. This implies that during the
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program exeution, a large amount of data is loaded into the ahe. While a ahe exploits the spatial loality quite

well, �lling it with multimedia data that will never be referened again, does not make eÆient use of the ahe

spae. In addition, other useful data, suh as loal variables and onstant data, might be evited from the ahe by

the multimedia data.

4.1. General Purpose Proessors with Multimedia Extensions

Most high-performane general purpose proessors are extended for multimedia proessing or plans to do so have

been announed (e.g., 3DNow! [24℄, AltiVe [25℄, MAX-2 [26℄, MMX [27℄, VIS [28℄). Extending a general purpose

proessor for multimedia proessing means that one or more multimedia funtional units have been added to the

proessor. The multimedia funtional units may operate on the general purpose registers, oating point registers,

or their own set of multimedia registers. The memory hierarhy generally remains unhanged. Multimedia data is

loaded to the proessor with memory referene instrutions and it passes through the same memory hierarhy as all

other memory referenes.

E�etive use of multimedia funtion units is diÆult beause urrent ompilers for general purpose proessors do

not automatially use multimedia funtion units. The programmer an rewrite the program to all speial assembly

libraries that utilize the multimedia funtion units. For best performane improvements, however, parts of the

program must be rewritten in assembly to make expliit use of the multimedia instrutions [29℄.

A study by Ranganathan et al. showed that many ommon image and video proessing kernels exhibit ahe

miss stall times equal to over half of the exeution time on general purpose proessors enhaned with multimedia

extensions [30℄. Cahe prefething designed to hide those ahe misses, an therefore provide quite signi�ant

improvements in exeution time.

4.2. Mediaproessors

Dediated mediaproessors are usually organized as VLIW proessors [31℄. Compared to a supersalar design, this

redues the hardware omplexity beause instrution sheduling is shifted from the hardware to the ompiler. Re-

dued hardware omplexity translates to redued ost and power onsumption. Redued ost and power onsumption

is important for mediaproessors beause they are predominantly targeted at the embedded market instead of the

personal omputer market. In addition, mediaproessors with over twenty funtional units are not unommon [31℄,

making sheduling a partiularly omplex task. While mediaproessors also ontain traditional integer funtion units,

they usually ontain a larger perentage of multimedia funtion units than multimedia-extended general purpose pro-

essors. Mediaproessors also typially support multiple memory operations per yle and, despite their low ost,

have relatively large on-hip memories.

Some mediaproessors use the same memory hierarhy that an be found on general purpose proessors, although

typially they an a�ord only a single ahe level. Other mediaproessors replae the ahes with addressable on-hip

memories. The most important distinguishing fator, however, is the addition of a diret memory aess (DMA)

24



engine that an be used for sheduling data transfers in parallel with omputation. A double bu�ered transfer pattern

is a ommon form to program the DMA engines [32℄. Here, the next blok of the data input is transfered to one

bu�er in the on-hip memory, while the urrent blok, stored in a seond bu�er, an be used for the omputation.

When proessing of the urrent blok is ompleted, the bu�ers are swithed. This tehnique for overlapping memory

transfers and omputation is very e�etive for hiding memory lateny and eÆiently using the on-hip memory area.

Double bu�ering an also be used by mediaproessors that have multi-way assoiative on-hip ahes. A speial

hardware feature allows replaements to be disabled for a setion of a ahe set. The programmer maps the bu�ers

to these areas of the ahe and programs the DMA engine to transfer data diretly into the ahe. The remaining

ahe area ontinues to be available for ahing of loal variables and other data.

So far, we have given an argument for why ahe prefething is unneessary in mediaproessors. The use of

DMA engines already is very e�etive in hiding memory lateny. The problem of DMA engines is programmability.

Programming DMA engines is quite hallenging, beause the programmer must write programs for both the om-

putation and the data-ow and properly synhronize them. Moreover, suh appliations are not at all portable to

other mediaproessors and neither are trained programmers for one mediaproessors easily moved to a projet using

a di�erent mediaproessor. This makes it diÆult for ompanies to develop produts using mediaproessors. There-

fore, instead of performane improvements, ahe prefething for mediaproessors promises to redue programming

omplexity by making it unneessary to write a data-ow program.

Cahe prefething on multimedia extended general purpose proessors and mediaproessors has the primary

hallenge of properly deteting and e�etively prefething the memory referene patterns exhibited by multimedia

appliations. This requirement is no di�erent than what ahe prefething is expeted to do on general purpose

proessors. A seondary fous is the e�etive utilization of the available on-hip memory area that is more hallenging

due to the low temporal loality in some multimedia appliations.

4.3. Data Prefething

The �rst observation is that reursive prefethers do not seem well suited for a typial multimedia memory referene

pattern. An important memory referene pattern in multimedia proessing is that generated by lookup tables.

Lookup tables are used, for example, in generalized warping where the position of eah pixel in an image is hanged

based on the result of a table lookup of the pixel's oordinates. Lookup tables are also popular for omputing

transendental funtions. While table lookups do have memory referene pairs that fall into the produer and

onsumer ategory of the reursive prefethers, there are no hains of produers and onsumers. Also the number of

produers and onsumers is larger and their separation short. Overall, this makes prefething hard to apply. While it

may of ourse be possible that a linked list or tree data struture exists in some form in a multimedia appliation, we

are not aware of any appliation group where suh aesses ould be ategorized as a dominant multimedia referene

pattern.
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The large o�-hip memory requirements of a Markov prefether make it probably infeasible for today's mediapro-

essors where ost is a ritial fator. However, memory size may be less of an issue for mediaproessors of the future.

We are not aware of any studies that have evaluated a Markov prefether on typial multimedia appliations. When

table lookups are involved the sequene of misses should be quite random and may not be e�etively prefethed by a

Markov prefether. On the other hand, data-ow in multimedia appliations is otherwise typially quite stati whih

may also translate into a repeated sequene of ahe misses over the ourse of the program exeution. In suh ases

Markov prefething ould be quite e�etive.

The only prefethers that have been evaluated in the ontext of multimedia appliations are the onseutive and

stride prefethers. Zuker et al. evaluate the e�etiveness of several prefething tehniques on MPEG enoding and

deoding appliations running on a general purpose proessor [33℄. They found that a stream bu�er ould remove

on the order of 50% of the ahe misses. A stride prefether was able to remove around 80% of the misses for ahe

sizes larger than 16 kbyte, however, with smaller ahe sizes the stride prefether was no better than the onseutive

prefether. The problem they observed is that useless prefethes were removing too muh useful data from the ahe.

When they modi�ed the stride prefether to use a prefeth bu�er, this problem went away. Zuker et al. proposed

to use a prefeth bu�er to diretly supply data to the funtional units, without also opying it to the L1 ahe. This

was supposed to overome the ahe polluting e�et that an be observed in multimedia appliations. The number

of ahe misses removed did not hange muh ompared to the regular stride prefether. Unfortunately, their results

do not show omparisons in exeution time and quantitative results of the prefeth auray to judge other possible

e�ets of not opying prefethed data to the L1 ahe.

Ranganathan et al. [30℄ evaluate the use of the software prefething tehnique proposed by Mowry et al [6℄,

although they insert prefething instrutions by hand and perform their own analysis for when to insert them. Here

the simulation environment is a multimedia enhaned general purpose proessor. They found redutions in exeution

time on image proessing appliations of 50% in many ases, eliminating most of the ahe miss stall times. On

the other hand, JPEG and MPEG oding appliations showed only little bene�t beause for these appliations only

a small omponent of exeution time was spent waiting on L1 ahe misses. This illustrates a shortoming of the

study by Zuker et al. [33℄ who only model the memory lateny, but not the instrution exeution. In omparison,

Ranganathan et al. model an out-of-order proessor whih shows that for these appliations memory lateny does

not yet impat performane severely.

5. CONCLUSIONS AND FUTURE WORK

To improve performane from prefething in a broad lass of appliations, a hybrid prefething sheme must be

employed. We have reviewed some prefething tehniques with a lever design that ombine within one prefething

tehnique the ability to prefeth a wide variety of memory referene patterns. We also reviewed the tehnique by

Joseph and Grunwald that desribes in a general way how to ombine two di�erent hybrid prefething tehniques.

Most promising here appears the serial prefething method, where prefethers are plaed in series with the most
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aurate �rst. An interesting question to answer is how well a stride prefether and reursive prefether would

perform together and furthermore what kind of ahe misses would remain. Perhaps some other simple memory

referene pattern emerges that ould be exploited by yet another pure prefether. Important, too, are the e�etive

hardware (or software) integration of multiple prefeth methods of whih Mehrotra and Harrison's prefether is a

nie example (although their performane impat is unproven).

Apart from the hybrid prefethers, the performane of the pure prefething tehniques remains important beause

their performane diretly a�ets the performane of the hybrid prefethers. The stride prefethers are most mature

with aurate shemes to detet stride-n referene patters and sophistiated tehniques to aurately time prefethes.

Linked prefethers are fairly aurate, too, although there is a lak of good prefeth timing, making the prefeth

bu�er a popular hoie. In partiular, the inability to overlap prefethes may limit how far ahe misses an be

hidden on supersalar proessors. We illustrated that there is a potential for the prefether by Roth et al. to be

more e�etive with tree data strutures than their urrent design permits.

Additional prefeth tehniques may still be neessary to over memory referene patterns that do not fall into

the stride-n and linked ategory. Here, the Markov prefether may �ll in, although its hardware ost makes it an

expensive hoie and its slow reation time and diÆulty with dynami memory aess patterns may limit it. Also

important to evaluate at this point is if the point of diminishing return has not already been reahed. If 50% of

exeution time is due to ahe miss stalls and 90% of this penalty has been hidden with stride and linked prefethers,

then additional improvements in exeution time are very hard to ahieve.

Finally, prefething on mediaproessors ompetes with the urrent pratie of writing data-ow programs for

DMA engines and may be an important feature for reduing programmer omplexity. Either method an improve

performane signi�antly, however, prefething is urrently not explored well on mediaproessors. The most promising

prefething tehnique for multimedia appliations is the stride prefether. More work is needed in evaluating how

well these work on multimedia appliations, though. Little temporal loality in multimedia appliations may make

it bene�ial to develop prefething tehniques that an isolate prefethed multimedia data into a separate on-hip

memory region to prevent ahe pollution.
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